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Abstract— Induction heating technology is nowadays the 

heating technology of choice in many industrial, domestic, and 

medical applications due to its advantages regarding efficiency, 

fast heating, safety, cleanness, and accurate control. Advances 

in key technologies, i.e. power electronics, control techniques, 

and magnetic component design, have allowed the development 

of highly reliable and cost-effective systems, making this 

technology readily available and ubiquitous.  

This paper reviews induction heating technology summarizing 

the main milestones in its development, and analyzing the 

current state-of-art of induction heating systems in industrial, 

domestic and medical applications, paying special attention to 

the key enabling technologies involved. Finally, an overview of 

future research trends and challenges is given, highlighting the 

promising future of induction heating technology. 

 

Index terms—Induction heating, resonant power conversion, 

electromagnetic analysis. 

I. INTRODUCTION 

Induction heating (IH) provides contactless, fast, and 

efficient heating of conductive materials. It is becoming one 

of the preferred heating technologies in industrial [1], 

domestic [2], and medical applications [3], among other 

applications, due to its advantages when compared with other 

classical heating techniques such as flame heating, resistance 

heating or traditional ovens or furnaces. 

 Fig. 1 shows a typical arrangement of an induction 

heating system [4-7] in a longitudinal flux configuration. An 

ac source is used to supply an alternating voltage to an 

induction heating coil. The coil generates an alternating 

magnetic field, in which the induction target, i.e. the load, is 

immersed. As a consequence, the induction target is heated 

by means of two physical phenomena: eddy currents and 

magnetic hysteresis [4]. Eddy currents oppose to the 

magnetic field applied to the induction target, and they 

produce the heating by Joule effect. This is commonly the 

main heat source in IH processes. In addition to this, magnetic 

hysteresis creates additional heating in ferromagnetic 

materials. The typical operating frequencies of these systems 

ranges from line frequency, e.g. industrial and high power 

applications, up to a few MHz’s, typical of medical systems. 

Among the advantages of IH, the following ones are 

commonly recognized: 

 Fast heating: IH technology directly heats the induction 
target, reducing wasted heat and significantly reducing 
heating times thanks to high power densities and without 
any thermal inertia. 

 Efficiency: Modern efficient designs of the coil and the 
power converter allows obtaining efficiency values higher 
than 90%, significantly improving conventional heating 
techniques. Moreover, since only the induction target is 
heated, the heat loss through the ambient and surrounding 
elements is minimized and high temperatures can be 
reached. 

 Controlled heating: The power applied by the IH system 
and the location can be accurately controlled through the 
appropriate design of the coil and the power converter and 
its control. As a consequence, advanced features can be 
implemented such as local heating, predefined 
temperature profiles, etc. 

 Improved industrial process: IH consistency and 
repeatability improves the quality process and maximizes 
the productivity of the process. Moreover, since IH is a 
contactless heating process, the induction target is not 
affected by the heating tool, i.e. the coil, and the quality is 
ensured.   

 Cleanness and safety: Since IH heats directly the induction 
target, the temperature of the surroundings of the heating 
area is lower, avoiding burning other materials, such as 
spilled food in the case of domestic IH. Moreover, there is 
no local pollution unlike fossil fuel furnaces. 

These advantages, and the progress in IH technology 
achieved in recent years, have boosted applications of IH that 
can be classified into industrial, domestic, and medical 
applications. The main enabling technologies that have 
allowed this progress are power electronics, modulation and 
control algorithms, and magnetic component design. Table I 

  
(a) (b) 

Fig. 1. Typical arrangement of an induction heating system in a 

longitudinal flux configuration: (a) general view and (b) top view. 
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summarizes the main differential characteristics of the main 
IH applications and the enabling technologies involved. 

Although all IH applications share the main fundamental 
principle, they have differential characteristics that have to be 
addressed through the technologies involved in each design. 
Industrial applications require usually higher output powers 
and higher reliability, constraining the power converter 
topology selection. Besides, since they have intensive 
industrial usage, assembly-line readiness and an improved 
interface and communications are required. In addition to this, 
the inductor design needs to adapt to the different shapes of 
induction targets, e.g. shafts, gears, etc., and provide the 
required heat profile. 

