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Polynomial chaos expansion of a multimodal random vector

C. Soizef

Abstract. A methodology and algorithms are proposed for construdtiegoolynomial chaos expansion (PCE) of multi-
modal random vectors. An algorithm is developed for gemagahdependent realizations of any multimodal
multivariate probability measure that is constructed fraset of independent realizations using the Gaussian
kernel-density estimation method. The PCE is then perfdrwith respect to this multimodal probability mea-
sure, for which the realizations of the polynomial chaos@mmputed with an adapted algorithm. Finally, a
numerical application is presented for analyzing the cayetce properties.
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1. Introduction. In 1991, R. Ghanemlf] has proposed (1) an efficient construction of the
polynomial chaos expansion (PCH) ffor representing second-order stochastic processesamd r
dom fields, and (2) to use it for solving boundary value protdewith uncertain parameters by a
spectral approach and the stochastic finite elements. 3@@&, numerous works have been pub-
lished in the area of the PCE and of its use in the spectrabappes for solving linear and nonlinear
stochastic boundary value problems, and some associatestisal inverse problems (see for instance
[1, 9, 10, 11, 13, 17, 18, 27, 31, 34, 42, 44])). Several extensions have been proposed concerning
generalized chaos expansions, the PCE for an arbitranapilith measure, the PCE with random co-
efficients [L4, 28, 38, 40, 49, 50], and recently, the construction of a basis adaptation mdgeneous
chaos spacegl§]. Although several works have been devoted to the acc@araf stochastic conver-
gence of the PCE (see for instand®,[24, 29, 48]), the question relative to the speed of convergence
(which can be very low) of the PCE for a multimodal probabilitistribution onR™ has been little
addressed. Recently, a procedure through mixtures of PGbédwmn proposed irBf] for the one-
dimension case. In this paper, we propose a methodologyn&PCE of a multimodaR™-valued
random variable. This problem belongs to the class of the WiltErespect to an arbitrary probability
measure. The framework of the developments presented ipaper is motivated by the difficulty
encountered for the PCE of a random vector for which its doditya density function is multimodal,
and for which it is known that the speed of convergence of t6& Ban be low. Nevertheless, the
method proposed is very general and goes beyond multinbpdhdi the context of the statistical in-
verse problem related to the identification of a PCE of a ramdector, one does not know if the
unknown probability density function is unimodal or is mubdal. So the method proposed allows
for accelerating the speed of convergence in all the casesprdpose an algorithm for generating
independent realizations of the multimodal probabilityasuee onR”™, which is constructed from a
set of realizations using the Gaussian kernel-densitynesitn method from the nonparametric statis-
tics. Then, the PCE of the™-valued random variable is performed with respect to thesttanted
multimodal probability measure dR”, for which the realizations of the polynomial chaos are com-
puted with an adapted algorithm, recently introduced. Iinanumerical application is presented for
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2 CHRISTIAN SOIZE

analyzing the convergence properties. This new class ofitigns for the multimodal case can be
useful in the context of uncertainty quantification for dirand inverse problems, and in particular, for
the approaches devoted to dimension reduction in chaossiye for nonlinear coupled problems,
when an iterative solver is used (see for instar;8,[4]).

2. Construction of a representation of a multimodal random v ector in high dimen-
sion from a set of realizations.  In the first part of this paper, we propose a construction of a
stochastic model of a multimodal random vecXowith values inR”, defined on a probability space
(©,7,P) using only a set of > 1 independent realizations of. The construction consists (i) in
introducing the usual empirical estimations of the meartoregind the covariance matrix &, (ii) in
constructing a reduced-order statistical mogdé? (with values inR™) of X (with dimensionn < N)
using the classical principal component analysis, andliyigla multimodal reduced random vector
H with values inR™ (which is assumed to be in high dimension, that is to say, with- n > 1),
(iii) in constructing a multimodal probability density fation i — py(n) onR”™ of H introducing an
adapted nonparametric statistical estimator, (iv) in thgiag a generator of independent realizations
of H that follows the multimodal probability distributiopy (1) dn onRR™, (v) for fixed n, in comput-
ing a sequencéwyy } a1} Of statistical estimations ofw(H)} using this generator, in whict is
a given measurable mapping defined®h At the end of this section, a numerical investigation is
presented in order to illustrate the construction and tgerahms.

2.1. Data description and usual empirical estimations of se cond-order moments.
LetX = (Xi,...,Xx) be aR"-valued second-order random vector defined on a probabitiace
(©,7,P), whose probability distribution is represented by an unkm@robability density function
X — px (X) with respect to the Lebesgue measuxeon RY. Let E be the mathematical expectation.
It is assumed that (with v > 1) independent realization§®!, ... x®®¥ of X are known (coming
from experimental data or from numerical simulations). tﬁ?@tand[@x] be the empirical estimations
of the mean vectomy = E{X} and the covariance matr{’x] = E{(X — my) (X — myx)T}, such
that

1 < ~ R
My = — expl — expl m expl m T‘ 21
x = ;X O] > (x x) (X x) (2.1)

v—1
/=1

Note that[ax] can be written as

~ ~ 1. ~  —
O] = [Bx] = 2=y @l |, [By] = S et (o) 2.2)
/=1

v—1 v—1

in which [Ry] is the estimation of the second-order moment matfiy] = E{X X”}.

2.2. Reduced-order statistical model of X. The eigenvaluesx,; > Ax2 > ... > Ax,ny >
0, and the associated orthonormal eigenvectys . .., ¢, such that ¢’ )" ¢’ = &;; (the Kro-

necker symbol), are such th{a(f‘x] o = AX.i ¢'. The principal component analysis allows a
reduced-order statistical mod(™, of X to be constructed, such that

XM = fy + Z VAxiHi ¢ (2.3)
=1
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Consequently, random vect®ris such thatX = XN, and the value of: is fixed in [1, N] for that
err(n) < e in whiche is such thad < ¢ < 1, and where err is the error function defined by

n
b Axq
err(n) =1— @ : (2.4)
tr[Cx]
LetH = (Hy,...,H,) be theR"-valued second-order random variable. Thmdependent realiza-
tions Pl ... n®PY, with n®?¢ = (aﬁw, ...n2®Y € R", of theR"-valued random variablel
are computed, fof =1,...,vandi =1,...,n,
1 .
exp,l exp,/ ~ \T i
n = (X% —mx)" @k . (2.5)
‘ VAX
By construction, it can easily be verified that
= 1 ¢ expl __ D1 1 - expl [, expd\T __
My == 0™ =0 . [Bul=-——=> 7" ™" =[L]. (2.6)
=1 (=1
2.3. Construction of the multimodal probability density fu nction of random vector
H. As explained in the introduction of Secti@the probability density functiop,, with respect to
the Lebesgue measu#igy on R™ of the R™-valued second-order random variable= (Hy, ..., H,),

must be constructed. The unknown probability density fioncpx has been assumed to be multi-
modal. Due to the reduced representation introduced by Z§), (probability density functiorpy
(that differs frompy), could be not multimodal. The objective of the present wisrko develop a
methodology adapted to the case for whighis multimodal, and consequently, it is assumed that
py can be multimodal. It should be noted that the method prab@seery general and can be used
for a probability density functiopy that is or that is not multimodal. We propose to choosepfpr

its estimation carried out by using the Gaussian kernesitierstimation method on the basis of the
knowledge of ther independent realizationg®®!, ... n®®” computed with Eq.2.5. A modifi-
cation of the classical Gaussian kernel-density estimatiethod §] is used in order that Eq2(6),
[Ru] = [ I,,], be preserved. The positive valued functignonR™ is then defined, for ath in R™, by

n

1< 3
pa(n) = » ; Lin 5, (S—"nex‘” -n), (2.7)

in which y,, 5, is the positive function fronR™ into |0, 400 defined, for allp in R™, by

