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COMPARISON OF THE EFFECT OF HAMMER STRIKING 
IRREGULARITIES AND MISTUNING ON THE DOUBLE 

DECAY OF PIANO TONES 

Olivier Thomas, David Rousseau, Rene Causse· and Er_ic Marandas 

I.R.C.A.M., 1, pl. !gor Stravinsky, 75004 Paris, France 

Abstract: A characteristic of the piano tones is their double decay (the initial sound followed by the 
" aftersound "), related to the existence of two polarizations. The goal of this study is to understand and to 
compare more quantitatively than the previous work, the influence of parameters which are under the control 
of the piano tuners: the mistuning and irregularities)n striking action of the hammer. We simulated on a 
computer the vibration of an unison group of strings, which includes the dominant damping at the bridge as 
well as the vertical coupling between strings. Excitation irregularities were simulated by varying the initial 
displacement and velocities of the strings. The study analyses the ratio of the aftersound to the immediate 
sound, the compound decay, and the amount of destructive interference. This interference can be seen where 
the slope of the decay curve changes, and is most pronounced at the bridge, where the strings are dynamically 
coupled. This comparison leads to the conclusion that if necessary, the piano tuner can to a certain extent 
correct for a poorly adjusted hammer by modifiying the mistuning. But all hammers properly adjusted are 
essential for a constant and uniform level for all notes, which is necessary for a very good piano. 

MODELLING AND SIMULATION OF A UNISON GROUP OF STRINGS 

Pianos are built, for the 60 higher notes, with three strings for each key. In our simulation, we restrict 
ourselves to a set of two strings, which we call a« doublet». To obtain numerical results, we choose to 
simulate the vibration of a doublet associated to the E~ flat of the piano, which is the key which was used 
in the experimental part of our study. 

Modelling of the bridge/soundboard system. 

We choose to characterize the dynamic behaviour of the bridge/soundboard system by its complex 
impedance Zbr. in the direction normal to the soundboard. If we apply a sinusoidal force to the bridge, Zb, 
is the complex quotient of this force and the velocity of the bridge: 

Force . F.eiox z - =--=--:-
br - Velocity V.ei<ox-IP> 

Some numerical values ofZb, have been measured by Wograrn1
, which enable us to estimate and adjust 

our simulation parameters. 

Modelling of the strings 

We assume that the decay of the movement of the strings in a free vibration mode is mostly due to the 
deformations of the bridge, transmitted to the soundboard, which is taken into account in the resistive part 
of the bridge impedance (its real part). Thus all the other dissipations (air/string friction, thermoelasticity, 
viscoelasticity) are negligible compared to the energy loss by soundboard radiations. 

Considering only the linear part of the equation of a string motion, we obtain the familiar equation: -y(x, t) =LA,.. sin(k,x).cos(a>,t + qJ,.) 
n=O 

where y is the transverse displacement of an arbitrary cross-section of the string function of its 
longitudinal coordinate x and time r. It is the sum of an infinity of undamped oscillators of angular 
frequency ro. named the normal modes of the string, whose coefficients (A,.,(/).) are set by the initial 
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conditions. To simplify the model, like Weinreich 2
, we decide to take only one normal mode into account, 

in our case the fundamental, although the model is equally valid for any higher-order mode. As a result, 
we decide to represent each string by a 1st order TIUlSslstring undamped harmonic oscillator. 

Equations of motion of the complete system 

We obtain for the complete system of two strings coupled on 
the bridge the model in the figure 1. Each mass/spring . 
system ((M 1,K1) and (M2,K2)) represents a string, whose 
positions are named y1 and y2 ; Z"' is the complex impedance 
of the bridge/soundboard system, with y,, the dispacement of 
the bridge. 

For this system of three degrees of freedom we need three 
equations of motion. The dynamic equilibrum of the two 
masses M1 and M 2 gives the first two of them. The third one 
is obtained from the definition of Z,,. The intensity of the 
force applied by the two strings on the bridge is: 

F:rrlbr =Kl(Yl -ybr)+K2(Y2 -Ybr). 

