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Analysis / Synthesis of Sounds Generated by
Sustained Contact between Rigid Objects

Mathieu Lagrange, Gary Scavone, Philippe Depalle

Abstract— This paper introduces an analysis/synthesis scheme
that aims at reproducing sounds generated by sustained contact
between rigid bodies. This scheme is rooted in a source/filter
decomposition of the sound where the filter is described as a
set of poles and the source is described as a set of impulses
representing the energy transfer between the interacting objects.

Compared to single impacts, sustained contact interactions
like rolling and sliding make the estimation of the parameters
of the source/filter model challenging because of two issues.
First, the objects are almost continuously interacting, making
the estimation of the poles of the filter more difficult. The second
is that the source is generally unknown and has therefore to
be modeled in a generic way. The proposed analysis/synthesis
scheme combines advanced analysis techniques for the estimation
of the poles and a flexible model of the source. It allows the
modeling of a wide range of sounds. Examples are presented for
objects of various shapes and sizes, rolling or sliding over plates
of different materials. In order to demonstrate the versatility of
the approach, the system is also considered for the modeling of
sounds produced by percussive musical instruments.

Index Terms— AUD ANSY,AUD AUMM
(EDICS),Environmental Sounds Modeling, Source/Filter
Model, High-Resolution Analysis

I. INTRODUCTION

THE synthesis of sounds generated by sustained contact
between rigid objects is of interest for many applica-

tion areas, such as game development and sound design for
music and audio. With the widespread use of virtual reality
applications, such as animation movies, video games and
on-line training systems, together with the realism of the
physical engines that are describing the virtual scenes, one
can expect realistic sonification of the interactions between
different objects to be available where the sound would be
driven by the physical interaction of the objects within the
scene.

Synthesis techniques based on the Source/Filter decompo-
sition [1], [2], [3] are available to create such sounds but most
of them have to be driven empirically, namely most of their
parameters has to be set by an expert, making comparative
studies hard to conduct and reducing the applicability of the
synthesis approaches in realistic scenarios. Consequently, one
would like the parameters of the source/filter model to be
estimated from actual recordings. The ability to describe such
sounds would also be of potential use in analysis-oriented
areas such as environmental or musical sound recognition and
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classification [4], [5]. In order to achieve such a task, one has
to tackle issues that have not, to the best of our knowledge,
been considered in the literature.

The first issue is that the objects are almost continuously
interacting, making the estimation of the parameters of the
filter difficult. In the case of rolling or sliding interactions,
multiple excitation and damping phases can alternate almost
randomly. In this paper, High-Resolution (HR) techniques [6]
are shown to allow the estimation of the filter parameters under
such constraints by considering observation interval of short
duration after a significant hit, thus maximizing the probability
of the observed system to be in “free-regime”. The second
issue is that the numerous types of interactions between the
two objects have to be adequately described by the model of
the source. For that purpose, a statistical model that is able to
realistically render various types of interactions is proposed. It
assumes that many types of sustained interactions can be de-
composed into a series of micro-impacts between the asperities
of the surfaces of the interacting objects. The source is then
modeled as a series of events and it is shown that the timing
and amplitude of those events can be compactly modeled using
statistical distributions whose parameters can be conveniently
controlled in order to generate specific interactions.

The remainder of the paper is organized as follows: The
global scope of the paper is described in Section II. The
proposed sound model is introduced, motivated and compared
to existing systems in Section III. The estimation of the modal
parameters and the source of the proposed model from actual
recordings are respectively described in Sections IV and V.
This model is next applied in Section VI to sounds issued
from various types of sustained contact between rigid bodies.
The rolling and sliding of objects over plates is considered
as well as percussive musical instruments. In light of those
experiments, we finally discuss the benefits and drawbacks of
such an analysis scheme as well as potential improvements.

II. PREVIOUS WORK

Following Li&al approach [7], in order to convey some
properties, an acoustic event must produce sounds with a non
arbitrary acoustic structure. This acoustic structure must be
recovered by the listener and successfully mapped to some
auditory source categories defined in terms of the proper-
ties of the acoustic event. Consequently, when designing an
analysis/synthesis algorithm for audio rendering purposes, one
would like to root the system on a model of the acoustic
structure such that variations of the parameters of the represen-
tation lead to the synthesis of sounds that will be successfully
mapped by the listener to the corresponding categories.
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One approach for the synthesis of sustained contact sounds
could include a rigorous physics-based analysis as taken in
[8] where the simulation is defined directly in terms of the
physical properties of the acoustic event. However, for real-
time interactive scenarios, such an approach is computationally
complex.

Alternatively, we propose in this paper a representation
of the acoustic structure that is applicable to a wide range
of contact interactions. This representation, based on the
source/filter model is useful for synthesizing signals where the
perception of the type of interaction and the type of material
is nicely conveyed. In order to motivate this approach, we now
study previous work on source/filter modeling.