1 1
fin,z, (1) = o) exp{ —QS%H??H } (2.8)

in which ||n||?2 = n? + ...+ n2, and where the positive parametgysands,, are defined by

1/(n+4)
o ={ s ) R R - 2.9
v(2+n)
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Parametes,, is the usual multidimensional optimal Silverman bandwigithtaking into account that
the empirical estimation of the standard deviation of eamhmonent is unity, and parameter has
been introduced in order that the second equation in E) bolds. It should be noted that, far
fixed, parameters,, ands,, go to0™, ands,, /s,, goes tol ~, whenv goes to+oco. Using Egs. 2.7) to
(2.9), it can easily be verified that

Sn ~
E{H} = A npu(n)dn = — My =0, (2.10)

Re]=[1). (211

Remark 1.

(i) The multimodal probability density functiop, that is constructed by Eq=2.() to (2.9), depends
onv. Such a construction is correct in the framework of the hiypsés that have been introduced,
because the set of realizationsXfs given, and consequently,is fixed (See Sectio8.1).

(i) In Egs. 2.7) and @.9), if 5, was chosen as,, (usual nonparametric statistical estimator with
Gaussian kernel-density estimation method), then 4.1 would not hold; we propose such a con-
struction of the multimodal probability distribution ofrdom vectoH in order that? {H HT'} = [1,,].

(i) In the framework of the proposed developments, no agstions (in particular concerning the
support) are introduced concerning the unknown multiv@ngobability distribution that has to be es-
timated from a set of data by the nonparametric statisticxggube kernel-density estimation method
(kernel smoothing). Consequently, a first arbitrary chomest be done concerning the kernel smooth-
ing, and the kernel proposed is the multivariate Gaussiamekdor centered and uncorrelated ran-
dom variables (see Eq. (2.6)) (see E6)). The second arbitrary choice concerns the bandwidth.
Again, since no information is available, the multidimemsil Silverman bandwidth that is optimal
for a Gaussian distribution is chosen. It should be notedttiia choice for the bandwidth is con-
sistent with the usual choice of the empirical estimatoesdusr estimating the mean vector and the
covariance matrix, which are optimal (unbiased, efficiemd aonsistent estimators) for a Gaussian
distribution. In addition, the methodology proposed in plager is general and is independent of the
choice of the kernel smoothing, provided that the assumgtised by the generator of realizations
are satisfied. Therefore, if additional information areilalde concerning the unknown multivariate
probability distribution that has to be estimated from tbea data, the Gaussian kerng 5, (1) and
the Silverman bandwidthk,, can be replaced by a kernel and bandwidth that are betteteatiagev-
ertheless, it should be noted that the nonparametric estimygelds a probability density functiopy
that is only used for constructing a random vedfofwhose probability distribution is defined by this
pdf), which is used as a germ for performing the PCE in ordéndrease the speed of convergence of
the truncated PCE.

Remark 2.
For i fixed in {1,...,n}, the probability density functiopy, on R of the random variablél; is
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calculated in integrating Eq2(7) overR™ !, and yields

1 < B ¢
P (i) = — > s, (S—nﬁfm — i) (2.12)
(=1 "
Fori andj fixed in {1,...,n}, the joint probability density functiopy,n, on R? of the random

variablesH; andH}, is calculated in integrating EQ2.(7) overR"2, and yields

n

1 & 3 g g
pu,H, (135 15) = > Z H25, (S_nnexge,” -n"), (2.13)
=1

in which ne®%% = (™ n*®%) andn/ = (;, ;) belong toR2.

2.4. Generator for multimodal random vector H. Let w be a mapping fronR"™ into an
Euclidean space such tha{H) is a second-order random variable. The estimatioit 6f(H)} =
Jgn w(n) p,(n) dn requires a generator of independent realizations of randamtorH for which the
multimodal probability distributiorp,, (n) dn is defined by Eq.Z.7) with Egs. €.8) to (2.9). Such a
generator can be performed using the Markov Chain MonteoGagthod (MCMC) R3, 36, 43]. The
transition kernel of the homogeneous Markov chain of the MCiviethod can be constructed using
the Metropolis-Hastings algorithnB8(, 22] (that requires the definition of a good proposal distribu-
tion), the Gibbs samplindlp] (that requires the knowledge of the conditional distritm} or the slice
sampling B2 (that can exhibit difficulties related to the general shapthe probability distribution,
in particular for multimodal distributions). In generahese algorithms are efficient, but can also be
not efficient if there exist attraction regions which do notrespond to the invariant measure under
consideration and tricky even in high dimension. Thesesaaanot easily be detected and are time
consuming. The method proposed 89] is very robust, has recently been applied with success for
complex problems in high dimensiof,[20] and is reused hereinafter. It looks similar to the Gibbs
approach but corresponds to a more direct construction af@om generator of realizations for ran-
dom variableH whose probability distribution is, () dn and is multimodal. The difference between
the Gibbs algorithm and the proposed algorithm is that thwexgence in the proposed method can
be studied with all the mathematical results concerningeitigtence and uniqueness of Itd stochastic
differential equation. In addition, a parameter is introelth which allows the transient part of the re-
sponse to be killed in order to get more rapidly the statipsatution corresponding to the invariant
measure. Thus, followingBP], the construction of the transition kernel by using theadetl balance
equation is replaced by the construction of an Itd Stoah&sfferential Equation (ISDE), which ad-
mits p, (n) dn (defined by Egs.Z.7)to (2.9)) as a unique invariant measure. The ergodic method or
the Monte Carlo method can be used for estimafifgu(H)}.

It should be noted that the main ideas presented in this pameenot related to a specific MCMC
algorithm for constructing a set of realizations. The alt¢ive MCMC algorithm proposed hereinafter
can be replaced by any traditional MCMC algorithm. Nevdesg this alternative algorithm is very
robust and very rich in terms of control based on the use ofiemaatical results for the 1td stochastic
differential equations.
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2.4.1. Interpretation of the multimodal probability distr ibution p, as the invariant
measure of an It 6 stochastic differential equation (ISDE). Letn — ®(n) be the function
from R"™ into R such that

pa(m) = cpe” . (2.14)

From Egs. 2.7), (2.8) and @.14), it can be deduced that
-
(V21 5,

in whichn — ¢(n) is the continuously differentiable function froRi* into R** =]0, +oo| defined
by

®(n) = —log{q(n)}, (2.15)

Cp =

1< 1 50 ems )
a(n) =~ ;exp{—@\lgne Pr—ml7}, (2.16)
and wheres,, ands,, are given by Eq.4.9). It can then be deduced that— ®(n) is a continuously
differentiable function oriR™.

