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MINIMAX ADAPTIVE ESTIMATION OF NONPARAMETRIC
HIDDEN MARKOV MODELS

Y. DE CASTRO, E. GASSIAT, AND C. LACOUR

ABSTRACT. We consider stationary hidden Markov models with finite state
space and nonparametric modeling of the emission distributions. It has re-
mained unknown until very recently that such models are identifiable. In this
paper, we propose a new penalized least-squares estimator for the emission dis-
tributions which is statistically optimal and practically tractable. We prove a
non asymptotic oracle inequality for our nonparametric estimator of the emis-
sion distributions. A consequence is that this new estimator is rate minimax
adaptive up to a logarithmic term. Our methodology is based on projections
of the emission distributions onto nested subspaces of increasing complexity.
The popular spectral estimators are unable to achieve the optimal rate but
may be used as initial points in our procedure. Simulations are given that
show the improvement obtained when applying the least-squares minimization
consecutively to the spectral estimation.

1. INTRODUCTION

1.1. Context and motivations. Finite state space hidden Markov models (HMMs
for short) are widely used to model data evolving in time and coming from hetero-
geneous populations. They seem to be reliable models to depict practical situations
in a variety of applications such as economics, genomics, signal processing and im-
age analysis, ecology, environment, speech recognition, to name but a few. From a
statistical view point, finite state space HMMs are stochastic processes (X;,Y;);>1
where (X;);>1 is a Markov chain living in a finite state space and conditionally
on (Xj)j>1 the Y;’s are independent with a distribution depending only on Xj;
and living in ). The observations are Y.y = (Y1,...,Yn) and the associated
states X1.xy = (X1,...,Xn) are unobserved. The parameters of the model are
the initial distribution, the transition matrix of the hidden chain, and the emission
distributions of the observations, that is the probability distributions of the Y;’s
conditionally to X; = x for all possible z’s. In this paper we shall consider station-
ary ergodic HMMs so that the initial distribution is the stationary distribution of
the (ergodic) hidden Markov chain.

Until very recently, asymptotic performances of estimators were proved theoreti-
cally only in the parametric frame (that is, with finitely many unknown parameters).
Though, nonparametric methods for HMMs have been considered in applied pa-
pers, but with no theoretical guarantees, see for instance [CCO00] for voice activity
detection, [LWMO3] for climate state identification, [Lef03] for automatic speech
recognition, [SC09] for facial expression recognition, [VBMMR13]| for methylation
comparison of proteins, [YPRH11] for copy number variants identification in DNA
analysis.

The preliminary obstacle to obtain theoretical results on general finite state space
nonparametric HMMs was to understand when such models are indeed identifiable.
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Marginal distributions of finitely many observations are finite mixtures of products
of the emission distributions. It is clear that identifiability can not be obtained
based on the marginal distribution of only one observation. It is needed, and
it is enough, to consider the marginal distribution of at least three consecutive
observations to get identifiability, see [GCR15], following [AMR09] and [HKZ12].

1.2. Contribution. The aim of our paper is to propose a new approach to estimate
nonparametric HMMs with a statistically optimal and practically tractable method.
We obtain this way nonparametric estimators of the emission distributions that
achieve the minimax rate of estimation in an adaptive setting.

Our perspective is based on estimating the projections of the emission laws onto
nested subspaces of increasing complexity. Our analysis encompasses any family
of nested subspaces of Hilbert spaces and works with a large variety of models.
In this framework one could think to use the spectral estimators as proposed by
[HKZ12, AHK12] in the parametric frame, by extending them to the nonparametric
frame. But a careful analysis of the tradeoff between sampling size and approxi-
mation complexity shows that they do not lead to rate optimal estimators of the
emission densities, see [DCGLC15] for a formal statement and proof. This can be
easily understood. Indeed, the spectral estimators of the emission densities are
computed as functions of the empirical estimator of the marginal distribution of
three consecutive observations on Y3, for which, roughly speaking, when ) is a
subset of R, the optimal rate is N~5/(25%3) N being the number of observations
and s the smoothness of the emission densities. Thus the rate obtained this way
for the emission densities is also N ~%/(25%3) But since those emission densities de-
scribe one dimensional random variables on ), one could hope to be able to obtain
the sharper rate N—%/(2s*1) This is the rate we obtain, up to a log N term, with
our new method. Let us explain how it works.

Using the HMM modeling, and using sieves for the emission densities on ), we
propose a penalized least squares estimator in the model selection frame. We prove
an oracle inequality for the Lo-risk of the estimator of the density of (Y7,Y2,Y3),
see Theorem 2. Since the complexity of the model is that given by the sieves for
the emission densities, this leads, up to a log N term, to the adaptive minimax rate
computed as for the density of only one observation Y; though we estimate the den-
sity of (Y1,Y2,Y3). Roughly speaking, when the observations are one dimensional,
that is when ) is a subset of R, the obtained rate for the density of (Y7, Ya,Ys) is
of order N=/(25+1) up to a log N term, N being the number of observations and s
the smoothness of the emission densities.

The key point is then to be able to go back to the emission densities. This is the
cornerstone of our main result. We prove in Theorem 3 that, under the assumption
[HD] defined in Section 4.2, the quadratic risk for the density of (Y7,Y2,Y3) is
lower bounded by some positive constant multiplied by the quadratic risk for the
emission densities. This appropriate assumption is generically satisfied in the sense
that it holds for all possible emission densities for which the Ls-norms and Hilbert
dot products do not lie on a particular algebraic surface with coefficients depending
on the transition matrix of the hidden chain. Moreover, we prove that, when the
number of hidden states equals two, this appropriate assumption is always verified
when the two emission densities are distinct, see Lemma 2.

Our methodology requires that we have a preliminary estimator of the transition
matrix. To get such an estimator, it is possible to use spectral methods. Thus
our approach is the following. First, get a preliminary estimator of the initial
distribution and the transition matrix of the hidden chain. Second, apply penalized
least squares estimation on the density of three consecutive observations, using
HMM modeling, model selection on the emission densities, and initial distribution
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and stationary matrix of the hidden chain set at the estimated value. This gives
emission density estimators which have minimax adaptive rate, as our main result
states, see Theorem 4. A simplified version of this theorem can be given as follows.

Theorem 1 — Assume (Y;);>1 is a Hidden Markov chain on R, with latent
Markov chain (X;)j>1 with K possible values and true transition matriz Q*. De-
note fr the density of Yy, given X, = k, for k = 1,...,K. Assume the true
transition matriz Q* is full rank and the true emission densities ff, k=1,..., K
are linearly independent, with smoothness s. Assume that [HD] holds true. Then,
up to label switching, for N the number of observations large enough, the estimators
Q, fk, k=1,..., K built in Section 3 and 5 enjoy

EflQ - Q] = oM,

N
p log N
B[ - ] = 0[5~
Moreover, since the family of sieves we consider is that given by finite dimensional
spaces described by an orthonormal basis, we are able to use the spectral estimators
of the coefficients of the densities as initial points in the least squares minimization.
This is important since, in the HMM framework, least squares minimization does
not have an explicit solution and may lead to several local minima. However, since
the spectral estimates are proved to be consistent, we may be confident that their
use as initial point is enough. Simulations indeed confirm this point.
To conclude we claim that our results support a powerful new approach to es-
timate, for the first time, nonparametric HMMs with a statistically optimal and
practically tractable method.

1.3. Related works. The papers [AMR09]|, [HKZ12| and [AHK12] paved the way
to obtain identifiability under reasonable assumptions. In [AHK12| the authors
point out a structural link between multivariate mixtures with conditionally in-
dependent observations and finite state space HMMs. In [HKZ12] the authors
propose a spectral method to estimate all parameters for finite state space HMMs
(with finitely many observations), under the assumption that the transition ma-
trix of the hidden chain is non singular, and that the (finitely valued) emission
distributions are linearly independent. Extension to emission distributions on any
space, under the linear independence assumptions (and keeping the assumption of
non singularity of the transition matrix), allowed to prove the general identifia-
bility result for finite state space HMMs, see [GCR15], where also model selection
likelihood methods and nonparametric kernel methods are proposed to get nonpara-
metric estimators. Let us notice also [Ver15] that proves theoretical consistency of
the posterior in nonparametric Bayesian methods for finite state space HMMs with
adequate assumptions. Later, [AH14] obtained identifiability when the emission
distributions are all distinct (not necessarily linearly independent) and still when
the transition matrix of the hidden chain is full rank. In the nonparametric multi-
variate mixture model, [SADX14| prove that any linear functional of the emission
distributions may be estimated with parametric rate of convergence in the context
of reproducing kernel Hilbert spaces. The latter uses spectral methods, not the
same but similar to the ones proposed in [HKZ12] and [AHK12].