We then obtain the system: 

{

Mijil + Klyl - KIYbr = 0 

M2Y2 + K2Y2- K2Ybr = 0 

Vbr·zbr =K1(Y1 -ybr)+K2(Y2 -Ybr) 

YI 
K1 K2 

z" 

Figure 1: model of the« doublet» 

We research a complex solution for y(t) of the form y = p.e)J, with A.= -a+ jw, where a is the 
damping rate and w the angular frequency. In our system, the value of oo is very close to the fundamental 
angular frequency of E4 flat (w0 = 1954rad.s-1 

). Thus, 0 <a< 10 (familiar values), so w >>a which 
enables us to aproximate A. by jw0 so that the velocity of the bridge is: 

V. dybr ,, • 
br =dr=AYbr =JWoYbr' 

With this approximation, we evaluate easily y in function of y1 and y2 : 

Klyl +K2Y2 
Ybr = K K . z 

1 + 2 + JWo eh 

The problem is then reduced to a set of two equations representing a familiar undamped system of 2 

degrees of freedom of the form MY+ KY = 0, with Y = (y1, y 2 )', 

To resolve it, we seek solutions of the form Y = P.eh, where A. and P are respectively the eigenvalues 

and the eigenvectors of the M-1K matrix. Then, y1 and y1 comes from the real part of Y. They are the 
sum of two damped sinusoids which form the two normal mode.s of the dynamic system constitued by the 
two strings coupled on the bridge: 

Yl =AI~~~e-a,r cos(rolt+<pl +lflu)+Bj~2~e-alr cos(w2t+q>2 +lf/12) 

Y2 = AIP2de-a•' cos(rolt +<'Pi + lf/21) +BjP221e-alr cos(ro2t + <'P2 + lf/22) 
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where A, B, (/) 1 and (/) 2 come from the initial conditions, (a;, m;) are the rate of decay and the angular 

frequency of the system's i'b normal mode of vibration (ie{1,2}), P; =CjP,.JeN'',jP2;j.ej"21 )'is the 
eigenvector related to the normal mode i. 

Simulation program - Introduction of the mistuning and irregularities in hammer striking 

To introduce the rnistuning in the model, we choose a dimensionless parameter called e. If W01 and W02 are 
respectively the angular frequencies of the fundamental modes of the two strings, e is defmed by: 

m o2 =Cl+ e)m 01 

Knowing that the fundamental angular frequency of a typical mass M/string K system is m0 = .J Kj M, we 
tune the two oscillators of our model by setting M 1 = M2 = Jl (the mass per unit length of the string, 
which is the same for both), K1 = Ji.W01 and K2 = jlm02 = Ji.O + e)m01 • 

The easiest way to introduce the hammer striking irregularities in the model is to give different initial 
conditions to the two strings. In this study, we choose to adjust only the two initial positions, (y01 et y02 ) 

and to set the initial velocities of the strings to zero. Because the system is linear, it is enough to fix y01 

and adjust the value of y02 e [0, y01 ] • 

SIMULATION RESULTS 

As mentioned before, the following results correspond to a « doublet » tuned on the E~ flat of a grand 

piano, with Jl = 6,17.10-3 kg.m-1
, m0 = 1954 rad.s-t et Zch =10000 + 1000j kg.s-1 (from Wogram\ 

Angular frequencies and decay rates of the two oormal modes of the « doublet » 

The simulation enables firstly to demonstrate the dependance of the angular frequencies and the damping 
rates on mistuning, and to confirm the results ofWeinreich2

• 
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Figure 2: angular frequencies and damping rates of the two normal modes of vibration 
of the « doublet », as a function of the mistuning e .. The dotted curves gives 
the behaviour in absence of coupling, the dotted-dashed ones represents the 
strings on two rigid ends. 

Considering the left diagram of the figure 2, two distinct areas appear: 

2 3 
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• for E between -2 and 2 cent, the angular 
frequencies of the two modes are 
separated by approximately 0,4 cent. This 
is the area where the tuner has some 
freedom for fixing the amount of 
mistuning of the note. Indeed 0,4 cent 
represents a beat period of 14 seconds at 
1954 rad.s-.. a duration which is 
comparable to the one of the piano sound, 
which then is not perceived as a beat bl 
the listener. In addition, Marandas , 
professional tuner, mesured 0,5 cent as an 
average value for the mistuning. On the 
other hand, he found that it exists an area 
where the note is out of tune, without the 
presence of any audible beats. This area 
is probably located between 1 and 2 cent. 

• for lel > 2 cent, the difference between 
the two angular frequencies becomes 
significant to produce perceptible beats. 

Concerning the damping rates shown on the 
right diagram of figure 2, one may observe 
that if the mistuning E increases, then the 
difference between the two rates decreases, 
that is to say that the two decays tend to be 
similar. 

