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Summary
The aim of this work is to study experimentally the relationship between the resonance frequencies of the trumpet,
extracted from its input impedance, and the playing frequencies of notes, as played by musicians. Three different
trumpets have been used for the experiment, obtained by changing only the leadpipe of the same instrument.
After a measurement of the input impedance of these trumpets, four musicians were asked to play the first five
regimes of the instrument, for four different fingerings. This was done for three dynamic levels and repeated
three times. Statistical methods were implemented to assess the variability in the playing frequencies, and to
study quantitatively their relationships with the bore resonance frequencies. A limited influence of the musician
on the instrument overall intonation is observed, as well as a weak influence of the dynamic levels on the pitch of
the notes. The results show that for most of the regimes, variations of the resonance frequency lead to same order
variations of the playing frequency of the corresponding note. We noticed also that the sum function, derived
from the input impedance, does not give a better prediction of the playing frequency than the input impedance
itself.

1. Introduction

Measuring and computing wind musical instruments input
impedance is now well mastered [1, 2, 3, 4, 5, 6]. As part
of a larger project aimed toward helping instrument mak-
ers to design and characterise their musical instruments,
this work focuses on how the bore resonance frequencies,
taken from the input impedance, can be related to the play-
ing frequencies. Indeed, instrument makers are primarily
interested in the overall intonation of their instruments in
playing situations, and therefore they need some predictive
indicators.

Some studies attempt to find a solution to this issue by
taking the coupling between the instrument and the musi-
cian into account. The case of reed instruments is treated
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by Gilbert et al. [7] and Farner et al. [8] by using the har-
monic balance technique adapted to self-sustained oscilla-
tions of wind instruments such as clarinets. The resonator
(i.e. the instrument body) is the linear part, treated in fre-
quency domain, while the driving system (the reed) is the
nonlinear part, treated in time domain. The harmonic bal-
ance technique can also be used for brass instruments [9].
Three control parameters representing the “virtual” mu-
sician have to be defined: the pressure inside the mouth,
the resonance frequency of the lips, and the inverse of lips
mass density. Depending on the choice of these parame-
ters, it is possible to obtain a series of playing frequencies,
such as those obtained by the musician. The coupling be-
tween the musician and the instrument can also be investi-
gated using a simplified model in which a single mechan-
ical lip mode is coupled to a single mode of the acoustical
resonator, as done by Cullen et al. [10] for the trombone. It
is also possible to predict the intonation of the instrument
by synthesizing the notes it can produce. Many studies are
carried out on physical modelling using temporal methods
[11, 12].

For the saxophone, for some advanced performance
techniques (bugling and altissimo playing), musicians can
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use the resonance of their vocal tract to play a note close
to a weak bore resonance, or even decrease the sounding
pitch to several semitones below the standard pitch for the
same fingering [13, 14, 15]. It seems that this technique is
not used by trumpet players [16, 17].

The musician has a significant role in determining the
playing frequencies, this aspect being difficult to take into
account. Therefore, the first aim of this paper is to de-
termine an order of magnitude of the brass player’s in-
fluence on the overall intonation of the instrument. Then,
it aims at finding some objective indicators from the in-
put impedance which can predict the playing frequencies
without taking the musician’s behaviour into account, as
intended by Pratt and Bowsher [18] and previously by
Wogram [19]. This will be done by recording a large num-
ber of notes played by several musicians on three trumpets.

Section 2 presents some basic information about the
acoustics of the trumpet. Section 3 describes the recording
of notes played by the musicians on the different trum-
pets and the analysis of the data. From these measure-
ments, an analysis of the musicians’ behaviour is pre-
sented in section 4. In section 5, the playing frequencies of
the recorded notes are compared to the bore resonance fre-
quencies taken from the input impedance of the trumpets.
Section 6 presents the data first as a normal distribution
and then, in order to minimize the influence of the musi-
cian on the results, it focuses on frequency differences in-
stead of the frequencies themselves. Finally, the relevance
of the sum function [19], a function made from the input
impedance to predict the intonation, is discussed.

2. Trumpet resonances and playing fre-
quencies: Preliminary discussion

Campbell and Greated [20] as well as Fletcher and Ross-
ing [21] give a large overview on brass instruments. A
summary about trumpets is reported here as well as a dis-
cussion on the coupling with the musician.
The acoustic response of an instrument at different

frequencies can be characterised by its input impedance
(impedance computed or measured at the input of the en-
tire instrument, that is to say at the input plane of the
mouthpiece). A typical input impedance of a brass in-
strument (see Figure 1) shows a large number of bore
resonance frequencies, where the impedance amplitude is
maximum and the phase is passing through zero. Some
of these resonance frequencies are associated with a note
(or oscillation regime) that the musician can play. In the
example of Figure 1, corresponding to the basic fingering
of a B
 trumpet where all the three valves are up, the reso-
nances 2 to 6 correspond to the series of concert notes B
3,
F4, B
4, D5, F5 (harmonic series of B
2). The first reso-
nance does not correspond to a normally playable note on
the trumpet. The three valves offer height combinations,
which allow the construction of the whole chromatic scale,
since the activation of a valve produces an elongation of
the air column which lower the resonance frequencies of
the instrument. The first valve brings down the frequency