Recent papers that contain theoretical results on different kinds of nonparametric
HMDMs are [GR13], where the emitted distributions are translated of each other,
and [DL12] in which the authors consider regression models with hidden regressor
variables that can be Markovian on a continuous state space.

]T)k:1K

1.4. Outline of the paper. In Section 2, we set the notations, the model we
shall study, and the assumptions we shall consider. We then state an identifiability
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Lemma that will be useful for our estimation method. In Sections 3 and 4 we give
our main results. We explain the penalized least-squares estimation method in Sec-
tion 3, and we prove in Section 4 that, when the transition matrix is irreducible and
aperiodic, when the emission distributions are linearly independent and the penalty
is adequately chosen, then, under a generic assumption, the penalized least squares
estimator is asymptotically minimax adaptive up to a log N term, see Theorem 4
and Corollary 2. For this, we first prove an oracle inequality for the estimation of
the density of (Y1, Ya,Y3), see Theorem 2, then we prove the key result relating the
risk of the density of (Y7,Y2,Y3) to that of the emission densities, see Theorem 3.
The latter holds under a generic assumption which we prove to be always verified
in case K = 2, see Lemma 2. Finally, we need the performances of the spectral es-
timator of the transition matrix and of the stationary distribution which are given
in Section 5, see Theorem 5, proved in [DCGLC15]. We finally present simula-
tions in Section 6 to illustrate our theoretical results. Those simulations show in
particular the improvement obtained when applying the least-squares minimization
consecutively to the spectral estimation. Detailed proofs are given in Section 7.

2. NOTATIONS AND ASSUMPTIONS

2.1. Nonparametric Hidden Markov Model. Let K, D be positive integers
and let £ be the Lebesgue measure on R”. Denote by X the set {1,..., K} of
hidden states, )V C RP the observation space, and Ag the space of probability
measures on X identified to the (K — 1)-dimensional simplex. Let (X,,),>1 be
a Markov chain on X with K x K transition matrix Q* and initial distribution
7" € Ag. Let (Yy,)n>1 be a sequence of observed random variables on ). Assume
that, conditional on (X, ),>1, the observations (Y,),>1 are independent and, for
all n € N, the distribution of Y;, depends only on X,,. Denote by uj, the conditional
law of ¥;, conditional on {X,, = k}, and assume that ;i has density f} with respect
to the measure £P on Y:

Vke X, duf= frdcP.
Denote by §* = {fy,..., fi} the set of emission densities with respect to the

Lebesgue measure. Then, for any integer n, the distribution of (Y3,...,Y},) has
density with respect to (£LP)®"
K
> T R)Q (ki ko) o Q (k1 n) f, (1) - I, (yn)-
E1yeokn=1

We shall denote ¢g* the density of (Y7, Ya,Y3).

In this paper we shall address two observations schemes. We shall consider NV
ii.d. samples (Yl(s), YQ(S), Y3(S))§V:1 of three consecutive observations (Scenario A)
or consecutive observations of the same chain (Scenario B):

Vse{l,....N}, (O v Vi) = (V, Yes1, Vasa) .

2.2. Projections of the population joint laws. Denote by (L2(Y, L), | 2)
the Hilbert space of square integrable functions on ) with respect to the Lebesgue
measure £P equipped with the usual inner product (-,-) on L2(Y, £”). Assume
I Cc L2y, LP).

Let (M, )r>1 be an increasing sequence of integers, and let (Pas.)r>1 be a se-
quence of nested subspaces such that their union is dense in L?(Y, £P). Let @y, :=
{¢1,.-.,¢n, } be an orthonormal basis of By, . Recall that for all f € L2(), LP),

M,

(1) Tlggo <fa Sﬁm>90m =f,
m=1
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in L2(Y, £L"). Note that changing M, may change all functions ¢,,, 1 < m < M,
in the basis @y, , which we shall not indicate in the notation for sake of readability.
Also, we drop the dependence on r and write M instead of M,.. Define the projection
of the emission laws onto B, by

M
VEEX, firri= D om)em
m=1

We shall write 3, := (fi;1,---, firx) and £* = (ff,..., fi) throughout this
paper.

Remark — One can consider the following standard examples:

(Spline) The space of piecewise polynomials of degree bounded by d, based on the
regular partition with pP regular pieces on Y = [0,1]P. It holds that M, =
(d, +1)PpP.
(Trig.) The space of real trigonometric polynomials on Y = [0,1]° with degree less
than r. It holds that M, = (2r + 1)P.
(Wav.) A wavelet basis @y, of scale 7 on' Y = [0,1]P, see [Mey92|. It holds that
M, =20+DD,

2.3. Assumptions. We shall use the following assumptions on the hidden chain.

[H1] The transition matric Q* has full rank,

[H2] The Markov chain (X,)n>1 is @rreducible and aperiodic,

[H3] The initial distribution m* = (7%,..., 7)) is the stationary distribution
Notice that under [H1], [H2] and [H3], one has

Vke X, mp>mh, >0.

We shall use the following assumption on the emission densities.
[H4] The family of emission densities §* := {f7,..., [} } is linearly independent.
Those assumptions appear in spectral methods, see for instance [HKZ12, AHK12|,
and in identifiability issues, see for instance [AMR09, GCR15, AH14].

2.4. Identifiability lemma. For any f = (fi,..., fx) € (LY, £P))X and any
irreducible transition matrix Q, denote g@f : 3 — R the function given by
K

2 g¥ y2ys) = D wlk)Q(k, k2)QUka, ks) fr, (y1) Fro (y2) fis (us),

E1,ka,ka=1
where 7 is the stationary distribution of Q. When Q = Q* and f = f*, we get
gQf" = g*. When f1,..., fx are probability densities on Y, g is the probability
distribution of three consecutive observations of a stationary HMM. We now state
a lemma that gathers all what we need about identifiability.

For any transition matrix Q, let Tq be the set of permutations 7 such that for
all 4 and j, Q(7(i),7(j)) = Q(¢,7). The permutations in Tq describe how the
states of the Markov chain may be permuted without changing the distribution
of the whole chain: for any 7 in Tq, (7(Xn))n>1 has the same distribution as
(Xn)n>1. Since the hidden chain is not observed, if the emission distributions are
permuted using 7, we get the same HMM. In other words, if f7 = (f(1),..., fr(x))s
then ¢gQf" = ¢gf. Since identifiability up to permutation of the hidden states is
obtained from the marginal distribution of three consecutive observations, we get
the following lemma whose detailed proof is given in Section 7.1.

Lemma 1 — Assume that Q is a transition matriz for which [H1] and [H2]
hold. Assume that [H4] holds. Then for any h € (L%(Y, L)X,

gQF B — gQF — 37 € Tq such that h; = frpy—fHi=1... K
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In particular, if Tq reduces to the identity permutation,

gt — QT oy = 0,...,0).

3. THE PENALIZED LEAST-SQUARES ESTIMATOR

In this section we shall estimate the emission densities using the so-called pe-
nalized least squares method. Here, the least squares adjustment is made on the
density g* of (Y1, Ya,Y3). Starting from the operator I': ¢~ ||t — g*||3 — [|g*||3 =
1£]13 — 2 [ tg* which is minimum for the target g*, we introduce the corresponding

empirical contrast yy. Namely, for any ¢ € L?()?, £D®3), set

N
2
w () = I - % D t(Z0),
s=1

with Z := (Y7°,Y5,Ys) (Scenario A) or Z, := (Y;,Ys11,Ys42) (Scenario B).
As N tends to infinity, yn (t) — vx (¢*) converges almost surely to ||t — ¢*||3, thus
the name least squares contrast function. A natural estimator is then a function ¢
such that vy (t) is minimum over a judicious approximation space which is a set
of functions of form ¢@f, Q a transition matrix and f € FX, for F a subset of
L2(J}, ED). We thus define a whole collection of estimates Gp;, each M indexing
an approximation subspace (also called model). Considering (2) we shall introduce
a collection of model of functions by projection of possible f’s on the subspaces
(Bas) - Thus, for any irreducible transition matrix Q with stationary distribution
7, we define S(Q, M) as the set of functions g@f such that f € FX and, for each
k=1,..., K, there exists (amk)1<m<m € RM such that

M
fk = Z Am, kPm -
m=1

We now assume that we have in hand an estimator Q of Q*. For instance, one
can use a spectral estimator, we recall such a construction in Section 5. Then,
(S(Q, M)y is the collection of models we use for the least squares minimization.
For any M, define gps as a minimizer of yy(¢) for ¢t € S(Q, M). Then gy can be
written as .

gu = gt
with f’M € FK and

M
vk = Z am kPm, k=1,..., K
m=1
for some (Gm k)1<m<m € RM, k = 1,... K. It then remains to select the best
model, that is to choose M which minimizes ||Gas — ¢*]|3 — ||g*||3. This quantity
is close to vn(gar), but we need to take into account the deviations of the process
I' — vn. Then we rather minimize vy (gas) + pen(N, M) where pen(N, M) is a
penalty term to be specified. Our final estimator will be a penalized least squares
estimator. For this purpose we set a penalty function pen(N, M) and choose
M =arg min  {yn(gn)+ pen(N, M)}.
Notice that, with N observations, we consider N subspaces as candidates for model
selection. Then the estimator of g* is § = g,;, and the estimator of f* is fi= f‘M

so that g = ngf.