A. Impact Sounds

Assuming certain conditions [9], the solution to the equation
for motion for the struck-clamped bar is a sum of exponentially
dampened sinusoids whose individual frequencies, amplitudes,
and decay moduli are joint functions of the elasticity and mass
density of the bar, its specific geometry, and the manner in
which the bar is struck [10]. This sound model have been
used in psycho-acoustical studies [9], [11], [12] to generate
synthetic acoustic structures.

Considering this model is consequently natural for rendering
purposes [13], [14], [15], [16], [1], [17]. The filter parameters
encapsulate the perceptually relevant characteristics of the
physical structure. In this simplest form, a modal synthesizer
can be viewed as a source/filter model whose source is a
Dirac impulse. Depending on the targeted application, several
strategies can be considered to better model the source. One
previously reported approach considers all interaction forces
to be directed normal to the surface [18]. The resulting
system can be modeled as a mass-spring system, enabling the
generation of hits, bounces and breaking-like events [19]. The
parameters can be set using physical descriptions of the inter-
acting objects. An extension of this work has recently been
proposed which leads to convincing rolling sound synthesis
[20].

Alternately, one might be interested in estimating the param-
eters of the source/filter model from actual sound recordings
to eventually achieve a perceptively coherent synthesis without
extensive parameter tuning. Some methods targeting this goal
have been proposed for the modeling of impact sounds [21],
[22]. In [21], the modal parameters are derived based on
Fourier analysis and the Energy Decay Relief method. The
estimation of the source is then carried-out by inverse filtering
of the sound. Since the source is assumed to be of short
duration and therefore cheap to store in memory, the authors
do not address the need for a parametric representation of it.

B. Sustained Contact Sounds

Rolling or scraping behaviors involve numerous contact
events between objects. The source is therefore not of short
duration. In synthesis schemes such as the FoleyAutomatic [1],
the authors consider that the source excitation consists of the
interaction of the moving objects with the protrusions of the
surface. It is assumed that the interacting surfaces are fractal
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Fig. 1. Signals of a bottle respectively sliding (top) and rolling (bottom)
over a plate.

and that the source has the same property. Such a distribution
is efficiently approximated using 1/f -shaped white noise. This
shaping is carried out using a bank of filters tuned to obtain a
power spectrum proportional to ωβ , where ω is the frequency
and β is the fractal dimension [23]. Another filtering step is
carried out using a resonating filter whose frequency is tuned
according to the speed of the object within a low frequency
range. While satisfying for scraping sounds, the authors felt
the need for further processing in the case of rolling sounds.

When comparing sliding and rolling sounds, two main
differences arise. First, the amplitude envelope of the rolling
sound exhibits more pronounced long-term modulation, see
Fig. 1. Second, the rolling sound is of lower frequency content,
see Fig. 2. Although the physics behind the rolling phenomena
are not fully understood [8], it is speculated in [1] that the first
difference is due to the fact that the rolling object bounces
more and therefore hits the surface less often, leading to a
source signal of lower frequency. The second difference is
explained in [24] by the asymmetry of the rolling object with
respect to its center of mass. This cue is very important for
perception, since nearly perfect spherical shapes with nearly
perfect mass distribution are not easily perceived as rolling
objects.

It is proposed in [24] that the oscillating height and center
of mass can be approximated by a sinusoidal evolution as
the excitation force. Alternatively, the FoleyAutomatic tackles
those two issues by considering another low-pass filtering step.
The overall spectrum is of much lower frequency and, as a side
effect, the source exhibits long-term amplitude modulations
due to the enhancement of the beating of some modes within
the low frequency region.

III. PROPOSED APPROACH

The synthesis model proposed in [3] provides convincing
cartoon-like rolling sounds. However, the physical model used
to generate the source signal is not flexible enough to allow
arbitrary shapes and surface types without specific adaptations.
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Fig. 2. Fourier spectrum of the sound of a bottle respectively rolling (solid
line) and sliding (dashed line) over a plate.

The FoleyAutomatic [1] also captures most of the aspects of
rolling behaviors but does not provide any systematic approach
for the estimation of the parameters of the different filters
considered.

A. Source/Filter Modeling

We propose in this paper a synthesis scheme that is relevant
for the synthesis of sustained contact sounds generated by
interactions between rigid bodies of different shapes and
surface properties. This is achieved by means of an analysis
method that allows the user to estimate the parameters of the
model from recordings of the sustained contact between the
two bodies. As for most source/filter models, it is assumed that
is possible to define a source and a filter such that the filter
models perceptively important spectral properties of the sound
whereas the source models perceptively important properties
of the temporal envelope of the sound.