Figure 1. Measurement of the input impedance amplitude (in dB)
and phase (in rad) of the trumpet called NORM with all the three
valves up, with the notes corresponding to each impedance peak
above (concert pitch of a B
 trumpet). The trumpet and the set-up
used for the measurement are presented in Section 3.1.

of one tone, the second of a semitone, and the last one of
one and a half tones. In the rest of the article, a pressed
valve will be noted 1 and a valve up will be noted 0.
An initial estimation of the instrument intonation can

be carried out by comparing the bore resonance frequen-
cies to their corresponding notes in the equally-tempered
scale, as it is shown in Figure 2 for the trumpets called
CHMQ, DKNR and NORM in this study. These instru-
ments are presented in section 3. This representation is of-
ten used by instruments makers and is for example pre-
sented in the BIAS software1. These graphs show that the
series of resonances of the trumpet can be considered as
harmonic with a [−20,+20] cents precision interval (the
resonance frequencies are almost aligned on an horizontal
line), apart from the resonances corresponding to the sec-
ond regime of 100, 110 and 111 fingerings that are too low.
These diagrams also show that, by increasing the length of
the bore, the resonance frequencies become more distant
from the frequencies of their corresponding notes in the

1 BIAS is the Brass Instrument Analysis System developed at the Insti-
tute of Music Acoustics in Vienna: http://www.bias.at/?page_id=
5&sprache=2.
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(a) (b) (c)

Figure 2. Intonation graph of trumpet (a) CHMQ, (b) DKNR and (c) NORM, obtained by calculating the difference in cents between
each resonance frequency of the input impedance of each trumpet for the four fingerings and its corresponding note in the equally-
tempered scale.

equally-tempered scale. Consequently, if we assume that
the resonance frequencies are representative of the play-
ing frequencies, notes should be easier to play in tune with
the 000 fingering than with the 111 fingering.

However, this affirmation has to be considered cau-
tiously because this graph forgets an important element of
the trumpet playing: the musician. Indeed, these diagrams
are only estimations of the intonation because the play-
ing frequencies are not exactly equal to the bore resonance
frequencies. The differences between those frequencies re-
sult from a complex aeroelastic coupling between the lips
of the musician and the resonator. Thus, the intonation of
the instrument is not only controlled by the closest reso-
nance frequency but possibly conditioned by upper reso-
nance frequencies of the resonator [22].

Furthermore, a wind instrument is not an instrument
with a fixed sound, that is to say the musician can mod-
ify the pitch and the timbre of the played note by control-
ling his/her embouchure and “bending” the notes. The em-
bouchure represents the capacity of the musician to con-
trol the mechanical parameters of his/her vibrating lips, by
modifying his/her facial musculature as well as the support
force of the lips on the mouthpiece. This also includes the
ability to control the air flow between the lips.

3. Set-Up and Data Analysis

3.1. Set-Up

A parametrised leadpipe, made of four different inter-
changeable parts, was designed [23, 24] as it is shown in
Figure 3. Several parts with various values for the radii r1,
r2, r3 and r4 were manufactured with a numerically con-
trolled turning machine. A letter has been given to each
part of the leadpipe, corresponding to the dimensions of
the radii. Thus, using the same B
 trumpet (Bach model
Vernon, bell 43) with the same mouthpiece (Bach 1 1/2
C) and the parametrised leadpipe, different instruments
with small different acoustical behaviours can be designed.
Three leadpipes were considered for the study: the two

Figure 3. Parametrisation of the leadpipes used in this work
(from Petiot et al. [24]). Radii r1, r2, r3 and r4 are given in Ta-
ble I.

leadpipes presented in the Table I and a leadpipe originally
provided with the trumpet, called NORM, as in “normal
leadpipe”. These three instruments are all playable and are,
at first sight, very similar from a musical point of view. For
all the tests, the position of the tuning slide was similar: it
was pulled out of a length of 1 cm for all the trumpets and
all the musicians.

The input impedances for these trumpets were then
measured for four different fingerings (000, 100, 110 and
111) using a set-up described by Macaluso and Dalmont
[4]. The first regime is not played with a trumpet. In this
study, the notes will thus be recorded for regimes 2 to 6
with these four fingerings. Nevertheless, some of these
notes do not correspond to the usual fingerings used by
the musician. Regimes 2 to 6 are normally played by mu-
sicians for fingerings 000 and 100. For the 110 fingering,
musicians play notes from the second regime to the fifth.
The sixth is generally not used since concert pitch D5 can
be played with the fifth regime of the 000 fingering. For
the 111 fingering, only regimes 2 and 3 are usually played.
Regimes 4, 5 and 6 are an alternative way of playing the
notes E4, G�4 and B4, for which musicians usually use the
third regime of the 010 fingering (E4), the fourth regime
of the 100 fingering (G�4) and the fifth regime of the 110
fingering (B4). These fingerings have been chosen in or-
der to study the whole range of the trumpet frequencies,
from the lowest pitch to the highest. Furthermore, while
certain combinations of regimes and fingerings are almost
never used by musicians, it has been interesting to include
them in this study. Indeed, trumpet players are not used to
playing these notes so there is no “learning effect”, which
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Table I. Description of the two parametrised leadpipes used in this study (the radii are given in mm).