Let{(U(r),V(r)),r € R} be the Markov stochastic process defined on the probabiige©, T,
P), indexed byR™ = [0, +oo|, with values inR" x R", satisfying, for allr > 0, the following Itd
stochastic differential equation

dU(r) =V (r)dr, (2.17)
V(1) = ~VuR(U() dr — 5 foV () dr + /Ty dW(r) (2.18)

with the initial condition
U(O) =Up , V(O) =Vp a.s., (219)

in whichug andv are given vectors iiR™ (that will be taken as zero in the application presentea)late
and whereW = (Wy,...,W,,) is the normalized Wiener process defined(én7,P) indexed by
R* with values inR™. The matrix-valued autocorrelation functioRy (r, )] = E{W (r) W ()T}

of W is then written agRw (r,7')] = min(r,7’') [I,,]. In Eq. @.18), the free parametefy > 0 will
allow a dissipation term to be introduced in the nonlineaoséd-order dynamical system (formulated
in the Hamiltonian form with an additional dissipative tgrim order to kill the transient part of the
response and consequently, to get more rapidly the stayiaadution corresponding to the invariant
measure. It can easily be proved that functior» ®(u): (i) is continuous orR™, (ii) is such that
u— ||[Vu®(u)| is alocally bounded function dR” (i.e. is bounded on all compact setsit that is
the case because— ®(u) is a continuously differentiable function d@i*), and (iii) is such that,

inf ®(u) - 400 if R— +o0, (2.20)
[Jull>R

inf ®U) = bn With By € R, (2.21)
ueRr”

/ [Wu®(U)| p, (U)du < 400 with p,(u) = ¢, e W (2.22)
R?’L
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Under hypotheses (i) to (iii), and using Theorems 4 to 7 irgge®)L 1 to 216 of Ref.37], in which the
Hamiltonian is taken a&l (u,v) = ||v||?/2 4+ ®(u), and using {2, 25] for the ergodic property, it can
be deduced that the problem defined by Egsl?) to (2.19 admits a unique solution. This solution
is a second-order diffusion stochastic procgdd(r),V(r)), » € R*}, which converges to a station-
ary and ergodic diffusion stochastic procd$tlsi(rst), Vsi(rst)), 7st > 0}, whenr goes to infinity,
associated with the invariant probability measikgdu, dv) = psi(u, V) du dv. The probability den-
sity function (u,v) — pst(u,v) onRR™ x R™ is the unique solution of the steady-state Fokker-Planck
equation with the normalization condition, associatedhits. .17 and @.18), and is written (see
Propositions 8 and 9 in pages 120 to 123 of R&7]), as

padU,Y) = o exp{— g |VI? — B(w)} (2.23)

in which ¢g is the constant of normalization. From Eg®.14) and @.23), it can be deduced that

pen) = [ patnvyav . vnerr. (2.24)

It can therefore be concluded that random variatléor which the multimodal probability density
function isp,,, can be defined, for any; > 0 as

H = Usi(rst) = lim U(r) in probability distribution (2.25)
r—-+00
As explained above, the free paramefgr> 0 introduced in Eq.Z.18), allows a dissipation term to
be introduced in the nonlinear dynamical system and corsgfy, allows the transient response gen-
erated by the initial condition&lg, V) to be rapidly killed in order to get more rapidly the asymjatot
behavior corresponding to the stationary and ergodic isplatssociated with the invariant measure.

Remark 3. Instead of Eq.2.18), the following equationlV (r) = —Vy®(U(r)) dr— 3 fo[Do]V (1) dr
++v/fo [So] AW () could be used, in whichSy] would belong taVi,, (R) and wherd Dy] would be a
positive symmetric matrix such thébg] = [So] [So]” with 1 < ranKDy] < n. If such an equation
were used, then the invariant measure would always be giydagb (2.23) (see page 244 of Ref.
[37]). In particular, a diagonal positive-definite dampimgtrix % fo[Do] could be chosen in order
trying to increase the speed of convergence towards thiersiay and ergodic solution of the I1td
equation. However, in order not to complicate too muchrsgttiata parameters of the algorithm, while
maintaining good control of the speed of convergence tosvere stationary and ergodic solution, the
simpler form defined by Eq2(18) is proposed.

2.4.2. Discretization scheme of the ISDE. A discretization scheme must be used for nu-
merically solving the ISDE defined by Eq.17) to (2.19. For general surveys on discretization
schemes for Itd stochastic differential equations, werréie reader toZ6, 45, 46]. Concerning the
particular cases related to Hamiltonian dynamical syst@vhich have also been analyzed #v] us-
ing an implicit Euler scheme), we propose to use the Stéivedet scheme, which is a very efficient
scheme that preserves energy for nondissipative Hanalodynamical systems (se#l] for reviews
about this scheme in the deterministic case, and Beand the references therein for the stochastic
case). The Stormer-Verlet scheme has been validate&tDjnfpr solving an ISDE of the type defined
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by Egs. @.17) to (2.19, and corresponding to a weakly dissipative Hamiltonianasfgical system.
We then propose to reuse hereinafter the Stormer-Vettese proposed ir2).

Let M > 1 be an integer. The Itd stochastic differential equatiofineéel by Eqs. 2.17) and .18
with the initial condition defined by Eq2(19), is solved on the finite intervat = [0, (M —1) Ar], in
which Ar is the sampling step of the continuous index parametdihe integration scheme is based
on the use of théd/ sampling points, such that, = (k — 1) Arfork = 1,..., M. The following
notations are introduceds* = U(ry,), V¥ = V(ry,), andW* = W(r), fork = 1,..., M, with

U=u , Vi=vy , W'=0 as. (2.26)

Let {AWFHT = WhHL _ Wk = 1,..., M — 1} be the family of independent Gaussian second-
order centeredR”-valued random variables such tia{ AW** (AWA))TY = Ar[I,]. Fork =
1,..., M — 1, the Stormer-Verlet scheme applied to E¢s1{) and @.18) is written as

uUk+3 :Uk+%vk,

Vk:Jrl

b\/k k W k+1
—1+bV +1+7“b|_+ + "AW+ (2.27)

Uk:Jrl Uk—f—2 + AT Vk:Jrl

with the initial condition defined by2(26), whereb = fy Ar /4, and whereL#+3 is theR"-valued
random variable such that

LAty — —{Vu@W},_ ey (2.28)
From Egs. 2.15 and @.16), it can be deduced that,
1
Vi®Uu) = ———Vyqu), 2.29
u®(u) q(u) uq(u) ( )
11 - é\n expl Sn exgé 2
Vag(u) = - > (07 —u) expf- AQHS —ulPy. (2.30)
n =1 7" "

2.4.3. Choosing the parameters for numerical integration o fthe ISDE. In this section,
we construct the values of the parametars My, M, fo, ug andvy, which are used in the discretiza-
tion scheme of the ISDE, presented in Secfleh?2 First, we associate with the nonlinear Hamiltonian
dynamical system, a linearized diagonal second-orderrdigad system iru'"™ = (U" ... Ul") (the
components are not coupled) such that, foriat {1,...,n}, U"(r) + L foUi"(r) + K; UM (r) =
Vo Wi(r), in whichW = (W,,...,W,) is the generalized Gaussian white stochastic process (the
generalized derivative oV). The behavior of the nonlinear stiffness foreéu) = —L (u), with
u= (u,...,u,) andrF(u) = (Fi(u),..., F,(u)), can have some fluctuations in the neighborhood
of u = 0, and is such thaF(0) # 0. Consequently, we cannot calculdte in writing K; u; =
{0F;(u)/0u;},_o- We propose to replace this equation by an incremental iequah a symmetric in-
terval[—A , Al for a sufficiently large incremenk > 0 (typically, the problem under consideration be-
ing normalized td, A can, for instance, be chosenfﬁ)swhlch yieldsK; = (F;(u?)—F;(—u?))/(24)
in whichu® = (u, ..., uj) with v} = Ad;;. Let0 < Ay < ... < A, be the eigenvalues of matrix

[K], and let bevmin = VA1 andwmax = .
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(i) Afirst estimation ofAr is chosen ad\ry = 7/(10 wmax). AN oversamplingngyers > 1 is introduced
to get a sufficient accuracy of the Stormer-Verlet schemeifistancemyers = 10), and yieldsAr =
Arg/movers (@ convergence analysis with respechig.es must be carried out).