By contrast, domestic IH systems that are usually 
implemented in induction cookers require low cost and highly 
efficient implementations due to the limited cooling 
capabilities. Besides, the wide load range due to the different 
materials, geometries and required output powers is the main 
challenge from the control point of view. The inductor system 
must be designed also to obtain high-efficiency and be able to 
heat non-ferromagnetic materials typical of some cultures. 
Finally, medical applications require specific but vital 
requirements to IH systems. These systems are usually low 
power, but they require very accurate control of the heating 
process, including temperature and localization. 

The next lines give a brief outline of the evolution of IH 
systems and its applications. 

II. HISTORY OF INDUCTION HEATING SYSTEMS 

IH technology has been in constant evolution following 
industrial and technological advances since the end of XIX 
century [8]. The principle of induction heating was discovered 
by Michael Faraday when he discovered induced currents by 
a magnet. James C. Maxwell developed later the unified 

theory of electromagnetism and James P. Joule described the 
heat produced by a current in a conductor, establishing the 
fundamental principles of induction heating. 

The first industrial applications of the IH phenomenon 
were identified in 1887 by Sebastian Z. de Ferranti, who 
proposed IH for melting metals, filling the first patent on 
industrial applications of IH. Later, in 1891, F.A. Kjellin 
presented the first fully functional induction furnace. The first 
major advance came when Edwin F. Northrup implemented 
the first high-frequency induction furnace at Princeton in 
1916. Nearly at the same time, M.G. Ribaud developed high-
frequency IH technology using spark-gap generators and, 
later, Valentin P. Vologdin developed IH generators using 
machine generators and vacuum tubes. These were the 
beginnings of modern high-frequency induction heating 
systems. During WWII and later, automotive and aircraft 
industry boosted the use of IH technology not only for melting 
metals but also for advanced material treatment, significantly 
increasing the IH technology penetration on industrial 
processes. The second major revolution of IH technology 
came along with the development of solid-state generators. 
These generators took advantage of new power semiconductor 
technology, mainly thyristors, to implement highly reliable 
power converters. Later, the development of higher frequency 
power devices, such as the power bipolar junction transistor 
(BJT) and the power metal-oxide-semiconductor field-effect 
transistor (MOSFET), enabled the design of higher efficiency 
power converters, making IH the technology of choice in 
many applications. The grade of performance and efficiency 
achieved in IH systems, together with further advances in 
semiconductor technology and the introduction of the 
successful insulated-gate bipolar transistor (IGBT), expanded 
the applications of IH technology beyond the industrial 
environment. Since late 80s, many domestic applications of  

TABLE I. DIFFERENTIAL CHARACTERISTICS OF INDUCTION HEATING APPLICATIONS FOR EACH ENABLING TECHNOLOGY.

Enabling technology 

 

 

Application 

Power Electronics 
Modulation and Control 

Algorithms 
Magnetic Components 

Industrial 

 High power. 

 Improved reliability. 

 Assembly-line read. 

 Low-high operating 

frequency. 

 Multi-zone control algorithm. 

 Improved interface and 

communications. 

 Variable load and power ranges. 

 Multi-load management. 

 Temperature control. 

 High efficiency. 

 Variable shape. 

 Optimized heat 

distribution. 

Domestic 

 Low cost. 

 High efficiency. 

 Limited cooling 

capability. 

 Medium operating 

frequency. 

 Power factor and harmonics control. 

 Variable load and power ranges. 

 Need to avoid accoustic noise. 

 Multi-load management. 

 Temperature control. 

 High efficiency. 

 Heat non-ferromagnetic 

materials. 

 Flexible cooking surfaces. 

Medical 

 Low power. 

 High quality factor 

resonant tank. 

 High operating 

frequency. 

 Accurate power and temperature 

control. 

 Frequency selection. 

 Local heating. 

 Controlled magnetic field 

interactions. 

 Ferromagnetic fluids. 



IH have appeared, and nowadays induction heating 
cookers are well-established in many countries. Moreover, 
since late 80s and, specially, in the XXI century, a special 
interest of IH for medical applications has appeared due to its 
advantages in terms of precise and local heating for 
hyperthermia treatment. 

Currently, IH technology is evolving fast towards highly 
reliable and efficient systems, allowing implementing highly 
versatile systems that makes IH ubiquitous. Next section 
summarizes the state-of-art of the enabling technologies that 
makes possible such systems. 