Source/filter models have been studied extensively, mainly
in the domain of speech processing [25], but also for musical
signals [26], [27] and more generally for generating sounds
caused by the interactions between rigid bodies for rendering
purposes [14], [1]. From a physical point of view, this model
can be interpreted as follows: the vibrating structures are
represented by the resonant filter, and the interaction between
the vibrating structure and the physical exciter by an excitation
signal.

In order to cast our problem into this convenient model, we
consider that the resonances of the exciting object - if any -
can be considered part of the filter as its resonances will be
captured at the analysis stage. With this assumption, we can
model sounds generated by sustained contact between rigid
objects as the output of an infinite impulse response filter (IIR)
excited by the source signal. This source signal represents the
multiple contact events between the two objects by encoding
the amplitude and the phase of the modes and the resonant
filter encodes their frequencies and damping factors.

B. Multiple-Impulse Modeling of the Source

Significant previous work in the speech domain is relevant
to our proposed excitation model. The vocoder [28], [29], [30]
is rooted on the assumption that the voice is either “voiced” or
“unvoiced”. Depending on this status, the source is modeled as

Modal Analysis

Modal Deconvolution Impact Selection

Impact Modeling

Impact Deconvolution

x(n) α(k), ω(k)

e(n) i(n)

m(n)

d(n)

Fig. 3. Block-diagram of the proposed analysis scheme.

a pulse train with period tuned according to the pitch or white
noise. For real speech signals, however, such a dichotomy is
less clear. Atal&al proposed in [31] a new model of speech
excitation for producing more natural-sounding speech at low
bit rates. They allow a few pulses per pitch period to model
voiced and unvoiced speech with the same approach.

Similarly, by having the same scheme as the vocoder for
interacting bodies, one could have a situation where the object
is bouncing and the excitation would then be more or less
regularly spaced pulses. On the contrary, if the object is rolling
or sliding, the excitation could be modeled by shaped noise as
in the FoleyAutomatic [1]. One can understand the limitation
of such a scheme when considering sounds created by objects
with irregular shapes and surfaces. We therefore opt for an
unconstrained excitation model, where we assume that many
kinds of complex interactions can be decomposed into ele-
mentary contact events. A similar approach has been followed
for the modeling of musical percussive-like maracas in [16],
where the enveloped noise pulses are randomly generated
using empirically defined statistical distributions.

We propose to model the source of sustained excitation
sounds as a series of triggers of an impact signal. The shape
of this impact signal typically encodes physical properties of
the interacting objects. For example, a glass marble hitting a
metallic plate has a sharp impact, whereas a rubber hammer
will induce a smoother impact. We will describe in Section
V how this impact can be derived from sound recordings.
Alternatively, this impact signal could also be generated using
the physical properties of the interacting objects as in [18] for
morphing purposes.

The issue is then to estimate the time location and intensity
of those events given a recorded sound, which has been proved
to be difficult in the case of speech signals. In [31], the
location and amplitudes of the pulses are found by means
of an iterative analysis-by-synthesis method, which requires
an empirically defined cost function. Fortunately, we do not
consider vibrating structures that are changing shape over time
like the vocal tract, so the process of estimating those pulses
can be done by inverse filtering as described in Section V.

C. Overall Description of the Analysis Algorithm

We now give an overview of the analysis scheme, whose
block-diagram is shown on Fig. 3. Considering x(n), the
recorded sound of the interaction between two objects, an
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Fig. 4. Amplitude spectra of modal filters with parameters chosen according
to High Resolution analysis of a plate hit with a hammer at nine different
locations recorded using an accelerometer.

analysis interval is defined, where the modal analysis is
performed in order to estimate the modal parameters using the
HR method as described in Section IV. The impulse response
of this filter s(n) is defined in 2.

As described in Section V, this filter is considered to
estimate the source signal by means of a modal deconvolu-
tion carried out by inverse filtering. A representative impact
i(n) is then extracted from this source signal. Its amplitude
envelope is modeled using a parametric shape m(n) that has
previously been considered for the modeling of transients in
the audio coding area [32]. This parametric shape allows
us to perform an impact deconvolution in order to obtain
a spike-like excitation signal which is modeled as a series
of amplitude modulated Dirac Functions d(n). The resulting
synthesis scheme is a simple two-step convolution:

x̂ = d ∗ i ∗ s (1)

where ∗ denotes the convolution. For the modeling of rolling
and sliding sounds we considered in [33] several approaches
to process and parametrize further the representative impact
signal i(n). Those schemes were evaluated in [34] and [35]
where the unprocessed impact is shown to be the most reliable
solution as far as perceptual similarity with the analyzed sound
is concerned. Therefore, i(n) is considered as-is in this paper.