Part 1 Part 2 Part 3 Part 4

r1 r2 r2 r3 r3 r4 r4 r5
CHMQ 4.64 5 5 5.5 5.5 5.7 5.7 5.825
DKNR 4.64 5.45 5.45 5.5 5.5 5.825 5.825 5.825

means that they are more likely to play without focusing
on the intonation.
Four musicians, one professor at a music school and

three experienced amateurs, were asked to play the three
trumpets to record the sounds. After a short warm-up, each
trumpet player had to play the five first playable notes
(regimes 2 to 6) by saying the name of the note before
playing, in order to have a short rest between the notes
and “forget” the pitch of the previous note. Indeed, trum-
pet players are interested in testing the flexibility of their
instrument and, if necessary, they bend the note in order
to correct the intonation defects. Nevertheless, the task for
the musician is different here since it consists of letting the
instrument guide him, even if it means playing out of tune.
The musicians were then asked to play the note with the
easiest emission, without trying to correct the intonation.
These recordings were made for three dynamic levels in
order to study their influence on the playing frequencies:
first mezzo forte, then piano, and finally forte. Afterwards,
each trumpet player had to move to the next fingering with
the same protocol and so on for the four fingerings and
the three trumpets. They had to repeat the whole process
three times in order to test their reproducibility. Finally, 4
trumpet players times 3 trumpets times 4 fingerings times
5 regimes times 3 dynamic levels times 3 repetitions give
2160 notes to analyse.

3.2. Data Analysis

The playing frequency of the notes has been analysed with
the YIN [25] software2, which is an estimator of the funda-
mental frequency specially calibrated for speech and mu-
sic. Overlapping square windows of 68 ms length were
used. This is more than twice the largest expected pe-
riod for all the measured notes. We noticed that musicians
were not able to play a perfectly steady note, and slight
oscillations around the playing frequency were observed.
Figure 4 shows an example of the frequency evolution of
one note, concert B
3, played by a musician with the ba-
sic fingering (000) at mezzo forte. At the beginning, the
frequency rapidly increases: this is a typical transient. The
same effect is happening during the quiescent. After re-
moving the transient and the quiescent, a quasi-stationary
part stays, where the frequency is fluctuating a few hertz.
Therefore, from a measured signal like the one in Fig-
ure 4, what we call in this paper the playing frequency,
will be determined as the mean of the instantaneous fre-
quency during the time t of the quasi-stationary part. The

2 It can be downloaded at http://audition.ens.fr/adc/

Figure 4. Waveform (above) and evolution of the frequency of
the B
3 note played by a musician with the basic fingering (000)
at mezzo forte. Dashed lines separate, on the left the transient and
on the right the quiescent, from the rest of the quasi-stationary
signal. The dotted line represents the mean value of the frequency
during this quasi-stationary part. The error bar in the grey rect-
angle at the top left-hand corner represents twice the standard
deviation of the frequency during the quasi-stationary signal.

standard deviation is then calculated in order to estimate
the ability of the trumpet player to play at a stable playing
frequency.

The measurements of the trumpets’ input impedances
and the recording of the musicians were carried out at dif-
ferent temperatures. The input impedance was measured
at 23◦C whereas notes were played at a room temperature
of 25◦C. According to Gilbert et al. [26] and Noreland
[27], we consider that the temperature of the air column
was around 28◦C during playing. Consequently, for a reli-
able comparison, resonance frequencies need to be moved
forward from the equivalent temperature shift. Since res-
onance frequencies of both cones and cylinders are pro-
portional to the sound velocity, which can be written as
c = 331.45 T/T0 m/s with T the temperature in Kelvin
and T0 = 273.16K, it can be considered that the res-
onance frequencies of a trumpet are proportional to the
square root of the temperature expressed in Kelvin. Con-
sequently, the resonance frequencies from the measured
input impedances are increased by 14 cents which is the
equivalent of 5◦C in order to be at the same level of the
playing frequencies’ temperature.
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Finally, the frequency of the resonances is precisely de-
termined with a peak fitting technique using a least square
method on the complex impedance [28]. This method rep-
resents the impedance in the Nyquist plot. In this plot, the
resonance is locally a circle that should go through the ex-
perimental points. Then, the resonance frequency is the
angle of the point, which is the furthest from the origin.
This method is the one used by Macaluso and Dalmont [4]
and leads to an estimation of the resonance frequency with
an uncertainty of about 5 cents. The resonance frequency
could also be determined with the phase zero crossing.
Nevertheless, as explained in [29, p. 149], the amplitude
of the impedance gives more information about the tun-
ing and the ease of playing than the phase, that is why this
definition of the resonance frequency was chosen.

4. Musicians’ behaviours

4.1. Descriptive analysis of the playing frequencies

In order to study the behaviour of each musician, we rep-
resent by a boxplot the differences (in cents) between
each playing frequency and its respective resonance fre-
quency for all the notes played. A boxplot is a convenient
way of graphically representing a distribution of numeri-
cal data through their five-number summaries: the smallest
observation (sample minimum), lower quartile (25th per-
centile, bottom of the box), median, upper quartile (75th

percentile, top of the box), and largest observation (sample
maximum).
One boxplot per dynamic level allows one to study the

influence of the dynamic level on the playing frequencies.
In each boxplot of Figure 5, there are 180 notes which cor-
respond to 3 trumpets times 4 fingerings times 5 regimes
(2 to 6) times 3 attempts.
These boxplots show that the playing frequencies are,

on average, higher than the bore resonance frequencies
and that the four musicians play at a slight higher pitch
at the piano dynamic level (p) than at mezzo forte (mf) or
forte (f). The dynamic leads to less than a 10 cents differ-
ence on the playing frequency median. The four trumpet
players have a similar behaviour as they all play, on av-
erage, in the order of 8 to 20 cents above bore resonance
frequencies. These results could be consistent with a dom-
inant outward striking regime of oscillations for the lips
that has been observed in previous studies [30, 31, 32].
Nevertheless, Figure 5 shows that musicians can also play
below the resonance frequencies for some notes. Players
can thus have different behaviours depending on the note
they play, on their embouchure, etc. and a single mechan-
ical oscillator cannot model the complete behaviour of the
lip reed [33, 34, 35, 10].

