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Polynomial chaos expansion of a multimodal random vector

C. Soize†

Abstract. A methodology and algorithms are proposed for constructingthe polynomial chaos expansion (PCE) of multi-
modal random vectors. An algorithm is developed for generating independent realizations of any multimodal
multivariate probability measure that is constructed froma set of independent realizations using the Gaussian
kernel-density estimation method. The PCE is then performed with respect to this multimodal probability mea-
sure, for which the realizations of the polynomial chaos arecomputed with an adapted algorithm. Finally, a
numerical application is presented for analyzing the convergence properties.
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1. Introduction. In 1991, R. Ghanem [16] has proposed (1) an efficient construction of the
polynomial chaos expansion (PCE) [8] for representing second-order stochastic processes and ran-
dom fields, and (2) to use it for solving boundary value problems with uncertain parameters by a
spectral approach and the stochastic finite elements. Since1991, numerous works have been pub-
lished in the area of the PCE and of its use in the spectral approaches for solving linear and nonlinear
stochastic boundary value problems, and some associated statistical inverse problems (see for instance
[1, 9, 10, 11, 13, 17, 18, 27, 31, 34, 42, 44]). Several extensions have been proposed concerning
generalized chaos expansions, the PCE for an arbitrary probability measure, the PCE with random co-
efficients [14, 28, 38, 40, 49, 50], and recently, the construction of a basis adaptation in homogeneous
chaos spaces [48]. Although several works have been devoted to the acceleration of stochastic conver-
gence of the PCE (see for instance [19, 24, 29, 48]), the question relative to the speed of convergence
(which can be very low) of the PCE for a multimodal probability distribution onRn has been little
addressed. Recently, a procedure through mixtures of PCE has been proposed in [33] for the one-
dimension case. In this paper, we propose a methodology for the PCE of a multimodalRm-valued
random variable. This problem belongs to the class of the PCEwith respect to an arbitrary probability
measure. The framework of the developments presented in thepaper is motivated by the difficulty
encountered for the PCE of a random vector for which its probability density function is multimodal,
and for which it is known that the speed of convergence of the PCE can be low. Nevertheless, the
method proposed is very general and goes beyond multimodality. In the context of the statistical in-
verse problem related to the identification of a PCE of a random vector, one does not know if the
unknown probability density function is unimodal or is multimodal. So the method proposed allows
for accelerating the speed of convergence in all the cases. We propose an algorithm for generating
independent realizations of the multimodal probability measure onRn, which is constructed from a
set of realizations using the Gaussian kernel-density estimation method from the nonparametric statis-
tics. Then, the PCE of theRm-valued random variable is performed with respect to the constructed
multimodal probability measure onRn, for which the realizations of the polynomial chaos are com-
puted with an adapted algorithm, recently introduced. Finally, a numerical application is presented for
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analyzing the convergence properties. This new class of algorithms for the multimodal case can be
useful in the context of uncertainty quantification for direct and inverse problems, and in particular, for
the approaches devoted to dimension reduction in chaos expansions for nonlinear coupled problems,
when an iterative solver is used (see for instance [2, 3, 4]).

2. Construction of a representation of a multimodal random v ector in high dimen-
sion from a set of realizations. In the first part of this paper, we propose a construction of a
stochastic model of a multimodal random vectorX with values inRN , defined on a probability space
(Θ,T ,P) using only a set ofν ≫ 1 independent realizations ofX. The construction consists (i) in
introducing the usual empirical estimations of the mean vector and the covariance matrix ofX, (ii) in
constructing a reduced-order statistical modelX(n) (with values inRN ) of X (with dimensionn < N)
using the classical principal component analysis, and yielding a multimodal reduced random vector
H with values inRn (which is assumed to be in high dimension, that is to say, withN > n ≫ 1),
(iii) in constructing a multimodal probability density functionη 7→ pH(η) onR

n of H introducing an
adapted nonparametric statistical estimator, (iv) in developing a generator of independent realizations
of H that follows the multimodal probability distributionpH(η) dη onR

n, (v) for fixedn, in comput-
ing a sequence{ŵM}M≥1} of statistical estimations of{w(H)} using this generator, in whichw is
a given measurable mapping defined onR

n. At the end of this section, a numerical investigation is
presented in order to illustrate the construction and the algorithms.

2.1. Data description and usual empirical estimations of se cond-order moments.
Let X = (X1, . . . ,XN ) be aRN -valued second-order random vector defined on a probabilityspace
(Θ,T ,P), whose probability distribution is represented by an unknown probability density function
x 7→ pX(x) with respect to the Lebesgue measuredx onR

N . LetE be the mathematical expectation.
It is assumed thatν (with ν ≫ 1) independent realizationsxexp,1, . . . , xexp,ν of X are known (coming
from experimental data or from numerical simulations). Letm̂X and[ĈX] be the empirical estimations
of the mean vectormX = E{X} and the covariance matrix[CX] = E{(X − mX) (X − mX)

T }, such
that

m̂X =
1

ν

ν∑

ℓ=1

xexp,ℓ , [ĈX] =
1

ν − 1

ν∑

ℓ=1

(xexp,ℓ − m̂X) (xexp,ℓ − m̂X)
T . (2.1)

Note that[ĈX] can be written as

[ĈX] = [R̂X]−
ν + 1

ν − 1
m̂X m̂T

X , [R̂X] =
1

ν − 1

ν∑

ℓ=1

xexp,ℓ (xexp,ℓ)T , (2.2)

in which [R̂X] is the estimation of the second-order moment matrix,[RX] = E{X XT }.

2.2. Reduced-order statistical model of X. The eigenvaluesλX,1 ≥ λX,2 ≥ . . . ≥ λX,N ≥
0, and the associated orthonormal eigenvectorsφ1

X , . . . ,φ
N
X , such that(φi

X)T φ
j
X = δij (the Kro-

necker symbol), are such that[ĈX]φ
i
X = λX,iφ

i
X . The principal component analysis allows a

reduced-order statistical model,X(n), of X to be constructed, such that

X(n) = m̂X +
n∑

i=1

√
λX,iHi φ

i
X . (2.3)
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Consequently, random vectorX is such thatX = X(N), and the value ofn is fixed in [1, N ] for that
err(n) ≤ ε in whichε is such that0 ≤ ε≪ 1, and where err is the error function defined by

err(n) = 1−
∑n

i=1 λX,i

tr[ĈX]
. (2.4)

Let H = (H1, . . . ,Hn) be theRn-valued second-order random variable. Theν independent realiza-
tionsηexp,1, . . . ,ηexp,ν, with ηexp,ℓ = (ηexp,ℓ

1 , . . . , ηexp,ℓ
n ) ∈ R

n, of theRn-valued random variableH
are computed, forℓ = 1, . . . , ν andi = 1, . . . , n,

ηexp,ℓ
i =

1√
λX,i

(xexp,ℓ − m̂X)
T φi

X . (2.5)

By construction, it can easily be verified that

m̂H =
1

ν

ν∑

ℓ=1

ηexp,ℓ = 0 , [R̂H] =
1

ν − 1

ν∑

ℓ=1

ηexp,ℓ (ηexp,ℓ)T = [ In] . (2.6)

2.3. Construction of the multimodal probability density fu nction of random vector
H. As explained in the introduction of Section2, the probability density functionpH with respect to
the Lebesgue measuredη onR

n of theRn-valued second-order random variableH = (H1, . . . , Hn),
must be constructed. The unknown probability density function pX has been assumed to be multi-
modal. Due to the reduced representation introduced by Eq. (2.3), probability density functionpH

(that differs frompX), could be not multimodal. The objective of the present workis to develop a
methodology adapted to the case for whichpH is multimodal, and consequently, it is assumed that
pH can be multimodal. It should be noted that the method proposed is very general and can be used
for a probability density functionpH that is or that is not multimodal. We propose to choose forpH

its estimation carried out by using the Gaussian kernel-density estimation method on the basis of the
knowledge of theν independent realizations,ηexp,1, . . . ,ηexp,ν computed with Eq. (2.5). A modifi-
cation of the classical Gaussian kernel-density estimation method [5] is used in order that Eq. (2.6),
[R̂H] = [ In], be preserved. The positive valued functionpH onRn is then defined, for allη in R

n, by

pH(η) =
1

ν

ν∑

ℓ=1

µn,ŝn (
ŝn
sn

ηexp,ℓ − η) , (2.7)

in whichµn,ŝn is the positive function fromRn into ]0 ,+∞[ defined, for allη in R
n, by