(ii) The minimum damping rat&,.,i, of the linear second-order dynamical system is such2that wmin

= fo/2 that yieldsfy = 4 {minwmin. The damping ratén, is chosen, for instance, 8s' to rapidly Kkill
the transient response induced by the initial conditiohat(&re not distributed following the invariant
measure).

(iii) The larger relaxation "time” of the linear second-erddynamical system can be defined-@such
thatexp{—Cminwmin 70} = €0 With eg < 1, which yieldsrg = —log(g¢)/(¢min wmin) (for instance, the
value ofey can be chosen als/200). The parametei is then defined ag, = M, Ar that yields
My = 1+fix(rg /Ar) in which fix(z) roundse to the nearest integer towards zero. Vatyéand then
integer M) corresponds to reaching the stationary response. Infegewill be used for calculating
independent realizations &f.

(iv) The initial conditions are chosen ag = vy = 0.

(v-1) Ergodic method The integerM is defined as\/ = mergo Mo Wheremey, > 1 is an integer
which has to be chosen in order to reach a reasonable coneerfer estimatingZ{w(H)} using the
ergodic method (see EcR.@3 that we introduce later). For instance, an initial valuerfe4, can be
chosen ag00 or 400, but a convergence analysis must be carried out with respect,q.

(v-2) Monte Carlo method An integer]\/io is introduced such thaﬁo = 19 My. The integeriq is
chosen in order that the sequen{dg” , k& > J\//fo} corresponds to the stationary solution. Taking into
account the construction of integéf, the integeriy could be chosen tb or 2. We then introduce
the sequence of intege{% ,0=1,...,vs} such thatZ/\/E =1+ Z\/ZQ IntegerMAis then defined
by M = M,, = (1 + v,)M,. By construction ofM, the vectorsU:(¢) and UMe+1(6) can be
considered as two independent realizations of the randatonmd(r) for any fixedr such that > rg
(stationary part of the response). The integeis chosen in order to reach a reasonable convergence
for estimatingE{w(H)} using the Monte Carlo method (see ER.34) that we introduce later). For
instance, an initial value far;, can be chosen a0, but a convergence analysis with respecr{o
must be carried out.

2.4.4. Random generator of independent realizations of H. A random generator af,
independent realization${(6;), ..., H(0,,), of random vectoH whose multimodal probability dis-
tribution is py(n) dn, is constructed as follows. LgU*(6),k = 1,..., M} be constructed using
the algorithm presented in Secti@¥.2 Using the sequenc{a]\/@ 0 =1,...,vs} defined in Sec-
tion 2.4.3(v-2), each independent realizatiéh(f,) can then be obtained, fdrin {1,...,v,}, as

,rlsim,f =H(,) = Uﬁe o) ]/\/D =(142) ]\/4\0. (2.31)

2.5. Estimating E{w(H)}. Inthis section, two methods are proposed for estimalifig(H) }:
() and ergodic method, and (ii) a Monte Carlo method.
(i) Estimating E{w(H)} with the ergodic method~or any realizatio® in ©, let {(U(r,0), V(r,0)),
r > 0} be the solution of Eqs.2(17) to (2.19. Then using the ergodic propertyf{w(H)} =
Jgn w(n) p,(n) dn can be estimated (se&, 26, 46]) by

1 rvyt+R

E{wH)} = Rlirfw = / w(U(r,8))dr with probability 1, (2.32)
T M
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in which g, = (M — 1) Ar with M, a fixed integer greater than The parametef/, (estimated
as explained in Sectioh.4.3(iii)) allows us to remove the transient part of the resgoimgluced by
the initial condition. Let{U*(@),k = 1,..., M} be the corresponding realization of the discretized
solution constructed as explained in Sectiba.2 in which M has been estimated in Sectigrt.3
(iv). Thus, the numerical approximation of EQ-82) is written as

M
1
o . ~ER ~ER __ 2 : k
=Mp

(i) Estimating E{w(H)} with the Monte Carlo methodUsing Eq. 2.31), the Monte Carlo method
for estimatingE{w(H)} yields

1 & 7 —~ —~
o . ~ MC -~ MC __ M —
BloH)} = lm @ . &= ;ww “0)), My = (1+¢) Mo, (2.34)
2.6. Numerical application.
2.6.1. Data generation for the numerical application. We consider the data description
introduced in Sectio?.1for N = 100 andv = 500. The algorithm that has been used for generating
ther independent realization§”®!, ... x®®" of random vectoX with values inR", is described in

Appendix A. The reader can then simulate the "data deseriptised in this numerical application.

2.6.2. Defining the optimal values of parameters. The estimationsny and[@x] are com-
puted using Eqs.2(1) and @.2). Concerning the construction of the reduced-order sizdismodel,
Fig. 2.1displays the graph of the error function defined by Bg4)( We choose: = 5 corresponding
to an error 0f0.089. With the values of the main parameteié,= 100, v = 500 andn = 5, for the
numerical integration of the ISDE (see Sectibi.3, the optimal value of the damping rate has been
found to(min = 0.7 that yieldsfy = 5.0565. The optimal value of the relaxation "time” parameter
has been found tey = 1/200 (see Sectior2.4.3(iii)), and Arg = 0.1670. The others values of the
parameters are analyzed in the next section.

Graph of the error function err
0.45

0.4

0.35

0.3

0.25

err(n)

0.2

0.15

0.1

0.05

0
0O 1 2 3 4 5 6 7 8 9 10 11 12 13
n

Figure 2.1. Reduced-order statistical model: graph of the error fuogti — err(n)
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2.6.3. Convergence analysis. The convergence analysis is carried out with the ergodibatet
and with the Monte Carlo method.
(i) Ergodic method The parameters defined in Sectdi.2are fixed. In order to analyze the conver-
gence of Eq.Z.33 with respect taV/ for the ergodic estimation, using the integration schenfieele
in Section2.4.2 two error functions, efA/) and ers(M) are introduced. The first one is related to
the estimation of the mean valug{H} = my that must be equal to(see Eq.2.10). In Eq. .33,
we choosev(H) = H, and then

I, o N 1 M
err (M) = n Z {my — W]%;}i| ) W]%? = m Z U’“(H). (2.35)
=1 k=DM

The second one is related to the estimation of the secoret-ordment matrixz{H H”} = [Ry] that
must be equal t61,,] (see Eq.2.11). In Eq. €.33, we choosev(H) = HHT, and then

[[Fn] — (@ .
ER _ — |Wpr {JER — k k T
er (M) = Bl , [wpy] M_MO+1k§MjOU (O)U*(0)", (2.36)

in which || - || 7 is the Frobenius norm. Fonges = 10; 100; and 1,000 (with Ar = Arg/moyerd),
we haveM, = 260; 2,600; and26,000. Figures.2.2and2.3display the graphs of functiomeg, —
err R (Mmergo Mo) @andmergo — €157 (Mergo Mo ) (With M = miergo Mop).

