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Abstract

This paper introduces a formalism which extends that of the “Green’s function” and that
of “Volterra series”. These formalisms are typically used to solve, respectively, linear inho-
mogeneous space-time differential equations in physics and weakly nonlinear time-differential
input-to-output systems in automatic control. While the Green’s function is a space-time
integral kernel which fully characterizes a linear problem, Volterra series expansions involve
a sequence of multi-variate time integral kernels (of convolution type for time-invariant sys-
tems). The extension proposed here consists in combining the two approaches, by introducing
a series expansion based on multi-variate space-time integral kernels. This series allows the
representation of the space-time solution of weakly nonlinear boundary problems excited by
an “input” which depends on space and time.

This formalism is introduced on and applied to a nonlinear model of a damped string
that is excited by a transverse mass force f(x, t). The Green-Volterra kernels that solve the
transverse displacement dynamics are computed. The first order kernel exactly corresponds
to the Green’s function of the linearized problem. The higher order kernels satisfy a sequence
of linear boundary problems that lead to (both) analytic closed-form solutions and modal
decompositions. These results lead to an efficient simulation structure, which proves to be
as simple as the one based on Volterra series, that has been obtained in a previous work
for excitation forces with separated variables f(x, t) = φ(x)ftot(t). Numerical results are
presented.

Keywords: nonlinear string, Volterra series, Green’s function.

1 Introduction

Sound synthesis based on physical models makes use of dynamical models of resonators that must
be accurate enough to be realistic. Many models are available for strings, plates, pipes (see e.g.
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]). In addition to basic (conservative) wave propagation, these models
include some relevant secondary order phenomena such as nonlinearities that are responsible for
the timbre variation with respect to the nuance (from pp to ff) and damping.

In this context, simulation methods are also an important issue. The Volterra series formal-
ism [11] provides a convolution-type solution for “weakly nonlinear systems”, from which simple
simulation structures can be derived and are available for bounded input signals. More precisely,
it extends linear filtering (impulse response and transfer function) to the case of systems with
distortions, the dynamics of which can be represented by a sum of multiple convolutions (multi-
variate kernels and transfer kernels). For this reason, this tool has been widely used in e.g. signal
processing, automatic control, electronics, mechanics (see e.g. [12, 13, 14, 15, 16, 17, 18, 19, 20]).

∗http://dx.doi.org/10.1016/j.jsv.2013.11.024
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In a previous work [21], a nonlinear equation of a damped string has been solved using Volterra
series in the case where the string is excited by a force ftot(t) which is spatially distributed by
a time-invariant function φ(x). Thus, a time-domain simulation of the transverse displacement
u(x, t) has been derived from the truncated series, which provides accurate results for all signal
input ftot(t) with sufficiently small amplitudes. In practice, for sound synthesis issues (bowed
string, pinched string, etc), the main limitation of this solution is due to the time-invariance of the
spatial distribution φ. In the linear case, for a general space-time transverse mass force f(x, t), this
problem is solved by using the Green’s function which fully characterizes the considered system.

In this paper, we introduce a “Green-Volterra” formalism which extends both that of “the
Green’s function” and that of “Volterra series”. Applying this formalism to the string allows to
compute its dynamics whatever the excitation force f(x, t). The solution is given by a series
expansion composed of space-time integrals involving the (computable) “Green-Volterra” kernels.
The first term of the series expansion exactly corresponds to the Green’s function solution. Higher
order terms introduce nonlinear dynamics contributions.

The paper is organized as follows. Section 2 introduces the nonlinear string model. It recalls
results based on the Green’s function for the linearized problem (§ 2.2) and based on Volterra series
for a particular class of excitations (§ 2.3). Section 3 introduces the formalism of Green-Volterra
series. Then, this formalism is used to solve the original problem in section 4. A simulation is
deduced in section 5. Finally, section 6 develops conclusions and perspectives.

2 Problem statement

2.1 Model under consideration

Consider the dimensionless nonlinear Kirchhoff model of the transverse vibrations of a damped
string [2] excited by a force f distributed on Ω =]0, 1[ given by, for all (x, t) ∈ Ω× R+,

∂2t u(x, t) + 2α∂tu(x, t)−
(
1 + ǫ

[ ∫

Ω

(
∂xu(x, t)

)2
dx

])
∂2xu(x, t) = f(x, t), (1)

with Dirichlet boundary conditions and zero initial conditions

∀t > 0, u
(
x=0, t

)
= 0 and u

(
x=1, t

)
= 0, (2)

∀x ∈ Ω, u
(
x, t=0

)
= 0 and ∂tu

(
x, t=0

)
= 0. (3)

Coefficients ǫ and α are positive. They quantify the effects of the nonlinearity (due to the variation
of tension) and of the fluid damping (due to viscosity, see e.g. [22, p.194]), respectively.

2.2 Linearized problem: the Green’s function solution

The linearized version of (1-3) is obtained for ǫ = 0. It has the form

Lx,t[u] = f, (4)

where Lx,t is the linear differential operator ∂2t+2α∂t−∂2x over the domain (x, t) ∈ Ω×R+ associated
with Dirichlet boundary conditions and zero initial conditions. This standard well-posed problem
has been extensively studied.