IV. ESTIMATION OF THE FILTER PARAMETERS

Once excited, an object vibrates according to its own
set of modes [10]. The frequencies and damping factors of
those modes are determined by the physical properties of the
resonating body, mainly its dimensions and stiffness and do
not depends on the locations of the excitations. Fig. 4, which
illustrates amplitude spectra of modal filters with parameters
chosen according to HR analysis of signals resulting from
strokes at different locations recorded using an accelerometer
placed on one end of the plate.

If we assume that an exciting impact is of short duration,
the resulting sound will be primarily composed of a linear
combination of ”free regime” vibrations of the object (after
a short transient regime). At this stage, the sound can be

conveniently described as a set of exponentially damped
sinusoids:

x(n) =
K∑

k=1

Akezkn (2)

zk = αk + jωk

Ak = gkejφk

where gk, φk, αk, and ωk are respectively the gain, the phase,
the damping factor and the frequency of the pole k. Those
parameters are the parameters of the filter. The parameters
αk and ωk are considered as fixed while the gk may evolve
according to the displacement of the location of the contact.

Psycoacoustical studies [11] show that even in the relatively
simple case of struck metallic bars, it is not straightforward to
relate the estimated poles to the actual modes of the vibrating
objects. We therefore only focus in this paper at the estimation
of the filter parameters that lead to a resynthesis of satisfying
quality and do not make any attempt at relating the estimated
poles to the actual modes of the vibrating object.

Though, the estimation of the parameters of the filters
should be performed when the vibrating structure we want
to model is - as much as possible - vibrating freely without
interacting with the other object. In [33], this difficulty is
avoided by assuming the availability of the recording of
an impact between the two objects. However, this approach
reduces considerably the scope of applicability of the method.

Alternatively, we propose in this paper to estimate the
filer parameters directly from the sustained contact sound.
Consequently, the observation of the modal parameters should
be performed when the vibrating structure we want to model
is as much as possible vibrating freely without interacting
with the other object. The algorithm considered for finding
the boundaries of such an interval is detailed in Appendix A.
In order to satisfy as much as possible those constraints,we
propose to set the analysis interval as a short time interval
following a significant impact.

A. Spectral Analysis

Given an appropriate analysis interval, one needs to esti-
mate the parameters of (2). Many methods are available to
achieve this task. A common nonparametric method is the
Fourier transform. Although quite robust and considered in
many previous studies [21], [1], it requires a long observation
window in order to achieve a good frequency resolution as well
as a precise estimation of the damping factor (see Appendix
B for details). Though, our analysis has to be performed
over a very short-time observation interval with a potentially
low signal-to-noise ratio, due to the residual influence of the
numerous impacts that occurs. From a theoretical point of
view, parametric methods with careful pre-processing seem
best adapted [36].

This choice is confirmed by the comparative study detailed
in Appendix B, from which we chose the ESPRIT algorithm
[37] as the best option in our application context. This algo-
rithm belongs to the family of subspace-based HR spectral
estimation techniques. This means that an eigenanalysis of
the autocorrelation matrix is performed. With the assumption
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that the observed signal is of the type as defined in (2), it
can be shown that the K highest eigenvalues will correspond
to the powers of the components of the model plus the
power of the residual. The eigenvectors associated with the K
highest eigenvalues then form a base of the so-called “signal
subspace”. By considering (2), the frequencies and damping
factors of the modes are computed as follows:

fk =
=(log (zk))

2π
and δk = <(log (zk)). (3)

The amplitude and phase of each component is then obtained
via a projection of the observed signal on the estimated signal
model [36]. It is important to note that an extensive pre-proces-
sing is performed on the observed signal before it is fed into
the ESPRIT algorithm: the signal is first split into subbands,
down-sampled in each of these bands, and whitened. All these
steps are used in order to ensure a better conformance of the
data to the model [6]. The interested reader is referred to [6]
for a precise outline of the steps in the ESPRIT technique as
well as extensions to that technique.

Nevertheless, a quantitative comparison of the HR method
with Fourier-based and LP-based methods is provided in
Appendix B, where synthetic scenarios considering impact-
like and sustained excitation of realistic modal structures
are considered. With impact-like excitations, it is shown that
the HR method performs best. With stochastic excitations, it
compares favorably for the estimation of the frequency but not
for the estimation of the damping parameter, as the underlying
model is no longer verified. Closer investigations showed that
the Autoregressive (AR) method consistently under-estimates
the damping, whereas the HR method tends to overestimate
the dampings when the excitation energy is still significant in
the observation interval. Since a precise frequency estimate is
crucial for our purposes and the Fourier based method cannot
be considered, the HR method is selected.

The estimation of the optimal number of modes given a
signal is yet another difficult problem. In our approach, we
assume a large number of modes, 20 for each of the eight
sub-bands and the desired number of modes is selected as the
modes with positive dampings and the highest amplitude. For
the sake of generality, the number of modes is limited to 80.
However, this number could be highly reduced depending on
the type of objects and interactions we are considering. For
example, in the case of a glass ball sliding over a wooden plate,
a good quality synthesis can be achieved with ten modes.