III. ENABLING TECHNOLOGIES 

Advances in key technologies have made possible the 
development of IH technology [17]. This section summarizes 
the current state-of-art of the main enabling technologies 
commonly involved in IH systems: power electronics, 
modulation and control algorithms, and magnetic component 
design. A selection of references summarizing the state-of-art 
is given in next subsections, and they are also summarized in 
Table II according to the application that they focus on.  

A. Power electronics 

Fig. 2 shows the main power conversion scheme present 
in most of the single coil IH systems. Firstly, an 

electromagnetic compatibility (EMC) filter ensures that the 
power converter complies with the electromagnetic standards. 
After that, an ac-dc converter provides a dc-bus to supply the 
inverter block. The rectifier stage can be either a non-
controlled stage, i.e. diode rectifier, or a controlled one. The 
latter implementation is used to provide an additional degree 
of freedom for the control system, and can be implemented 
either as a controlled rectifier [12] or as a diode rectifier plus 
a dc-dc converter [25]. Depending on the applications, some 
IH systems also include a power factor corrector block in 
order to increase voltage and ensure sinusoidal input current 
[73]. 

The dc-ac power converter, also known as inverter, is the 
most important one and has to supply medium frequency 
currents to supply the inductor [18]. The operating frequency 
is usually higher than 20 kHz in order to avoid audible noise 
and rises up to 1 MHz depending on the application. 
Currently, most IH systems feature either voltage source or 
current source resonant inverters [23] in order to obtain 
efficient and high-power-density implementations. The 
induction heating load is usually modeled as an equivalent 
resistor Req and inductor Leq (Fig. 3 (a)), which may be 
connected in series or parallel, depending on the model, and 
additional external inductors and/or capacitors are added to 
complete the resonant tank. The resonant inverter topology 
used can be classified either considering the type or resonance 
used or the number of switching devices. 

Considering the resonant tank, the most used 
configurations are the second-order series resonant (Fig. 3 (b)) 
and parallel resonant circuits (Fig. 3 (c)), and the third-order 
LLC series-parallel resonant circuit (Fig. 3 (d)). The series 
resonant RLC circuit [9], [50] is commonly used in voltage 
source inverters and ensures zero mean current through the 
inductor, due to the series capacitor, and zero voltage 
switching (ZVS) conditions above the resonant frequency, i.e. 
zero voltage across the device during the switching process 
that ideally leads to zero switching losses. By contrast, the 
parallel-resonant RLC circuit [24] is used in current source 
inverters, achieving reduced current through the switching 
devices and zero current switching (ZCS), i.e. switching with 
zero current through the device that leads to ideally zero 
switching losses. For this reason, this topology is chosen when 
high inductor current is demanded in order to reduce stress in 
the power devices. Finally, the series-parallel LLC circuits 
combines the benefits of parallel resonance with additional 
load short-circuit protection [10], [13], making it one of the 
most used topologies for high power industrial applications. 

Fig. 2. Typical power conversion flow in an IH system. 

(a) 

 
(b) (c) (d) 

Fig. 3. Electrical equivalent model of an IH load (a) and basic resonant 

configurations: (b) series, (c) parallel, and (d) hybrid series-parallel. 

TABLE II. SELECTED REFERENCES CLASSIFIED ACCORDING THE FOCUS ON APPLIACIONS AND ENABLING TECHNOLOGIES

Enabling technology 

 

 

Application 

Power Electronics 
Modulation and Control 

Algorithms 
Magnetic Components 

Industrial [1], [4], [5], [9-27]. [25], [26], [28-33]. [26], [30], [34-43]. 

Domestic [2], [44-63]. [33], [50], [62], [64-78]. 
[42], [43], [45], [62], [77], [79-

89]. 

Medical [3], [90-92]. 
Industrial and domestic 

techniques applied. 
[43], [93-99]. 

 

Leq Req Cr

Leq Req

Cr

Leq Req

Cr

Lr



All these three resonant configurations can also include a 
transformer to provide isolation and additional voltage gain 
[10]. 