In general, boundary linear problems governed by Eq. (4) can be solved using the Green’s
function formalism [23, 24] (see also e.g. [22, 25] for applications in musical acoustics): the solution
is the superposition of all local contributions of f , given by the integral

u(x, t) =

∫

Ω×R+

g(x, t; ξ, τ) f(ξ, τ) dξ dτ, (5)

where the Green’s kernel g denotes the solution of Eq. (4) excited by the Dirac pulse centered at
(ξ, τ), that is,

f(x, t) = [δξ ⊗ δτ ] (x, t) = δ(x− ξ) δ(t− τ), (6)
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where ⊗ denotes the tensor product of two distributions [26, chap. 3.1].
Note that this problem is time invariant but not space invariant so that g(x, t; ξ, τ)=g(x, 0 ; ξ, τ−

t).Indeed, denote T(τ,ξ) the translation operator of duration τ and length ξ. If (f, u) is a solution,
it appears that (T(τ,0)f, T(τ,0)u) is also a solution (time-invariance), because T(τ,0) commutes with
all the operators of the partial differential equation, whereas (T(0,ξ)f, T(0,ξ)u) is not. Hence, Eq. (5)
becomes a convolution w.r.t. time, that is,

u(x, t) =

∫

Ω×R+

g(x ; ξ, τ) f(ξ, t− τ) dξ dτ where g(x ; ξ, τ) = g(x, 0 ; ξ,−τ).

denotes the convolution-type Green’s kernel.
In the Laplace domain, the linear boundary problem (1-3) can be written as, for all s ∈ C

+
0 ={

s ∈ C | Re(s) > 0
}
,,

Γ2 U − ∂2xU = F, on the string (x ∈ Ω), (7)

and U = 0, at boundaries (x ∈ {0, 1}), (8)

where F (x, s) and U(x, s) denote the Laplace transforms (with respect to variable t) of f and u,
respectively, and

for all s ∈ C
+
0 , Γ(s) =

√
s2 + 2αs, (9)

where z 7→ √
z is the principal value of the square root (that is, the analytic continuation over

C \ R− of the positive square root on R+).
It solves into, for all (x, s) ∈ Ω× C

+
0 and ξ ∈ Ω,

U(x, s) =

∫

Ω

G(x; ξ, s)F (ξ, s)dξ, (10)

G(x; ξ, s) =
cosh

(
(1 + x+ ξ)Γ(s)

)
− cosh

(
(1− |x− ξ|)Γ(s)

)

2Γ(s) sinh
(
Γ(s)

) , (11)

where G corresponds to the Laplace transform of g w.r.t. t. For (x, ξ) ∈ Ω2, function s 7→ G(x; ξ, s)

is analytic on C
+
0 . It corresponds to the transfer function of a causal strictly stable input-to-output

system.
This solution can also be decomposed into the eigenfunctions {ek}k∈N∗ where ek(x) =

√
2 sin(kπx),

which define an orthonormal basis of L2(Ω). Thus, introducing

U(x, s) =
L2(Ω)

∑

k∈N∗

Uk(s) ek(x), where Uk(s) = 〈U(·, s), ek(·)〉L2(Ω) , (12)

and using similar definitions for F , Eqs. (7-8) are solved if [Γ(s)2 + (kπ)2
]
Uk(s) = Fk(s), that is1,

Uk(s) = G[k](s)Fk(s), where G[k](s) =
1

s2 + 2αs+ k2π2
. (13)

If α < π, then the characteristic equation of the k-th mode (Γ(s)2 + k2π2 = 0) admits a pair
of complex conjugate roots (λk, λk) with λk = −α+ i

√
ωk and ωk =

√
k2π2 − α2 > 0. The modal

decomposition yields, in the time domain,

u(x, t) =
+∞∑

k=1

[g[k] ⋆ fk](t) ek(x), with g[k](t) =
sin(ωkt)

ωk

e−αt Y (t), (14)

where ⋆ is the standard convolution operator and Y denotes the Heaviside step function.
For sound synthesis purposes, real-time simulations are often based on a truncated version of

this modal decomposition [27]. The block-diagram corresponding to Eqs. (12-14) truncated at
order K is displayed in Fig. 1. For simulations, digital versions of filters with transfer function
G[k](s) are implemented, based on second order auto-regressive digital filters.

1The square brackets in G[k] and used further in the manuscript are introduced to avoid confusion between
superscripting and raising into power.
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f(x, t)

〈·, e1〉

〈·, ek〉

〈·, eK〉

f1(t)

fk(t)

fK(t)

G[1]

G[k]

G[K]

u1(t)

uk(t)

uK(t)

e1(x)

ek(x)

eK(x)

u(x, t)

Figure 1: Block-diagram of the simulation of the linearized version of (1-3) with K modes. Symbol
⊗ is a standard multiplication. More precisely, for functions with separated variables (x 7→ ek(x)
and t 7→ uk(t)), it corresponds to the tensor product [ek ⊗ uk] (x, t) = ek(x)uk(t) as in Eq. (6).

2.3 Simulation of a nonlinear problem with Volterra series

The nonlinear problem (1-3) has been solved in [21] in the case where

f(x, t) = [φ⊗ ftot] (x, t) = φ(x) ftot(t), (15)

using a Volterra series expansion: the solution is decomposed into homogeneous nonlinear contri-
butions as

u(x, t) =

+∞∑

n=1

∫

Rn

h(x)n (τ1, ..., τn) ftot(t− τ1) . . . ftot(t− τn) dτ1...dτn. (16)

Each term of the series corresponds to a multiple time-convolution of repeated versions of ftot with
kernels h(x)n : n = 1 isolates the linear contribution on the dynamics due to ftot (with its memory
effect), n = 2 isolates the quadratic one, etc. The Volterra kernels are parameterized by the space
variable x. They prove to be given by the modal decomposition

h(x)n (τ1, . . . , τn) =
+∞∑

k=1

h[k]n (τ1, . . . , τn) ek(x), with h
[k]
1 = φk g

[k] and, for n ≥ 2, h[k]n = g[k] ⋆n r[k]n .

In this equation, function g[k] is defined in Eq. (14). Constant φk is the projection of φ on ek, that

is, φk = 〈φ, ek〉L2(Ω). Function rn is a combination2 of kernels h[k]j with j < n. Moreover, symbol
⋆n denotes the convolution-type operator [a ⋆n bn] (τ1, . . . , τn) =

∫
R
a(θ) bn(τ1− θ, . . . , τn− θ) dθ.