4.2. Modelling of the playing frequency with
ANOVA

In order to estimate the influence of each controlled fac-
tor of the experiment on the playing frequency, it can be
modelled using the analysis of variance method (ANOVA)

Figure 5. Boxplots representing the statistics of the playing fre-
quencies of the notes played by each player for the three dynamic
levels (p, mf and f). Data are expressed in cents, as a difference
between each playing frequency and its corresponding resonance
frequency.

[36, 37]. ANOVA is a collection of statistical models to
model a quantitative variable (the response) with qualita-
tive variables (the factors). It belongs to the general frame
of the linear model, and proposes statistical tests to deter-
mine whether or not the means of different groups of data
are all equal, in the case of more than 2 groups (generali-
sation of the t-test).
In our application, the response is the playing frequency,

which is supposed to be modelled as the sum of differ-
ent qualitative factors (independent variables). The gen-
eral model in the case of a five-factors ANOVA is given
by

Fplayijklm = µ + αi + βj + γk + δl + ηm + εijklm (1)

with
• µ a constant,
• αi the effect of the level i of the musician (i = 1 to 4

since there are four musicians),
• βj the effect of the level j of the dynamic level (j = 1

to 3 since there are three dynamics),
• γk the effect of the level k of the trumpet (k = 1 to 3

since there are three trumpets),
• δl the effect of the level l of the fingering (l = 1 to 4

since there are four fingerings),
• ηm the effect of the level m of the regime (m = 1 to 5

since there are five regimes),
• and εijklm the error term.
Each coefficient represents the influence of the level of the
factor on the response. From the measurements, a least
square procedure is used to estimate these coefficients
(minimization of the squared error between the measured
playing frequency and the playing frequency given by the
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Table II. Results of the ANOVA model for all the data of the
study. Source means “the source of the variation in the data”, DF
means “the degrees of freedom in the source”, SS means “the
sum of squares due to the source”, MS means “the mean sum of
squares due to the source”, F means “the F-statistic” and P means
“the p-value”.

Source DF SS MS F P

Musician 3 1.7e3 5.8e2 1.6 0.184
Dynamic 2 2.0e3 1.0e3 2.8 0.063
Trumpet 2 1.8e1 8.9 0.02 0.976
Fingering 3 4.9e6 1.6e6 4.5e3 <0.0001
Regime 4 4.6e7 1.1e7 3.1e4 <0.0001

model). A classical F-test is used to assess the significance
of the effect of the factors. The sources can be considered
to have a significant impact on the data if the probability
p is lower than 0.05 [36]. Table II gives the results of the
ANOVAmodel, the last column indicating the probability-
value p of the F-test (false rejection probability).
Only two factors have a significant effect on the play-

ing frequency: the fingering and the regime (p < 0.0001).
Changing the fingering or the regime leads to important
modifications of the playing frequencies, which is obvi-
ous. The effects of the trumpet, the musician and the dy-
namic level are not significant at the 5% level. It means
that the influence of these factors on the playing frequency
is very weak. An analysis of the coefficients shows that the
piano dynamic level leads, on average, to a slightly higher
playing frequency than the mezzo forte and forte dynamic
levels. Moreover, it indicates that the first trumpet player
plays, on average, slightly lower than the other three. How-
ever these effects are negligible compared to those of the
fingering and the regime. Furthermore, an analysis of vari-
ance with interactions terms between each pair of factors
shows that interactions are not significant.

5. Playing frequencies vs Resonance fre-
quencies

5.1. Visualisation of the raw data

Figure 6 presents the playing frequencies of notes (Fplay)
as functions of the bore resonance frequencies (Fres) of
the corresponding regimes. Both of these frequencies are
expressed in cents taking the equally-tempered scale as a
reference. In every subfigure,there are two error bars at the
upper left-hand corner. The error bar on the left represents
twice the average standard deviation of a note, called σ1.
Indeed, as explained in section 3.2, each played note is de-
termined by an average frequency (which corresponds to
the playing frequency taken into account in the paper) and
a standard deviation σ. The error bar thus stands for the av-
erage σ over all the played notes, which is equal to 5 cents.
The error bar on the right represents twice the average
reproducibility of the trumpet players, called σ2. Indeed,
each musician will repeat 9 times the same note (3 dy-
namic levels times 3 attempts). The standard deviation is

Figure 6. Playing frequencies (Fplay) as functions of resonance
frequencies (Fres), given in cents (taking the equally-tempered
scale as a reference) for all the 2160 recorded notes. There is
one figure for each regime, from regime 2 to regime 6, and a
different marker for each fingering: 000 in crosses, 100 in circles,
110 in diamonds and 111 in squares. The error bar on the left
represents twice the average standard deviation of a note. The
error bar on the right represents twice the average reproducibility
of the trumpet players.