B. Modeling the change of the location of the excitation

As extensively studied by Stoelinga&al [38], gradually
varying ripples can be observed on the spectrograms of rolling
sounds. It can be shown that this pattern arises from the
interference between the sound directly generated at the point
of contact between ball and plate, and the sound reflected at
the edge of the plate. This phenomenon is important for the
perception of movement. The “phasing” effect illustrated with
this theoretical simulation can also be observed in real rolling
sounds. Although less pronounced in real cases, this effect is
clearly audible and perceptively important.

The estimation of the parameters of this comb filter from
actual recordings is left for future research. However, assuming
that the location of the rolling object is known, that the
trajectory is linear, and that the two edges of the plate
are clamped or supported, we can analytically compute the
fundamental frequency of the comb as a function of the relative
location. While being an approximation, it was found that this
processing step provides an enhanced perception of movement.

V. ESTIMATION OF THE SOURCE PARAMETERS

As described in Section III, sustained excitation signals are
modeled as a convolution of a signal d(n) that encodes the
location and amplitude of the impacts and an impact signal
i(n) that encodes the initial deformation of the vibrating body
induced by a single contact between the two bodies.

The signals d(n) and i(n) are computed from the excitation
signal, which itself is estimated by deconvolution of the modal
parameters from the recorded signal. This deconvolution pro-
cess is achieved by inverse filtering. A selected section of the
resulting estimated source will be considered as the impact
signal i(n). This signal will be parameterized in order to
identify d(n) using yet another deconvolution step.

A. Estimation of the Source Signal

In most situations, only the output of the source/filter system
is available. Several methods are available to estimate the
excitation signal (the source) from the output. Some do not use
any explicit Source/Filter model [39]. Those methods usually
try to “whiten” the output by removing resonances in the
spectral domain by assuming that the resonant part is only
due to the resonances. Using the same assumption, others
consider a sinusoids+noise model such as the one proposed
in [40] where the result of the subtraction of the synthesis
of the sinusoidal part from the original is considered as the
excitation.

In our approach, we assume knowledge of the filter structure
which allows us to this deconvolution process by performing
an inverse filtering step. More precisely, we consider a set
of second-order cosine filters to model the filter part of our
model:

S(z) =
1
2

K/2∑
k=1

Ak

1 − zkz−1
+

A∗
k

1 − z∗kz−1
(4)

The excitation e(n) is then computed using inverse filtering
in the frequency domain:

E(ω) = X(ω)/S(ω) (5)

where S(ω) is the Fourier spectrum of the output of the
filter s(n). Frequency-domain deconvolution is more reliable
because of numerical instabilities in the computation of the
filter coefficients [21].

B. Modeling the Impact Excitation

The impact excitation serves two purposes. It is used as is
for synthesis purposes, and a smooth version is used for esti-
mating d(n). We propose to choose a representative impact by
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Fig. 5. Meixner window (smooth curve) fitted over the envelope of the
excitation signal of a hit of a glass bottle over a MDF plate.

identifying a time interval where a significant impulse occurs
in the excitation signal e(n). This procedure is explained in
details in Appendix A.

We next need to define at which time and at which ampli-
tude this impact should be triggered. As it will be described
in the next section, the estimation of the time and amplitude
properties of the series of triggers is done by means of a
deconvolution of the amplitude envelope of the excitation
signal. However, it was not found practical to define a stable
filter for every kind of envelope of the impact shape. We
therefore need to abstract the impact shape using a parametric
curve that will always lead to a stable filter.

For this purpose, we propose to approximate the amplitude
envelope of the impact using a “Meixner” temporal envelope
that can be adapted to many different impact types by means
of time scaling. This shape has previously been used for
the modeling of transients in a low-bit rate hybrid audio
coder [32]. We considered this window because it has an
overall shape compatible with various impact-like events and
is continuous at the boundaries. The “Meixner” envelope is
computed as:

w(n) = (1 − γ2)β/2

√
h(n)
n!

γn (6)

h(n) = β · (β + 1) · · · · · (β + n − 1) (7)
h(0) = 1 (8)

with β > 0, 0 < γ < 1 and n = 0, 1, 2, .... The attack is
controlled by β and the exponential decay is controlled by γ.
In this paper, we made use of one particular shape, computed
with β and γ empirically set to 10 and 0.89 respectively. This
shape is next truncated to be 200 samples long, delayed, scaled
and stretched to fit the envelope of the selected impact, see
Figure 5.

C. Location of the Impacts

It is assumed that one object “strikes” the surface of the
other many times, producing a sustained excitation composed

of many individual contact events at various times and with
various gains. Given an excitation signal e(t) and an impact
envelope model w of length lw, we want to estimate T =
{tm, am}, the set of triggers, where each trigger is defined by
its time index tm and amplitude am.