If excitations only involve the K first modes (φk = 0 if k ≥ K + 1), this expansion truncated
at order 3 corresponds to the block-diagram displayed in Fig. 2 (see [21, § 4] for the detailed
computation of kernels and the equivalent realization into block-diagrams).

The question addressed below is:

2The exact equation is given by r
[k]
n (τ1, . . . , τn) = −ǫ k2 π4

∑

m∈(N∗)3

m1+m2+m3=n

[

∑

ℓ∈N∗

ℓ2 h
[ℓ]
m1 (τ1, . . . , τm1 )h

[ℓ]
m2 (τm1+1, . . . , τm1+m2 )

]

× h
[k]
m3 (τm1+m2+1, . . . , τn).
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2. 2. 2.

ftot(t)

φ1

φk

φK

G[1] G[1]

G[k]G[k]

G[K]G[K]

u
[1]
1 (t)

u
[k]
1 (t)

u
[K]
1 (t)

k K

w(t) =
K∑

l=1

l2
(
u
[l]
1 (t)

)2

−ǫπ4

−ǫk2π4

−ǫK2π4

u
[1]
3 (t)

u
[k]
3 (t)

u
[K]
3 (t)

e1(x)

ek(x)

eK(x)

u3(x,t)

(linear contribution, n = 1)

Figure 2: Block-diagram of an o(ǫ)-simulation of Eq. (1) with K modes: the dashed arrows isolate
the linear dynamics (n=1) of each mode; the shaded central part isolates the o(ǫ)-dynamics of a
mode k; the shaded bottom part isolates the dynamics of the integral term in Eq. (1); the shaded
left part corresponds to simple gains, controlled by the spatial distribution of the excitation force.
Note that the two dotted boxes correspond to those in Fig. 1 since φk = 〈φ, ek〉L2(Ω).
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“How to solve the nonlinear problem Eqs. (1-3) for a general excitation f(x, t), that is,
when f is not limited to the case f(x, t) = φ(x)ftot(t) ?”

An intuitive solution would consist in replacing ftot and φk in Fig. 2 by f and 〈·, ek〉, respectively,
as in Fig. 1. This result is actually the one which is obtained, thanks to the formalism proposed
below. This formalism combines that of the Green’s functions (as for Fig. 1) and that of the
Volterra series (as for Fig. 2).

3 Introduction to Green-Volterra series

3.1 Preamble: regular perturbation theory and formal series expansion

Consider an inhomogeneous differential equation defined on a domain (x, t) ∈ Ω × T (with T=R

or with T=R+ and zero initial conditions), which is excited by f and governed by

Lx,t[u] = f +Kx,t[u, f ]. (17)

In Eq. (17), Lx,t is a linear operator w.r.t. space x and time t and Kx,t is a sum of multilinear
operators Kp,q

x,t , that is,

Kx,t[u, f ] =
∑

p,q≥0
p+q≥2

Kp,q
x,t [u, . . . , u︸ ︷︷ ︸

p

, f, . . . , f︸ ︷︷ ︸
q

]. (18)

Consider f as a perturbation and mark it by η>0 through the change of variable f=ηf̃ . Following
the regular perturbation method (see e.g. [28, chap. 5]), write the solution as a power series w.r.t.
η and substitute u and f in Eqs. (17-18) by this series

∑
n∈N

ηn ũn and ηf̃ , respectively. Then,
exploiting the multi-linearity of Kp,q

x,t to sort the contributions w.r.t. ηn, we formally obtain a
sequence of linear problems. Choosing η=1 to remove the tilde symbols, this yields u0 = 0 and
for n ≥ 1,

Lx,t[un] = κn with κ1 = f, (19)

and κn =
∑

(p,q)∈[0,n]2
N

2≤p+q≤n

∑

m∈(N∗)p
m1+···+mp=n−q

Kp,q
x,t

[
um1

, . . . , ump︸ ︷︷ ︸
p

, f, . . . , f︸ ︷︷ ︸
q

]
, if n ≥ 2. (20)

If g is the Green’s function of Eq. (19) in the space-time domain, it comes that

un(x, t) =

∫

Ω×T

g(x, t ; ξ, τ) κn(ξ, τ) dξ dτ. (21)

Deriving the series u =
∑

n∈N
un, we finally find that u can formally be expressed as a sum over

n∈N
∗ of multiple integrals on n repeated versions of f combined with multi-variate kernels. In

the present case, these kernels define the Green-Volterra kernels introduced below. Such kernels
can be found in e.g. [29].

Remark 1 (Volterra series). For a finite-dimensional time-differential system, these kernels only
depend on time variables t and τ . They define a so-called Volterra series (see e.g. [11, 14]).
Moreover, if the system is time-invariant, they are of convolution type.

Remark 2 (About the Green’s principle). As mentioned in section 2.2 for linear problems (see
Eq. (5)), the Green’s principle relies on the superposition principle: the solution of a sum of
elementary excitations is the sum of the solutions of each excitation, considered separately. Note
that the perturbation method does not preserve this principle, which is obviously void for nonlinear
problems. Indeed, Eq. (20) begets a coupling of each elementary excitations through multilinear
operators Kp,q

x,t .
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3.2 Definition of Green-Volterra series and basic properties

Definition 1 (Green-Volterra series). A system with input f(x, t) and output u(x, t), defined on
domain Ω× T, is described by a Green-Volterra series of kernels {gn}n∈N∗ (see Fig. 3), if

u(x, t) =

+∞∑

n=1

∫

Ωn×Tn

gn(x, t ; ξ, τ ) f(ξ1, τ1) . . . f(ξn, τn) dξ dτ , (22)

where, for each n∈N
∗, bold symbols ξ and τ denote (in each kernel gn, without ambiguity) the two

n-tuples ξ=(ξ1, . . . , ξn) and τ =(τ1, . . . , τn), and where dξ and dτ are the corresponding Lebesgue
measures.