thus calculated on these 9 notes and then the mean of these
standard deviations is calculated on all the notes played by
all the musicians (it is in fact a mean on 240 standard de-
viations). This error is equal to 8 cents, which is more im-
portant than the average standard deviation. Indeed, this
reproducibility is calculated by considering the three dy-
namic levels, which leads to more important variations
of playing frequency. It corresponds to an audible pitch
difference. Indeed, the just-noticeable difference (JND) is
about 3 Hz for sine waves and 1 Hz for complex tones be-
low 500 Hz. Above 1000 Hz, the JND for sine waves is
about 10 cents [38, 39, 40]. Standard deviations σ1 and σ2
can also be calculated for each regime or for each trum-
pet player. The results are presented in Tables III and IV.
Table III shows that regime 2 induces more variation on
both the varying playing frequency of the note and the re-
producibilty of the musicians. Table IV shows that players
have more or less the same reproducibility even if player
4 seems to play more straight notes and is more repeatable
than the others.
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Table III. Average standard deviation σ1 and average repro-
ducibility of players σ2 calculated for each regime (in cents).

Regime 2 3 4 5 6 All

σ1 8 5 4 4 3 5
σ2 11 7 7 8 8 8

Table IV. Average standard deviation σ1 and average repro-
ducibility of players σ2 calculated for each trumpet player (in
cents).

Trumpet player 1 2 3 4 All

σ1 5 5 6 3 5
σ2 10 8 8 7 8

In Figure 6, for each regime, there are 12 columns of
points that represent all the combinations of the 4 finger-
ings for the 3 trumpets (a column is located at the value of
the resonance frequency of the regime). For each column,
there are 36 points that represent the notes played 3 times
by the 4 musicians for the 3 dynamic levels.

The results show first that for all the regimes, the range
of the data is important. Indeed, playing frequencies ex-
tend over 50 cents in average (and even more for the sec-
ond regime). Secondly, for all the regimes, the playing fre-
quency is higher than the resonance frequency (points are
almost all above the line of equation Fplay = Fres). In par-
ticular, the playing frequencies of the second regime are
shifted up to the greatest extent with respect to the reso-
nance frequencies. This observation can be related to the
inharmonicity of the resonances corresponding to the sec-
ond regime, which were observed to be too low in Fig-
ure 2. For the 111 fingering in particular, where the inhar-
monicity is high, we notice that there is a “compensation
phenomenon” for the playing frequency, which is much
higher than the resonance. This may be due to the cou-
pling musician/instrument, or just to the musician. Notes
played with this fingering are thus located in the three left-
most columns. On the other hand, for short tubes, as for
the 000 fingering, the playing frequencies are quite close
to the bore resonance frequencies. For regimes 3 to 5, play-
ing frequencies are, in average, close to the resonance fre-
quencies. Finally, for the sixth regime, playing frequencies
seem to be somewhat higher than resonance frequencies,
especially for the 000 fingering. This figure is interesting
to visualise the raw data, but we need to define a reference
for each player to draw more precise conclusions.

5.2. Models of the playing frequency

The objective of this section is to estimate to what extend
the resonance frequency can be used to predict the playing
frequency. Different linear models can be proposed to pre-
dict the value of the playing frequency Fplay. The simplest
model than can be proposed is

Fplayijklm = Freskm + εkm, (2)

where Fplayijklm is the value of the measured playing fre-
quency for musician (i = 1 . . . I with I= 4, see Section 4.2
for more details on the variables), dynamics (j = 1 . . . J
with J= 3), trumpet (k = 1 . . .K with K= 3), fingering
(l = 1 . . .L with L= 4) and regime (m = 1 . . .M with
M= 5), Freskm is the value of the measured resonance fre-
quency for trumpet k and regime m and εkm is the error
term.
In this case, the predicted value of the playing fre-

quency, F̂playkm is given by

F̂playkm = Freskm. (3)

To estimate the quality of the model, two classical indica-
tors can be computed [41],
• The mean square error MSE of the model. It quantifies

the difference between the observed value and the value
predicted by the model:

MSE =
1

I*J*K*L*M
i,j,k,l,m

(Fplayijklm − F̂playkm)
2. (4)

• The MAPE (Mean Absolute Percentage Error). It is a
measure of accuracy of a method for constructing fitted
series values in statistics. It usually expresses accuracy
as a percentage:

MAPE =
100%

I*J*K*L*M
i,j,k,l,m

Fplayijklm − F̂playkm
Fplayijklm

. (5)

Several models can be fitted to the data, from the simplest
to the more complex, taken the different factors of the ex-
periments into account. Four models are thus defined as
follows:

Model 1: F̂playkm = Freskm, (6)

Model 2: F̂playkm = aFreskm, (7)

Model 3: F̂playkm = aFreskm + αi, (8)

Model 4: F̂playkm = aFreskm + αi + βj, (9)

where a is the coefficient of the regression, αi represents
the effect of the musician and βj represents the effect of
the dynamics. A simple linear regression is used to esti-
mate the coefficient a (Model 2), and analysis of covari-
ance (ANCOVA) is used for Model 3 and 4 to estimate
conjointly the coefficient a and the parameters αi and βj .