In all the paper, the following parameters are fixed to theesl fy, = 5.0565, g = 1/200, moyers =
10 that yieldsMy = 260, Ar = 0.01638 andry = 4.26.

A reasonably good accuracy is obtained in usingy, = 400 that yieldsM = 104,000 for which
err;R(M) = 0.060 and er§*(M) = 0.089. The valuemerg, = 10,000 or 100,000 (M = 2,600,000
or 26,000,000) yields erf?(M) = 0.0080 and erfR(M) = 0.0264, or err?(M) = 0.0021 and
errs?(M) = 0.0061.

Convergence of mean value for M ers—10,100,1000

0 200 400 600 800 1000

m
ergo

Figure 2.2. Graph of error functionmergo — errf-(mergoMo) for movers = 10 (thick solid line),movers = 100 (mid
solid line),movers = 1000 (thin solid line)

(ii) Monte Carlo method Similarly to the ergodic method presented before, tworegunctions are
introduced. The first one is related to the estimation of teamvalueE{H} = my that must be
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Convergence of second-order moment matrix for M ers—10,100,100C
0.8

0.6¢

0.4¢

errz(mergo)

0.2r

o
0 200 400 600 800 1000

m
ergo

Figure 2.3. Graph of error functionmnergo — err£: (mergoMo) for movers = 10 (thick solid line)movers = 100 (mid
solid line),movers = 1000 (thin solid line)

equal too (see EQq.2.10), and yields

Ijs —

Tem, . A 1 —~ —
ern'®(v,) = EZHmH —WY Wy = V—Zqu(e) . My=0+0DM,. (2.37)
i=1 S =1

The second one is related to the estimation of the secorat-oxdment matrix?{H H”'} = [Ry] that
must be equal t01,,] (see Eq.2.11)), and yields, forM, = (1 + ¢) My,

erge(vy) = W Z0le ey - LSS Gilg) ufgyT.  (238)
| Bl DA

A numerical study has been performed wifh = 5.0565, ¢ = 1/200, mowers = 10 that yields
My = 260, Ar = 0.01638 andry = 4.26. A sensitivity analysis has be carried out with respect
to the value ofig that is such thaﬂ//fo = i9 My. The valuesl, 2, and3 for iy yield very close
results and the differences are not significant. Conselyueptis fixed to the valuel. For these
values of the parameters, the graphs of the error functigns err’®(vs) andv, — erry'°(vs) have
been constructed and yield similar results to those showkiga.2.2 and2.3. A reasonably good
accuracy is obtained in using, = 400 that yieldsA/ = 104,000 for which erg“(v;) = 0.0692
and erf*“(v,) = 0.1118. The valuer, = 10,000 (M = 2,600,000) yields erf*“(vs) = 0.0081
and erf'°(vs) = 0.034, while for v, = 100,000 (M = 26,000,000) yields erf(vs) = 0.0016
and erf“(v,) = 0.0079. In comparing these errors with those given by the ergodithatg it can
be concluded that, for a same value of the CPU time, the ezgudihod is slightly more efficient.
Nevertheless, if we consider the estimation of statistigantities related to the random variallde
that results from a nonlinear transformatibrof H such that= = h(H), transformatiorh has to be
evaluatedM times with the ergodic method, but only times with the Monte Carlo method. Since
M/vs = My, the gain is large enough when using the Monte Carlo methtdrespect to the ergodic
method.

2.6.4. Estimation of the probability density function of H. In order to numerically val-
idate the generator (see Sectidhg.2 and 2.5-(i)) of random vectorH whose probability density
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function py is defined by Egs.2.7) to (2.9), we propose to compaygy with its estimationpy con-
structed with the generator. This construction used thes§&an kernel-density estimation method
presented in Sectioh 3 For alln in R", we havepy () = E{do(H — n)} that can be rewritten as

pi(n) = lim E{upe,(H-mn)}, (2.39)

on—0t

in whichn — p, », (1) is the following Gaussian function frofR™ into |0, +oc[, defined, for allp
in R™, by
1 1 )
non(M) = ———— exp{—=—|Inll;}, 2.40
b (1) = T exp{ =g s} (2.40)
inwhich 0|2 =»? +... + 2.

(i) Ergodic method From Egs. 2.33) and @.40), the estimatiomy of py is written, for alln in R™, as

M ~

- 1 Tn' |k

= — E SER u®(0) — 2.41
=Moo

in which the positive parametess” ands '* are defined by

{ 4 }1/(n+4) o ER

o= o = L . (2.42)
" M — My +1)(2 oo R -

M= Mo Dz ) V0082 + il
Forifixedin{1,...,n}, the probability density functiop;;, onRR of random variablé]; is calculated

in using Eq. .12). Integrating Eq. 2.41) over R"~! yields the estimation); ~ py,(n;) of the
probability density functiopy, onR,

AER

M
P, (m) = s = MO - Z e (e Ut (0) = i) (2.43)

Foriin {1,...,n}, Fig. 2.4 displays the graph of the probability density functipn, calculated
with Eq. 2.12), which is compared witlpy, calculated with Eq.Z.43) for which mer, = 400 and

mergo = 10,000. It can be seen that convergence is reachedifgg, = 10,000, and that a good
approximation is obtained foey = 400. Fori andj fixed in {1,...,n}, the joint probability
density functionpy, i, of random variablesl; andHj; is calculated in using again Eq2.(3. Using

the ergodic method, and in integrating E.41) over R”~?2 yields the estimatiopy,y; of the joint

probability density functiompy, i, on R?2, which is written as

M

M n

9(0) —n), (2.44)

in which UM (9) = (UF(9),UF(9)) andn? = (n;,7;) belong toR?. The computation has been
carried out for the ten couples of indices, and all the olethiresults have the same quality. Figh
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Figure 2.4. Foriin {1,...,n}, graphs of the probability density functions — pmu, (n:) (thick dashed line), and
Mi +— Du, (n:) for mergo = 400 (thin solid line) and formergo = 10, 000 (thick solid line).

displays the graph of the joint probability density funatjay, i, calculated with Eq.2.13), which is
compared withpy, 1, calculated with Eq.Z.44) for which meg, = 10, 000.

(ii) Monte Carlo methodFrom Egs. 2.34) and .40, the estimatiormy of py is written, for alln in
R"™, as

In Mgy —m) , My =(1+£) My, (2.45)

MC
Jn

. 1 &
Pr(m) = — ) tngye(
Vs '

in which the positive parametess'© ands ' are defined by

4 1/(n+4) o e
oN = {7} , op = L . (2.46)
vs(2+n) V(0p)2 + (vs — 1) Jvg
Fori fixed in {1,...,n}, the estimatiorpy, of the probability density function of® of R-valued

random variablél; is written as

_ IS Y
Pits (i) = - ; mape (Ui (60) —m) (2.47)
Foriin {1,...,n}, for vs = 400 andvs = 10,000, we obtain a similar result that the one displayed

in Fig. 2.4, the convergence being reached fQr= 10,000. Fori andj fixed in {1,...,n}, the
estimation(n;, n;) — pu,u,(n:,n;) of the joint probability density function oR? of the R?-valued
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pdf H and H estimated pdf H and H

ﬂ
ﬂ

pdf H and H

3

pdf H and H

ﬂ

Figure 2.5. For (4,5) = (1,3),(3,4) and (4,5), graphs of the joint probability density functiorig;,n;) —
pu,u; (ni,m;) (leftfigure), and(n:, n;) — pu,u; (ni,1;) for mergo = 10, 000 (right figure).

random variabléH;, H;) is given by
Vs -~ Mc

N 1 o g
Bran, (0 17) = —= > pape( 2 UM (9) — ) (2.48)
5 =1 n

in which UMed (9) = (UM (6), UM (0)) andn's = (;,n;) belong toR2. Forv, = 10,000, a similar
result to the one shown in Fig.5is obtained.