{gn}f(x, t) u(x, t)

Figure 3: System represented by its Green-Volterra kernels.

Remark 3 (Examples). Green-Volterra series embed systems described by:

(a) linear problems: kernel g1 is the Green’s function and, for n≥2, kernels gn are zero;

(b) power series functions u=g(f)=
∑+∞

n=1 γn f
n such that g(0)=0: kernels are the multi-variate

Dirac distributions gn(x, t ; ξ, τ )=γn δ
n
x,t(ξ, τ ), weighted by γn, centered at x for variables of

ξ, and at t for variables of τ , that is3,

δnx,t(ξ, τ ) =
[
δx ⊗ · · · ⊗ δx︸ ︷︷ ︸

n

⊗ δt ⊗ · · · ⊗ δt︸ ︷︷ ︸
n

]
(ξ1, . . . , ξn, τ1, . . . , τn)

= δ(ξ1 − x) . . . δ(ξn − x) δ(τ1 − t) . . . δ(τn − t); (23)

(c) their various combinations (sum, product, multilinear maps, cascade) detailed in section 3.3).

A well-posed condition for the convergence (similar to [30, § 2.2] for Volterra series) is given

for kernels such that (x, t) ∈ Ω × T 7→
(

(ξ, τ ) ∈ Ωn × T
n 7→ gn(x, t ; ξ, τ )

)
∈ Gn = L∞

(
Ω ×

T, L1
(
Ωn × T

n,R
) )

, as follows.

Property 1 (Gain bound function ϕg and convergence). If the convergence radius ρg of

ϕg(z) =

+∞∑

n=1

‖gn‖Gn
zn,

is positive, then for all bounded excitation f such that ‖f‖∞ < ρg, the Green-Volterra series (22)
converges in norm in L∞(Ω× T,R). Moreover, in this case, u is also bounded and

‖u‖∞ ≤ ϕg

(
‖f‖∞

)
.

The proof is straightforward, remarking that each term un of the series expansion (22) is such
that ‖un‖∞ ≤ ‖gn‖Gn

(
‖f‖∞

)n
.

Remark 4 (Convergence and truncation order for applications). This result is limited in practice.
First, spaces Gn include neither finite-energy spaces (or their Sobolev versions, adapted to many
physical problems) nor distributions as in example 3(b). However, some existence and uniqueness
conditions of problems (17-18) can be found in [31], which are not limited to L∞ spaces. Second,
even if gn ∈ Gn, estimating ‖gn‖Gn

and ρg is usually not straightforward.

3More rigorously, gn(x, t ; ξ, τ ) dξ dτ should be written γn Mx,t

(

dξ,dτ
)

where Mx,t is the multi-variate Dirac
distribution (still centered at x, t).
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Because of these technical difficulties, convergence is not examined below. For the computation
of convergence bounds, we refer to [32, 33, 34]: these works detail results for trajectories belonging
to some Banach spaces and include truncation error bounds. Here, the truncation order is chosen
to be low (N =5 in section 4) and, in practice, we consider inputs such that the magnitude of un
decreases with n until N .

Property 2 (Translational symmetries, causality and transfer kernels).

(i) If a problem is invariant under space translations, then gn(x, t; ξ, τ )=gn(0, t; ξ−x, τ ) where
ξ − x=(ξ1 − x, . . . , ξn − x).

(ii) If a problem is time-invariant, then gn(x, t; ξ, τ ) = gn(x, 0 ; ξ, τ − t) and we introduce the
convolution-type kernel

g
n
(x ; ξ,θ) = gn(x, 0 ; ξ,−θ),

so that Eq. (22) becomes u(t) =
∑+∞

n=1

∫
Ωn×Tn gn(x ; ξ,θ) f(ξ1, t−θ1) . . . f(ξn, t−θn) dξ dθ.

(iii) If a problem is causal, then gn is zero as soon as max(τ ) > t (or, minθ < 0).

Moreover, for causal time-invariant systems (ii-iii), we introduce the Green-Volterra transfer kernel
Gn defined by the multi-variate mono-lateral Laplace transform

Gn(x ; ξ, s) =

∫

Rn
+

g
n
(x ; ξ, τ ) e−(s

1
τ
1
+···+snτn) dτ , (24)

for all complex multiple variables s = (s
1
, . . . , s

n
) such that the integral is absolutely convergent.

For stable systems, this domain includes (C+
0 )

n where C
+
0 =

{
s ∈ C

∣∣Re(s) > 0
}
.

Eq. (24) gives a generalization of functionG (=G1) defined in section 2.2 (see also example 3(a)).
Other properties, introduced below, deal with combinations of Green-Volterra series (we refer to
e.g. [14, 30, 35] for corresponding results about Volterra series). They are used to compute the
Green-Volterra kernels of the string in section 4.

3.3 Interconnection laws

Consider several systems defined by the Green-Volterra series
{
an

}
n∈N∗ ,

{
bn
}
n∈N∗ and

{
a
[ℓ]
n

}
n∈N∗

for 1≤ℓ≤j. Then, the Green-Volterra series {gn}n∈N∗ of the systems described in Figs. 4(a-c) can
be derived: kernels gn and the corresponding transfer kernels Gn for time-invariant causal systems
are given below.