µn,ŝn(η) =
1

(
√
2π ŝn )n

exp{− 1

2ŝ 2n
‖η‖2n} , (2.8)

in which‖η‖2n = η21 + . . .+ η2n, and where the positive parameterssn andŝn are defined by

sn =

{
4

ν(2 + n)

}1/(n+4)

, ŝn =
sn√

s2n + ν−1
ν

. (2.9)
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Parametersn is the usual multidimensional optimal Silverman bandwidth(in taking into account that
the empirical estimation of the standard deviation of each component is unity, and parameterŝn has
been introduced in order that the second equation in Eq. (2.6) holds. It should be noted that, forn
fixed, parameterssn andŝn go to0+, andŝn/sn goes to1−, whenν goes to+∞. Using Eqs. (2.7) to
(2.9), it can easily be verified that

E{H} =

∫

Rn

η pH(η) dη =
ŝn
sn

m̂H = 0 , (2.10)

E{H HT } =

∫

Rn

η ηT pH(η) dη = ŝ 2n [ In] + (
ŝn
sn

)2
(ν − 1)

ν
[R̂H] = [ In] . (2.11)

Remark 1.

(i) The multimodal probability density functionpH that is constructed by Eqs. (2.7) to (2.9), depends
on ν. Such a construction is correct in the framework of the hypotheses that have been introduced,
because the set of realizations ofX is given, and consequently,ν is fixed (See Section2.1).

(ii) In Eqs. (2.7) and (2.8), if ŝn was chosen assn (usual nonparametric statistical estimator with
Gaussian kernel-density estimation method), then Eq. (2.11) would not hold; we propose such a con-
struction of the multimodal probability distribution of random vectorH in order thatE{H HT } = [ In].

(iii) In the framework of the proposed developments, no assumptions (in particular concerning the
support) are introduced concerning the unknown multivariate probability distribution that has to be es-
timated from a set of data by the nonparametric statistics using the kernel-density estimation method
(kernel smoothing). Consequently, a first arbitrary choicemust be done concerning the kernel smooth-
ing, and the kernel proposed is the multivariate Gaussian kernel for centered and uncorrelated ran-
dom variables (see Eq. (2.6)) (see Eq. (2.6)). The second arbitrary choice concerns the bandwidth.
Again, since no information is available, the multidimensional Silverman bandwidth that is optimal
for a Gaussian distribution is chosen. It should be noted that this choice for the bandwidth is con-
sistent with the usual choice of the empirical estimators used for estimating the mean vector and the
covariance matrix, which are optimal (unbiased, efficient and consistent estimators) for a Gaussian
distribution. In addition, the methodology proposed in thepaper is general and is independent of the
choice of the kernel smoothing, provided that the assumptions used by the generator of realizations
are satisfied. Therefore, if additional information are available concerning the unknown multivariate
probability distribution that has to be estimated from the set of data, the Gaussian kernelµn,ŝn(η) and
the Silverman bandwidthsn can be replaced by a kernel and bandwidth that are better adapted. Nev-
ertheless, it should be noted that the nonparametric estimation yields a probability density functionpH

that is only used for constructing a random vectorH (whose probability distribution is defined by this
pdf), which is used as a germ for performing the PCE in order toincrease the speed of convergence of
the truncated PCE.

Remark 2.
For i fixed in {1, . . . , n}, the probability density functionpHi

on R of the random variableHi is
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calculated in integrating Eq. (2.7) overRn−1, and yields

pHi
(ηi) =

1

ν

ν∑

ℓ=1

µ1,ŝn (
ŝn
sn
ηexp,ℓ
i − ηi) . (2.12)

For i and j fixed in {1, . . . , n}, the joint probability density functionpHiHj
on R

2 of the random
variablesHi andHj , is calculated in integrating Eq. (2.7) overRn−2, and yields

pHi,Hj
(ηi, ηj) =

1

ν

ν∑

ℓ=1

µ2,ŝn (
ŝn
sn

ηexp,ℓ,ij − ηij) , (2.13)

in whichηexp,ℓ,ij = (ηexp,ℓ
i , ηexp,ℓ

j ) andηij = (ηi, ηj) belong toR2.

2.4. Generator for multimodal random vector H. Let w be a mapping fromRn into an
Euclidean space such thatw(H) is a second-order random variable. The estimation ofE{w(H)} =∫
Rn w(η) pH(η) dη requires a generator of independent realizations of randomvectorH for which the

multimodal probability distributionpH(η) dη is defined by Eq. (2.7) with Eqs. (2.8) to (2.9). Such a
generator can be performed using the Markov Chain Monte Carlo method (MCMC) [23, 36, 43]. The
transition kernel of the homogeneous Markov chain of the MCMC method can be constructed using
the Metropolis-Hastings algorithm [30, 22] (that requires the definition of a good proposal distribu-
tion), the Gibbs sampling [15] (that requires the knowledge of the conditional distribution) or the slice
sampling [32] (that can exhibit difficulties related to the general shapeof the probability distribution,
in particular for multimodal distributions). In general, these algorithms are efficient, but can also be
not efficient if there exist attraction regions which do not correspond to the invariant measure under
consideration and tricky even in high dimension. These cases cannot easily be detected and are time
consuming. The method proposed in [39] is very robust, has recently been applied with success for
complex problems in high dimension [6, 20] and is reused hereinafter. It looks similar to the Gibbs
approach but corresponds to a more direct construction of a random generator of realizations for ran-
dom variableH whose probability distribution ispH(η) dη and is multimodal. The difference between
the Gibbs algorithm and the proposed algorithm is that the convergence in the proposed method can
be studied with all the mathematical results concerning theexistence and uniqueness of Itô stochastic
differential equation. In addition, a parameter is introduced which allows the transient part of the re-
sponse to be killed in order to get more rapidly the stationary solution corresponding to the invariant
measure. Thus, following [39], the construction of the transition kernel by using the detailed balance
equation is replaced by the construction of an Itô Stochastic Differential Equation (ISDE), which ad-
mits pH(η) dη (defined by Eqs. (2.7)to (2.9)) as a unique invariant measure. The ergodic method or
the Monte Carlo method can be used for estimatingE{w(H)}.

It should be noted that the main ideas presented in this paperare not related to a specific MCMC
algorithm for constructing a set of realizations. The alternative MCMC algorithm proposed hereinafter
can be replaced by any traditional MCMC algorithm. Nevertheless, this alternative algorithm is very
robust and very rich in terms of control based on the use of mathematical results for the Itô stochastic
differential equations.
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2.4.1. Interpretation of the multimodal probability distr ibution pH as the invariant
measure of an It ô stochastic differential equation (ISDE). Let η 7→ Φ(η) be the function
from R

n into R such that
pH(η) = cn e

−Φ(η) . (2.14)

From Eqs. (2.7), (2.8) and (2.14), it can be deduced that

cn =
1

(
√
2π ŝn )n

, Φ(η) = − log{q(η)} , (2.15)

in whichη 7→ q(η) is the continuously differentiable function fromRn into R
+∗ =]0 ,+∞[ defined

by

q(η) =
1

ν

ν∑

ℓ=1

exp{− 1

2ŝ 2n
‖ ŝn
sn

ηexp,ℓ − η‖2} , (2.16)

and wheresn andŝn are given by Eq. (2.9). It can then be deduced thatη 7→ Φ(η) is a continuously
differentiable function onRn.