Results in Table V indicate that, on average, the percent-
age of error of the four models is around 1%. Even for the
more complex model, Model 4, which takes all the exper-
imental factors into account, the average error is around
1%. These results indicate that it is not possible to pre-
dict the playing frequency from the resonance frequency
with an average accuracy error lower than 1%, which is 16
cents. This is more than the noticeable difference in pitch.

The introduction of the dynamic level and the musician
in Model 4 does not give a significant improvement of the
model quality: theMSE decreases, which is normal since it
is a least square procedure, but the MAPE increases lightly
from Model 2 to Model 4.
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Table V. Estimation of the quality of the four models with the
MSE and MAPE.

MSE MAPE coeff a

Model 1 101.03 1.18%
Model 2 87.28 0.96% 1.0085
Model 3 86.69 0.979% 1.0097
Model 4 86.23 0.993% 1.0111

6. Quantification of the discrepancy be-
tween playing frequencies and resonance
frequencies

6.1. Histogram of the distribution of the playing
frequency

In order to have a global view on all the 2160 played
notes, it is possible to represent the data into a bar graph,
as shown on Figure 7(a). In that histogram, each play-
ing frequency is given in cents, taking its corresponding
resonance frequency as a reference. The results seem to
be normally distributed somewhat around +20 cents, but
there are some abnormally high played notes around +100
cents. These notes in fact correspond to the second regime
since, as we saw in section 5.1, for fingerings involving
a long cylindrical part in the trumpet, playing frequencies
are much higher than resonance frequencies. By removing
all notes from regime 2, as shown in Figure 7(b), results
seem to better fit a normal distribution. The sampling dis-
tribution of mean µ is equal to 15.5 cents and the standard
deviation σ is equal to 12.7 cents. A 95% confidence in-
terval can be determined with a normal distribution, given
the size of our samples (thousands of observations) and
the central limit theorem [42]. The 95% confidence for
the mean is thus [µ − 1.96σ/

√
n µ + 1.96σ/

√
n], with n

the number of samples. The mean µ therefore ranges from
14.3 to 16.7 cents. If we include the second regime in the
data, µ then ranges from 19.9 to 23.3 cents.

This representation of the results shows us that playing
frequencies are usually around 15 to 20 cents higher than
the resonance frequencies, taking the temperature into ac-
count. We must notice that the fact that the value of µ is of
the same order than the average accuracy error in estimat-
ing the playing frequency from the resonance frequency
with models from Section 5.2 is a coincidence. These
two quantities represent two different things: the MAPE
(around 1% - 16 cents), is the average prediction error of
the playing frequency modelled with ANCOVA and lin-
ear regression, whereas µ is the average deviation of the
playing frequency from the resonance frequency. For all
the regimes, the error margin of the 95% confidence inter-
val is 1.7 cents. By removing the second regime this error
drops to 1.2 cents.
Nevertheless, these are absolute results whereas instru-

ment makers are generally more interested in relative re-
sults. Indeed, a craftsman does not want his instrument
to play defined frequencies, especially since players can
tune their instruments in several ways. So, his interest is

(a)

(b)

Figure 7. (a) Histogram representing all the 2160 playing fre-
quencies and (b) Histogram representing the same data but with-
out the second regime. Data are expressed in cents, as a differ-
ence between each playing frequency and its corresponding res-
onance frequency.

to make an instrument that can play intervals in tune. Con-
sequently, it is useful to study differences of playing fre-
quencies instead of the frequencies themselves.

6.2. Differences of playing frequencies vs differences
of resonance frequencies

In order to study differences, references need to be cho-
sen: one reference for the resonance frequencies (for each
trumpet), and one reference for the playing frequencies
(for each couple musician and trumpet). Concerning the
resonance frequencies, we propose to consider the fourth
regime of the fingering 000 (corresponding to the concert
note B
4) as the 0 cent reference. For the playing frequen-
cies, we propose to consider the empirical mean of the fre-
quency of the played note B
4 as the 0 cent reference. This
average is calculated on the 3 repetitions of the note B
4
played mezzo forte by a musician on each trumpet. There
are consequently 12 different references (3 trumpets and
4 musicians). This way of defining a reference is in fact
logical, because the note chosen to serve as a reference

8



Figure 8. dFplay as function of dFres (in crosses) for regimes 2 to
6 played by all the musicians on the trumpet CHMQ for the 000
fingering. Circles represent the average playing frequency and
the written numbers give the distance, in cents, from this mean
to the line representing dFplay=dFres.

corresponds to the tuning note generally used by trumpet
players to tune their instrument.