The envelope E of the excitation signal e(t) is first computed
as a spline interpolation between the maximal values of |e|. It
is proposed in [33] to iteratively identify the locations of the
maximum cross-correlation between E and w to identify the
location of the events tm. This method performs well in the
case of bouncing objects but it was not as satisfying in the
case of more complex behaviors like rolling.

To improve the identification of the location of the impacts
in those cases, a signal T so that E = T ∗w is considered. The
estimation of T is achieved by means of a two step inverse
filtering approach. In order to provide us with stable filters, w
is separated in two sections: w1 = w(0,mw − 1) and w2 =
w(mw, lw − 1), where mw is the index of the maximal value
of w. E is first filtered using w2 from the beginning to the end
and next filtered using w1 from the end to the beginning.

The resulting signal is composed of peaks whose dominant
maxima are considered as candidates for impact locations. To
do so, an indicator vector m(n) is built:

m(n) =
{

β m(n − 1) + (1 − β) T (n) if T (n) > m(n − 1)
α m(n − 1) + (1 − α) T (n) otherwise

(9)
where m(0) = 0. The parameters β and α have been
empirically set to 0.999 and 0.3, respectively. Every local
maximum whose amplitude is above the indicator vector is
inserted in the list of triggers T. All the peaks from T that
have a highest value greater than c = max(T /2) are next
discarded. This process is carried out until c is below a given
threshold empirically set to max(T )/5.

D. Excitation Encoding

With the assumed linearity of the synthesis scheme, an-
other advantage of such an approach is the simplicity of the
parameter set. The number of modal parameters is bounded,
can be relatively low in many synthesis scenarios and can
be encoded using well known quantization techniques [41].
The impact excitation is also relatively cheap to encode due
to its short duration. Furthermore, in a scenario that requires
transmission of data such as on-line virtual reality, both pieces
of information can be stored statically on the decoder side.
This is not the case of the set of triggers T that should to
be transmitted efficiently. The proposal and evaluation of a
complete encoding scheme for T is out of the scope of this
paper. Instead, we demonstrate how this set can be statistically
described at a microscopic level in order to be compactly
represented without a significant loss of fidelity.

Let us consider an alternative representation of T where
time indices are represented using a differential scheme T̃ =
{δm, nm} where δ0 = t0 and δm = tm − tm−1. We
considered the statistical distribution of those parameters over
the databases of sounds of sustained contact between solids
described in the next section, see Figure 6. It was found that
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Fig. 6. Measured (left bar) and modeled (right bar) frequency distributions
of the parameters nm and δm which are respectively modeled by exponential
and gamma distributions.

the parameter δm follows a gamma distribution whereas an
exponential distribution is relevant for the parameter nm.

In order to encode T, the set is first split in several subsets
Tn, such that tm ∈ Tk are in the [k∆, (k + 1)∆] interval,
where ∆ is a number of samples corresponding to ≈ 0.25s.
Within each subset, the 20 elements with the highest amplitude
are modeled as is, in order to retain precise modeling of
the macroscopic events. The remainder is modeled using
some statistical distributions. For each remaining element of
the subset Tk, the parameters of the two distributions are
estimated to generate T̂k. Those sets can finally be considered
to synthesize an approximate vector of triggers as follows:

d̂(n) =

{
= n̂i

k if ∃i| mod
(∑i

p=1 δ̂p
k,∆

)
= n

= 0 otherwise
(10)

As it will be discussed in the next section, no significant
perceptual difference has been found between the estimated
and approximate set of triggers in the case of rolling and
sliding sounds, although the bit-rate is reduced by about 100
times compared to a straightforward 16-bit encoding of T .

VI. APPLICATION TO THE MODELING OF RECORDED
AUDIO SIGNALS

The proposed algorithm is considered for approximating
of a variety of sounds. Impact sounds are first considered
followed by sounds with sustained excitation, like bouncing,
sliding and rolling. Sounds of musical instruments that are
excited in a sustained fashion, i.e. hit at multiple time more
or less rapidly, shaken, and bowed are finally considered. All
the sounds discussed in this section are available online1. The
same set of parameters given in the previous sections have
been considered for all the examples reported here.

A. Impact Sounds

In order to validate the estimation of the filter parameters
in short duration excitation scenarios, a database of impact
sounds recorded by Bruno Giordano [42] is first considered.

1http://perso.telecom-paristech.fr/˜lagrange/demos/ciqs.

The accuracy of the estimation can be perceptually asserted
by considering a Dirac impulse as the source. It was found
that both the filter parameters estimation and the quality of the
whole synthesis chain is good for most of the sounds provided
that the number of estimated modes is not too low. If this
condition is not met, some modes are left in the estimated
excitation, inducing artifacts during the estimation of the set
of events. Iterative approaches such as the one proposed in [43]
may lead to a better estimation of the modes and consequently
a better estimation of the parameters, leading to a significant
overall improvement.