{an}

{bn}

f(x, t) u(x, t)

{
a
[1]
n

}

{
a
[2]
n

}

{
a
[j]
n

}

f(x, t)

u[1](x, t)

u[2](x, t)

u[j](x, t)

Bj
u(x, t)=Bj

(
u[1](x, t), . . . , u[j](x, t)

)

(a) Sum (b) Cascade with a linear (j=1) or multilinear (j≥2) map Bj

{an} {bn}
f(x, t) u(x, t)

(c) Cascade of two systems

Figure 4: Interconnection laws of several Green-Volterra systems: (a) sum, (b) linear and multi-
linear maps, (c) cascade of two systems.
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Case (a): sum (the radius of convergence ρg is such that ρg ≥ min(ρa, ρb))

gn(x, t ; ξ, τ ) = an(x, t ; ξ, τ ) + bn(x, t ; ξ, τ ),

Gn(x ; ξ, s) = An(x ; ξ, s) +Bn(x ; ξ, s).

Case (b): linear (j=1) and multilinear (j≥2) maps (with ρg ≥ min1≤ℓ≤j ρa[ℓ] )

gn(x, t ; ξ, τ ) =
∑

m∈(N∗)j
m1+···+mj=n

Bj
[
a[1]m1

(
x, t ; σ1

m(ξ), σ1
m(τ )

)
, . . . , a[j]mj

(
x, t ; σj

m(ξ), σj
m(τ )

) ]
,(25)

Gn(x ; ξ, s) =
∑

m∈(N∗)j
m1+···+mj=n

Bj
[
A[1]

m1

(
x ; σ1

m(ξ), σ1
m(s)

)
, . . . , A[j]

mj

(
x ; σj

m(ξ), σj
m(s)

) ]
, (26)

where for m∈(N∗)j and 1≤ℓ≤j, the selection function σℓ
m(ξ)=(ξm1+···+mℓ−1+1 , . . . , ξm1+···+mℓ

)
is introduced for sake of conciseness. A simple example corresponds to the product of two outputs
(bilinear map B2(a, b) = ab). In this case Eqs. (25-26) reduce to

gn(x, t ; ξ, τ ) =
∑n−1

m=1 a
[1]
m

(
x, t ; (ξ1, . . . , ξm), (τ1, . . . , τm)

)
a
[2]
n−m

(
x, t ; (ξm+1, . . . , ξn), (τm+1, . . . , τn)

)

and a similar formula for Gn.
Note that Bj can also be replaced by a multilinear operator Bj

x which acts on the space variable,
rather than a simple function. For space-time operators Bj

x,t, Eq. (25) is still valid, but not Eq. (26)

which must be adapted. As a special case, if all series
{
a
[ℓ]
n

}
n∈N∗ are the same, this adaptation

can be derived by considering the cascade of two Green-Volterra series, as follows.

Case (c1): cascade of a nonlinear and a linear systems (b1 ∈ G1 and bn = 0 if n≥ 2 so
that ρg=ρa)

gn(x, t ; ξ, τ ) =

∫

Ω×T

b1(x, t ; y, θ) an(y, θ ; ξ, τ ) dy dθ, (27)

Gn(x ; ξ, s) =

∫

Ω

B1(x ; y, s1+. . .+sn) An(y ; ξ, s) dy. (28)

Case (c2): cascade (general case)

gn(x, t ; ξ, τ ) =

n∑

j=1

∫

Ωj×Tj

∑

m∈(N∗)j
m1+···+mj=n

bj(x, t ; y,θ) am1

(
y1, θ1 ; σ

1
m(ξ), σ1

m(τ )
)

. . . amj

(
yj , θj ; σ

j
m(ξ), σj

m(τ )
)
dy dθ,

Gn(x ; ξ, s) =

n∑

j=1

∫

Ωj

∑

m∈(N∗)j
m1+···+mj=n

Bj(x ; y, χm(s)) Am1

(
y1 ; σ

1
m(ξ), σ1

m(s)
)
. . . Amj

(
yj ; σ

j
m(ξ), σj

m(s)
)
dy,

where for m∈ (N∗)j , function χm(s) is the j-tuple, the ℓ coordinate of which is the sum of the se-

lected Laplace variables σℓ
m(s), that is, χm(s)=

(
σ1
m(s), . . . , σj

m(s)
)

with σℓ
m(s)=

∑mℓ

i=1 sm1+···+mℓ−1+i.

3.4 Canceling system, principle of equivalence and solution kernels

This section describes a formal method to derive the Green-Volterra series {gn}n∈N∗ of the system
(S) governed by (17-18), see Fig. 5(a). It is based on the use of interconnection laws and a canceling
system, as proposed in [36, § 2.2] for differential systems.

Introduce the system (C) with input (u, f) and output z=Lx,t[u] − f −Kx,t[u, f ]. Cascading
(S) and (C) as in Fig. 5(b) defines the system (Z) with input f and output z. As z is exactly
zero for trajectories of system (S), all the kernels {zn} of (Z) are zero: we call (C), the canceling
system with respect to system (S).
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f
−→ (S) : Lx,t[u]=f+Kx,t[u, f ] u

−→

f

f u{gn}

Id

Canceling system (C):
z=Lx,t[u]− f −Kx,t[u, f ]

z=0

≡ ≡

f
−→ {gn} u

−→
f
−→

{
zn = 0

}
z = 0
−→

(a) (b)

Figure 5: Canceling system and equivalence principle of Green-Volterra kernels.

Exploiting interconnection laws (a-b), it follows that the kernels zn(x, t ; ξ, τ ) of system (Z)
exactly involve the same combinatorics as in (19-20) and that, keeping the same notations,
(
0 =

)
zn = Lx,t

[
gn

]
− rn with (see Eq. (23)) r1(x, t ; ξ1, τ1)=δ

1
x,t(ξ1, τ1), (29)

rn(x, t ; ξ, τ ) =
∑

(p,q)∈[0,n]2
N

2≤p+q≤n

∑

m∈(N∗)p
m1+···+mp=n−q

Kp,q
x,t

[
gm1

(
x, t ; σ1

m(ξ), σ1
m(τ )

)
, . . . , gmp

(x, t ; σp
m(ξ), σp

m(τ )
)
,

δ1x,t(ξn−q+1, τn−q+1), . . . , δ
1
x,t(ξn, τn)

]
, if n ≥ 2, (30)

where variables x and t of kernels gmℓ
are kept inside operator Kp,q

x,t , for sake of legibility.