Let {(U(r),V(r)), r ∈ R
+} be the Markov stochastic process defined on the probability space(Θ,T ,

P), indexed byR+ = [0 ,+∞[, with values inRn × R
n, satisfying, for allr > 0, the following Itô

stochastic differential equation
dU(r) = V(r) dr , (2.17)

dV(r) = −∇uΦ(U(r)) dr − 1

2
f0V(r) dr +

√
f0 dW(r) , (2.18)

with the initial condition
U(0) = u0 , V(0) = v0 a.s. , (2.19)

in whichu0 andv0 are given vectors inRn (that will be taken as zero in the application presented later),
and whereW = (W1, . . . ,Wn) is the normalized Wiener process defined on(Θ,T ,P) indexed by
R
+ with values inRn. The matrix-valued autocorrelation function[RW(r, r′)] = E{W(r)W(r′)T }

of W is then written as[RW(r, r′)] = min(r, r′) [In]. In Eq. (2.18), the free parameterf0 > 0 will
allow a dissipation term to be introduced in the nonlinear second-order dynamical system (formulated
in the Hamiltonian form with an additional dissipative term) in order to kill the transient part of the
response and consequently, to get more rapidly the stationary solution corresponding to the invariant
measure. It can easily be proved that functionu 7→ Φ(u): (i) is continuous onRn, (ii) is such that
u 7→ ‖∇uΦ(u)‖ is a locally bounded function onRn (i.e. is bounded on all compact sets inRn that is
the case becauseu 7→ Φ(u) is a continuously differentiable function onRn), and (iii) is such that,

inf
‖u‖>R

Φ(u) → +∞ if R→ +∞ , (2.20)

inf
u∈Rn

Φ(u) = Φmin with Φmin ∈ R , (2.21)

∫

Rn

‖∇uΦ(u)‖ pH(u) du < +∞ with pH(u) = cn e
−Φ(u) . (2.22)
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Under hypotheses (i) to (iii), and using Theorems 4 to 7 in pages 211 to 216 of Ref. [37], in which the
Hamiltonian is taken asH(u, v) = ‖v‖2/2 + Φ(u), and using [12, 25] for the ergodic property, it can
be deduced that the problem defined by Eqs. (2.17) to (2.19) admits a unique solution. This solution
is a second-order diffusion stochastic process{(U(r),V(r)), r ∈ R

+}, which converges to a station-
ary and ergodic diffusion stochastic process{(Ust(rst), Vst(rst)), rst ≥ 0}, whenr goes to infinity,
associated with the invariant probability measurePst(du, dv) = ρst(u, v) du dv. The probability den-
sity function(u, v) 7→ ρst(u, v) onR

n × R
n is the unique solution of the steady-state Fokker-Planck

equation with the normalization condition, associated with Eqs. (2.17) and (2.18), and is written (see
Propositions 8 and 9 in pages 120 to 123 of Ref. [37]), as

ρst(u, v) = c0 exp{−1

2
‖v‖2 − Φ(u)} , (2.23)

in which c0 is the constant of normalization. From Eqs. (2.14) and (2.23), it can be deduced that

pH(η) =

∫

Rn

ρst(η, v) dv , ∀η ∈ R
n . (2.24)

It can therefore be concluded that random variableH for which the multimodal probability density
function ispH, can be defined, for anyrst > 0 as

H = Ust(rst) = lim
r→+∞

U(r) in probability distribution. (2.25)

As explained above, the free parameterf0 > 0 introduced in Eq. (2.18), allows a dissipation term to
be introduced in the nonlinear dynamical system and consequently, allows the transient response gen-
erated by the initial conditions(u0, v0) to be rapidly killed in order to get more rapidly the asymptotic
behavior corresponding to the stationary and ergodic solution associated with the invariant measure.

Remark 3. Instead of Eq. (2.18), the following equationdV(r) = −∇uΦ(U(r)) dr− 1
2f0[D0]V(r) dr

+
√
f0 [S0] dW(r) could be used, in which[S0] would belong toMn(R) and where[D0] would be a

positive symmetric matrix such that[D0] = [S0] [S0]
T with 1 ≤ rank[D0] ≤ n. If such an equation

were used, then the invariant measure would always be given by Eq. (2.23) (see page 244 of Ref.
[37]). In particular, a diagonal positive-definite dampingmatrix 1

2f0 [D0] could be chosen in order
trying to increase the speed of convergence towards the stationary and ergodic solution of the Itô
equation. However, in order not to complicate too much setting data parameters of the algorithm, while
maintaining good control of the speed of convergence towards the stationary and ergodic solution, the
simpler form defined by Eq. (2.18) is proposed.

2.4.2. Discretization scheme of the ISDE. A discretization scheme must be used for nu-
merically solving the ISDE defined by Eqs. (2.17) to (2.19). For general surveys on discretization
schemes for Itô stochastic differential equations, we refer the reader to [26, 45, 46]. Concerning the
particular cases related to Hamiltonian dynamical systems(which have also been analyzed in [47] us-
ing an implicit Euler scheme), we propose to use the Störmer-Verlet scheme, which is a very efficient
scheme that preserves energy for nondissipative Hamiltonian dynamical systems (see [21] for reviews
about this scheme in the deterministic case, and see [7] and the references therein for the stochastic
case). The Störmer-Verlet scheme has been validated in [20], for solving an ISDE of the type defined
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by Eqs. (2.17) to (2.19), and corresponding to a weakly dissipative Hamiltonian dynamical system.
We then propose to reuse hereinafter the Störmer-Verlet scheme proposed in [20].
Let M ≥ 1 be an integer. The Itô stochastic differential equation defined by Eqs. (2.17) and (2.18)
with the initial condition defined by Eq. (2.19), is solved on the finite intervalR = [0 , (M−1)∆r], in
which∆r is the sampling step of the continuous index parameterr. The integration scheme is based
on the use of theM sampling pointsrk such thatrk = (k − 1)∆r for k = 1, . . . ,M . The following
notations are introduced:Uk = U(rk), Vk = V(rk), andWk = W(rk), for k = 1, . . . ,M , with

U1 = u0 , V1 = v0 , W1 = 0 a.s . (2.26)

Let {∆Wk+1 = Wk+1 − Wk, k = 1, . . . ,M − 1} be the family of independent Gaussian second-
order centeredRn-valued random variables such thatE{∆Wk+1 (∆Wk+1)T } = ∆r [In]. For k =
1, . . . ,M − 1, the Störmer-Verlet scheme applied to Eqs. (2.17) and (2.18) is written as

Uk+ 1
2 = Uk + ∆r

2 Vk ,

Vk+1 = 1−b
1+b Vk + ∆r

1+b Lk+ 1
2 +

√
f0

1+b ∆Wk+1 ,

Uk+1 = Uk+ 1
2 + ∆r

2 Vk+1 ,

(2.27)

with the initial condition defined by (2.26), whereb = f0∆r /4, and whereLk+ 1
2 is theRn-valued

random variable such that
Lk+ 1

2 = −{∇uΦ(u)}u=Uk+1
2
. (2.28)

From Eqs. (2.15) and (2.16), it can be deduced that,

∇uΦ(u) = − 1

q(u)
∇uq(u) , (2.29)

∇uq(u) =
1

ŝ 2n

1

ν

ν∑

ℓ=1

(
ŝn
sn

ηexp,ℓ − u) exp{− 1

2ŝ 2n
‖ ŝn
sn

ηexp,ℓ − u‖2} . (2.30)

2.4.3. Choosing the parameters for numerical integration o f the ISDE. In this section,
we construct the values of the parameters∆r,M0,M, f0,u0 andv0, which are used in the discretiza-
tion scheme of the ISDE, presented in Section2.4.2. First, we associate with the nonlinear Hamiltonian
dynamical system, a linearized diagonal second-order dynamical system inUlin = (U lin

1 , . . . , U
lin
n ) (the

components are not coupled) such that, for alli in {1, . . . , n}, Ü lin
i (r) + 1

2f0U̇
lin
i (r) + Ki U

lin
i (r) =√

f0 Ẇi(r), in which Ẇ = (Ẇ1, . . . , Ẇn) is the generalized Gaussian white stochastic process (the
generalized derivative ofW). The behavior of the nonlinear stiffness forceF(u) = −L(u), with
u = (u1, . . . , un) andF(u) = (F1(u), . . . , Fn(u)), can have some fluctuations in the neighborhood
of u = 0, and is such thatF(0) 6= 0. Consequently, we cannot calculateKi in writing Ki ui =
{∂Fi(u)/∂ui}u=0. We propose to replace this equation by an incremental equation on a symmetric in-
terval[−∆ ,∆] for a sufficiently large increment∆ > 0 (typically, the problem under consideration be-
ing normalized to1, ∆ can, for instance, be chosen as5), which yieldsKi = (Fi(ui)−Fi(−ui))/(2∆)
in which ui = (ui1, . . . , u

i
n) with uij = ∆ δij . Let 0 < λ1 ≤ . . . ≤ λn be the eigenvalues of matrix

[K ], and let beωmin =
√
λ1 andωmax =

√
λn.
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(i) A first estimation of∆r is chosen as∆r0 = π/(10ωmax). An oversamplingmovers> 1 is introduced
to get a sufficient accuracy of the Störmer-Verlet scheme (for instance,movers= 10), and yields∆r =
∆r0/movers (a convergence analysis with respect tomoversmust be carried out).
(ii) The minimum damping rate,ζmin of the linear second-order dynamical system is such that2 ζminωmin