B. Rolling and Sliding Sounds

We consider here three set of sounds. The first database
consists of objects sliding and rolling across inclined boards
made of wood and melamine. The objects are respectively
an empty glass bottle rolling on its side, a glass marble and
a wooden croquet ball. Details about the recording settings
can be found in [33]. It was found that the difference of
shape of objects as well as the granularity of the surface is
nicely conveyed by the synthesis algorithm. However, the type
of material of the board can sometimes be hard to perceive,
probably due to a relative inaccuracy in the estimation of the
damping factors.

The second set of sounds are issued from the demonstration
sounds of the FoleyAutomatic [1]. Since this algorithm is not
data-driven, we used their synthesis sounds as the input to our
algorithm in order to be able to compare our approach.

Probably due to the facts discussed in Section III-B, it
was found that the transition between bouncing and rolling
behaviors are more subtle using the proposed scheme, leading
to a more realistic perception of rolling. This ability to model
different types of interactions in a flexible way can also be
observed with the third database recorded by Christopher
Stoelinga [8], where some wooden balls of different sizes are
rolling over wooden plates of different thicknesses at constant
speed.

The parametrization described in the paper provides the best
synthesis quality in our opinion and follows perceptual valida-
tion that have been conducted while designing the processing
algorithm. Indeed, perceptual experiments have been carried
out [34] that evaluate the ability of the tested approach to
generate sounds that are perceived as rolling sounds. A more
in depth evaluation compares the synthesized sounds with
respect to the original recordings [35] where several alterna-
tive algorithmic designs are evaluated. This last work gives
useful insights about which design choices are relevant and
demonstrates the usefulness of a complete analysis/synthesis
scheme to conduct meaningful perceptual evaluations of such
synthesis algorithms.

C. Sounds of Percussive Musical Instruments

We also considered some sounds of musical instruments of
the McGill University Master Samples [44] to evaluate the
ability of the proposed algorithm to model diverse timbres
and type of interactions. The proposed scheme was found to
provide good fidelity for wood block, castanet and timbals.

http://perso.telecom-paristech.fr/~lagrange/demos/ciqs
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Fig. 7. Time and frequency domain representation of the synthesized sound
of a bottle rolling over a plate with encoding of the set of triggers.

Instruments like maracas and bamboo chimes are also cor-
rectly modeled, making the proposed algorithm an interesting
alternative to the PhISEM approach proposed by Perry Cook
[2].

To a certain extent, sounds produced by snare drums, high
hats and Chinese cymbal are correctly modeled as far as timbre
is concerned. However, the time properties, like the location
of the hits are not correctly conveyed. Another interesting type
of sustained excitation is bowing. Even though the interaction
of the bow and the string is highly complex [45], it is worth
noticing that the synthesis provided by the proposed approach
is satisfying in terms of timbre and long-term amplitude
modulation.

VII. CONCLUSION

We introduced in this paper an analysis / synthesis algorithm
of sustained excitation sounds. This scheme is, to the best
of our knowledge, the first method that allows the complete
estimation of the synthesis parameters from actual recordings.
We believe that such a method could be of use for many
application areas from human/computer interaction, sonic and
haptic feedback, virtual reality, as well as new sound creation
for musical purposes. We are currently investigating the use
of this method in interaction scenarios and have found it to
provide satisfying synthesis quality and good flexibility.

Some limitations highlighted in the previous section suggest
several directions for future research. First, an improvement
of the estimation of the modes is highly desirable since it
is the root of the whole modeling chain. We are currently
investigating iterative approaches for the refinement of the
modal parameters [43]. Secondly, examples such as the stone
bouncing and rolling inside a wok illustrates clearly that for
such an irregular shape, the use of only one impact excitation
profile can be perceptively costly. We plan on studying the
use of many impact excitation signals as well as a parametric
modeling of those impact excitations to increase the flexibility
of the model. Lastly, a more in-depth study of the statistical

properties of the set of triggers would be desirable for the
estimation of physical parameters such as the speed or the
shape of the moving objects as well as to propose efficient
encoding schemes that would benefit application areas such
as distributed virtual reality.
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APPENDIX

A. Analysis Interval

The method described in this appendix aims at identifying
the time interval where the vibrating object is as much as
possible in a free regime, i.e. when the object is not excited.