The least squares estimator does not have an explicit form such as in usual non-
parametric estimation, so that one has to use numerical minimization algorithms.
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As initial point of the minimization algorithm, we shall use the spectral estima-
tor, see Section 6 for more details. Since the spectral estimator is consistent, see
[DCGLC15], the algorithm does not suffer from initialization problems.

4. ADAPTIVE ESTIMATION OF THE EMISSION DISTRIBUTIONS

4.1. Oracle inequality for the estimation of g*. We now fix a bounded subset
F of L2(Y, £P), and we shall use the following assumption:

[HF] F is a closed bounded subset of L2(Y,LP) such that: for any f € F,
[ fdLP =1 and ||f|lx < Cr oo for some fived Cr o > 0.

We denote Cr 2 = supye £ || fl|2 < oo

Our first main result is an oracle inequality for the estimation of g* which is
stated below and proved in Section 7.2. We denote by G the set of permutations
of {1,...,K}. When a is a vector, ||a||2 denotes its euclidian norm, when A is a
matrix, ||A]|r denotes its Frobenius norm and ||A|| its operator norm.

Theorem 2 — Assume [H1]-[H4] and [HF]. Assume also £* € FX, and for
all M, £5, € FX. Then, there exists positive constants No, p* and A} (depending
on Cr o and Cr o (Scenario B) or on Q*, Cr 2 and Cr o (Scenario A)) such
that, if

,Mlog N

N, M) >
pen(N, M) > o =

then for all x > 0, for all N > Ny, one has with probability 1 — (e — 1)~ te™%, for
any permutation T € Sk,

. « . % * pr L X
lg—g"13 < 6inf {llg" — g% I3 + pen(, M)} + A7

+18C% 5 (2/1Q* — P-QNP] |7 + [I7* — B #3).
Here, P, is the permutation matriz associated to T.

The important fact in this oracle inequality is that the minimal possible penalty
is of order M/N (up to logarithmic terms) and not M3/N as is usually the case
when estimating a joint density of three random variables, so that we get a minimax
rate adaptive estimator of g*.

4.2. Main result. The problem is now to deduce from Theorem 2 a result on
lfr — ka%, k =1,...,K. This is the cornerstone of our work: we prove that,
under a generic assumption on the parameters of the unknown HMM, a direct
lower bound links, up to some positive constant, [|§—g*||2 to >3, || fF — fxl|3. Let
us now describe the assumption and comment on its genericity.

For any f € FK | define G(f) the K x K matrix with coefficients G(f); ; = (fi, f;),
i,7=1,..., K. Notice that under the assumption [H4], G(f*) is positive definite.
Let Q be a transition matrix verifying [H1]-[H2] and let Ag be the diagonal
matrix having the stationary distribution of Q on the diagonal. We shall now
define a quadratic form with coefficients depending on Q and G(f). If U isa K x K
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matrix such that Ulxg =0,
K
> {(@"4uG(n)U" 40Q), ,(G(D), ,(QG(HQT), |
i,j=1

+(QT4gG(F)40Q), . (UGH)UT), .(QG(HQT),
+(Q740G(MA40Q), , (G(D), ,(QUGHUTQT), .}
+2) {(Q"4qUG(1)40Q), ,(UG(D), (QG(1)Q"),,

(2]

+(Q"AQUG(1)40Q), , (QUGHQT) ,(G(F),
+(UG(), ,(QUAHQT),,(QT4eG(1)A0Q), , |

defines a semidefinite positive quadratic form D in the coefficients U; ;, i =1, ..., K,
j=1,...,K — 1. The determinant of this quadratic form is a polynomial in the
coefficients of the matrices Q, Ag and G(f). Since the coefficients of Ag are rational
functions of the coefficients of the matrix Q, this determinant is also a rational
function of the coefficients of the matrices Q and G(f). Define H(Q, G(f)) the
numerator of the determinant. Then H(Q, G(f)) is a polynomial in the coefficients
of the matrices Q and G(f). Our assumption will be:

~— —

[HD] H(Q* G(f")) #0.
Since H is a polynomial function of Q7;, i = 1,....K, j = 1,...,K — 1, and
(ff£,f5), i,5 = 1,..., K, the assumption [HD] is generically satisfied. We have
been able to prove that Assumption [HD] always holds in the case K = 2. We
were only able to prove this result by brute force, it is given in Section 7.4 and

Appendix B.

Lemma 2 — Assume K = 2. Then for all Q* and £* such that [H1]-[H4]
hold, H(Q*,G(f*)) > 0.

Notice now that, when [HD] and [H1]-[H3] hold, it is possible to define a
compact neighborhood V of Q* such that, for all Q € V, H(Q,G(f*)) # 0 and
[H1]-[H3] hold for Q.

K . *
For any h € (L3(Y,£P))", define |[h]3 = mlnTGTQ{Zszl |\ + f7 — fT(k)H%}.
We may now state the theorem which is the cornerstone of our main result.

Theorem 3 — Assume [H1]-[H4] and [HD]. Let K be a closed bounded subset
of (L2(V,LP))" such that if h € K, then [h;dCP =0, i=1,...,K. LetV be
a compact neighborhood of Q* such that, for all Q € V, H(Q,G(f*)) # 0 and
[H1]-[H3] holds for Q. Then there exists a positive constant c¢(IC,V,F*) such that

Vh € K, VQ € V, [[gQ@F P — g |1, > (K, V,§)||h| q.

This theorem is proved in Section 7.3.

We are now ready to prove our main result on the penalized least squares esti-
mator of the emission densities. The following theorem gives an oracle inequality
for the estimators of the emission distributions provided the penalty is adequately
chosen.

Theorem 4 (Adaptive estimation) — Assume [H1]-[H4|, [HF] and [HD].
Assume also that for all M, 5, € FX. Let V be a compact neighborhood of Q*
such that, for allQ € V, H(Q, G(f*)) # 0 and [H1]-[H3] holds for Q. Then, there
exists a positive constant A* (depending on V, f*, Cr 2 and Cr ) and positive
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constants Ny and p* (depending on Cr o and Cr o (Scenario A) or on Q*, Cr o
and Cr o (Scenario B)) such that, if

,Mlog N

pen(N, M) = p*—

then for all x > 0, for all N > Ny, for any permutation Ty € Sk, with probability
larger than 1 — (e — 1) te™® — P (]P’TN QP?N ¢ V),

K K
;Hfzi—fmk)H% <A ilfgff{gﬁi—f&,k|§+pen(N,M)}

A . T
Q" — Pry QP |3+ — Pry 3+

Remark — As usual in HMM or mixture model estimation, it is only possible
to estimate the model up to label switching of the hidden states, this is the meaning
of the permutation T .

Remark — An important consequence of the theorem is that a right choice of
the penalty leads to a rate minimax adaptive estimator up to a log N term, see
Corollary 1 below. For this purpose, one has to choose an estimator Q of Q* which
is, up to label switching, consistent with controlled rate. One possible choice is a
spectral estimator.