= f0/2 that yieldsf0 = 4 ζminωmin. The damping rateζmin is chosen, for instance, as0.7 to rapidly kill
the transient response induced by the initial conditions (that are not distributed following the invariant
measure).
(iii) The larger relaxation ”time” of the linear second-order dynamical system can be defined asr0 such
thatexp{−ζminωmin r0} = ε0 with ε0 ≪ 1, which yieldsr0 = −log(ε0)/(ζmin ωmin) (for instance, the
value ofε0 can be chosen as1/200). The parameterM0 is then defined asr0 = M0 ∆r that yields
M0 = 1+fix(r0 /∆r) in which fix(x) roundsx to the nearest integer towards zero. Valuer0 (and then
integerM0) corresponds to reaching the stationary response. IntegerM0 will be used for calculating
independent realizations ofH.
(iv) The initial conditions are chosen asu0 = v0 = 0.
(v-1) Ergodic method. The integerM is defined asM = mergoM0 wheremergo ≫ 1 is an integer
which has to be chosen in order to reach a reasonable convergence for estimatingE{w(H)} using the
ergodic method (see Eq. (2.33) that we introduce later). For instance, an initial value for mergo can be
chosen as200 or 400, but a convergence analysis must be carried out with respecttomergo.
(v-2) Monte Carlo method. An integerM̂0 is introduced such that̂M0 = i0M0. The integeri0 is
chosen in order that the sequence{Uk , k ≥ M̂0} corresponds to the stationary solution. Taking into
account the construction of integerM0, the integeri0 could be chosen to1 or 2. We then introduce
the sequence of integers{M̂ℓ , ℓ = 1, . . . , νs} such that̂Mℓ = (1 + ℓ) M̂0. IntegerM is then defined

by M = M̂νs = (1 + νs)M̂0. By construction ofM̂0, the vectorsUM̂ℓ(θ) and UM̂ℓ+1(θ) can be
considered as two independent realizations of the random vector U(r) for any fixedr such thatr > r0
(stationary part of the response). The integerνs is chosen in order to reach a reasonable convergence
for estimatingE{w(H)} using the Monte Carlo method (see Eq. (2.34) that we introduce later). For
instance, an initial value forνs can be chosen as200, but a convergence analysis with respect toνs
must be carried out.

2.4.4. Random generator of independent realizations of H. A random generator ofνs
independent realizations,H(θ1), . . . ,H(θνs), of random vectorH whose multimodal probability dis-
tribution is pH(η) dη, is constructed as follows. Let{Uk(θ), k = 1, . . . ,M} be constructed using
the algorithm presented in Section2.4.2. Using the sequence{M̂ℓ , ℓ = 1, . . . , νs} defined in Sec-
tion 2.4.3-(v-2), each independent realizationH(θℓ) can then be obtained, forℓ in {1, . . . , νs}, as

ηsim,ℓ = H(θℓ) = UM̂ℓ(θ) , M̂ℓ = (1 + ℓ) M̂0 . (2.31)

2.5. Estimating E{w(H)}. In this section, two methods are proposed for estimatingE{w(H)}:
(i) and ergodic method, and (ii) a Monte Carlo method.
(i) EstimatingE{w(H)} with the ergodic method. For any realizationθ in Θ, let {(U(r, θ), V(r, θ)),
r ≥ 0} be the solution of Eqs. (2.17) to (2.19). Then using the ergodic property,E{w(H)} =∫
Rn w(η) pH(η) dη can be estimated (see [12, 26, 46]) by

E{w(H)} = lim
R→+∞

1

R

∫ rM0
+R

rM0

w(U(r, θ)) dr with probability 1, (2.32)
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in which rM0 = (M0 − 1)∆r with M0 a fixed integer greater than1. The parameterM0 (estimated
as explained in Section2.4.3-(iii)) allows us to remove the transient part of the response induced by
the initial condition. Let{Uk(θ), k = 1, . . . ,M} be the corresponding realization of the discretized
solution constructed as explained in Section2.4.2, in whichM has been estimated in Section2.4.3-
(iv). Thus, the numerical approximation of Eq. (2.32) is written as

E{w(H)} = lim
M→+∞

ŵ ER
M , ŵ ER

M =
1

M −M0 + 1

M∑

k=M0

w(Uk(θ)) . (2.33)

(ii) EstimatingE{w(H)} with the Monte Carlo method. Using Eq. (2.31), the Monte Carlo method
for estimatingE{w(H)} yields

E{w(H)} = lim
νs→+∞

ŵ MC
νs , ŵ MC

νs =
1

νs

νs∑

ℓ=1

w(UM̂ℓ(θ)) , M̂ℓ = (1 + ℓ) M̂0 , (2.34)

2.6. Numerical application.

2.6.1. Data generation for the numerical application. We consider the data description
introduced in Section2.1 for N = 100 andν = 500. The algorithm that has been used for generating
theν independent realizationsxexp,1, . . . , xexp,ν of random vectorX with values inRN , is described in
Appendix A. The reader can then simulate the ”data description” used in this numerical application.

2.6.2. Defining the optimal values of parameters. The estimationŝmX and[ĈX] are com-
puted using Eqs. (2.1) and (2.2). Concerning the construction of the reduced-order statistical model,
Fig. 2.1displays the graph of the error function defined by Eq. (2.4). We choosen = 5 corresponding
to an error of0.089. With the values of the main parameters,N = 100, ν = 500 andn = 5, for the
numerical integration of the ISDE (see Section2.4.3), the optimal value of the damping rate has been
found toζmin = 0.7 that yieldsf0 = 5.0565. The optimal value of the relaxation ”time” parameter
has been found toε0 = 1/200 (see Section2.4.3-(iii)), and ∆r0 = 0.1670. The others values of the
parameters are analyzed in the next section.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Graph of the error function err

n

er
r(

n)

Figure 2.1. Reduced-order statistical model: graph of the error functionn 7→ err(n)
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2.6.3. Convergence analysis. The convergence analysis is carried out with the ergodic method
and with the Monte Carlo method.
(i) Ergodic method. The parameters defined in Section2.6.2are fixed. In order to analyze the conver-
gence of Eq. (2.33) with respect toM for the ergodic estimation, using the integration scheme defined
in Section2.4.2, two error functions, err1(M) and err2(M) are introduced. The first one is related to
the estimation of the mean valueE{H} = m̂H that must be equal to0 (see Eq. (2.10)). In Eq. (2.33),
we choosew(H) = H, and then

errER
1 (M) =

1

n

n∑

i=1

|{m̂H − ŵ ER
M}i| , ŵ ER

M =
1

M −M0 + 1

M∑

k=M0

Uk(θ) . (2.35)

The second one is related to the estimation of the second-order moment matrixE{H HT } = [R̂H] that
must be equal to[ In] (see Eq. (2.11)). In Eq. (2.33), we choosew(H) = H HT , and then

errER
2 (M) =

‖[R̂H]− [ŵ ER
M ]‖F

‖[R̂H]‖F
, [ŵ ER

M ] =
1

M −M0 + 1

M∑

k=M0

Uk(θ)Uk(θ)T , (2.36)

in which ‖ · ‖F is the Frobenius norm. Formovers = 10; 100; and1, 000 (with ∆r = ∆r0/movers)),
we haveM0 = 260; 2, 600; and26, 000. Figures.2.2and2.3display the graphs of functionmergo 7→
errER

1 (mergoM0) andmergo 7→ errER
2 (mergoM0) (with M = mergoM0).