3. Polynomial chaos expansion of a multimodal random vector . Leth be a given mea-
surable mapping frork" into R, and letQ = (Q1, ..., Q) be theRM-valued random variable
such that

Q =h(xt), (3.1)

in which X" is the multimodal random vector defined by E8.3. Transformatiorh is assumed
to be such tha@ is a second-order random vector. Possibly, the deternuimstappingh transfers
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the multimodal character of random vectf* to random vecto = h(X(™). We are interested
in constructing the polynomial chaos expansion (PCE) ofloamvectorQ. If such a PCE of) was
carried out with respect to the polynomial chaos associatéda unimodal random variable, which is
usually the choice done (uniform, Gaussian, etc.), therspleed of convergence could be low. Since
the multimodal probability distribution d® is induced by the multimodal probability distribution of
H, we propose an alternative approach consisting in usingtiigmodal random vectadd (for which
the probability density functiopy is defined by Eqgs.2.7) to (2.9)) as the stochastic germ for the
polynomial chaos expansion of random vedfor

3.1. Constructing independentrealizations of Q and reduce d-order statistical model.
Although the contents of this section is very classic and Wwabwn, a brief presentation is given in
order to define the notations and the mapgingd-et g™, ..., g°™"s be v, independent realizations
of random vectoR , which are computed, for aflin {1,...,vs}, by

g™ = h(Mx + > VAx ™ o) (3.2)
i=1

nsim,[ _ UMZ(Q) , ]\/4\[ = (1 + f) ]/\4\0, (33)

in whichnp®™!, ... n°™"s are thev, independent realizations of the second-o&rvalued random
vectorH whose probability density function is defined by Eds7) to (2.9), and for which the gener-
ator of independent realizations is detailed in Secfigh4 (see Eq.Z.31)). Similarly to Sectior2.1,
let Mg and [Cq] be the empirical estimations of the mean veates = E{Q} and the covariance
matrix [Cq] = E{(Q — mg) (Q — mg)T}, such that

Vs Vs

M 1 sim, ~ 1 sim, = sim A~
Mg =—> o™ . [Col=-—=> (¢ ~Mq)(a™ —Mg)". (3.4)
7 =1 ® =1

Let \g1 > Ag2 > ... > Ao > 0 be the eigenvalues, and lg,, ..., ¢ , be the associated
orthonormal eigenvectors{(plé)T o = 0i;) of the eigenvalue problerfﬁQ] 0 = A\, ¢y The
reduced-order statistical mod®l™ of Q is then written as

Q™ =g+ > VA Ej by (3.5)
j=1

The random vectof) is such thatQ = Q) and the value ofn is fixed in {1,..., M} for that
errg(m) < € in whiche is any positive real number, and wheregis the error function defined by

m
" \o
erg(m) =1— M . (3.6)
tr[Co)
Let ¢! . ¢&™¥s be thev, independent realizations of the second-order random vé&Ete=
(Z1,...,E,), computed, fo = 1,...,vsandj = 1,...,m, by

~ 1
sim, £
§ . p—

! VAQj

(g™ — mg)” ¢, . (3.7)
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The estimationfiz of E{Z} and the estimatiopz] of E{= ZT} are written as

Vs

M= — i sim, ¢ Dl — 1 sim,£ [ gsim (\T
m—%zk ,WA—%JEE (emT (3.8)
=1 /=1
We then have,
Mz =0 . [Re]=[ln. (3.9)

Finally, Egs. 8.2) and @3.7) define a mappinty = (hy, ..., h,,) romR" intoR™ such thaE = h(H),
andforalll = 1,...,v,and forallj = 1,...,m, we have§;‘m7£ = h;(n*™*) that can globally be
rewritten as

et =hn™ |, (=1,...,v,. (3.10)

3.2. Polynomial chaos expansion with respect to the arbitra ry measure defined by
the multimodal probability measure of H. In order to define the algebraic notations for the
polynomial chaos expansions in a finite approximation, tilewing parameters and multi-indexes
are introduced. LeN = {0,1,2,...} be the set of all the null and positive integers. Bgr > 1
(Ng will be the maximum degree of the polynomials), the followiset.4y, of multi-indexes are
introduced,
Ay, ={a=(aq,...,00,) eN" | 0<oy+...+a, <Ng}. (3.11)

The 1 + K elements of setdy, are denoted byx® ... a%) in which a(?) is the multi-index
(0,...,0), and where the integeX is such that

(n+Na)!

K p—
n! Ny!

1. (3.12)

It is assumed thakl’ < vs. Let{U,(n), @ € = (a,...,a,) € N} be the family of multivariate
orthonormal polynomials with respect to the multimodallqability measure,, (1) dn on R™ defined
by Egs. 2.7) to (2.9), such that, for alte and3 in N™,

[ Valm) Ua(n) b (n) dn = E{a(H) Wa(H)) = Gas. (3.13)

In Eq. 3.13), dap is the kronecker symbol and by convention, &er= 0, ¥o(n) = 1 is the con-
stant normalized polynomial. It should be noted that thébability measurep,,(n7) dn is non sep-
arable (the components of random veckbrare not statistically independent). Consequently, the
integral onR"™ defined by Eg. .13 cannot be written as a product ofintegrals overR, and each
multivariate orthonormal polynomial,(n) in n = (n1,...,n,) cannot be written a¥@,(n) =

Yoy (M) X ... X g, (), but this type of tensorial product of univariate polynolsi@r the multivari-

ate polynomials (tensorial product that does not hold irptiesent case) is not used. From a theoretical
point of view, the multivariate orthonormal polynomialsdze viewed as the result of a Gram-Schmidt
orthonormalization algorithm of the multivariate monofsidefined, fora = (a4, . .., oy, ) belonging

to Ay, (defined by Eq.%.11)), and fornp = (11, ...,n,) in R™, by

Mea(n) =nft x ..o xpom . (3.14)
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It should be noted that an explicit algebraic formula (carged, for instance, with a symbolic tool-
box) for each multivariate orthonormal polynomibl, (n), cannot be obtained due to the non separa-
ble expression g, (n) defined by Egs.2.7) to (2.9). Nevertheless, even if such an explicit expression
could be obtained, this expression would not be used foraghasans detailed irt]l] and summarized

in Section3.4, and is effectively not used in the methodology proposedémstructing the polyno-
mial chaos expansion of the random ve@fsee Section8.3and3.4). Finally, it can be seen that the
degree of multivariate polynomial,(n) is a1 + ... + a,, and that for alle in Ay, the maximum
degree of the polynomials i§,.