Proof. Let K = {h =f — f* f € FX}. Using Theorem 2 we get that for all 2 > 0,
for all N > Ny, with probability 1 — (e —1)~te™?, one has for any permutation 7y,

N . * * ‘T
®  la-g' B < 6inr g — 93+ pen(N M)} + AT
+18C%, (11Q" = Pry QP13 + 7 — Pr, #3)

Notice that writing

K

Gyays) = Y (Pryd) (k) (Pry QP ) (k1 ko) (Pry QP ) (o, ks)
k1,ko,ks=1

X Fone (o) (Y1) Fn () (Y2) Frn () (¥3)

and applying Theorem 3 we get, on the event Pz, Q]P’;N € V, that there exists

T E TP’_'N Qs such that

K
~ 1 . ADT  ex
* 2 ~ Pz QP;— 1712
> Uz~ Fraiwll € pegalld — 87 R I

k=1

Define 7y = 7x o7~ L. Since 7 € Ty, qp,, We get that P;, QPz, = P,, QP,, and
P:,m =P, 7, and the previous equation rewrites

K
~ 1 Am T *

2 o Pry QP f7)12

(4) 1;—1 & = frvanllz < WHQ —g N s

Now by the triangular inequality

N P, QP f* N *px P, QP f*
(5) 1§ —g" Ty < 1§ — g¥ll2 + 199 — gt ¥ T
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We have

* gk Pq— APT 7f*
(QQ g ~Qry ) (Y1,y2,y3) =
K

> (T R)Q (ks ko) Q (k) = (Broy ) (ky)(Pry QBT ) (k1 ko) (B QP ) (k)
k1 ko, kz=1

X f;; (y1>fl:2 (y2)f1:3 (y3)-

Thus by Cauchy-Schwarz
997" — g ¥en T <
K

S (7 k)Q (ki k) Q7 hay ka) — (Bry ) (k1) (Pry QBT (ki o) (Pry QB ) (k. ) )

k1,k2,k3=1

2

X S ) w2)  f, (ys)? | AL (y1)dLP (y2)dLP (ys)

k1 ko, k3=1
K . . 2
SKCEy 3 (R 0)Q (k1 ko) Q (a, k) — (Pry ) (1) (Pry QPT, ) (ki ) (Pry QP ) (ks )
kl,kQ,kgzl
K
<BKCE, N [ (k) = Py A (1)) Q7 (s K2)?Q (i K
k1,k2,ks=1

+(Pry %) (k1)? (Q*(kh kg) — (]P’TNQIPIN)(kl, kQ))Q Q* (ka, k3)?
(Pry %) (k1) 2 (Pry QP ) (1, ko) (Q*(kfza ks) — (Pry QP ) (Ko, k3))2]

so that
(6) .
lg@" " = gF Y |y < VBKY2CE, [[In — Pry e +211Q° — Pry QP I

In the same way,

(g* —~ gQ*’f;f) (y1,92,Y3) =
K

Yo m(k)Q (kr ko) Q* (ko k) (F7, (W) f7, (92) £, (03) = Far (W0 Fir ks (y2) Fir g, (45))

ki1,ka2,ks=1

so that
lg* — @ F ||y < VBK32CH ymax{||fi — farplla k=1,... . K}.

Thus collecting (3), (4), (5), (6) and with an appropriate choice of A* we get
Theorem 4. g

To apply Theorem 4 one has to choose an estimator Q with controlled behav-
ior, to be able to evaluate the probability of the event P, QIP’TN € V and the
rate of convergence of P, QIP’TN and P, 7. One possibility is to use the spec-
tral estimator described in Section 5. To get the following result, we propose to

use the spectral estimator with, for each N, the dimension My chosen such that
n3(@ary) = O((log N)1/*) (see Section 5).
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Corollary 1 — With this choice of Q, under the assumptions of Theorem 4 ,
there exists a sequence of permutations Ty € Sk such that as N tends to infinity,

K K log N
; If = Frvawll3] =0 (Ar;f {; Lf = faar all3 + pen(N, M’)} + T) :

Thus, choosing pen(N, M) = pMlog N/N for a large p leads to the minimax
asymptotic rate of convergence up to a power of log N. Indeed, standard results in
approximation theory [DL93] show that one can upper bound the approximation
error || f7 — fis xll2 by O(M~7) where s > 0 denotes a regularity parameter. Then

the trade-off is obtained for MB ~ (N/log N )ﬁ, which leads to the quasi-
optimal rate (N/log N )~ Z+D for the non parametric estimation when the minimal
smoothness of the emission densities is s. Notice that the algorithm automatically
selects the best M leading to this rate.

To implement the estimator, it remains to choose a value for p in the penalty.
The calibration of this parameter is a classical issue and could be the subject of a
full paper. In practice one can use the slope heuristic [BMM12].

E

Proof. We shall apply Theorem 5 where, for each N, we define dy such that
(—logdn)/63 = (log N)'/2. Notice first that dx goes to 0 and that My tends
to infinity as N tends to infinity, so that for large enough N, My > Mz+. By
denoting 7 the a7, given by Theorem 5 we get that for all x > z(Q*), for all
N > N(Q*,3")xlog N, with probability 1 —[4 + (e — 1)~ !]e™* — 26,

log N
og\/z

7" = Pria< C(Q", 37y 2o

and
log N

NV

1Q* — P, QP [I< C(Q*.3")
We first obtain that

. N X A
limsup E [@HQ PTNQ]P)ZNHQ] <

N—+o00
V-
C(Q 5 )ViE N

+oo R
C(Q*,5) / lim sup P P QPY, ||> ﬁ) dz <
0

N—+o00
“+oo
C(Q*,§)%=(Q") + C(Q*,%*)Q/ [4+ (e —1)"Ye ®dx < +o0
z(Q*)
so that oo N
* AT (12| og
B[l - P QP 1] =0 (<5Y).
Similarly,

E [||7* — Py]?] = O (IOESVN) .

We also obtain, by taking x = N/(log N)*/4, that
lim sup P (IP’TN QP?N ¢ V) =0,
N ——+oc0

so that, using Theorem 4, we get

N
limsupP | —
N%Jrog (A*

K K
kZlf;ifTN<k>|§i}\lj{;llf;?fz*w,klngrpen(N,M)}
=1 =1

* A * ~ X 1 —z
Q" Py QP [=lln" —Pryili+<| 2 0) < (e— 1),
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Thus, by integration and the previous results, Corollary 1 follows. O

5. NONPARAMETRIC SPECTRAL METHOD

This section is devoted to a short description of the nonparametric spectral
method for sake of completeness: we describe the algorithm, and give the results
we need to support the use of spectral estimators to initialize our algorithm. A
detailed study of the nonparametric spectral method is given in [DCGLC15].

The following procedure (see Algorithm 1) describes a tractable approach to esti-
mate the transition matrix in a way that can be used for the penalized least squares
estimator of the emission densities, and also for the estimation of the projections
of the emission densities that may be used to initialize the least squares algorithm.
The procedure is based on recent developments in parametric estimation of HMMs.
For each fixed M, we estimate the projection of the emission distributions on the
basis ®j; using the spectral method proposed in [AHK12|. As the authors of the
latter paper explain, this allows further to estimate the transition matrix (we use
a modified version of their estimator), and we set the estimator of the stationary
distribution as the stationary distribution of the estimator of the transition matrix.
The computation of those estimators is particularly simple: it is based on one SVD,
some matrix inversions and one diagonalization. One can prove, with overwhelming
probability, all matrix inversions and the diagonalization can be done rightfully, see
[DCGLC15]. In the following, when A is a (p x ¢) matrix with p > ¢, AT denotes the
transpose matrix of A, A(k,!l) its (k,l)th entry, A(.,l) its {th column and A(k,.)
its kth line. When v is a vector of size p, we denote by Diag[v] the diagonal matrix
with diagonal entries v; and, by abuse of notation, Diag[v] = Diag[vT].

We now state a result which allows to derive the asymptotic properties of the
spectral estimators. Let us define

M
m(@a) = sup > (pay)ee(y2)pe(ys) — 0a(yl) o (ya)pe(yh)*.
y,y' €Y3 abe=1
Note that in the examples (Spline), (Trig.) and (Wav.) we have:
13(r) < Cy M
where C;, > 0 is a constant. The following Theorem is proved in [DCGLC15].

Theorem 5 (Spectral estimators) — Assume [H1]|-[H4]. Then, there exist
positive constant numbers Mg, ©(Q*), C(Q*,§*) and N(Q*,F*) such that the
following holds. For any x > x(Q*), for any § € (0,1), for any M > Mgz, there
erists a permutation Tyr € Sk such that the spectral method estimators fM,k, T and
Q enjoy: for any N > N(Q*,§)ns(®ar)2a(—1log ) /62, with probability greater
than 1 — 26 — 4e™ 7%,

vz,

A —log d n3(®
it~ Pl < C(Q1,§1) Y280 (00

VN
Vv —1og 0 n3(Par)
6 VN
V—log 0 n3(Par)
6 VN

6. NUMERICAL EXPERIMENTS

||7r*71[1}"'1%7%”2 SC(Q*vg*) \/Ev

1Q* — P, QP || <C(Q*,F") VT .

In this section we show numerical experiments on the performances of the adap-
tive estimation method studied in this paper. We recall that the experimenter
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Algorithm 1: Nonparametric spectral estimation of the transition matrix and
the emission laws
Data: An observed chain (Y7, ...,Yy) and a number of hidden states K.