Qualitative interpretation of the motion of 
a doublet - case of a mistuning equal to 
zero 

The obvious case of a zero mistuning 
enables us to have a intuitive understanding 
of the double decay phenomenon. (Figure 3) 
The two strings are left without initial 
velocity, with a small striking irregularity 
(y01 =1mm,y02 =0,8mm). At the 
beginning of the motion, the hammer forces 
the two strings to vibrate in phase, with 
different amplitudes. As their mechanical 
energy dissipation has the same rate, their 
amplitude decreases rapidly until the 
smallest of the two amplitudes (that is to say 
string 2) reaches zero. After that, the bridge 
goes on moving under the influence of string 
1, and drags the second one in opposite 
phase. This shows us the superposition of 
two normal modes of vibration: 
• the first mode, symmetric, is 

preponderant during the immediate 
sound. It has an important decay rate 

• the second mode, antisymmetric, 
dominates the aftersound. It has a small 
decay rate. 
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Figure 3: Vibration amplitude of the two strings (y1 and 
y2, top diagram), of the bridge (yb,., center) and 
phase relation between the two strings (bottom), 
when t: equals zero 
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Comparative effect of the mistuning and the hammer striking irregularities 
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Figure 4: Vibration amplitude of the bridge for 
various values of the mistuning ()=01 = I 
mm; y(J2 = 0,8 mm) 
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Figure 5: Vibration amplitude of the bridge for 
various values of the striking 
irregularities (E = 0,5 cent) 
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Figure 6: Vibration amplitude of the bridge for 
various values of the striking 
irregularities (E = 3 cent) 

0 2 3 4 56 7 8 
Temps (s) 

Figure 7: Comparison: vibration amplitude of the 
bridge for a note with striking 
irregularities compensate or not by the 
mistuning. 

For this study, the suitable quantity is the vibration amplitude of the bridge (shown for different values of 
the parameters in figures 4,5,6 and 7), because it is the one in our model which is the nearest to the sound 
pressure level signal, and then to the sound which is listened when one tunes the piano. 
We can notice, with the help of the figures 4,5,6 and 7, that: 
• Mistuning is responsible essentially of the rate of the two decays. A small mistuning leads to a 

pronounced double decay. At the opposite if e increases, the change of slopes tends to diminish 
(soften), to reach first a curve with a single slope, and then beats . (Figures 4 and 6) 
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• The aftersound level is mainly linked with the striking irregularities. The more different are the initial 
conditions between the two strings, the more the aftersound level is increased in comparison with the 
one of the immediate sound. (It is in this case the antisymmetric mode which is mainly excited)( figure 
5) 

• The effect of the una-corda pedal appears clearly in the simulation. This pedal mechanically shifts the 
action sideways so that only two (or three) strings are struck by the hammer. It allows the player to 
enhance the aftersound level, increasing the dynamic range of the instrument when played pianissimo. 
For exemple, figure 5, we see that the una-corda pedal leads to a 10 dB aftersound gain. We could 
compare its effect to an extreme striking irregularity where is excited the antisymmetric mode. 

• When tuning a piano, a tuner is supposed to regulate the sound level from key to key, in order to have, 
in a given nuance of playing, two notes in the same intensity. When he doesn't want to touch the 
mechanism of the action to adjust the irregularities, it is well known that he can increase the mistuning 
of one key to compensate its irregularities. That is shown on figure 7, where the aftersound of curve 1 
(E = 0,5 cent, Yuz = 0,8 mm) has been enhanced to the position of curve 2 by increasing the mistuning to 
1 cent. Curve 2 has almost the same evolution as curve 3, which corresponds to a small mistuning (E = 
0,5 cent) but with large striking irregularities (y01 = 1 mm, y02 = 0,4 mm). So we can think that the 
sound corresponding to curve 2 has, for the first 8 seconds, almost the same level as the sound of curve 
3. However, this operation is not equivalent to a proper adjustment of the regularity of the action of 
the whole keyboard. This adjustment would lead to a more uniform temporal evolution of the sound, 
especially for the end of the decay. (Note in particular that the aftersound in curve 2 decreases faster 
than the one in curve 3, which can be noticeable after 7 seconds.) In addition, even if the piano sounds 
tuned, it is probably difficult for the player to execute pronounced nuances; since this case tends to be 
similar to the case where the una-corda pedal is down. 

CONCLUSION 

With this study, we can understand more precisely than before that an excellent tuner can adjust the 
unisons so as to compensate for hammer irregularities, making the total aftersound uniform from note to 
note. This is a first step in understanding how a tuner carries out when tuning a piano. For that, one can 
firstly defme what tuners call the« quality of a unison», which means fmding objective and quantitative 
criterias to decide that a piano is tuned. Our simulation needs to be improved by taking into account some 
of the higher-order normal modes and the existence of a third string, with hammer striking irregulatities 
modelled with realistic hammer deformation laws. Psychoacoustics tests based on the resulting sounds, 
with the help of piano tuners, would enable to identify what characteristics of the sound are significant to 
tune the piano. 

While working on this subject (Rousseau4
), we did additional ex~riments which show us that there is 

also double decays of vibration for an isolated string. Weinreich explains this by considering that the 
bridge behaviour isn't isotropic (bridge impedance in a direction parallel to the soundboard is assumed to 
be different than the one in the normal direction), but there is probably also non-linear coupling intrinsic 
to the string which need to be explored. 
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