According to the number of switching devices, the inverter 
topologies commonly used in IH are the full-bridge [21], half-
bridge [19], [20], and single-switch [63] resonant inverters. 
Fig. 4 shows the voltage source full and half-bridge in the 
series resonant form, and a ZVS single-switch inverter. The 
full-bridge topology is commonly used for output powers 
higher than 5 kW, and it is the standard choice for industrial 
systems. By contrast, the half-bridge topology is the preferred 
one for domestic induction systems up to 5 kW, whereas the 
single-switch inverter is used in small IH generators and 
domestic systems up to 2 kW. 

Apart from the single output topologies previously 
detailed, modern designs include multiple-coil systems 
intended to improve the heat distributions [15]. These multi-
coil systems have been applied to both industrial [25-27] and 
domestic applications [44], [48], [68], and require the 
development of multiple-output inverters in order to obtain 
cost-effective solutions. Fig. 5 summarizes some of the 
approaches proposed. Fig. 5 (a) and (b) detail the schematic of 
a dual full-bridge inverter [47] and a dual half-bridge inverter 
[44], [60], respectively. These topologies have similar 
operation to their single-output counterpart, but with limited 
output power control due to additional ZVS constrains. Fig. 5 
(c) shows a half-bridge topology featuring frequency 
selectable resonant loads [45]. Each resonant tank is tuned at 
a different resonant frequency, allowing selecting among them 
with the inverter operating frequency. Finally, Fig. 5 (d) 
shows the series resonant multi-inverter topology [48], [68] 
designed to supply IH systems with a high number of coils 
with a reduced number of switching devices, providing 
independent output power control in each load. Additionally, 
alternative conversion schemes have been recently studied for 
IH systems. Direct ac-ac conversion has been studied by some 
authors because of its benefits in terms of reduced component 
count and electromagnetic emissions (EMI), and improved 
efficiency. Fig. 6 summarizes some of the proposals made by 
several authors. In Fig. 6 (a) [64], several switching devices 
are combined to build bidirectional switches in order to 
implement a full-bridge direct ac-ac power converter. The 
main drawback is the increased number of switches, which 
increases the cost and complexity of the power converter. The 
power converter proposed in [57], Fig. 6 (b), follows the same 
procedure but using the recently developed reverse-blocking 
(RB) IGBTs to implement a half-bridge direct ac-ac converter 
with similar advantages and drawbacks than the previous 
implementation. In order to overcome these limitations, the 
proposals shown in Fig. 6 (c) and (d) were presented. On one 
hand, Fig. 6 (c) proposes a direct ac-ac half-bridge power 
converter featuring high-frequency rectifier diodes, which 
avoids the use of additional switching devices [52]. This 
power converter also increases the voltage applied to the load, 
increasing further the efficiency. Fig. 6 (d) shows a multiple-
output proposal where a common ac-ac converter block 
composed of the switching devices Smh and Sml is used to 
supply a large set of loads and, therefore, reducing the relative 
impact of the ac-ac block cost and complexity [49]. 

B. Modulation and control algorithms 

Modulation and control algorithms have to accurately 
control the power converter in order to obtain the desired 
performance. More specifically, accurate output power (and 
as consequence, temperature) and current control are required, 
with appropriate dynamics. The main issues to address, which 
are common to nearly any IH application, include the 
management of highly variable output power and IH loads 
and, more recently, the implementation of multi-coil systems.  

In order to obtain an apropriate output power control from 
a static poing of view, different modulation types have been 
succesfully proposed for single phase systems: square wave 
[50], [69], [70], asymmetrical control [13], [50], [59], [66], 
[67] or pulse density modulation (PDM) [9], [14], [28], [29], 
[31], [59], [69]. Square wave and asymmetrical controls allow 
to change the output power in the complete operation range by 
either controlling the switching frequency or the duty cycle of 
the control signals. PDM, also known as burst mode, has the 
advantage of controlling the inverter at a fixed switching 
frequency by controlling the on-time of the inverter. The use 
of a phase-locked loop (PLL) is also common in the control 
schemes of IH inverters such as in [13], [74]. As an alternative 
to this idea, papers [25], [27] divide the control into two parts: 
direct phase control thanks to a PLL and indirect RMS 
amplitude control through a proportional-integral (PI) 
controler, as it can be seen in Fig. 7. This solution is possible 

(a) 

(b) 

(c) 

Fig. 4. Basic voltage source inverter topologies applied to IH: (a) full-

bridge series resonant inverter, (b) half-bridge series resonant inverter, 

and (c) a single-switch ZVS quasi-resonant inverter. 
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in the case of one dc-dc converter per phase but the RMS 
calculation slows the dynamic response. 