Result: Spectral estimators #, Q and (fark)kex-

[Step 1] Consider the following empirical estimators: For any a, b, ¢ in

{1,..., M},
1 N
Lur(a) = 5 > eaY{V),

s=1

1 N
Mas(a,b,e) = g 2a (V) (Y3 )) e (V5.
1 N
Nu(a:b) i= 7 3 ¢aiV)en(%7).

=1
N

1 S S
7 2 Pa(Mec(¥5).
s=1

and Py (a,c) :

[Step 2] Let U be the M x K matrix of orthonormal right singular vectors of
P s corresponding to its top K singular values.
[Step 3] Form the matrices:

voe{1,...,M}, B():=(UTP,U) U Mpy(.,b.)0.

[Step 4] Set © a (K x K) random unitary matrix uniformly drawn and form the

matrices:
Vke{l,...,K}, C(k):=) (UO)(bk)B(b).
b=1

[Step 5] Compute R a (K x K) unit Euclidean norm columns matrix that
diagonalizes the matrix C(1):

R™IC(1)R = Diag[(A(1,1),..., A1, K))].
[Step 6] Set:
Vi, k' e X, Ak, K):= R ICk)R)K, L),
and OM .= UOA. . R
[Step 7] Consider the emission laws estimator f := (farx)rer defined by:
M

Vk € X, fM,k = Z O]u(m, k)(pm,

m=1
[Step 8] Set
T = (IAJTOM)ilﬂT]Z]w.
[Step 9] Consider the transition matrix estimator:
A AT A =l A s ]
Q =Ty (07 OnDiagl#]) 'O N, U(04,0) 7).
where IITy denotes the projection (with respect to the scalar product

given by the Frobenius norm) onto the convex set of transition matrices,
and define 7 as the stationary distribution of Q.

knows nothing about the underlying hidden Markov model but the number of hid-
den states K. In this set of experiments, we consider the regular histogram basis
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for estimating K = 2 emission laws given by beta laws of parameters (2,5) and
(4, 3) from a single chain of size N = 30, 000.

Our method is based on the computation of least squares estimators gy, defined
as minimizers of the empirical contrast yy. Since the function vy is non-convex,
we use an iterative algorithm to search for the minimum of vy (see below) with the
sarting point given by the spectral estimator.

Then, we compute the adaptive choice of the size of the model, namely

M =arg min {yx(dar) +pen(N, M)} .

Interestingly, we are able to apply the slope heuristic procedure in the nonpara-
metric HMM’s frame. This compelling data-driven procedure allows us to tune
the penalty appearing in our estimator. More precisely, typical behaviors of the
function M +— ~(gar) and the function p — argmin{~y(ga) + ppen(N, M)} usher
the experimenter to the right tuning parameter, an interested reader may consult
[BMM12].

Hence we compute gp; for each M =1,..., N as follows

e First compute the spectral estimator. This is straightforward using the
procedure described by [Step1-9], Section 5. In particular, the spectral es-
timator gives an estimation Q, 7 of the transition matrix and its stationary
distribution which is used to compute the least squares contrast function.

e Use the spectral estimator of the emission densities as a starting point
for “Covariance Matrix Adaptation Evolution Strategy” (CMA-ES), see
[Han06]. This iterative algorithm may ultimately find a local/global mini-
mum of the contrast function.

Note that the size M of the projection space for the spectral estimator has been
set as the one chosen by the slope heuristic for the least squares estimators.

Variance

0021~ —+— Spectral method
—o— Empirical Contrast method
1 ! 1 1 1 1 !
12 14 16 18 20 22 24 26 28

FiGURE 1. Comparison of the variances of the spectral and the
least squares estimators.

A first numerical experiment, depicted in Figure 1, compares, for each M, the
variances (i.e. the ¢o-distance between the estimator and the orthogonal projection
onto the subspace generated by the basis ®,;) obtained by the spectral method and
the empirical least squares method over 100 iterations on chains of length 40, 000.
It consolidates the idea that the least square method significantly improves the
lo-distance to the best approximation of the emission laws. Indeed, even for small
values of M, one may see that the variance is divided by two in Figure 1.

One can see on Figure 2 that our method also qualitatively improve upon the
spectral method.
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i
25 25

7«&‘ J —— True density
i

-~ ~L2 projection
—=— Spectral method
Empirical Contrast method

05

01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 08 1

FIGURE 2. Estimators of the emissions densities.

DISCUSSION

We have proposed a penalized least squares method to estimate the emission
densities of the hidden chain when the transition matrix of the hidden chain is
full rank and the emission probability distributions are linearly independent. The
algorithm may be initialized using spectral estimators. The obtained estimators
are adaptive rate optimal up to a log factor, where adaptivity is upon the family of
emission densities. The results hold under a generic assumption of the parameter.
We have proved that this generic assumption is always verified when there are two
hidden states. A natural question is to ask if, when the number of hidden states is
K > 2, this assumption is also always verified. The proof for K = 2 appeared to
be surprisingly hard.

Another question arising from this work is whether it is possible to adapt to
different smoothnesses of the emission densities.

7. PROOFS
7.1. Proof of lemma 1. In [HKZ12| it is proved that when [H1], [H2], [H3]
hold and when the rank of the matrix O = ((@m, f})i<m<m,i<k<k is K, the

knowledge of the tensor M s given by M/ (a, b, ¢) = E(pa(Y1)ps(Y2)p.(Y3)) for all
a,b,cin {1,..., M} allows to recover Oj; and Q up to relabelling of the hidden
states. Thus, when [H1], [H2], [H3] and [H4] hold, the knowledge of ¢@f" is
equivalent to the knowledge of the sequence (M )y, which allows to recover Q
and the sequence (Ops)as, up to relabelling of the hidden states, which allows to
recover f* = (ff,..., f&) up to relabelling of the hidden states, thanks to (1). See
also [GCR15].

7.2. Proof of Theorem 2. Throughout the proof N is fixed, and we write
(instead of yn) for the contrast function.

7.2.1. Beginning of the proof: algebraic manipulations.
Let us fix some M and some permutation 7. Using the definitions of g and M,
we can write

. - R Q.fF, 4
1(y;) + pen(N, M) < 5(gar) + pen(N, M) < v(g¥-=1) 4 pen(N, M),

where f&,fl = (f]T/I,T*I(l)’ cel fMT,l(K)) (here we use that f&,fl € .FK). But
we can compute for all functions t¢1, ts,

Y(t1) = y(t2) = [It1 — g*ll3—lt2 — g*53—2v(t1 — t2) ,
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where v is the centered empirical process

N
1 S S S *
) = 7 20 v ) - [
This gives

- Q.f5, . Of5 -
(7) g3, — 9" 13< g% — g*|134+20(G 5 — g ™-1) +pen(N, M) —pen(N, M)

Now, we denote Ry, = |Gy — g* |13 the squared risk and By = [|g@ % — g*[|2 a
bias term. We also set Sy = US(Q, M) and

lw(t —g%)| }

Zv = su _—_—
M p{nt—g*n%wif

teSm
for zps to be determined later. Notice that gQ’ff*Ww*I = gPTQPLf@. Then
lg¥ it —g*[5 < 2g@ et — g 342 g — 6|13

2] g QP fir — g T 3428y

IN

But, using Schwarz inequality, ||g@tftr — gQ2fir||2 can be bounded by

M K

Z ‘ Z (m1(k1)Qu (K1, k2) Q1 (Ko, k3) — m2(k1)Qa(k1, k2)Qa(ke, k3))
mi,m2,m3=1 ki,ko,ks=1

2
<fl:1a‘Pm1><fl:2a90mz><fl:3a90ms>
K

< | Y m)Qulkr, ka)Qulke, ky) — ma(kn)Qa(ky, k2)Qa(ke, ka))®

k1,k2,ks=1

M K

2

S| [heem U ema i oma)

mi,m2,m3=1 ky,ka,k3=1

<BK30L, (||m — m)3+2]1Q1 — Q:l3)

so that
A~ £* “ ~
lg¥t —g* I < 6K3CS 5 (P — n° [3+2IP-QPT — Q¥[13) + 2B
Next
N Q.f* A Q.f*
v(gy —g¥ ) = vlag — ") + (gt — g
N Q,fF
< Zylag — g 13+2%) + Zu(lg® B — g*[3+a3))

so that (7) becomes
Ry < 6K°CS, (IB7— = (3420B Q8] — QUI13) + 2B + 22y, (Ry, + %)
+2ZM(6K302‘,2 (Hprﬁ — m*[3+2||P, QP — Q*H%) + 2B + 73;)

+2pen(N, M) — pen(N, M) —pen(N, M),
(24 4Zp)Bas + 2pen(N, M)