Once reaching a peak intensity during the excitation, the am-
plitude envelope of a signal s following the model expressed in
(2) will decrease until the next contact. Considering this cue,
the representative impact and the analysis interval boundaries
nb and ne are iteratively searched as follows. We first identify
the time indices ns, nm and ne which respectively indicates
the beginning , the location of the maximal value and the end
of the representative impact. To do so, an indicator vector a(n)
is first defined:

a(n) =
1
δ

(bn/δc+1)δ∑
m=bn/δcδ

20 log10(|s(m)| + ε) (11)

where bxc denotes the rounded value of x towards 0, δ is
a number of samples corresponding to five ms and ε is an
arbitrary small and positive value. We then look for an interval
matching the amplitude decay after a significant impact. The
first boundary is set so that |s(nm)| = max |s(n)| and ne is
initialized to nm and incremented until the following condition
is no longer met: ∑e

n=b |a(n) − l(n)|
(e − b) maxn∈[b,e] a(n)

< τ (12)

where b = nm, e = ne, l(n) is a linear approximation of
a(n) computed within the [b, e] interval and τ is a threshold
parameter set to 1.8. The index ns is searched in a similar
fashion.

In order to focus the analysis on the interval where the
influence of the excitation is no longer dominant and at the
same time where the energy of the signal is still significant,
one would like to have the analysis performed at the center of
the selected interval. To do so, nl and nr are first initialized
to nm and ne. They are next respectively incremented and
decremented in order to center the analysis interval if the
interval is larger than the requirements of the analysis module.
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Finally, in order to ensure continuity at the boundaries, nl

and nr are respectively incremented and decremented so that
x(nr) and x(nl) are close to 0, i.e.:

sign x(nr) 6= sign x(nr + 1) (13)
sign x(nl) 6= sign x(nl + 1) (14)

. If the interval is not sufficiently large for the minimal
requirements of the analysis module, this interval is discarded
and another interval is searched. If no satisfying interval can
be found, the largest interval found is padded with trailing
zeros prior to analysis.

B. Evaluation of the Modal Analysis Methods

We provide here some numerical motivations for the use
of the High-Resolution analysis method for the estimation of
the damping and frequency parameters of the modes of the
vibrating structure whether the source is of short duration like
a single impact or a sustained one like rolling or sliding.

We consider 1000 random sets of five modes excited using a
Dirac pulse or white noise. Their frequencies are in the [0, 0.2]
normalized frequency range. The distribution of the frequency
and damping parameters are randomly chosen within realistic
ranges. Those ranges are set by computing statistics over
100 sets of modes extracted from an impact sounds database
comprising various plates and hammer materials [42].

The precision of a given method is evaluated by its ability to
estimate the frequency and damping parameter of the modes.
For the frequency, all the permutations of the set of estimated
frequencies f̂k are compared to fk and the estimation error ef

is computed as:
ef = min

p
ef (p) (15)

where

ef (p) =
5∑

k=1

|f̂pk
− fk| (16)

and pk are the permuted indices of the p permutation. The
damping estimation error ed is computed similarly. The mean
and standard deviation (in parenthesis) of the estimation errors
over 1000 trials are reported in Table I.

Three analysis methods are considered. For reference, we
first considered a Fourier-based estimator. Numerous methods,
from quadratic interpolation [21] to phase-based methods
[46] are available. We considered here the “vocoder” phase-
based method for the estimation of the phase, amplitude and
frequency.

The damping parameter has to be estimated by other means.
The use of the DFT over a finite duration assumes a signal
that is periodic over the interval of observation. The damping
parameter is estimated using the Energy-Decay Rate (EDR)
method [21] requiring a much larger time interval for such
a method. Several modal amplitude estimates have to be
performed over several frames in order to obtain reasonable
estimates of the damping factors. In the experiments described
here, we considered an analysis window of ≈ 92ms and four
frames with an interval between successive frames of ≈ 1.5ms.

Closer to our approach, we also considered an LP-based
method [47]. The covariance method is used to identify the

TABLE I
RELATIVE ESTIMATION ERROR OF THE AR, FOURIER AND HR ANALYSIS

METHODS FOR THE ESTIMATION OF THE FREQUENCY (A) AND DAMPING

(B) PARAMETERS.

parameter excitation AR Fourier HR
frequency impact 0.18 (0.012) 0.22 (0.015) 0.17 (0.013)

sustained 0.26 (0.033) 0.18 (0.02) 0.17 (0.016)
damping impact 0.11 (0.032) 0.1 (0.013) 0.09 (0.012)

sustained 0.13 (0.07) 0.16 (0.016) 0.14 (0.016)

frequencies and damping factors of the model over the same
time interval as the one considered for the HR analysis (≈
23ms). The N poles, zn of the sound are computed by finding
the roots of the autoregressive part of the signal model. The
frequency and damping factor of the mode associated with one
of the pole pairs is obtained using (3). For the three evaluated
methods, the selection of the five most prominent modes over
the N = 20 extracted modes is done by decreasing magnitude.
As can seen on Table I that shows the errors as relative values,
the HR method compares favorably for the estimation of the
frequency, a major prerequisite for the approach proposed in
this paper.
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