One of the issues for the future of IH is the load adaptive 
capabilities and some solutions have been proposed in [30], 
[94], [102]. An adaptive simmering control of the temperature 
for a domestic induction cooker is presented in [75]. 
Parameters are updated online, depending on the estimates 

provided by a multiple-model reset observer (MMReO). This 
observer consists of a reinitialized reset observer and of 
multiple fixed identification models, as it can be seen in Fig. 
8. Besides, a fixed robust quantitative feedback theory based 
controller is designed for comparison purposes. Such a control 
scheme achieves quick heating up and accurate temperature 
control whatever the amount of water, with or without a lid.  

(a) 

 
(b) 

 
(c) 

(d) 

Fig. 5. Multiple-output inverters for multi-coil IH systems: (a) 

dual-full bridge, (b) dual output half-bridge, (c) frequency-

multiplexed half bridge, and (d) series resonant multi-inverter. 

(a) 

(b) 

(c) 

(d) 

Fig. 6. Direct ac-ac resonant converters for IH systems: (a) full-

bridge topology, (b) half-bridge topology featuring RB-IGBTs, (c) half-

bridge topology featuring fast diode rectifiers, and (d) multiple-output 

ac-ac converter. 
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Besides all the single phase architectures, multi-phase or 
multi-coil configurations could be helpful to increase either 
flexibility or power or even both simultaneously. Control 
becomes even more important since the currents have to be 
perfectly controlled in form, amplitude and phase, due to the 
coupling effects between the coils and with the load, whatever 
the configuration, transverse flux or longitudinal flux. 
Moreover, as the load characteristics changes with 
temperature, the controller task becomes heavy. An original 
control scheme is described and tested in [25-27] for a six-coil 
system called zone controlled induction heating (ZCIH) in a 
longitudinal flux configuration. Paper [27] presents the use of 
a current control method based on a circuit model using real 
and imaginary (Re–Im) current/voltage components instead of 
the current amplitude and phase angle control in the classical 
approaches. State feedback decoupling provides separate 
current control on each phase with high dynamics but with a 
high computation burden due to numerous high rank matrix 
transformations. The six currents remain in phase in this 
application where no dc-dc converter is needed unlike in [25]. 

In order to obtain appropriate dynamics, resonant control 
of the inductor currents has been presented in [32] versus other 
classical control techniques for comparison purposes. With a 
highly reduced power electronic structure, the amplitudes and 
phases of the currents have to be precisely controlled in a CSI 
feeding a multi-coil IH system in transverse flux 
configuration. The innovation lies in the current phase control 
in order to fit a required temperature profile for metal 
treatment. A resonant controller is implemented on each of the 
phases of this multi-coil induction heating system in order to 

achieve very fast and accurate control. Currents in the other 
phases are considered as disturbances that are compensated by 
each resonant controller.  

All these modulation and control algorithms have been 
implemented either using analog [65] or digital techniques. 
Nowadays, digital implementations using digital signal 
processors (DSPs) or field-programmable gate arrays 
(FPGAs) due to their advantages in terms of configurability 
and performance. In particular, several design methodologies 
[33], monitoring [76] and control architectures [46], [72], 
[78], and accelerated simulation techniques [71] for IH 
systems have been proposed taken advantages of FPGAs.  

C. Magnetic component design 

The most important magnetic component in an IH system 

is the inductor-load system [42], [43]. Significant efforts have 

been paid to the modeling [34], [36], design, and optimization 

using either analytical [79] or finite element analysis (FEA). 

From an application point of view, the most important aspects 

are the electrical equivalent parameters extraction [44], [45], 

[80], [85] the efficiency optimization [81], [86-89], and the 

heat distribution optimization [26], [37], [38]. 

In the industrial applications of IH, two different types of 

flux inductors exist, depending on the arrangements of the 

coil and the load and on the flux direction: transversal flux in 

Fig. 9 (a) or longitudinal flux in Fig. 9 (b).  
The advantages of classical induction heating systems can 

be improved by multiphase inductors. Indeed, achieving metal 
temperature homogeneity with a single inductor on a large 
scale is impossible, particularly in transverse flux heating. A 
solution to overcome this constraint consists in using multi-
coil systems but with an increased complexity.  