+(1+22)0KCY, ([P — 7 |3+2] P, QP — Q°|3)
+2sup(2Zyp a3, — pen(N, M')).
M’

Ry (1=2Zy)

IN
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To conclude it is then sufficient to establish that, with probability larger than
1—(e—1)"te72, it holds

1

sup Zy < - and sup(QZM/ac?W —pen(N, M")) < AE,

M’ 4 M’ N

with A a constant depending only on Q* and f* and not on N, M, z. Thus we will
have, for any M, with probability larger than 1 — (e — 1)"te™%,

1

Sy < 3Bu+2pen(N M) + 2A%

+9C%, (B - = [3-+2][P- QBT — Q*[13)

which is the announced result.
The heart of the proof is then the study of Zj;. We introduce uy; a projection
of g* on Sy and we split Zjs in two terms: Zpr < 4Zn1 + Zar,2 with

[ |v(t — upr) }

1t — UA)4|||§+4$?\4
*

Zp1 = sup

teSm
__vlum—g

lunr — g*[13+27,

AR

Indeed u ;s verifies: for all t € Sy,

luar = g*2< (It = g7l and  [Juar — tll2< 2]t = g7z

7.2.2. Deviation inequality for Zys ».
Bernstein’s inequality (16) for HMMs (see Appendix A) gives, with probability

larger than 1 —e™*:

z

* * * z
uns = 9°)1 < 2326 uas = 9 3l oo + 293 s — o

z

Then, using a? + b% > 2ab, with probability larger than 1 — e~

lv(unpr — g%) 1 z unrlloo 9" loo 2
< 22" |loco —— 4/ — + 2V 2 ——F—F—— — .
- cllg”| eV N * \/_c x2 N

lunr = g*[13+2%, M

But any function ¢ in Sy; can be written

K

t= Z m(k1)Q(k1, k2)Q(k2, k3) fe, @ frs @ fry

ki1,k2,ks=1

with f, € Ffork =1,..., K, so that sup,cg,, [[t]lc< C% . Then, with probability
larger than 1 — e *M ™%

ZMm + 2 v+ 2
Zm2 S V29" |looy f :ﬁé ~ +4V2erC% ;wg N
M M

7.2.3. Deviation inequality for Zys 1.
We shall first study the term sup,cg_|v(t —unr)| where

B, ={t € S, ||t —uprll2< o}
Remark that, for all t € S(Q, M),

K

K
1#13< Z 7 (k1) Q% (K1, k2) Q* (K2, ks) Z C%,C%,C%, < K3C%,
k1,k2,ks=1 ki1,k2,k3=1
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Then, if t € By, ||t — upll2< 0 A 2K3/QC%2. Notice also that for all t € Sy,
[t — unmllw< 2C% . Now Proposition 7 in Appendix A (applied to a countable
dense set in B,) gives that for any measurable set A such that P(A) > 0,

£+ il ! +20J3T*°°1 1
N TN\ p@a) N %\ P

E=VN /0 VH @) A Ndu + (2C% . +2K%2C3 ,)H(o).

Here, for any integrable random variable Z, E4[Z] denotes E[Z1 4]/P(A).
We shall compute E later and find op; and ¢ such that

IEA(sup [v(t —up)|) < C*
teB,

)

and

(8) Vo>ou  E<(1+20%  +2K%2C% )o(0)VN.
(see Section 7.2.4). We then use Lemma 4.23 in [Mas07] to write (for zps > o)
t—un)l C* 50 205’? 00 1
EA <su { il D < C ) oy 10
vesn LTt —unl3+as3, ) = 3, o g F(4)

Finally, Lemma 2.4 in [Mas07] ensures that, with probability 1 — e™#M~%:

(9)
lv(t —unr) . 296M zM+z 2y 2

ZMJ:sup |: SC + C )

teSm Ht - U’]\/1||§+4‘T?\/1 ‘TI\/[ ” 2 N
7.2.4. Computation of the entropy and function ¢.
The definition of H given in Proposition 7 shows that H(4) is bounded by the
classical bracketing entropy for L* distance at point 6/C%  (where C%  bounds
the sup norm of ¢g*): H(J) < H((S/C%OO,SM,LQ). We denote by N(u,S,L?) =
eH(wS.L?) the minimal number of brackets of radius u to cover S. Recall that when
t; and ty are real valued functions, the bracket [t1,t2] is the set of real valued
functions ¢ such that ¢1(-) < ¢(-) < ta(-), and the radius of the bracket is ||ta — t1]|2-
Now, observe that Sy = UQS(Q, M) is a set of mixtures of parametric functions.
Denoting k = (kq, ko, k3), Sy is included in

Z (k) fiy @ fro @ frgy >0, Z k) =1,

fr; € FNSpan(epi,...,om), i =1,2,3} .
Set
A={fi® f2® fs, f; € FNSpan(p1,...,om), i =1,2,3}.
Then following the proof in Appendix A of [BT13|, we can prove
3
Cl K°—1 € K3
2y o (41 € 2
(10) N(s,sM,L>_(€) N (A1)

where C; depends on K and Cr 3. Denote B = F N Span(pi,...,¢on). Let a =
(am)1<m<m € RM and b = (byn)1<m<m € RM such that a,, < by, m=1,..., M.
Foreachm=1,..., M and y € ), let

(1) = Qm if om(y) >0
m\y) = bm otherwise

vm(y) = am + bm - um(y)
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Then, if (¢;m)1<m<am € RM is such that for all m = 1,..., M, ay, < ¢ < by, then

=3 U @om®) < S Crom(y) va o (y) = Ugy ().

Moreover,

M
1025 = Uzl = 1 Y [bm = aml-lomlll3
m=1

2
< M||b— all3
using Cauchy-Schwarz inequality. Thus, one may cover B with brackets of form

[Ug 4, Uz ). Also, for i = 1,2,

a,

M
NTZ 15 <UD b + aml-lomlll3
mi;=1
< 2M(||a]l3 + [1B]3)-
If now for some a’, b* in RM, f; € [UL b Uz bl] t=1,2,3, then

[1® f2® fseV,W]

with
V= Hlln{[]z1 blU;% sz;g,bs, 11,%2,13 € {1,2}}
and
W = maX{U;117b1U;§ b2Ua3 pos 01,%2,73 € {1,2}},
pointwise. Moreover, one can see that
|W — V| < ‘ al,bl — a1 bl i ]I;fleaﬁ 2) ‘ a2 b2 U;g b3
2 1 j j
+ |Ua2,b2 — Ua27b2‘j1,]gl€a{)§,2} ‘Uﬁ,bl . ‘U;§7b3
1
’ ad,b3 Ua3,b3‘ jl,jr2n€aﬁ,2} ‘U 1p1 Uaz b2
S Z’ ai,bi azbl (‘ al,bi ’ Jb])
J#
so that
2 2 1 2 2 2
W-=V]; < 122“%1 pi = Ui b H HUaf,bf 2+HUaj,bj )
£i
< 48M32||b1'fain%H(najn%||bj||§)
i=1 j#i
3 . .
< 192M3CE, > b —a'|3.

=1

Thus one may cover A by covering the ball of radius Cr 5 in R with hypercubes
[a, b], for which ||a||2, ||b]|2 are less than Cr 2. To get a bracket with radius w, it is
enough that [|b* — a*||3 < u?/(576M>C% ,), i = 1,2,3. We finally obtain that

48\/§M3/QC§_.72>31\/I

u

(11) N (u, A, L?) < <
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We deduce from (10) and (11) that
3 3M
o\ K1 48\/3M3/2C%.
N L) < (— [[(————=
(U, SMa ) = ( ) . U B}

and then

’
u

M3/2
H(u, Sy, L?) < (K* — 1)10g(01) +3MK?3log (027)

with Cy depending on K and Cr3. To conclude we use that fog log (%)dx <
o(y/m+ /log (1)), see [BMM12]. Finally we can write for o < M*/2:

/Oa VH(w)du < Csv/Mo <1 + 4 /log (Mj/2)> :

where C3 depends on K, Cr s and Cr . Set

o(z) = Cov/Mx (1 + 1 /log (Mj/2)>

The function ¢ is increasing on |0, M3/?], and ¢(x)/x is decreasing. Moreover

¢(0) > [ v/H(u)du and ©?(0) > 02H (o).

7.2.5. End of the proof, choice of parameters.
As soon as N > C2/M? := Ny, we may define o) as the solution of equation
@(x) = V/Nz2. Then, for all o > oy,

H(o) < @(002)2 < @aﬁ.