Remark 5 (Interpretation). In these equations, Lx,t[gn] are the Green-Volterra kernels of system
with input f and output Lx,t[u], and rn are those for input f and output f +Kx,t[u, f ]. Kernels
Lx,t[gn] can be obtained by using, either the interconnection law (b) for j = 1 with B1

x,t = Lx,t and
an = gn, either the law (c1) with an = gn and choosing b1 to be the (linear) kernel associated with
the linear operator Lx,t. Kernels rn are sums (law (a)) of multilinear operators (law (b)), in which
the last q Dirac distributions are the kernels of identity (ahead of (C) in Fig. 5(b)).

For n = 1, the solution of (29) with z1 = 0 exactly yields the Green’s function of the linearized
problem (Eq. (17) with Kx,t ≡ 0). For n ≥ 2, solving iteratively the sequence of linear problems
(29-30), still with zn = 0, yields the Green-Volterra kernels

gn(x, t ; ξ, τ ) =

∫

Ω×T

g1(x, t ; y, θ) rn(y, θ ; ξ, τ ) dy dθ. (31)

Remark 6. (Canceling system and transfer kernels in practice) For many applications, Kx,t is a
finite sum of multilinear operators. This leads to a less complex combinatorics as above. Moreover,
for time-invariant systems, using transfer kernels makes equations simpler: the integrals w.r.t. time
variables become algebraic relations w.r.t. Laplace variables. In practice, these algebraic relations
are precisely used in section 4, to compute closed-form formulae of the transfer kernels.

3.5 Realization

As mentioned after Eq. (21), un is exactly the term of order n of Eq. (22): the regular perturbation
method (§ 3.1) yields the same solution u as the Green-Volterra series (§ 3.2), the kernels gn of which
fully characterize the system independently of the input (as the Green’s function does for a linear
problem). Eq. (31) with (30), or alternatively Eq. (21) with (20), lead to the realization (in the
sense of system theory, see [14, chapter 4]) described by the block-diagram in Fig. 6 (limited to the
three first orders only).

Thus, simulations can be built using finite-dimensional discrete-time approximate versions of a
linear operator G1 (see Fig. 6) and (finite dimensional versions of) multilinear operators Kp,q

x,t .
As there are no feedback loops (no implicit equations) in Fig. 6, only explicit calculations are

needed. Moreover, the stability is exclusively conditioned by that of (the discrete-time version of)
G1 and (only if multilinear operators depend on time) that of Kx,t.
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(n=1)

(n=2)

(n=3)

(p+q=2)

(p+q=3)

f(x, t) u1(x, t) u1(x, t)

u2(x, t) u2(x, t)

u3(x, t)

uapprox(x, t)

G1

G1

G1

K2,0
x,t

K1,1
x,t

K0,2
x,t

K2,0
x,t

K2,0
x,t

K1,1
x,t

K3,0
x,t

K2,1
x,t

K1,2
x,t

K0,3
x,t

Figure 6: Realization of the three first orders of the general structure obtained from Eqs. (19-20),
(29-30). In this structure, blocks Kp,q

x,t are the multilinear operators in Eq. (18), fed by the p+q
signals, from top to bottom. Blocks (with no rounded corners) correspond to the linear operator
G1 associated with the Green’s function g1, that is, G1[w](x, t) =

∫
Ω×T

g1(x, t ; ξ, τ)w(ξ, τ) dξ dτ .

4 Application to the Kirchhoff model of the string

4.1 Linear and multilinear operators

The nonlinear Kirchhoff model given by Eqs. (1-3) in section 2 has the general form Eq. (17-18)
in section 3. The linear operator Lx,t is

Lx,t = ∂2t + 2α∂t − ∂2x in Ω× T with Ω =]0, 1[ and T = R+, (32)

with Dirichlet boundary conditions and zero initial conditions. The nonlinear operator Kx,t defined
by Eq. (18) is reduced to the space-operator (u, f) 7→ Kx,t[u, f ] = K3,0

x [u, u, u] with

K3,0
x [a, b, c] = ǫ

[ ∫

Ω

∂xa(x) ∂xb(x) dx

]
∂2xc(x). (33)

4.2 Canceling system and Green-Volterra transfer kernels

Denote {gn}n∈N∗ the Green-Volterra series of the nonlinear Kirchhoff model. As this model is
time-invariant, according to property 2, introduce the corresponding transfer kernels Gn defined
from g

n
by Eq. (24). Using the interconnection laws to rewrite the appropriate canceling system

(see Fig. 7) in the Laplace domain leads to a Laplace version of Eqs. (29-30). Eq. (29) becomes,
for all n ∈ N

∗ and s ∈
(
C

+
0

)n
,

[
Γ(s1+ · · ·+ sn)

2 − ∂2x

]
Gn(x; ξ, s) = Rn(x; ξ, s), on the string (x ∈ Ω), (34)

and Gn

(
x; ξ, s

)
= 0, at boundaries (x ∈ {0, 1}), (35)

where Γ is still defined by Eq. (9) so that the first member of Eq. (34) effectively corresponds
to the cascade of {gn} and the linear operator ∂2t + 2α∂t − ∂2x (see Fig. 7(a)) with Dirichlet
boundary conditions (see Fig. 7(b)). Transfer kernelsRn are the Laplace transforms of rn(x; ξ,θ) =
rn(x, 0; ξ,−θ) (see property 2). This yields