Conventional control solutions for industrial multi-
inductor systems [35], [39] are based on several inductors with 
mobile magnetic screens and mobile flux concentrators (Fig. 
10). These additional devices adjust the magnetic fields 
produced and adapt the system to different formats of material 
and changes in position in order to reach the desired 
temperature gradients. The processing lines are then subject to 

 

Fig. 7. Inductor current control circuit [25]. 

Fig. 8. Multi-model reset observer for x B, W
T where B, and

W  are the characteristic temperatures of the system [75]. 

 
(a) (b) 

Fig. 9. Different inductor flux approaches: (a) transverse flux and (b) 

longitudinal flux. 

Fig. 10. Transverse flux induction heating with moving parts 



mechanical adjustments and/or maintenance as often as 
necessary to change the material to be heated. It is important 
to notice that without any model, the desired power profile is 
obtained by successive trial and error setting tests which are 
time consuming.  

Significant progresses [11], [25-27] have been made in 
this domain by considering a static multi-inductor system 
without any moveable devices such as yokes or magnetic 
screens. Nevertheless, these multi-coil systems involve 
mutual coupling between inductors themselves and between 
the inductors and the load that have to be taken into account 
in the control scheme [27], [82-84]. The corresponding 
architectures often present rather complex solutions with one 
dc-dc converter (or one rectifier) plus one resonant inverter 
per phase as in [11], [25-27]. In [40], it is proposed to 
manually change the coil connections for load-generator 
adaptation. Some decoupling transformers between the 
different phases are added in [41], which are certainly bulky 
and costly. It is possible to take advantage of simpler 
structures by an optimization with constraints, based on a prior 
determination of the mapping of induced current distribution 
inside the heated material. It necessitates the global power 
density calculation in order to achieve the correct temperature 
profile through the setting of currents in the 3 phases in [30]. 
In that case, amplitudes and phases of the inductor currents 
have to be determined and controlled. 

Fig. 11 shows an example of several water-cooled 
inductors for industrial applications, whereas Fig. 12 shows 
several flat inductors with different shapes and sizes for 
domestic induction heating. 

This Section has covered the main enabling technologies 
in IH systems. Next Section will explain the main applications 
of IH with a special focus on the differential characteristics 
and the implemented technologies. 

IV.  INDUCTION HEATING APPLICATIONS 

Among the many applications of induction heating, 
industrial, domestic and medical are the most important in 
terms of installed power and economic importance. The next 
subsections details the main characteristics of these IH 
applications. 

A. Industrial applications 

Industrial applications of IH started in the early 1900s 

with metal melting and were later extended to the automotive 

and aircraft industries. Current applications have been 

extended to many manufacturing processes including pre- 

and post-heating, melting, forging, surface treatment, sealing, 

bonding, annealing, and welding, among others. 

The use of induction heating improves the speed of the 

process, its precision, efficiency, and repeatability, which are 

key features needed for the automation of the industrial 

processes. Fig. 14 shows two complete induction heating 

installation for joints hardening (a) and tube welding (b). 

Other industrial applications can be seen in Fig. 13 (a) and 

(b), for high power level, or in Fig. 13 (c) and (d), for lower 

Fig. 11. Detail of several industrial water-cooled transverse flux 

inductors. Courtesy GH Electrotermia S.A. 

Fig. 12. Domestic induction heating inductors of different size and 

shape. Courtesy BSH Home Appliances Group. 

(a) (b) 

(c) (d) 

Fig. 13. Example of IH applications: (a) IH metal by transverse flux, (b) 

IH of rails for hardening, (c) bonding by IH, and (d) sealing by IH. Courtesy 

Five Celes. 

Fig. 14. Industrial applications of induction heating: IH joints hardening 

facility for the automotive industry. Courtesy GH Electrotermia S.A. 