This yields, for all o > oy,
E<(1+20%  +2K%2C% ))p(0)VN,

which was required in (8).
Moreover 42(2—% < 20 as soon as xp; > op. Combining (9) and (8), we
M

obtain, with probability 1 — e™*M~%:

o M+ 2 M+ 2
e
XM ‘TMN .TI\/[N

where C** depends on K, Cr 2, CF o, Q*. Now let us choose zp = 671 /o3, + 242

with 6 such that 20 + 62 < (C**)~!/4. This choice entails: x3; > 6~ tops and
z3, > 9_2%. Then with probability 1 — e *M ~%:

ZM S C**

)

Zy < C(0 + 0+ 02).
We now choose 2y = M which implies Y7,/ e = (e — 1)~'. Then, with

probability 1 — (e — 1)~ te™=,

VYM Zy < C*(20 + 92) <

3

A~ =
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v+ 2 M+ 2
OMTM + T/ MN + MN

2
_ M+ 2 ZM+ 2
C**G 1 C** .
<O‘M + N ) + N

and for all M,

ZM.’L'%\/[ S C**

IN

Then, with probability 1 — (e — 1)"te™2, for all M,
2 ok —1_2 -1 M *k (on—1 Z
Zyxy —C <29 oy + (26 +1)—> <C™(207 "+ 1)—.
N N
Then the result is proved as soon as

M
(12) pen(N, M) > 20** (29—1012\4 + (2071 + 1)N) .

It remains to get an upper bound for o,;. Recall that oy, is defined as the solution

of equation C5v Mz (1 + 4/log (MTB')) = +/Nz2. Then we obtain that for some Cj
| M
o < Cy N(l-ﬁ-\/log(N)),

and (12) holds as soon as
M log(N
pen(N, M) > p*ﬂ
for some constant p* depending on Cr 2 and Cr o (Scenario B) or on Q*, Cr o
and Cr ~ (Scenario A).

7.3. Proof of Theorem 3. Denote N(Q, h) = [|g@f +P — ¢Qf"||2. What we want
to prove is that
N(Q,h
ci=c(kK,V,§)%:=  inf 7(9’2 ) >0
Qevhek® [hlg#0 [

Let (Qn, hy,), be a sequence in V x K such that ¢ = lim,, % Let (Q,h) be a
nllq,

limit point (for the weak topology) of the sequence in the weakly compact set V x K
(indeed we can apply Banach-Alaoglu’s theorem since K is bounded and L? can be
identified to its dual). Moreover, note that N(Q, h) and ||h|\?Q are bounded on Vx K
and thus, considering a sub-sequence, we can assume that N(Q,, h,), ||hn||2Q, and

thHQQn converge. Then if 7 is a permutation such that, for some particular ¢, j,
Q(r (i), 7(j)) # Qi j), then for large enough n, Qu(7(i), 7(7)) # Qn(i, ). Thus
limsupTq, C Tq,

n—-+o0o

so that
im [hallq,> lim o

Moreover, since h — |/h||q is strongly convexe and strongly lower semi-continuous
we know that it is weakly lower semi-continuous and it holds

li h > ||h||q.

i [huo> [hlq

Thus if ||h||q## 0, then using Lemma 1

C:M>O.

- 2
i b,
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Consider now the situation where lim, 4o |/hy|q,= 0. In this case, note that
[hllq= 0. If ||h|[g= Z?:l”hk + fr - f:(k)H% for some permutation 7 not equal
to the identity permutation, then exchange the states in the transition matrix
using 7 so that we just have to consider the situation where ”hH?Q: |h||2 with
|Ih||3:= ZkK:1|\hk||§. Then, for large enough n, ||h,|q.= ||h.|3.

Direct computation shows that N(Q,h) is polynomial in the variables Q; ;,
(F55 ) (hiy 7), (hiyhy), 4,5 = 1,..., K, without linear part. Let D(Q,h) de-
note the quadratic part with respect to the variable h. One gets

N(Q,h) = D(Q,h) + O (||h[3)

where the O(:) depends only on f*. Let us first notice that D(:,-) is always non
negative. Indeed, since for all Q € V and all h € (L*(Y, £L”))X one has N(Q,h) >
0, it holds

vQ eV, vh e (LY, £P))K, % +O(Jhll2) > 0,
2

so that, since for all A € R, D(Q, A\h) = A\2D(Q, h),

(13) VQ €V, Vh € (L*(V,£P))%, D(Q,h) > 0.
Then we obtain
) h,
¢=lm D(Qn ).

Indeed in this case for large enough n, Q,(1,2) # Q. (2, 1) so that ||hy||q, = ||hnll2-
We shall now study the function D(Q,a) for a = (a1,...,ax) of form ﬁ with

h € KX. Let u = (u1,...,ux) be such that u;, i = 1,..., K, is the orthogonal
projection of a; on the subspace of L?(Y, LP) orthogonal to f;..., f5. Direct
computation gives that

D(Q,a) = T(Q,u) +D(Q,af u)

where for any Q and u,

K
T(Qu) =) {{(Q"Auw):, (Q"Au)) {7, FF){(QF*):, (QFY);)

+H{(QTAF);, (QTAF);) (ui, ug) (QF)i, (QF))
+H{(QTAF);, (QTAF))(f, £){(Qu)i, (Qu)) -

Here, A = Diag[n] with 7 the stationary distribution of Q. But when Q and A are
full rank, and §* is linearly independent, the matrices

(< i*a f]*>)l7j ) (<(QTAf*)ia (QTAf*)j»iJ ) and (((Qf*)i’ (Qf*)j>)i,j )
are positive definite.

Remark — We shall now use the fact that if B and C are symmetric positive
definite K x K matrices, then the K x K matriz I given by E;; = B;;C; 5,
i,7 = 1,..., K is positive definite. Indeed, let Uy,..., Uk be the eigenvectors
of B with corresponding eigenvalues A1 (B) > -+ > Ag(B) > 0, so that B =
Zfil A (B)UUL. Let also A1 (C) > -+ > Ak (C) > 0 be the eigenvalues of C. Let
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now x € RE. Then
K K

2T Ex = Z ;i B; jC; jrj = Z)\ Z (Ur)i(Ur)iCi
1,7=1 4,J=
K K
> (, i MO (i MB35 (on(U
_ . 2
—(T:IR}_I}’ AT(C))(T:I{}}_I}’K)\T( ))H$|| :

Thus, if R, V, W are the matrices given by, for all i, j = 1,2,
(((QTAF)i, (QTAE);)), (5 ),
(51, (L(QE)i, (QF))),

((QTAf) z,QTAf*>->)- Q)5 (QF);)), 5

and if we denote A(Q) the Imnnnum of their eigenvalues, then A(Q) > 0 and we
have for any u € (L*(), L

rTQu- [ ((QTAH)T(y)V(QTAU)(y) () Waly) + Q)T (1) RIQu) () d(L”) ()
/ (@) (1Q7 Au()*+u) [+ Quy)|?) d(£?) % o)

R
Vi
W,

=

Q)Y (1Q" Aw)e|3+ | ux 3+ ](Qu)xl3)

k=1
Moreover, we have

lim A(Qn) = A(Q) > 0.

n—oo
Let a,, = ﬁ, u,, the orthogonal projection (coordinate by coordinate) of a,, on
the subspace of L2()), L) orthogonal to f5, ..., fr. We get ¢ > A(Q) liminf,, o ||u,]|2
so that in case liminf, o ||uy||2> 0, we get ¢ > 0.
Else, using the subsequence for which lim inf,,_, o ||u, ||2= 0 we have

¢ > liminf D (Q,,a, —u,).
n—oo

We argue now on this subsequence. The sequence (a,, — u,), has coordinates in
the finite dimensional space spanned by f7,..., fx, so that it has a limit point
a = (ai,...,ax), and ¢ > D(Q,a). Since on the subsequence lim,,_,||u,||2= 0,
we get, f ardCP =0,k =1,..., K. Thus there exists a K x K matrix U such that
al’ = U(f*)T and U1y = 0, and computation leads to

D(Q,a) =
Z{(QTAUG*UTAQ) (G, (Q6"QT), .+ (QTAG™AQ), . (UG*UT), . (QG*QT),
4,3

+(QTAG*AQ),, (G*),; (QUGTUTQT), }+2Z{QTAUG*AQ) (UG, (QG"QT),

+HQTAUG AQ), , (QUGQT),  (G*);; +(UGY), ; (QUG*QT) ., (QTAG"AQ), }

with G* the K x K matrix such that (G*);; = (f7, f;),i=1,..., K.