In all the paper, the following parameters are fixed to the values:f0 = 5.0565, ε0 = 1/200, movers =
10 that yieldsM0 = 260, ∆r = 0.01638 andr0 = 4.26.
A reasonably good accuracy is obtained in usingmergo = 400 that yieldsM = 104, 000 for which
errER

1 (M) = 0.060 and errER
2 (M) = 0.089. The valuemergo = 10, 000 or 100, 000 (M = 2, 600, 000

or 26, 000, 000) yields errER
1 (M) = 0.0080 and errER

2 (M) = 0.0264, or errER
1 (M) = 0.0021 and

errER
2 (M) = 0.0061.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

Convergence of mean value for m
overs

=10,100,1000

m
ergo

er
r 1(m

er
go

)

X: 400
Y: 0.0605

Figure 2.2. Graph of error functionmergo 7→ err ER
1 (mergoM0) for movers= 10 (thick solid line),movers= 100 (mid

solid line),movers= 1000 (thin solid line)

(ii) Monte Carlo method. Similarly to the ergodic method presented before, two error functions are
introduced. The first one is related to the estimation of the mean valueE{H} = m̂H that must be
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Figure 2.3. Graph of error functionmergo 7→ err ER
2 (mergoM0) for movers= 10 (thick solid line),movers= 100 (mid

solid line),movers= 1000 (thin solid line)

equal to0 (see Eq. (2.10)), and yields

errMC
1 (νs) =

1

n

n∑

i=1

|{m̂H − ŵ MC
νs }i| , ŵ MC

νs =
1

νs

νs∑

ℓ=1

UM̂ℓ(θ) , M̂ℓ = (1 + ℓ) M̂0 . (2.37)

The second one is related to the estimation of the second-order moment matrixE{H HT } = [R̂H] that
must be equal to[ In] (see Eq. (2.11)), and yields, for̂Mℓ = (1 + ℓ) M̂0,

errMC
2 (νs) =

‖[R̂H]− [ŵ MC
νs ]‖F

‖[R̂H]‖F
, [ŵ MC

νs ] =
1

νs − 1

νs∑

ℓ=1

UM̂ℓ(θ) (UM̂ℓ(θ))T . (2.38)

A numerical study has been performed withf0 = 5.0565, ε0 = 1/200, movers = 10 that yields
M0 = 260, ∆r = 0.01638 andr0 = 4.26. A sensitivity analysis has be carried out with respect
to the value ofi0 that is such that̂M0 = i0M0. The values1, 2, and3 for i0 yield very close
results and the differences are not significant. Consequently, i0 is fixed to the value1. For these
values of the parameters, the graphs of the error functionsνs 7→ errMC

1 (νs) andνs 7→ errMC
2 (νs) have

been constructed and yield similar results to those shown inFigs. 2.2 and2.3. A reasonably good
accuracy is obtained in usingνs = 400 that yieldsM = 104, 000 for which errMC

1 (νs) = 0.0692
and errMC

2 (νs) = 0.1118. The valueνs = 10, 000 (M = 2, 600, 000) yields errMC
1 (νs) = 0.0081

and errMC
2 (νs) = 0.034, while for νs = 100, 000 (M = 26, 000, 000) yields errMC

1 (νs) = 0.0016
and errMC

2 (νs) = 0.0079. In comparing these errors with those given by the ergodic method, it can
be concluded that, for a same value of the CPU time, the ergodic method is slightly more efficient.
Nevertheless, if we consider the estimation of statisticalquantities related to the random variableΞ
that results from a nonlinear transformationh of H such thatΞ = h(H), transformationh has to be
evaluatedM times with the ergodic method, but onlyνs times with the Monte Carlo method. Since
M/νs = M̂0, the gain is large enough when using the Monte Carlo method with respect to the ergodic
method.

2.6.4. Estimation of the probability density function of H. In order to numerically val-
idate the generator (see Sections2.4.2 and 2.5-(i)) of random vectorH whose probability density
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function pH is defined by Eqs. (2.7) to (2.9), we propose to comparepH with its estimationp̂H con-
structed with the generator. This construction used the Gaussian kernel-density estimation method
presented in Section2.3. For allη in R

n, we havepH(η) = E{δ0(H − η)} that can be rewritten as

pH(η) = lim
σn→0+

E{µn,σn(H − η)} , (2.39)

in whichη 7→ µn,σn(η) is the following Gaussian function fromRn into ]0 ,+∞[, defined, for allη
in R

n, by

µn,σn(η) =
1

(
√
2π σn)n

exp{− 1

2σ2n
‖η‖2n} , (2.40)

in which‖η‖2n = η21 + . . .+ η2n.

(i) Ergodic method. From Eqs. (2.33) and (2.40), the estimation̂pH of pH is written, for allη in R
n, as

p̂H(η) =
1

M −M0 + 1

M∑

k=M0

µn,σ̂ ER
n
(
σ̂ ER
n

σ ER
n

Uk(θ)− η) , (2.41)

in which the positive parametersσ ER
n andσ̂ ER

n are defined by

σ ER

n =

{
4

(M −M0 + 1)(2 + n)

}1/(n+4)

, σ̂ ER

n =
σ ER
n√

(σ ER
n )2 + M−M0

M−M0+1

. (2.42)

Fori fixed in{1, . . . , n}, the probability density functionpHi
onR of random variableHi is calculated

in using Eq. (2.12). Integrating Eq. (2.41) over Rn−1 yields the estimationηi 7→ p̂Hi
(ηi) of the

probability density functionpHi
onR,

p̂Hi
(ηi) =

1

M −M0 + 1

M∑

k=M0

µ1,σ̂ ER
n
(
σ̂ ER
n

σ ER
n

Uk
i (θ)− ηi) . (2.43)

For i in {1, . . . , n}, Fig. 2.4 displays the graph of the probability density functionpHi
calculated

with Eq. (2.12), which is compared witĥpHi
calculated with Eq. (2.43) for whichmergo = 400 and

mergo = 10, 000. It can be seen that convergence is reached formergo = 10, 000, and that a good
approximation is obtained formergo = 400. For i and j fixed in {1, . . . , n}, the joint probability
density functionpHiHj

of random variablesHi andHj is calculated in using again Eq. (2.13). Using
the ergodic method, and in integrating Eq. (2.41) overRn−2 yields the estimation̂pHiHj

of the joint
probability density functionpHiHj

onR2, which is written as

p̂HiHj
(ηi, ηj) =

1

M −M0 + 1

M∑

k=M0

µ2,σ̂ ER
n
(
σ̂ ER
n

σ ER
n

Uk,ij(θ)− ηij) , (2.44)

in which Uk,ij(θ) = (Uk
i (θ), U

k
j (θ)) andηij = (ηi, ηj) belong toR2. The computation has been

carried out for the ten couples of indices, and all the obtained results have the same quality. Fig.2.5
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Figure 2.4. For i in {1, . . . , n}, graphs of the probability density functionsηi 7→ pHi
(ηi) (thick dashed line), and

ηi 7→ p̂Hi
(ηi) for mergo= 400 (thin solid line) and formergo= 10, 000 (thick solid line).

displays the graph of the joint probability density function pHi,Hj
calculated with Eq. (2.13), which is

compared witĥpHi,Hj
calculated with Eq. (2.44) for whichmergo = 10, 000.

(ii) Monte Carlo method. From Eqs. (2.34) and (2.40), the estimation̂pH of pH is written, for allη in
R
n, as

p̂H(η) =
1

νs

νs∑

ℓ=1

µn,σ̂ MC
n
(
σ̂ MC
n

σ MC
n

UM̂ℓ(θ)− η) , M̂ℓ = (1 + ℓ) M̂0 , (2.45)

in which the positive parametersσ MC
n andσ̂ MC

n are defined by

σ MC

n =

{
4

νs(2 + n)

}1/(n+4)

, σ̂ MC

n =
σ MC
n√

(σ MC
n )2 + (νs − 1)/νs

. (2.46)

For i fixed in {1, . . . , n}, the estimation̂pHi
of the probability density function onR of R-valued

random variableHi is written as

p̂Hi
(ηi) =

1

νs

νs∑

ℓ=1

µ1,σ̂ MC
n
(
σ̂ MC
n

σ MC
n

UM̂ℓ

i (θ)− ηi) (2.47)

For i in {1, . . . , n}, for νs = 400 andνs = 10, 000, we obtain a similar result that the one displayed
in Fig. 2.4, the convergence being reached forνs = 10, 000. For i and j fixed in {1, . . . , n}, the
estimation(ηi, ηj) 7→ pHiHj

(ηi, ηj) of the joint probability density function onR2 of theR
2-valued
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Figure 2.5. For (i, j) = (1, 3), (3, 4) and (4, 5), graphs of the joint probability density functions(ηi, ηj) 7→
pHiHj

(ηi, ηj) (left figure), and(ηi, ηj) 7→ p̂HiHj
(ηi, ηj) for mergo= 10, 000 (right figure).

random variable(Hi,Hj) is given by

p̂HiHj
(ηi, ηj) =

1

νs

νs∑

ℓ=1

µ2,σ̂ MC
n
(
σ̂ MC
n

σ MC
n

UM̂ℓ,ij(θ)− ηij) , (2.48)

in whichUM̂ℓ,ij(θ) = (UM̂ℓ

i (θ), UM̂ℓ

j (θ)) andηij = (ηi, ηj) belong toR2. Forνs = 10, 000, a similar
result to the one shown in Fig.2.5 is obtained.