Figure 8 thus presents the differences of playing fre-
quencies as function of the differences of resonance fre-
quencies for the 000 fingering of CHMQ trumpet. These
differences are given in cents, taking the references de-
fined above into account. The average of all the playing
frequencies is also given for each regime, represented with
a circle and its distance, in cents, to the line of equation
dFplay=dFres is indicated. First, it is important to notice
that, even if the fourth regime of that fingering is taken
as a reference, the average deviation is +3 cents and not
zero for that note. This is due to a discrepancy between the
frequencies of a same note played with the different dy-
namic levels (piano and forte). Then the deviation of other
regimes is +8 cents (regime 2), +1 cent (regime 3), +10
cents (regime 5) and+28 cents (regime 6). For the regimes
2 to 5, the deviation is very weak, in the same range as the
uncertainty in the determination of the playing frequency
and the repeatability of the musicians (see Section 5.1).
For these 4 regimes, it is thus possible to conclude that in

Figure 9. dFplay as function of dFres (in crosses) for regimes 2 to
6 played by all the musicians on the trumpet CHMQ for the 111
fingering. Circles represent the average playing frequency and
the written numbers give the distance, in cents, from this mean
to the line representing dFplay=dFres.

average, a variation of the resonance frequency leads to
a variation of the playing frequency in the same order of
magnitude. For the sixth regime, a variation of the reso-
nance frequency leads to a much higher variation of play-
ing frequency, which is a surprising unexpected result.

It has to be noticed that these conclusions represent only
an average behaviour of the instrument: by observing the
total variability of the playing frequency, we remark that
the data spreads out over about 30 cents for each regime.
This variability is inherent to the trumpet playing, where
several uncontrolled factors may modify the playing fre-
quency of notes.

Figure 9 then shows the same kind of plot but for the
111 fingering of CHMQ trumpet. This time, regimes 3 to
6 are well centred on the line of equation dFplay=dFres,
whereas regime 2 gives variations of playing frequency
much higher than variations of resonance frequency. In-
deed, it was explained in section 5.1 that the longer the
cylindrical pipe, the more inharmonic the second reso-
nance is. Moreover, for the second regime data are even
more spread out than for other regimes (about 70 cents).
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Table VI. Deviation of the average of all the dFplay for each regime of each fingering on each trumpet to the line of equation dFplay=dFres

(in black) and the line of equation dFplay=dSF (in grey, these are results from section 6.3), given in cents with the fourth regime of 000
fingering taken as a reference.

Regime
Fingering Trumpet 2 3 4 5 6

000
CHMQ 8 5 1 13 3 3 10 12 28 34
DKNR 15 10 4 11 3 3 6 7 33 39
NORM 6 9 -2 7 4 4 7 10 24 29

100
CHMQ 35 -7 -3 1 6 10 2 2 11 13
DKNR 41 -16 2 -5 9 10 2 2 11 13
NORM 24 13 -7 -4 3 8 -1 0 7 9

110
CHMQ 44 19 -6 -7 2 8 -1 0 3 5
DKNR 51 -27 4 -2 8 17 1 1 6 8
NORM 32 -21 -7 -6 3 8 -5 -3 1 3

111
CHMQ 83 -35 -8 -10 1 2 4 6 -3 -3

DKNR 90 -38 1 -4 6 4 6 11 -3 -4
NORM 72 -39 -14 -12 -4 -5 -1 4 -6 -6

Figure 10. Comparison between the measurement of the input
impedance amplitude of the CHMQ trumpet with 111 fingering
(in black) with the sum function calculated from this impedance
with equation 10 (in grey).

The results for all the fingerings on all the trumpet are
given in Table VI. The order of magnitude of the distances
are the same whatever the trumpet. This table shows that
it is possible to consider that a variation of resonance fre-
quency leads in average to a variation of the playing fre-
quency of the same order for regimes 3 to 6 of all finger-
ings, except regime 6 of 000 fingering. While regimes 3
to 5 have almost constant variations of playing frequency
over the different fingerings, regimes 2 and 6 have a com-
pletely different behaviour. For regime 6, a variation of res-
onance frequency first leads to a higher variation of play-
ing frequency for fingering 000. Then, the deviation be-
tween dFplay and dFres decreases when the first two valves
are depressed. Finally, for the 111 fingering, the variation
of playing frequency becomes smaller than the variation
of resonance frequency. For the second regime it is the
contrary, dFplay differs more and more from dFres as the

cylindrical part of the trumpet gets longer. This result was
expected as it has already been observed in section 5.1.
The fact that playing frequencies for regime 6 are much
higher only for the 000 fingering is not an expected result.

We have seen that the variations of resonance frequen-
cies are a good indicator of the playing frequencies varia-
tions but we also experienced some discrepancies for the
second and the sixth regime. In literature [19, 18], other
indicators like “sum functions”, have been defined in or-
der to predict playing frequencies more accurately than the
resonance frequencies from the input impedance. A sum
function is thus evaluated by using our set of experimental
data in the following section.

6.3. The “sum function”: a supposed indicator of
the playing frequency

Wogram [19] (who was quoted later by Pratt and Bowsher
[18]) introduced what he termed a “Summenprizinzip” (or
“sum function” in English): the impedance values of an
instrument at integral multiples of the fundamental fre-
quency combine at the player’s lips to establish the play-
ing frequency. Actually, the sum function is the sum of the
acoustic power entering the resonator for a forced oscil-
lation with fixed flow rate amplitude and spectrum. In lip
reed instruments, the playing frequency strongly depends
also on the reed natural frequency which is not taken into
account in that function. One version of the sum function
can be calculated as

S(f ) =
n

i=1

1
i
Re[Z(if )]. (10)

in which n is maximized such that nf < fmax, the highest
frequency for which Z is known.