R1(x; ξ1, s1) = δx(ξ1). (36)
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Moreover, according to remark 5 and using the Laplace versions of interconnection laws (a-b),
Eq. (30) becomes, for n ≥ 2,

Rn(x; ξ, s) =
∑

m∈(N∗)3

m1+···+m3=n

K3,0
x

[
Gm1

(x;σ1
m(ξ), σ1

m(s)), Gm2
(x;σ2

m(ξ), σ2
m(s)),

Gm3
(x;σ3

m(ξ), σ3
m(s))

]

= ǫ

∫

Ω

( ∑

p,q,r≥1
p+q+r=n

∂xGp(x; ξ1, . . . , ξp, s1, . . . , sp)

×∂xGq(x; ξp+1, . . . , ξp+q, sp+1, . . . , sp+q)
)
dx

×∂2xGr(x; ξp+q+1, . . . , ξn, sp+q+1, . . . , sn). (37)

{gn} Lx,t

−K3,0
x

−Id

f(x, t)

u(x, t)
[
∂2t + 2α∂t − ∂2x

]
u(x, t)

−ǫ
[ ∫

Ω

(
∂xu(x, t)

)2
dx

]
∂2xu(x, t)

f(x, t)

z(x, t)=0

(C) in Ω

(a) Canceling system for x ∈ Ω

{gn} x ∈ {0, 1}
f(x, t)

u(x, t)
z(x, t)=0

(C) at boundaries (x ∈ {0, 1})

(b) Canceling system at boundaries (x ∈ {0, 1})

Figure 7: Block-diagram versions of Eq. (1) (sub-figure (a)) and of Eq. (2) (sub-figure (b)) for a
general force f(x, t). The associated canceling systems are delimited by dotted boxes.

Eqs. (34-35) define a sequence of boundary problems indexed by n ∈ N
∗, which are differential

w.r.t. x and linear w.r.t. Gn. Indeed, for any fixed n, Eqs. (36-37) only involve transfer kernels
Gm of order m < n. Moreover, Eqs. (34-35) exactly restore Eqs. (7-8) with solution Eqs. (10-11),
in which for all ξ ∈ Ωn and s ∈

(
C

+
0

)n
, function x 7→ U(x, s) is replaced by x 7→ Gn(x; ξ, s),

x 7→ F (x, s) by x 7→ Rn(x; ξ, s), and Γ(s) by Γ(s1+ · · · + sn). Finally, it follows that the Green-
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Volterra transfer kernels are given by, for all n ∈ N
∗, x ∈ Ω, ξ ∈ Ωn and s ∈ (C+

0 )
n,

G1(x; ξ1, s1)=G(x; ξ1, s1), and, if n≥2, Gn(x; ξ, s)=

∫

Ω

G(x; y, s1+ · · ·+sn)Rn(y; ξ, s) dy, (38)

where G is the Green’s function of the linearized problem, defined in the Laplace domain by
Eq. (11).

Remark 7. (Non zero kernels) As Kx,t is composed of a multilinear operator of odd order, it
follows that all the Green-Volterra kernels of even order are zero.

4.3 Modal decomposition and simulation in the time domain

The transfer kernels x 7→ Gn(x; ξ, s) can be decomposed on the orthonormal Hilbert basis {ek}k∈N∗ .
More generally, this is also the case of (x, ξ) 7→ Gn(x; ξ, s) on the orthonormal Hilbert basis

{e1+n
k,ℓ1,...,ℓn

}(k,ℓ1,...,ℓn)∈(N∗)1+n of L2(Ω1+n) (≡
(
L2(Ω1+n)

)n+1
endowed with the 2-norm) where

e1+n
k,ℓ1,...,ℓn

(x, ξ) =
[
ek ⊗ eℓ1 ⊗ · · · ⊗ eℓn

]
(x, ξ1, . . . , ξn).

For n = 1, Eqs. (36) and (38) lead to

G1(x; ξ1, s1) =
L2(Ω2)

+∞∑

k=1

G[k](s1)e
2
k,k(x, ξ1), (39)

so that only the terms corresponding to “diagonal bi-modes” e2k,k are nonzero. Notice that this is
in accordance with solution (12-13) and is due to the orthogonality of eigenfunctions ej ’s.

By induction, this result is straightforwardly generalized as follows: for all n ∈ N
∗, x ∈ Ω and

(ξ, s) ∈ (Ω× C
+
0 )

n,

Gn(x; ξ, s) =
L2(Ω1+n)

+∞∑

k=1

G[k]
n (s) e1+n

k,...,k(x, ξ).

with G[k]
n (s) = G[k](s1 + · · ·+ sn)R

[k]
n (s),

R
[k]
1 (s1) = 1,

if n ≥ 2,

R[k]
n (s) = −ǫk2π4

∑

p,q,r≥1
p+q+r=n

[+∞∑

ℓ=1

ℓ2G[ℓ]
p (s1, . . . , sp)G

[ℓ]
q (sp+1, . . . , sp+q)

]
G[k]

r (sp+q+1, . . . , sn),

The first nonzero kernels for n ≥ 2 correspond to

G
[k]
3 (s1, s2, s3) = G[k](s1 + s2 + s3)R

[k]
3 (s1, s2, s3)

= −ǫk2π4G[k](s1 + s2 + s3)

+∞∑

ℓ=1

ℓ2G
[ℓ]
1 (s1)G

[ℓ]
1 (s2)G

[k]
1 (s3)

= −ǫk2π4G[k](s1 + s2 + s3)

+∞∑

ℓ=1

ℓ2G[ℓ](s1)G
[ℓ](s2)G

[k](s3)

G
[k]
5 (s1, . . . , s5) = G[k](s1 + · · ·+ s5)R

[k]
5 (s1, . . . , s5)

= −ǫk2π4G[k](s1 + · · ·+ s5)
∑

p,q,r≥1
p+q+r=5

+∞∑

ℓ=1

ℓ2G[ℓ]
p (s1, . . . , sp)

×G[ℓ]
q (sp+1, . . . , sp+q)G

[k]
r (sp+q+1, . . . , s5).
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Using previous work (section 2.3), the Green-Volterra kernels modal projections can be iden-
tified to the same structure presented in Fig. 2. Indeed, for n = 1, the Green-Volterra kernel is
the Green’s function (cf. Eq. (14)), and for n ≥ 2, the kernels consist in sums and products of the
output of this already known Green’s function.