3. Polynomial chaos expansion of a multimodal random vector . Let h be a given mea-
surable mapping fromRN into R

M , and letQ = (Q1, . . . , QM ) be theRM -valued random variable
such that

Q = h(X(n)) , (3.1)

in which X(n) is the multimodal random vector defined by Eq. (2.3). Transformationh is assumed
to be such thatQ is a second-order random vector. Possibly, the deterministic mappingh transfers
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the multimodal character of random vectorX(n) to random vectorQ = h(X(n)). We are interested
in constructing the polynomial chaos expansion (PCE) of random vectorQ. If such a PCE ofQ was
carried out with respect to the polynomial chaos associatedwith a unimodal random variable, which is
usually the choice done (uniform, Gaussian, etc.), then thespeed of convergence could be low. Since
the multimodal probability distribution ofQ is induced by the multimodal probability distribution of
H, we propose an alternative approach consisting in using themultimodal random vectorH (for which
the probability density functionpH is defined by Eqs. (2.7) to (2.9)) as the stochastic germ for the
polynomial chaos expansion of random vectorQ.

3.1. Constructing independent realizations of Q and reduce d-order statistical model.
Although the contents of this section is very classic and well known, a brief presentation is given in
order to define the notations and the mappingh. Let qsim,1, . . . ,qsim,νs beνs independent realizations
of random vectorQ , which are computed, for allℓ in {1, . . . , νs}, by

qsim,ℓ = h(m̂X +

n∑

i=1

√
λX,i η

sim,ℓ
i φi

X) , (3.2)

ηsim,ℓ = UM̂ℓ(θ) , M̂ℓ = (1 + ℓ) M̂0 , (3.3)

in whichηsim,1, . . . ,ηsim,νs are theνs independent realizations of the second-orderR
n-valued random

vectorH whose probability density function is defined by Eqs. (2.7) to (2.9), and for which the gener-
ator of independent realizations is detailed in Section2.4.4(see Eq. (2.31)). Similarly to Section2.1,
let m̂Q and [ĈQ] be the empirical estimations of the mean vectormQ = E{Q} and the covariance
matrix [CQ] = E{(Q − mQ) (Q − mQ)

T }, such that

m̂Q =
1

νs

νs∑

ℓ=1

qsim,ℓ , [ĈQ] =
1

νs − 1

νs∑

ℓ=1

(qsim,ℓ − m̂Q) (qsim,ℓ − m̂Q)
T . (3.4)

Let λQ,1 ≥ λQ,2 ≥ . . . ≥ λQ,M ≥ 0 be the eigenvalues, and letφ1
Q, . . . ,φ

M
Q , be the associated

orthonormal eigenvectors ((φi
Q)

T φ
j
Q = δij) of the eigenvalue problem[ĈQ]φ

j
Q = λQ,j φ

j
Q. The

reduced-order statistical modelQ(m) of Q is then written as

Q(m) = m̂Q +
m∑

j=1

√
λQ,j Ξj φ

j
Q . (3.5)

The random vectorQ is such thatQ = Q(M), and the value ofm is fixed in {1, . . . ,M} for that
errQ(m) ≤ ε in which ε is any positive real number, and where errQ is the error function defined by

errQ(m) = 1−
∑m

j=1 λQ,j

tr[ĈQ]
. (3.6)

Let ξsim,1, . . . , ξsim,νs be theνs independent realizations of the second-order random vector Ξ =
(Ξ1, . . . ,Ξm), computed, forℓ = 1, . . . , νs andj = 1, . . . ,m, by

ξsim,ℓ
j =

1√
λQ,j

(qsim,ℓ − m̂Q)
T φ

j
Q . (3.7)
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The estimation̂mΞ of E{Ξ} and the estimation[R̂Ξ] of E{ΞΞ
T } are written as

m̂Ξ =
1

νs

νs∑

ℓ=1

ξsim,ℓ , [R̂Ξ] =
1

νs − 1

νs∑

ℓ=1

ξsim,ℓ (ξsim,ℓ)T . (3.8)

We then have,
m̂Ξ = 0 , [R̂Ξ] = [ Im] . (3.9)

Finally, Eqs. (3.2) and (3.7) define a mappingh = (h1, . . . ,hm) fromR
n intoR

m such thatΞ = h(H),
and for allℓ = 1, . . . , νs and for allj = 1, . . . ,m, we haveξsim,ℓ

j = hj(η
sim,ℓ) that can globally be

rewritten as
ξsim,ℓ = h(ηsim,ℓ) , ℓ = 1, . . . , νs . (3.10)

3.2. Polynomial chaos expansion with respect to the arbitra ry measure defined by
the multimodal probability measure of H. In order to define the algebraic notations for the
polynomial chaos expansions in a finite approximation, the following parameters and multi-indexes
are introduced. LetN = {0, 1, 2, . . .} be the set of all the null and positive integers. ForNd ≥ 1
(Nd will be the maximum degree of the polynomials), the following setANd

of multi-indexes are
introduced,

ANd
= {α = (α1, . . . , αn) ∈ N

n | 0 ≤ α1 + . . .+ αn ≤ Nd} . (3.11)

The 1 + K elements of setANd
are denoted byα(0), . . . α(K) in which α(0) is the multi-index

(0, . . . , 0), and where the integerK is such that

K =
(n+Nd)!

n!Nd!
− 1 . (3.12)

It is assumed thatK < νs. Let {Ψα(η) , α ∈ = (α1, . . . , αn) ∈ N
n} be the family of multivariate

orthonormal polynomials with respect to the multimodal probability measurepH(η) dη onRn defined
by Eqs. (2.7) to (2.9), such that, for allα andβ in N

n,

∫

Rn

Ψα(η)Ψβ(η) pH(η) dη = E{Ψα(H)Ψβ(H)} = δαβ . (3.13)

In Eq. (3.13), δαβ is the kronecker symbol and by convention, forα = 0, Ψ0(η) = 1 is the con-
stant normalized polynomial. It should be noted that the probability measurepH(η) dη is non sep-
arable (the components of random vectorH are not statistically independent). Consequently, the
integral onRn defined by Eq. (3.13) cannot be written as a product ofn integrals overR, and each
multivariate orthonormal polynomialΨα(η) in η = (η1, . . . , ηn) cannot be written asΨα(η) =
ψα1(η1)× . . .×ψαn(ηn), but this type of tensorial product of univariate polynomials for the multivari-
ate polynomials (tensorial product that does not hold in thepresent case) is not used. From a theoretical
point of view, the multivariate orthonormal polynomials can be viewed as the result of a Gram-Schmidt
orthonormalization algorithm of the multivariate monomials defined, forα = (α1, . . . , αn) belonging
toANd

(defined by Eq. (3.11)), and forη = (η1, . . . , ηn) in R
n, by

Mα(η) = ηα1
1 × . . . × ηαn

n . (3.14)
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It should be noted that an explicit algebraic formula (constructed, for instance, with a symbolic tool-
box) for each multivariate orthonormal polynomialΨα(η), cannot be obtained due to the non separa-
ble expression ofpH(η) defined by Eqs. (2.7) to (2.9). Nevertheless, even if such an explicit expression
could be obtained, this expression would not be used for the reasons detailed in [41] and summarized
in Section3.4, and is effectively not used in the methodology proposed forconstructing the polyno-
mial chaos expansion of the random vectorΞ (see Sections3.3and3.4). Finally, it can be seen that the
degree of multivariate polynomialΨα(η) is α1 + . . . + αn, and that for allα in ANd

, the maximum
degree of the polynomials isNd.
The second-order random variableΞ can then be expanded in polynomial chaosΨα as,

