
HAL Id: hal-01105446
https://hal.science/hal-01105446

Submitted on 20 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Signal Editor for the Ircam Musical Workstation
Gerhard Eckel

To cite this version:
Gerhard Eckel. A Signal Editor for the Ircam Musical Workstation. ICMC: International Computer
Music Conference, Sep 1990, Glasgow, United Kingdom. pp.69-71. �hal-01105446�

https://hal.science/hal-01105446
https://hal.archives-ouvertes.fr


A Signal Editor for the IRCAM Musical
Workstation

Gerhard Eckel

ICMC 90, Glasgow (Ecosse) 1990 
Copyright © Ircam - Centre Georges-Pompidou 1990

Abstract

The SignalEditor is an extensible set of general purpose tools for viewing, analyzing, editing, and
processing sampled signals on the IRCAM Musical Workstation (IMW). Its main intention is to provide
the composer and the scientist with a sophisticated interface to handle digital audio signals naturally. This
involves a high quality graphics interface, a flexible signal analysis system, an efficient sound file system,
and a powerful signal processing environment. In this paper we discuss a prototype implementation of the
spectrogram editing facilities, some aspects of the editor's extension language and the lowest layer of the
sound file system.

Introduction

The SignalEditor is an application running on the NeXT computer system under NextStep and MACH. A
subset of the SignalEditor, without graphics, runs on several UNIX platforms. The SignalEditor is
designed with Interface Builder using a set of Objective-C classes built for signal management,
processing, viewing and editing. These classes are supplied in the form of the SignalEditor Kit, which is
well integrated into the NeXT Application Kit. Other applications of the IMW (like ANIMAL [1] or the
Universal Recorder [2]) will use the SignalEditor Kit directly or use the SignalEditor application via
MACH messages. The SignalEditor comprises an extension language based on Scheme [3] which provides
a generic interface to the facilities of the IMW's i860 coprocessors via CPOS and FTS [4].

This paper describes the ideas which led to the design of the SignalEditor and it discusses some features
which have already been realized. A general survey of the SignalEditor's features will be given followed
by the description of its extension language. In particular we will discuss a prototype implementation of
the spectrogram editing feature that has been realized in the form of the program SpecDraw, which will be
presented in a demonstration session of this conference.

The SignalEditor

The SignalEditor is a tool for viewing and editing signals in various graphical representations. These are
time domain (e.g. waveform) and frequency domain (e.g. amplitude spectrum) representations as well as
combinations of the two (e.g. spectrogram). The SignalEditor eases the auditive and analytical evaluation
and comparison of signal segments. This is accomplished by efficient and flexible signal access both on
the level of graphical representation and sound playback. Therefore it allows selection and management of
signal segments and related information. Signal segments are defined in the time domain, the frequency
domain, or as a region of arbitrary shape in a time-frequency representation (e.g. a formant region).
Segments can be named and referred to by name in subsequent operations. A set of segment management
operations allows to deal efficiently with the segmented sound material.

In all signal representations one can select, copy, cut, and paste signal segments in order to change the



sequence of samples in the signal. Editing of sample magnitudes in the time domain (e.g. envelope
editing) as well as filtering operations based on frequency domain representation (e.g. spectral envelope
editing) are supported. Another aspect of the SignalEditor is its ability to extract features from signals
using advanced signal analysis methods. The extracted features might guide segmentation, editing, or any
other operation. Furthermore the SignalEditor supports a generic interface to signal processing facilities of
the IMW. This allows different production styles to be realized in the same environment. The SignalEditor
can be seen as the uniform interface for any signal used within the context of the IRCAM Musical
Workstation.

The main intention of the design of the SignalEditor was to integrate known techniques of signal
representation and editing into a tool which is flexible enough to allow new methods to be integrated
easily. Several signal representations showing different aspects of a signal are visible simultaneously,
allowing the observation of the consequences of a change made in one representation.

The Extension Language

In order to make the SignalEditor an extensible and flexible tool it needs to be programmable. This allows
the user to program when he needs and wants to but does not oblige the use of a programming language to
run the SignalEditor. That feature is well known from the text editor Emacs [5] which is one of the best
examples of an apphcation that can be used as easily by a novice user as by an expert user. In addition,
such kinds of applications allow smooth transition from the novice to the experienced user. We believe
that this strategy can also be used with success for applications based on a graphics user interface like the
SignalEditor.