Hence, for a general excitation f(x, t), the simulation is performed using the structure displayed
in Fig. 8. It actually corresponds to the “intuitive solution” mentioned at the end of section 2.3:
the only difference with the previous work (recalled in Fig. 2) for excitations of type Eq. (15), is
that φk must be replaced by the modal projection 〈·, ek〉.

Remark 8. Fig. 8 corresponds to the particular case of Fig. 6 in which the only nonzero multilinear
operator K3,0

x is detailed and expanded on the K first modes of the string.

2. 2. 2.

f(x, t)

〈·, e1〉

〈·, ek〉

〈·, eK〉

f1(t)

fk(t)

fK(t)

G[1] G[1]

G[k]G[k]

G[K]G[K]

u
[1]
1 (t)

u
[k]
1 (t)

u
[K]
1 (t)

k K

w(t) =

K∑

l=1

l2
(
u
[l]
1 (t)

)2

−ǫπ4

−ǫk2π4

−ǫK2π4

u
[1]
3 (t)

u
[k]
3 (t)

u
[K]
3 (t)

e1(x)

ek(x)

eK(x)

ua(x,t)

(linear contribution, n = 1)

Figure 8: Block-diagram of an o(ǫ)-simulation of Eq. (1) based on Green-Volterra kernels with
K modes: the excitation force f(x, t) is completely unknown to the system and is decomposed on
the modal basis using a scalar product.

5 Realizations and discussion

In the following section, results are presented for the dimensionless string model described in
Eq. (1). The string length is therefore defined in Ω =]0, 1[.

Figs. 9 and 10 represent the time response of the string at an observation point x = 0.57. The
excitation force is defined by f(x, t) = ψ(x, t)fmax t/Tforce for t ∈ [0, Tforce] where fmax is the
maximum amplitude of the force and Tforce = 0.01 s. The spatial distribution of the force is a
cosine moving thanks to the function ψ defined by

ψ(x, t) = cos(π
(x− x0 + 0.2t)

ℓ
) if |x− x0 + 0.2t| < ℓ

2
, and ψ(x, t) = 0 otherwise, (40)

where the value of ℓ corresponds to 4% of the string length).
The sampling frequency is fs = 44100 Hz and the number of modes is K = 20. The same

conclusions can be made in comparison with [21], i.e. the approximation at a given order of
nonlinearity (here N = 5) is valid until a maximum of force amplitude (here F 3

max), where the
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Figure 9: Simulation of Eq. (1) for f1max = 5 N: linear approximation is correct since the amplitude
of the transverse displacement is very small. For f2max = 10 N, nonlinear effects begins to appear
mainly for order 3.
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Figure 10: Simulation of Eq. (1) for f3max = 20 N: the nonlinear responses have the same amplitude
that the linear one, f3max is roughly the convergence radius of the Volterra series. For f4max = 40
N, the amplitude of the force is too high, the series does not converge anymore.
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nonlinear response have the same magnitude than the linear one. Without a calculation of the
convergence radius, this is a good observation, to define a valid range of excitation force.

Fig. 11 presents the string transverse displacement when the force is nonzero. It show the
purpose of Green-Volterra kernels, in comparison with previous works, i.e. the spatial variation of
the force f(x, t) along the string using the function ψ(x, t).
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Figure 11: Transverse displacement of the string excited by the force f(x, t) = ψ(x, t) fmax t/Tforce
where ψ is defined by Eq. (40) at four times: (a) 50 samples, (b) 150 samples, (c) 250 samples and
(d) 350 samples.

6 Conclusion

This paper has presented the calculation of Green-Volterra kernels for the Kirchhoff string model.
The definition of the kernels is provided, in relation with the Green’s function of the linearized
problem. The method is then the following:

• build the canceling system from the physical model;

• derive linear equations satisfied by the Green-Volterra kernels, using the interconnection laws;

• write a structure of simulation based on the discrete-time version of the linear operator, and
instantaneous sums and products (or multilinear operators).

This formalism allows to use the Green’s function properties to compute the dynamics of a
weakly nonlinear problem of type Eqs. (17-18) with an excitation force f(x, t). The main result of
the computation is the possibility to use a non time-invariant space repartition of the force. This
extends the Green’s formalism to weakly nonlinear problems. Moreover the structure of simulation
is very similar to the particular case φ(x)ftot(t).
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However the convergence of the Green-Volterra series has not been studied in this paper. This
will be addressed in a future work, based on studies proposed in e.g. [32, 33, 34]. Here, in order to
have proper approximations in practice, the amplitude of the force is limited so that the nonlinear
response has a lower magnitude than the linear one.

This generalization of an excitation force f(x, t) is a important step to get more general results
in the synthesis of nonlinear models. It will allow to deal with other kinds of problems. For
instance, contact problems for deformable solids need to use variable force (in space and time) to
represent the interaction between two solids at the contact surface. The Green-Volterra kernels
could be used to represent each solid. This will require to work on more elaborated physical models
(e.g. beams or plates) in order to highlight the possibilities regarding the excitation force.
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