Ξ = lim
Nd→+∞

Ξ
(Nd) , (3.15)

with convergence in the spaceL2(Θ,Rm) of all theRm-valued second-order random variables defined
on (Θ,T ,P), and where

Ξ
(Nd) =

K∑

k=0

yk Ψα(k)(H) , y0, . . . , yK ∈ R
m . (3.16)

Taking into account Eq. (3.9), we choose to identify the coefficientsy0, . . . , yK in R
m, such that for

each fixed value ofNd,

E{Ξ(Nd)} = 0 , E{Ξ(Nd) (Ξ(Nd))T } = [Im] . (3.17)

From Eqs. (3.13), (3.16), and (3.17), it can be deduced that coefficientsy0, . . . , yK must satisfy the
constraintsy0 = 0 and

∑K
k=1 yk (yk)T = [Im]. Introducing the rectangular matrix

[ y ] = [y1 . . . yK ] ∈ Mm,K(R) , (3.18)

and theRK-valued random variableΨ(H) = (Ψα(1)(H), . . . ,Ψα(K)(H)), then Eq. (3.16) can be
rewritten as

Ξ
(Nd) = [ y ]Ψ(H) , (3.19)

in which the coefficients[ y ] verifies[ y ] [ y ]T = [Im]. Finally, due to the orthonormality of the poly-
nomial chaos (see the second equation in Eq. (3.17)), it can easily be deduced the classical equation,

[ y ] = E{ΞΨ(H)T } = E{h(H)Ψ(H)T } , (3.20)

in which Ξ = h(H) is theRm-random variable whoseνs independent realizationsξsim,1, . . . , ξsim,νs

have been computed with Eq. (3.7) (see also Eq. (3.10)).

3.3. Computing the coefficients of the PCE. For Nd fixed, we propose to compute the
coefficients[ y ] of the PCE in using the Monte Carlo method. The use of the ergodic method would
lead us to numerically evaluate functionh for theM valuesηk = Uk(θ) for k = M0, . . . ,M of
η, while the Monte Carlo method only requiresνs evaluations, and we have seen thatM ≫ νs. In
addition, theνs evaluations of functionh have already be carried out for constructing the statistical
reduced-order model of random vectorQ (see Eqs. (3.2), (3.3) and (3.7)). Therefore, there is a weak
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interest in developing an approach based on the ergodic method for computing the coefficients of the
PCE of random vectorΞ. We then use theνs independent realizationsηsim,1, . . . , ηsim,νs of random
vectorH, defined by Eq. (3.3), and theνs independent realizationsξsim,1, . . . , ξsim,νs of random vector
Ξ computed in using Eq. (3.7) (i.e. Eq. (3.10)). Taking into account Eqs. (3.8) and (3.9), the estimation
[ yNd ] of [ y ] given by Eq. (3.20) is written as

[ yNd ] =
1

νs − 1
[ξsim] [Ψ]T . (3.21)

in which the(m × νs) real matrix[ξsim] and the(K × νs) real matrix[Ψ] are defined, for allj =
1, . . . ,m, k = 1, . . . ,K andℓ = 1, . . . , νs, as

[ξsim]jℓ = ξsim,ℓ
j , [Ψ]kℓ = Ψα(k)(ηsim,ℓ) . (3.22)

From Eq. (3.19), random vectorΞ(Nd), for which [ y ] is estimated by the Monte Carlo method, is
written as

Ξ
(Nd) = [ yNd ]Ψ(H) . (3.23)

Theνs independent realizationsξ(Nd),1, . . . , ξ(Nd),νs of random vectorΞ(Nd) are thus given, for all
ℓ = 1, . . . , νs, by ξ(Nd),ℓ = [ yNd ]Ψ(ηsim,ℓ). Let [ξNd ] be the(m × νs) real matrix defined, for all
j = 1, . . . ,m andℓ = 1, . . . , νs, by

[ξNd ]jℓ = ξ
(Nd),ℓ
j . (3.24)

Consequently, matrix[ξNd ] can be computed by the following equation,

[ξNd ] = [ yNd ] [Ψ] . (3.25)

3.4. Computing the realizations of the polynomial chaos. The objective of this section
is to compute the(K × νs) real matrix[Ψ] defined in Eq. (3.22) and constituted of theνs independent
realizationsΨα(k)(ηsim,ℓ) of the polynomial chaosΨα(k)(H) for the arbitrary multimodal probability
measurepH(η) dη defined by Eqs. (2.7) to (2.9). It is assumed thatK < νs. Such a calculation must
preserve the orthogonality property of the PCE in high dimension which is written as

lim
νs→+∞

1

νs − 1
[Ψ] [Ψ]T = [IK ] . (3.26)

As it has been proved in [41], this problem is not trivial at all. For instance, for classical measures
for which the polynomial chaos are explicitly known (Hermite, Legendre, and so on), if the explicit
algebraic formulas (constructed with a symbolic Toolbox) or the computational recurrence relations
with respect to the degree are used, then important numerical noise is induced, and the orthogonality
property is lost. If a global orthogonalization was done to correct this problem, then the independence
of the realizations would be lost. In addition, in the present case, we have an arbitrary multimodal mea-
sure, and the explicit expression of the polynomial chaos are unknown. We then propose to use the
new algorithm proposed in [35], that we summarize below. It consists (i) in constructing theνs inde-
pendent realizations of the multimodal multivariate monomials using the generator of the multimodal
random vectorH presented in Section2.4.4; (ii) in performing an orthogonalization of the realizations
of the multimodal multivariate monomials with an algorithmdifferent from the Gram-Schmidt orthog-
onalization algorithm as the latter is not stable in high dimension. Forα = (α1, . . . , αn) belonging
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to ANd
(defined by Eq. (3.11)), and forη = (η1, . . . , ηn) in R

n, let Mα(η) = ηα1
1 × . . . × ηαn

n be
the multivariate monomials. LetK0 = 1 +K. Let [M] be the(K0 × νs) real matrix of independent
realizations of the monomials such that

[M]kℓ = Mα(k)(ηsim,ℓ) , k = 0, 1, . . . ,K , (3.27)

in whichα(0) = (0, . . . , 0), and whereηsim,1, . . . ,ηsim,νs are theνs independent realizations of mul-
timodal random vectorH, computed with Eq. (3.3). Let [Ψ0] be the(K0 × νs) real matrix such
that [Ψ0]kℓ = Ψα(k)(ηsim,ℓ) for k = 0, 1, . . . ,K andℓ = 1, . . . , νs. Matrix [Ψ0] can be written as
[Ψ0] = [A] [M] in which [A] is a(K0×K0) real matrix, and[M] is a(K0× νs) real matrix. Let[F] be
the positive-definite symmetric(K0×K0) real matrix defined by[F] = 1

νs−1 [M] [M]T = [A]−1[A]−T .
The algorithm is then the following:

• Compute matrix[M] defined by Eq. (3.27), and then compute the(K0 × K0) real matrix
[F] = 1

νs−1 [M] [M]T .
• Compute the lower triangular(K0 × K0) real matrix[L] from the Cholesky decomposition

[L] [L]T of positive-definite symmetric matrix[F].
• Compute the lower triangular(K0 ×K0) real matrix[A] = [L]−1.
• Compute the(K0 × νs) real matrix[Ψ0] = [A] [M].
• Deduce the(K × νs) real matrix[Ψ] obtained in deleting the first row of matrix[Ψ0].