The second-order random variaf®ecan then be expanded in polynomial chadqs as,

== lim =W, (3.15)

Nd—)-‘rOO

with convergence in the spaéé (0, R™) of all theR™-valued second-order random variables defined
on(©,7,P), and where

K
VD =N VRO (H) Y yR e R (3.16)
k=0

Taking into account Eq.3(9), we choose to identify the coefficienys, ..., y* in R™, such that for
each fixed value o,

E{EW)} — o, p{eWd (zWaTy = [1,]. (3.17)

From Egs. 8.13, (3.16), and 3.17), it can be deduced that coefficienty . .., y” must satisfy the
constrainty® = 0and>"s_, y* (y*) = [I,,]. Introducing the rectangular matrix

[yl =1[y"...y"] € M x(R), (3.18)

and theR¥-valued random variabl@(H) = (V_u)(H),..., ¥ x) (H)), then Eq. 8.16) can be
rewritten as
2N = [y] w(H), (3.19)

in which the coefficient$y | verifies[y] [y ]? = [I,.]. Finally, due to the orthonormality of the poly-
nomial chaos (see the second equation in Bd. %), it can easily be deduced the classical equation,

[y] = E{E®(H)"} = E{h(H) ®¥(H)"}, (3.20)

in which 2 = h(H) is theR™-random variable whose, independent realizatior&s™!, . . ., ¢ms
have been computed with EQ.{) (see also Eq.3 10).

3.3. Computing the coefficients of the PCE. For N, fixed, we propose to compute the
coefficients|y | of the PCE in using the Monte Carlo method. The use of the érgodthod would
lead us to numerically evaluate functionfor the M valuesn* = U¥(9) for k = My,..., M of
n, while the Monte Carlo method only requires evaluations, and we have seen that>> v,. In
addition, thev, evaluations of functiorh have already be carried out for constructing the statistica
reduced-order model of random vec@r(see Egs.3.2), (3.3) and @.7)). Therefore, there is a weak
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interest in developing an approach based on the ergodicoahétin computing the coefficients of the
PCE of random vectoE. We then use the, independent realizationg*™!, ..., n°™"s of random
vectorH, defined by Eq.%.3), and thev, independent realizatior&™!, . .., £&™"s of random vector
= computed in using Eq3(7) (i.e. Eq. (3.10). Taking into account Eqs3(8) and @.9), the estimation
[yN4] of [y ] given by Eq. 8.20) is written as

g pe— e (3.21)

ve — 1

in which the (m x v,) real matrix[¢°"] and the(K x v,) real matrix[¥] are defined, for alj =
1,....omk=1,...,Kand{ =1,...,v,, as

(€ e =&ML [Whe = U0 (0™ (3.22)

From Eq. 8.19, random vectoi=(M2), for which [y] is estimated by the Monte Carlo method, is
written as

2WNa) = [yNa] W(H). (3.23)
The v, independent realizationg ™)1, ... ¢W™Na)¥s of random vecto=(Ne) are thus given, for all
0 =1,... v, by €Nt = [yNa) @ (nmt), Let [¢Na] be the(m x v,) real matrix defined, for all
j=1,....mandl =1,...,v, by
[N = MM (3.24)
Consequently, matrif V4] can be computed by the following equation,
(™) = [y™] [¥]. (3.25)
3.4. Computing the realizations of the polynomial chaos. The objective of this section

is to compute théK x v,) real matrix[¥] defined in Eq. §.22 and constituted of the, independent
realizations¥ , (p°™*) of the polynomial chao¥ , (H) for the arbitrary multimodal probability
measurey (n) dn defined by Eqs.4.7) to (2.9). Itis assumed thak” < v,. Such a calculation must
preserve the orthogonality property of the PCE in high disi@mwhich is written as

. 1
lim
Vs—>+00 Vg — 1

(W] [W)" = [Ix]. (3.26)

As it has been proved ], this problem is not trivial at all. For instance, for clasd measures
for which the polynomial chaos are explicitly known (Herejitegendre, and so on), if the explicit
algebraic formulas (constructed with a symbolic Toolbox}i® computational recurrence relations
with respect to the degree are used, then important nurhedése is induced, and the orthogonality
property is lost. If a global orthogonalization was donedaect this problem, then the independence
of the realizations would be lost. In addition, in the prés@se, we have an arbitrary multimodal mea-
sure, and the explicit expression of the polynomial chaesuaknown. We then propose to use the
new algorithm proposed irBp], that we summarize below. It consists (i) in constructihgit, inde-
pendent realizations of the multimodal multivariate morsusing the generator of the multimodal
random vectoH presented in Sectioh4.4 (ii) in performing an orthogonalization of the realizatf

of the multimodal multivariate monomials with an algoritldifferent from the Gram-Schmidt orthog-
onalization algorithm as the latter is not stable in high elision. Fole = (a4, ..., «,) belonging
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to Ay, (defined by Eq.%.11)), and forp = (n1,...,n,) iN R™, let My (n) = 07 x ... x n9» be
the multivariate monomials. L&ty = 1 + K. Let [M] be the(K, x vy) real matrix of independent
realizations of the monomials such that

[M]M = Ma(k) ('Ifim’e) s k= 0, 1, ce ,K, (327)

in whicha(® = (0,...,0), and wherep®™!, ... ™ are thev, independent realizations of mul-
timodal random vectoH, computed with Eq.3.3). Let [¥] be the(K( x v,) real matrix such
that [Uoxe = \Ifam(nsimve) fork = 0,1,...,K and¢ = 1,...,vs. Matrix [y can be written as
[Wo] = [A] [M] in which[A] is a(K( x Ky) real matrix, andM] is a(Ky x vs) real matrix. LetF] be
the positive-definite symmetrid<, x K, ) real matrix defined bfff] = L [M] [M]” = [A]~'[A] 7.
The algorithm is then the following:
e Compute matrixXM] defined by Eq. .27, and then compute theK, x Kj) real matrix
[F] = ;-5 [M] [M)7.
e Compute the lower trianguldiKy x Kj) real matrix|L] from the Cholesky decomposition
[L] [L]T of positive-definite symmetric matrif].
e Compute the lower trianguldiky x K;) real matrix[A] = [L] 1.
e Compute thd K x vy) real matrix[¥o] = [A] [M].
e Deduce théd K x v) real matrix[W] obtained in deleting the first row of matrj)).

3.5. Convergence analysis with respectto ~ N;. The numerical convergence with respect
to parametelV, is classically analyzed. Farfixed, letK = K(Ny) be defined by Eq.3.12). Taking
into account the convergenceid(©, R™) of the sequenc E(Nd)}Nd of random vectors (defined by
Eqg. 3.19) towards random vectdE, the L?-convergence of the polynomial chaos expansion can be
performed in analyzing the graph

Ny |E - BN 2 = (B{|E - ™ |2})1/2, (3.28)

in which [|€]|? = ¢ + ... + €. Introducing the estimation of the second-order momenteaf r
valued random variablg= — =V || in using thev, independent realizationg'™!, ... n*™"s of H,
yields |E — EWVa)|2, ~ 1165 — [¢N4][|% in which || - || is the Frobenius matrix norm, and
where matriceg¢®™ and[¢N4] are defined by Eqs3(22 and (.25, respectively. For the numerical
convergence analysis, we therefore introduce the relatig functionV,; — err=(N;) such that

&) — [ENlr

o
err=(Na) = T e

(3.29)

3.6. Numerical application.

3.6.1. Definition of the data transformation. We reuse the numerical application presented
in Section2.6 for which the values of the parameters &e= 100, v = 500, n = 5, fy = 5.0565,
go = 1/200, moyvers = 10 that yieldsMy = 260, Ar = 0.01638, ry = 4.26, ip = 1. The transformation
hfromRY in RM, introduced in SectioB (see Eq.3.1)), is described in Appendix B. The reader can
then simulate the "data transformation” used in this nuoarapplication. Taking into account the
convergence analysis presented in SecBid@h3 (i), and since the number of evaluationfofmust not
be too large for the practical applications, we chomse- 1, 000.
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3.6.2. Statistical reduced-order model of Q. The estimationsng and[@Q] are computed
using Eqg. 8.4). Concerning the construction of the reduced-order sizdismodel ofQ defined by
Eq. 3.5, Fig. 3.1 displays the graph of the error function — errg(m) defined by Eq.%.6). We
choosem = 4 corresponding to an error 6f054.