CV Joint hardening installationCV Joint hardening installation



power levels. The method in Fig. 13 (c) consists in 

accelerating the polymerization of the glue by heating the 

metal parts to be glued by induction. The temperatures 

required are generally low (150 to 300°C). Fig. 13 (d) is an 

elegant means of sealing aluminum covers on jars of food 

product. Inductive heating of the aluminum film increases the 

temperature of the sealing product applied to the side of the 

cover in contact with the jar.  
Depending on the final application and the material to 

heat, the power converter operating frequency is significantly 
different, varying from a few Hz for high power systems, 
typical for metal melting, to several hundreds of kHz, for 
surface heat processing. As a consequence, semiconductors 
used in industrial heating converters are thyristors, operating 
at frequencies up to 3 kHz, for power ratings of several MWs, 
while IGBTs, operating at frequencies up to 150 kHz  
for power ratings up to 3 MW are normally used. MOSFETs 
are used for higher frequencies, up to several hundreds of kHz 
and output powers lower than 500 kW. Fig. 15 summarizes 
the semiconductor device utilization area depending on the 
switching frequency, the power level, and the type of resonant 
tank, series or parallel, used. 

Certain applications require more advanced topologies 
that aim to improve the heating characteristics or expanding 

into new fields of application. This is the case of the dual 
frequency generators [22] used to feed the inductor, 
sequentially or simultaneously, with two different frequencies 
(Fig. 16) to achieve different penetration depths. One 
frequency is typically set in the medium frequency range (3 to 
10 kHz), and the other one in the high frequency range (200 
to 400 kHz). These types of generators are used for hardening 
work pieces with irregular surface geometry like gears.  

It is important to note that control and interoperability of 
industrial IH systems are extremely important. On the one 
hand, the power converter operation must be accurately 
controlled to obtain the desired results in the IH target. On the 
other hand, the IH system must be interconnected to the 
complete assembly line using industrial protocols such as 
Profinet, Interbus, Profibus, etc. 

B.  Domestic applications 

The main domestic applications of IH are the induction 
heating appliances [62]. IH cookers take advantage not only 
of improved heating times and efficiency, but also lower 
surface temperatures, which implies better security and 
cleanness, since food does not get burnt. 

Fig. 17 shows the main structure of an IH appliance (a) 
and a detail of the inductor-pot system (b). The main 
characteristics of this application is the low-profile compact 

Fig. 15. Power devices used in industrial IH applications. 

(a) 

(b) (c) 

Fig. 16. Double-frequency induction heating generator: (a) block 

diagram, (b) output current (25 A/div, time 10 µs/div), and (c) output 

current spectrum. 

(a) 

(b) 

(c) 

Fig. 17. Induction heating appliances: (a) exploded view, (b) inductor 

system detail, and (c) power conversion diagram. 
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design, and the highly variable IH target, which can change in 
shape, materials, and position very easily. Efficiency is also a 
key design parameter due to the limited cooling capabilities. 
For this reason, large efforts have been paid to improve the 
power converter and inductor efficiency [50-52], [54], [55], 
[61]. 

Nowadays, two technological trends are present in IH 
appliances. Both of them follow the same power conversion 
diagram shown in Fig. 17 (c), but differ in the inverter 
topology. Designs for Europe and America are usually 
specified for output powers up to 4 kW, and the power 
converter topology usually chose is the series resonant half-
bridge inverter [50], [56]. By contrast, appliances for Asiatic 
countries are usually designed with 2 kW output power and 
the preferred topology is the ZVS single-switch quasi-
resonant inverter [58]. In addition to this, this technology also 
offers the capability to heat high-conductivity materials [53], 
such as aluminum or copper, usually employed in these 
countries. Taking into account the output power and cost 
restrictions, switching frequencies usually ranges from 20 kHz 
up to 100 kHz. The lower limit is set in order to avoid acoustic 
noise emissions, not desirable in domestic applications, 
whereas the higher limit is imposed by the switching losses of 
the power devices. 

These appliances feature also advanced control techniques 
including smart pot recognition [76] and adaptive control 
strategies [75] to control not only the output power but also 
the pot temperature. It provides the user with advanced 
functionalities that cannot be achieved with conventional 
cookers, significantly improving the user performance. 

Currently, research trends are focused on higher efficiency 
power converters and flexible cooking surfaces technology 
[9], [52], [61], [86], where a special effort is required to design 
multiple-output power converters and compact coils [44], 
[48], [83]. The total active surface concept (Fig. 18), still 
under development, is an example of modern development 
where the user can place any pot, with any shape, anywhere in 
the cooking surface, redefining completely the cooking 
experience. This new concept requires the development of 
high-efficiency high-performance multiple output power 
converters to satisfy the required specifications with a cost-
effective solution. Besides, the control and modulation 
strategies become more complex since accurate multi-load 

management is required. This is a remarkable example of how 
advances in enabling technologies leads to improved 
induction heating systems present in the market.  