An example of this sum function is given in Figure 10.
This function is thus supposed, as claimed by Wogram, to
predict the playing frequencies with a better accuracy than
the resonance frequencies from the input impedance.
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Figure 11. dFplay as function of dFres (in black crosses) or dSF (in
grey crosses) for regimes 2 to 6 played by all the musicians on the
trumpet CHMQ for the 000 fingering. Dotted line represents the
average playing frequency and straight line is the line of equation
dFplay=dFres or dFplay=dSF.

In order to study if the sum function is able to pre-
dict the playing frequencies more accurately that the in-
put impedance, we plot again dFplay as function of dFres
and as function of variations of the sum function peaks in
Figures 11 and 12. As previously done for the resonance
frequencies of the input impedance, a reference is taken:
the frequency of the sum function peak corresponding to
the regime 4. Then, each peak of the sum function is given
in cents, by calculating the difference with that reference,
and is written dSF.
Figures 11 and 12 show how variations of the resonance

frequencies taken from both the input impedance and the
sum function are able to predict the variations of the play-
ing frequency. Deviations of the average dFplay from dFres
and dSF are summarised in Table VI. As pointed out in
the previous sections, there is a large discrepancy between
dFplay and dFres for the second regime of the 111 finger-
ing. That is a reason why the sum function has been im-
plemented and Figures 11 and 12 as well as Table VI show
that, for this regime, dSF is closer to dFplay than dFres. Nev-
ertheless, the sum function actually shifts the resonance

Figure 12. dFplay as function of dFres (in black crosses) or dSF (in
grey crosses) for regimes 2 to 6 played by all the musicians on the
trumpet CHMQ for the 111 fingering.Dotted line represents the
average playing frequency and straight line is the line of equation
dFplay=dFres or dFplay=dSF.

frequencies to the right direction but it over-corrects the
discrepancy. Moreover, for the other regimes, the input
impedance allows predicting variations of resonance fre-
quencies closer to those of playing frequencies than the
peak frequencies of the sum function.
Consequently, the sum function does not seem to give

more information on the playing frequencies than the sim-
ple input impedance.

7. Conclusion

This study proposed a quantitative assessment of the re-
lations between the bore resonance frequencies and the
playing frequencies, based on experiments made on three
trumpets with four musicians for a large number of notes
(different regimes, fingerings and dynamic levels). Even if
it was already known that playing frequencies are close to
bore resonance frequencies, no detailed work had previ-
ously been carried out to quantify it.
First, this study shows that the dynamic level does not

have a strong influence on the playing frequencies and that
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the four musicians have relatively the same “global” be-
haviour, as they all play on average in the order of 8 to 20
cents above the bore resonance frequencies.

Second, a closer analysis of the data shows that the av-
erage standard deviation of the playing frequency is about
5 cents, which means that a played note is stable with an
uncertainty of 5 cents. Furthermore, the average repeata-
bility of a musician, calculated on his 9 repetitions of a
same note, is about 8 cents. Therefore, there is no need
to find a predictor of the playing frequency more accurate
than 8 cents.
Then, by representing the played notes as an histogram

it is possible to conclude that, from regime 3 to 6, playing
frequencies are in average 15 cents higher than the reso-
nance frequencies. The error margin on the estimation of
that mean is 1.2 cents at a 95% confidence level.

Finally, by examining differences instead of just fre-
quencies themselves, the impact of the musicians’ be-
haviour is diminished. Moreover, craftsmen often work by
making small changes in the geometry of their instruments
and studying the differences induced by the modification.
So, focusing on differences is a way to get closer to the
craftsman’s process.
Regime 4 played with the 000 fingering is thus taken

as a reference to calculate those differences, since it is the
note generally used to tune the instruments. Results show
that a variation of bore resonance frequency leads in aver-
age to a variation of playing frequency of the same order
for regime 3 to 6 (but surprisingly, except the sixth regime
for the 000 fingering). For regime 2, this rule is not sat-
isfied because the notes are played at a higher frequency
than the bore resonance. The inharmonicity of the notes of
regime 2 could be a reason to explain this behaviour. These
results might show that the inharmonicity plays a role on
the control of the playing frequencies. It should indeed be
possible that, when the bore resonance frequency corre-
sponding to the played note is in an harmonic relationship
with the other resonances, a variation of the resonance fre-
quency leads to a variation of the playing frequency of the
same range. On the other hand, when the bore resonance
frequencies are inharmonic, that relation is not valid any
more. This is shown in the study of Dalmont et al. [43] for
one saxophone fingering. Nevertheless, further analysis is
required to support this explanation.
An attempt was made to model this effect with the sum

function. For the second regime, played frequencies are
actually closer to the sum function peaks frequencies than
to the bore resonances. Nevertheless, a discrepancy still
exists and the prediction of the sum function is less ac-
curate for other regimes. In conclusion, the sum func-
tion does not seem to be more relevant than the input
impedance in order to predict playing frequencies. The
resonance frequency is thus a good objective indicator for
predicting the playing frequency, as it does not take the in-
fluence of the musician into account. This is interesting for
craftsmen whose instruments need to be played by virtual
musicians, and who often proceed by small adjustments on
their instruments.

Our results are obtained with three particular trumpets
that do not represent all the possible trumpets in the mar-
ket. We must refrain any generalization of the results to the
trumpet in general, further studies are needed to prove the
robustness of the relationship playing frequency/resonance
frequency.

Also, for further work, it will then be interesting to com-
pare these results with measurements using an artificial
mouth [44] and simulations.
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