Graph of the error function eer

eer(m)

Figure 3.1. Reduced-order statistical model: graph of the error fuontin — errq(m)

3.6.3. Computing the coefficient and convergence analysis. The coefficients] y™V¢]
are computed using Eq3.@1 for Ny = 1,...,7 with v, = 1,000. Fig. 3.2 displays the graph
Ny — K(Ny) that gives the numbek of polynomial chaos calculated with EG.(2) as a function
of the maximum degred/; of the polynomial chaos. The result of the convergence aishas been

Number of polynomial chaos versus maximum degree N,
800,

700

600

500

K(N,)
A
8
S

300

200

100

Figure 3.2. Graph N4 — K (Ny) of the numberk of polynomial chaos versus their maximum degkee

studied as a function of the maximum degrégof the polynomial chaos. Fig.3displays the graph
N4 — errg(Ny) calculated with Eq.3.29). For Ny = 2, the error i9.27 while for N; = 3 and4, the
error is0.061 and0.057, and forN,; = 7, the error i50.0014.

3.6.4. Probability density functions relative to = and =WN4)_ |n this section, we com-
pare the graphs of the probability density functions reéato random vectoE (for which the v,
independent realizations agd™?, ... &™), with the graphs of the probability density functions
relative to random vectd& V) (for which thev, independent realizations ag€"V)!, ... g(Na)vs),
The computations are performed fay = 1,000, N; = 3 that corresponds t& = 55 with an er-
ror err=z(Ny4) = 0.061. Forjin {1,...,m}, Fig. 3.4 displays the graphs of the probability density
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Relative error function err:(Nd)

Figure 3.3. Graph N4 — err=(Ny) of the relative error of the polynomial-chaos coefficiergssus the maximum
degreeN, of the polynomial chaos.

functionsp=; andp_,) calculated by
=7

Vg ~MC

1 Um sim,
p=; (&) = ” Zm,agﬂf (—U w3 ), (3.30)
5 =1 m

)

P (&) = Z p1ze ( - &), (3.31)
in which o' anda ' are defined by Eq52(4®, and whereu; zwe is defined by Eq.4.40. Fig. 3.4
shows that the densities are well captured. #Fdj fixed in{1, ... ,n}, Fig. 3.5displays the graphs
of the joint probability density functionss, =, andp_v,)_v,) calculated by

5 V8,

p‘—"Ly‘—‘] §Z7 é.] Z/’[Q aMC ESImZ g 5’”) ’ (332)
Pz (6i8)) = Zuwc O e (Na).bid — ), (3.33)
in whichgsmt — (gfj‘m’e,gjm’g), gWa)bij — (g(Nd ,g(Nd ‘)yandg = (¢, ¢;) belong toR2. Fig.3.5

shows that there is good agreement between the Jomt desiti

4. Conclusions. A methodology and algorithms have been proposed for cartsiguthe poly-
nomial chaos expansion (PCE) of aR{*-valued random variable with respect to an arbitrary multi-
modal probability measure dR™. The algorithms proposed are efficient and robust, and carsée
in high dimension. This new class of algorithms, which is@dd to the multimodal case, can be
useful in the context of uncertainty quantification for dirand inverse problems.

Appendix A. Data generation for the numerical application. In this Appendix, the algorithm
used for generating theindependent realizationg®!, . .. x®®* of the random vectoX with values
in RV, is described. We considel = 100, v = 500, n = 5, n, = 15, csym = 0.2, andcgep = 2.
We introduce a deterministi@:, x n,.) real matrix[a] which is generated byandn(’'state’,0), and
then,[a] = [I,,,] + [randn(n,,n,)]/2, in which we have used the Matlab functiomahdn”. Then



POLYNOMIAL CHAOS FOR A MULTIMODAL RANDOM VECTOR 23

1 2
04 0.4
03 03
o o
g 02 £ 02
el e}
o o
0.1 0.1
0 0
-4 -2 0 2 4 -4 -2 0 2 4
El E2
:3 :4
04 05
0.4
03
=, ~ 03
£ 02 &
el e}
a 2 02
0.1
0.1
0 0
-4 -2 0 2 4 -4 -2 0 2 4
& &,

Figure 3.4. For jin {1,...,m}, graph of the probability density functiogs — p=; (¢;) (dashed line) and; —
p_vy (&) (solid line).

v independent realization&7y, ..., Y,,¢) (for £ = 1,...,v) of aR" -valued random vectoy =
(V1,...,Yy,) are generated such thatindn('state’, 0), and thenYi, = > %7, [a];;[randn(n,, v)] .
Thev independent realizationg®®!, ... n®® of the R -valued random vectay are generated as
follows. Fori = 1,...,n,andfor{ =1,...,v, nfx‘” = Zit + Csep0i (210 too[(Yie — Csym) — 1), iN
which Z;y = z; + o; [randn(n,,v)];; wherez; = 2i/n, — 0.5, and wherer; = 1+ 0.2(2i/n, — 1).
Letm = (mq,...,my,) andX = (A1,..., \,,) be the vectors ilR"" such thatm; = 1.5 for all 7,
and where\ is the vector(1.000, 0.2459, 0.1082, 0.0605, 0.0385, 0.0266, 0.0195, 0.0149, 0.01117,
0.0095, 0.0078, 0.0065, 0.0056, 0.0048, 0.0042). A family of orthonormal vector§¢',. .., ¢" }
is constructed as the normalized eigenvectors associdtbdhe n,. largest eigenvalues of the pos-
itive symmetric(N x N) real matrix[b]’ [0] in which the deterministic N x N) real matrix[b] is
generated byand(’state’,0), and then[b] = [rand(N, N)]. Finally ther independent realizations

xe®l  xe®v are generated, far=1,...,v, by x®® = m 4+ " /X 7 ¢

Appendix B. Data transformation for the numerical applicat ion. In this Appendix, the
functionx — g = h(x) from R¥ into R™, introduced in Sectios, is defined. It is assumed that
M = N. Then, for alla in {1,..., N}, go = 2o + {Mx}o in Which z, = y,/(1 + 6y2) with
Yo = Ta — {mX}a-
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pdf El(Na) and Ez(Nu)

K&

-2 0 2 &

pdf El(Na) and E;Na)

Figure 3.5. For (i,5) = (1,2),(1,3) and (1, 4), graphs of the probability density functio(;, ¢;) — p=,=; (&, &)
and (&, &;) = povg) covg) (6is &5)-
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