Since the use of extension languages for non-trivial applications becomes more and morc common in
software development the number of language implementations suitable for that purpose is increasing.
The choice of the extension language for the SignalEditor was guided by three major constraints: the
language used should be a standardized, interpreted, high level language; furthermore it should comprise a
small but powerful set of concepts that allow different programming styles and it should be easily
available in form of C implementations. The language Scheme fits the first two constraints ideally. After
having compared different Scheme interpreters we found the very careful C implementation in the form of
ELK 61 to be a good basis for the extensions language of the SignalEdilor. ELK allows the easy inclusion
of Scheme primitives written in C via its dynamic loading mechanism This feature is used to add the
functionalities needed by the SignalEditor to ELK. We will now briefly discuss three sets of primitives
added so far: the Objective-C interface, the signal processing interface and the Yirtual file interface.

The Objective-C interface TELL allows access to all classes known by the SignalEditor. These are the
classes defined in the various class libraries coming with the NeXT system and the classes which form the
SignalEditor Kit. TELL defines a data type to handle class and object pointers and it supplies a function to
send messages. This enables the extension language to intervene on all levels of the application. Thus
TELL guarantees the desired flexibility of the extension language which has already been proven to be
very useful for debugging.

The signal processing interface SPEX [7] is based on the UDI library [8] developed a IRCAM. UDI
comprises a large number of signal processing routines and it runs on many different platforms. SPEX
introduces data types to ELK which allow storage, I/O and processing of signals using UDI routines,
which are made available in the form of Scheme primitives. SPEX currently runs on the NeXT, Sun3, and
DEC3100 workstations. When used by the SignalEditor on the NeXT the SPEX functions will run on the
i860 of the IMW via CPOS and FTS.

The virtual file interface VFILE is based on a library of C functions which constitute a virtual file scheme.
These functions duplicate the functionality of the UNIX standard buffered input/output package (stdio).
Additionally they allow one to insert, move, and delete data at arbitrary positions in the file. This feature,
which has been implemented very efficiently, was desired for editing large sound files. A virtual file is



represented on disk as a directory containing a chain of fragment files which make up the virtual file. The
order of the fragment files is established by the lexicographical sequence of their names. The file names
also encode other information like the byte offset and size of the fragment. This scheme appears to be the
most robust in keeping virtual files consistent because standard UNIX file system features such as
directories and hard links are used. Since real time access of virtual files can be guaranteed the design of
the new sound file system will be based on this layer.

SpecDraw

SpecDraw is a prototype implementation of the spectrogram editing feature of the SignalEditor. It
represents the signal in the form of a spectrogram in which arbitrary regions may be selected and used in
further processing. Two modes of processing are currently available. Either the selected regions are erased
from the signal or all other parts but the selected regions are erased. The final implementation will
generalize this approach and will allow any desired operation on the selected regions. This kind of signal
interface allows relating characteristics readable in the signal representation to their auditive appearance,
which is one of the central tasks we are confronted with when editing and processing sound signals. It is
essential that the signal representation is adapted to the charactenstics of auditive perception. Therefore
the SignalEditor will support perception-relevant scales like the Bark scale and it will take into account
certain phenomena of auditive perception such as the masking effect [9].

The editing of time-frequency distribution based signal representations is the main novelty of the
SignalEditor. SpecDraw serves mainly for validation of the ideas concerning this new type of interface.
The program has been presented to a number of composers and scientists and the positive feedback it
provoked brought many new ideas which will be taken into account in the final implementation of the
SignalEditor.

Reference

[l] E. Lindeman, "ANIMAL: A Rapid Prototyping Environment for Computer Music Systems ",
Proceedings of the ICMC, September 1990.

[2] B. Smith, "A Universal Recorder for the IRCAM Musical Workstation ", Proceedings of the ICMC,
September 1990.

[3] J. Rees & W. Clinger (ed.), "Revised3 Report on the Algorithmic Language Scheme ", AI Memo 848a,
MIT, September 1986.

[4] E. Viara & M. Puckette, "A real-time operating system for computer music", Proceedings of the
ICMC, September 1990.

[5] R. Stallman, "GNU Emacs Manual", Sixth Edition, Emacs Version 18, March 1987.

[6] O. Laumann, "Reference Manual for the Elk Extension Language Interpreter", Technical University
Berlin, Communications and Operating Systems Research Group, May 1990.

[7] G. Eckel, "SPEX 0.9, Scheme Signal Processing Extensions, Reference Manual", internal document,
IRCAM, June 1990.

[8] P. Depalle & X. Rodet, "U.D.I.: A Unified D.S.P. Interface for sound signal analysis and synthesis ",
Proceedings of the ICMC, September 1990.

[9] G. Eckel, "Ein Modell der Mehrfachverdeckung für die Analyse musikalischer Schallsignale", Ph.D.
thesis, University of Vienna, June 1989.


	A Signal Editor for the IRCAM Musical Workstation
	Abstract
	Introduction
	The SignalEditor
	The Extension Language
	SpecDraw
	Reference