3.5. Convergence analysis with respect to Nd. The numerical convergence with respect
to parameterNd is classically analyzed. Forn fixed, letK = K(Nd) be defined by Eq. (3.12). Taking
into account the convergence inL2(Θ,Rm) of the sequence{Ξ(Nd)}Nd

of random vectors (defined by
Eq. (3.19)) towards random vectorΞ, theL2-convergence of the polynomial chaos expansion can be
performed in analyzing the graph

Nd 7→ ‖Ξ−Ξ
(Nd)‖L2 = (E{‖Ξ −Ξ

(Nd)‖2})1/2 , (3.28)

in which ‖ξ‖2 = ξ21 + . . . + ξ2n. Introducing the estimation of the second-order moment of real
valued random variable‖Ξ− Ξ

(Nd)‖ in using theνs independent realizationsηsim,1, . . . , ηsim,νs of H,
yields ‖Ξ − Ξ

(Nd)‖2L2 ≃ 1
νs−1‖[ξsim] − [ξNd ]‖2F in which ‖ · ‖F is the Frobenius matrix norm, and

where matrices[ξsim] and[ξNd ] are defined by Eqs. (3.22) and (3.25), respectively. For the numerical
convergence analysis, we therefore introduce the relativeerror functionNd 7→ errΞ(Nd) such that

errΞ(Nd) =
‖[ξsim]− [ξNd ]‖F

‖[ξsim]‖F
. (3.29)

3.6. Numerical application.

3.6.1. Definition of the data transformation. We reuse the numerical application presented
in Section2.6 for which the values of the parameters areN = 100, ν = 500, n = 5, f0 = 5.0565,
ε0 = 1/200,movers= 10 that yieldsM0 = 260, ∆r = 0.01638, r0 = 4.26, i0 = 1. The transformation
h fromR

N in R
M , introduced in Section3 (see Eq. (3.1)), is described in Appendix B. The reader can

then simulate the ”data transformation” used in this numerical application. Taking into account the
convergence analysis presented in Section2.6.3-(i), and since the number of evaluation ofh must not
be too large for the practical applications, we chooseνs = 1, 000.
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3.6.2. Statistical reduced-order model of Q. The estimationŝmQ and[ĈQ] are computed
using Eq. (3.4). Concerning the construction of the reduced-order statistical model ofQ defined by
Eq. (3.5), Fig. 3.1 displays the graph of the error functionm 7→ errQ(m) defined by Eq. (3.6). We
choosem = 4 corresponding to an error of0.054.
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Figure 3.1. Reduced-order statistical model: graph of the error functionm 7→ errQ(m)

3.6.3. Computing the coefficient and convergence analysis. The coefficients[ yNd ]
are computed using Eq. (3.21) for Nd = 1, . . . , 7 with νs = 1, 000. Fig. 3.2 displays the graph
Nd 7→ K(Nd) that gives the numberK of polynomial chaos calculated with Eq. (3.12) as a function
of the maximum degreeNd of the polynomial chaos. The result of the convergence analysis has been
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Figure 3.2. GraphNd 7→ K(Nd) of the numberK of polynomial chaos versus their maximum degreeNd.

studied as a function of the maximum degreeNd of the polynomial chaos. Fig.3.3displays the graph
Nd 7→ errΞ(Nd) calculated with Eq. (3.29). ForNd = 2, the error is0.27 while forNd = 3 and4, the
error is0.061 and0.057, and forNd = 7, the error is0.0014.

3.6.4. Probability density functions relative to Ξ and Ξ
(Nd). In this section, we com-

pare the graphs of the probability density functions relative to random vectorΞ (for which theνs
independent realizations areξsim,1, . . . , ξsim,νs), with the graphs of the probability density functions
relative to random vectorΞ(Nd) (for which theνs independent realizations areξ(Nd),1, . . . , ξ(Nd),νs).
The computations are performed forνs = 1, 000, Nd = 3 that corresponds toK = 55 with an er-
ror errΞ(Nd) = 0.061. For j in {1, . . . ,m}, Fig. 3.4 displays the graphs of the probability density
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Figure 3.3. GraphNd 7→ errΞ(Nd) of the relative error of the polynomial-chaos coefficients versus the maximum
degreeNd of the polynomial chaos.

functionspΞj
andp

Ξ
(Nd)

j

calculated by

pΞj
(ξj) =

1

νs

νs∑

ℓ=1

µ1,σ̂ MC
m

(
σ̂ MC
m

σ MC
m

ξsim,ℓ
j − ξj) , (3.30)

p
Ξ
(Nd)

j

(ξj) =
1

νs

νs∑

ℓ=1

µ1,σ̂ MC
m

(
σ̂ MC
m

σ MC
m

ξ
(Nd),ℓ
j − ξj) , (3.31)

in whichσ MC
m andσ̂ MC

m are defined by Eqs. (2.46), and whereµ1,σ̂ MC
m

is defined by Eq. (2.40). Fig. 3.4
shows that the densities are well captured. Fori andj fixed in{1, . . . , n}, Fig.3.5displays the graphs
of the joint probability density functionspΞiΞj

andp
Ξ
(Nd)

i Ξ
(Nd)

j

calculated by

pΞi,Ξj
(ξi, ξj) =

1

νs

νs∑

ℓ=1

µ2,σ̂ MC
m

(
σ̂ MC
m

σ MC
m

ξsim,ℓ,ij − ξij) , (3.32)

p
Ξ
(Nd)

i Ξ
(Nd)

j

(ξi, ξj) =
1

νs

νs∑

ℓ=1

µ2,σ̂ MC
m

(
σ̂ MC
m

σ MC
m

ξ(Nd),ℓ,ij − ξij) , (3.33)

in whichξsim,ℓ,ij = (ξsim,ℓ
i , ξsim,ℓ

j ), ξ(Nd),ℓ,ij = (ξ
(Nd),ℓ
i , ξ

(Nd),ℓ
j ) andξij = (ξi, ξj) belong toR2. Fig.3.5

shows that there is good agreement between the joint densities.

4. Conclusions. A methodology and algorithms have been proposed for constructing the poly-
nomial chaos expansion (PCE) of anyRm-valued random variable with respect to an arbitrary multi-
modal probability measure onRn. The algorithms proposed are efficient and robust, and can beused
in high dimension. This new class of algorithms, which is adapted to the multimodal case, can be
useful in the context of uncertainty quantification for direct and inverse problems.

Appendix A. Data generation for the numerical application. In this Appendix, the algorithm
used for generating theν independent realizationsxexp,1, . . . , xexp,ν of the random vectorX with values
in R

N , is described. We consider,N = 100, ν = 500, n = 5, nr = 15, csym = 0.2, andcsep = 2.
We introduce a deterministic(nr × nr) real matrix[a] which is generated byrandn(′state′, 0), and
then,[a] = [Inr ] + [randn(nr, nr)]/2, in which we have used the Matlab function, ”randn”. Then
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Figure 3.4. For j in {1, . . . ,m}, graph of the probability density functionsξj 7→ pΞj
(ξj) (dashed line) andξj 7→

p
Ξ
(Nd)

j

(ξj) (solid line).

ν independent realizations(Y1ℓ, . . . , Ynrℓ) (for ℓ = 1, . . . , ν) of a R
nr -valued random vectorY =

(Y1, . . . , Ynr) are generated such that,randn(′state′, 0), and then,Yiℓ =
∑nr

j=1[a]ij [randn(nr, ν)]jℓ.
Theν independent realizationsηexp,1, . . . ,ηexp,ν of theRnr -valued random vectorη are generated as
follows. Fori = 1, . . . , nr and forℓ = 1, . . . , ν, ηexp,ℓ

i = Ziℓ + csepσi (21[0,+∞[(Yiℓ − csym) − 1), in
whichZiℓ = zi + σi [randn(nr, ν)]iℓ wherezi = 2 i/nr − 0.5, and whereσi = 1 + 0.2(2 i/nr − 1).
Let m = (m1, . . . ,mnr) andλ = (λ1, . . . , λnr) be the vectors inRnr such thatmj = 1.5 for all j,
and whereλ is the vector(1.000, 0.2459, 0.1082, 0.0605, 0.0385, 0.0266, 0.0195, 0.0149, 0.01117,
0.0095, 0.0078, 0.0065, 0.0056, 0.0048, 0.0042). A family of orthonormal vectors{φ1, . . . ,φnr}
is constructed as the normalized eigenvectors associated with thenr largest eigenvalues of the pos-
itive symmetric(N × N) real matrix[b]′ [b] in which the deterministic(N × N) real matrix[b] is
generated byrand(′state′, 0), and then,[b] = [rand(N,N)]. Finally theν independent realizations
xexp,1, . . . , xexp,ν are generated, forℓ = 1, . . . , ν, by xexp,ℓ = m +

∑nr

i=1

√
λi η

exp,ℓ
i φi.

Appendix B. Data transformation for the numerical applicat ion. In this Appendix, the
function x 7→ q = h(x) from R

N into R
M , introduced in Section3, is defined. It is assumed that

M = N . Then, for allα in {1, . . . , N}, qα = zα + {m̂X}α in which zα = yα/(1 + 6 y2α) with
yα = xα − {m̂X}α.
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