C. Medical applications 

Nowadays, the third major area of application of IH 
technology is related to its medical applications. Initially, IH 
was applied in the manufacturing and sterilization of many 
surgical instruments, since it is a clean, fast, and portable heat 
source. However, in recent years IH has also been introduced 
in some minimally-invasive therapies [3]. 

Hyperthermia is a cancer treatment therapy based on 
heating the target tumor temperatures over 50 ºC. This local 
treatment removes cancer tissue while minimizing the damage 
to surrounding healthy cells. IH is therefore a good alternative 
for hyperthermia treatments because it is a contactless heating 
technique, i.e. less invasive, and provides accurate power 
control. In order to precisely deliver the power the tumor, 
usually a ferromagnetic material is placed in the area to be 
treated. Modern research trends investigate about the use of 
fluids with ferromagnetic nanoparticles in order to obtain 
precise heat distributions [93-97]. These techniques require 
the design of accurate power converters and control [90-92], 
and specific inductor designs [3], [98]. Due to the typical low 
resistivity nature of IH loads for medical applications, parallel 
resonant inverters are applied in order to minimize the current 
through the inverter. Besides, the operating frequencies are set 
to be higher than 300 kHz up to several MHz to obtain 
appropriate equivalent electrical parameters, being the 
MOSFET the power device commonly implemented. 

Future research include more precise and homogeneous 
heating, and temperature monitoring in the cancer and 
surrounding tissues, along with combining this technique with 
other therapies to improve results. 

V. FUTURE CHALLENGES 

Although IH systems have reached certain maturity, there 
are still some issues to address to further increase its 
performance. Moreover, advances in enabling technologies 
and applications continuously open new research trends and 
industrial interest. Among the many topics of interest, 
significant efforts are expected in these topics in the next 
years: 

 High-efficiency IH systems: the improvement of 
semiconductor technology and the development of wide-
bandgap devices, together with advanced topologies, are 
allowing the design of higher efficiency systems. Such 
systems not only exhibit higher efficiency, but also 
improved performance and reliability. 

 Multi-coil IH systems: Multi-coil systems offer higher 
flexibility, performance, and heat distribution, and are 
essential for some high precision/flexibility industrial and 
domestic applications. These systems represent a major 
breakthrough in IH technology, requiring the development 
of multiple-output power converters, advanced control 
techniques, and special inductor design paying very high 
attention to coupling effects. 

 Advanced control systems: IH systems require robust 
control algorithms to adapt the power converter operation 

Fig. 18. Total active surface IH Appliance. 



to different IH loads and operating points. Current research 
lines pursue the use of adaptive algorithms and real-time 
identification systems to improve the system performance. 
This is one of the key issues of multi-coil systems as well 
as real time temperature measurement and optimal control 
and stability study. Generalized averaging methods and 
envelope models will help to fix the characteristics of the 
current transients in these systems. 

 Special applications: although the process parameters in 
many industrial and domestic applications are already 
well-known, there are still some applications that need 
further research and optimization to find viable solutions. 
Among these special applications, the following are worth 
to be highlighted: heating of low-resistivity materials, 
accurate heating of biological tissues for medical 
applications, faster design of IH systems for complex IH 
load geometries, and accurate 3D FEA simulation of the 
complete IH system. 

VI. CONCLUSIONS 

This paper has reviewed the current state-of-art of 
induction heating systems, focusing on the enabling 
technologies involved and the main applications, and 
providing an exhaustive list of papers. 

From a design point of view, there are three main enabling 
technologies to tackle when designing an IH system: power 
converter, modulation and control architecture, and the 
inductor design. Extensive research has been carried out in 
recent years, leading to improved IH systems that have 
enabled widening IH systems usage to many industrial, 
domestic, and medical applications. 

The future of IH systems is promising, with new 
technologies and applications fostering research in each one 
of the three enabling technologies aforementioned. The 
development of higher efficiency and performance IH systems 
is expected to be the focus of industrial interest and researches, 
further increasing the general interest in IH systems. 
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