This is the quadratic form D in U;;, ¢ = 1,...,K, j = 1,..., K — 1 defined in
Section 4.2. This quadratic form is non negative, and as soon as it is positive, we
get that ¢ > 0. But the quadratic form D is positive as soon as its determinant is
non zero, that is if and only if H(Q, G(f*)) # 0.
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7.4. Proof of Lemma 2. Here we specialize to the situation where K = 2. In
such a case, f* = (ff, f3), and

1—p* p* )
* __
Q ( q* 17(1*

for some p*, ¢* in [0, 1] for which 0 < p* <1, 0 < ¢* < 1, p* # 1 — ¢*. Now

v=(5 25)

for some real numbers o and 8, and brute force computation gives D(Q,a) =
D102 4 2D1 saf8 + Do 53? with, denoting p = Q(1,2) and ¢ = Q(2,1):

(p+q)*Di 1

DPL o= P81 = B PI = 0+ BP9 + s - 1P
+4p(L = p) (1 =PI +pfssaft + (L= QF) L IS — £
F 2207 = BP0 s + (= ) S5
£ =2 (L= p)f7 +pf5 5 — FD I
LR (aft + (L= ) f5. ff — D 5112
ap(L—p)afi + (L= Q)5 17 — BN = D) fE +pf3 ff — B U 15)
FAQ= )= PSS+ PSS ST — BT 1 = L= D+ S5
Fap{(L— D)+ pfE L — B — BN )F +pS5aft + (- 0f3),
2D
EEDL gt - BIPNR PN -9 + 05 P+ladt + (0 - B 115 - 5P

+4(1 = q)q (1 = p)fF +pf3aft + A=) f3) U5 IO — £

+2(1— @l £ = BIPIL It + (1 —q)f3]12

+2¢2 (1 - p)ff +of3, £ — BN IIFEN?

+2(1— ) ((aff + (1= ) f5. £ = 15))° | fal?

+4g(1— g)laf + (L= )3, £ — B0 = p)fF +pf5. 1 — B £5)
FAglaft + (L= @) f3 1 = U I — BNA =) fE +pfsaff + (L —q)f3)
+A( = q)aft + A=) f5. f1 = I = llafs + A=) 5117,
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and:
% —o(1 —p)allfi — BIPIFIPN - )5+ 03P
+2[pg + (1 —p) (1 — ) (1 = p)ff +pfsaft + (1 —a)f3)) U I — £
+ ({1 =p)ff +pfs.aft + A= QBN I — 1P
+2p(1 = @)lIf — £ IR P a s + (1 — ) f5]1?
+2q(1—p) (L= p)fF +pf5 11 = BN I
+2p(1 - q) (laff + (L= @) f5, 5= B I3
+2pq(afi + (=) fs, f1 — 5)((L=p) T +pf3, fr — f5)(f5 13)
+2(1—p)A —g)aff + (L =) f3, fr — F0QA = p)fE+pf3, 1 — ST £5)
A{(L =) ff +pf3, f1 — I F = IO =) ff + s3]
21— p)afi + (L= f3. f1 = U S — B = D) ff + oSS aft + (1 —a)f5)
+2(1 = )X = p)ff +pfo, f1 =)o, [T = (A=) ff +pf3,aff + (1 —q)f3)
F2plafi + (L= ) f5 [ — FUs I — fllafs + (1 —a) f3]1%
We have:

H(Q,G(f*)) = D11Dy 5 — D7 5.,
We shall now write H(Q, G(f*)) using
U
5205112
for which the range is [1, 00[?x[0, 1[. Doing so, we obtain a polynomial P; in the
variables n1, no, a, p and q.
First observe that, by symmetry,

n1 = [ f{ll2, n2 = [[f3ll2, a

P (n1,n2,a,p,q) = P1 (n2,n1,0a,4,p) -
so that it is sufficient to prove that the polynomial P; is positive on the domain
(14) 1 S n2 S ni,

and0<a<land0<p#gqg<l.
Furthermore, consider the change of variable

g=1-p+d

then we have a polynomial P, in the variables ni, ns, a, p and d which factorizes
with

P21 = a®)dndnd(1 + d - p)®

(14 d)* '
Dividing by this factor, one gets a polynomial P; which is homogeneous of degree
8 in ny and ng, so that one may set ny = 1 and keep b = ns €]0,1] (observe that
we have used (14) to reduce the problem to the domain ny/n; < 1) and obtain a
polynomial P, in the variables b, a, p and d. It remains to prove that Pj is positive
on Dy ={b€]0,1],a € [0,1],p €]0,1[,d €]p — 1,0[U]0, p[}.
Consider now the following change of variables

2 2 2

:#’ a= Yy , p:Z_, and d:(tz)——l,

14 22 14 y? 14 22 (14+12)(1+22)
mapping (z,y, z,t) € R* onto (b,a,p,d) € D5 = {b €]0,1],a € [0,1],p € [0,1],d €
Jp — 1,p[} which contains D4. This change of variables maps P, onto a rational
fraction with positive denominator, namely

L+ A+ ) A+ 221 +2?)°

b



26 Y. DE CASTRO, E. GASSIAT, AND C. LACOUR

So it remains to prove that its numerator Ps, which is polynomial, is positive on R%.
An expression of P5 can be found in Appendix B. Observe that Ps; is polynomial
in 22,92, 22 and t? and there are only three monomials with negative coefficients.
These monomials can be expressed as sum of squares using others monomials,
namely:

o —18x12¢2 + 27212 + 19792124 = 18212 + 9(2% — 25¢2)2 + 1970212¢4,

o —1082192+197021%t4+49528 = 43928 +56 (2 —25¢%)%2 +191421 244 + 442210

o and —1142%¢2 + 9722* + 1914212¢* = 9152 + 57(2? — 25¢2)2 + 1857212t
Thus Ps is equal to 144 more a sum of squares, hence it is positive. This proves
that H(Q,G(f*)) is always positive.

APPENDIX A. CONCENTRATION INEQUALITIES

We first recall results that hold both for (Scenario A) (where we consider

N ii.d. samples (Yl(s)’YQ(s),%(s))év:l of three consecutive observations) and for
(Scenario B) (where we consider consecutive observations of the same chain).
The following proposition is the classical Bernstein’s inequality for (Scenario

A) and is proved in [Paul3], Theorem 2.4, for (Scenario B).

Proposition 6 — Let t be a real valued and measurable bounded function on
V3. Let V = E[t?(Z,)]. There exists a positive constant c* depending only on Q*
such that for all 0 < X\ < 1/(2v/2¢*||t]|o0) -

ANV 22

15 logE ex
(15) s =12V 1o

N
XY (t(Z) — Et(Z,))

so that for all z > 0,

N
(16) P <Z (t(Zs) — Et(Zs)) > 2V2Ne*Va + 2\/§c*|t|oox> <e?

s=1

We now state a deviation inequality, which comes from [Mas07] Theorem 6.8
and Corollary 6.9 for (Scenario A). For (Scenario B) the proof of the following
proposition follows mutatis mutandis from the proof of Theorem 6.8 (and then
Corollary 6.9) in [Mas07] the early first step being equation (15). Recall that when
t; and to are real valued functions, the bracket [t1,%2] is the set of real valued
functions ¢ such that t1(-) < #(-) < ta(-). For any measurable set A such that
P(A) > 0, and any integrable random variable Z, denote E4[Z] = E[Z1 4]/P(A).

Proposition 7 — Let T be some countable class of real valued and measurable
functions on V3. Assume that there exists some positive numbers o and b such that
forallt € T, |[t]|co< b and E[t?(Z1)] < o2.

Assume furthermore that for any positive number §, there exists some finite set Bs
of brackets covering F such that for any bracket [t1,t2] € Bs, ||[t1 — t2]|o< b and
E[(t; —t2)?(Z1)] < 62, Let e10) denote the minimal cardinality of such a covering.
Then, there exists a positive constant C* depending only on Q* such that: for any

measurable set A,
E+ N1 1 + bl L
TRy ) T R

N
E4 <supZ (t(Zs) — Et(zs))> <c*
N
P <Sup > (H(Zs) — Et(Zs)) = C*[E+ oV Nz + bz]) < exp(—x)

teT £
and for all positive number x
teT £
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where

E= \/N/(r VH(u) A Ndu+ (b+ 0)H (o)
0

APPENDIX B. EXPRESSION OF POLYNOMIAL Ps

Computer assisted computations (available on Yohann’s web page) give that:
Ps =

144 - 114 t°2 x°8 - 108 t°2 x~10 - 18 t~2 x~12 +

192 t72 + 128 t74 + 2566 t76 + 176 t~8 + 576 x"2 + 624 t°2 x72 +

672 t~4 x~2 + 1776 t76 x~2 + 1152 t78 x~2 + 972 x74 + 720 t~2 x~4 +
1884 t~4 x~4 + 5496 t~6 x~4 + 3360 t°8 x~4 + 900 x"6 + 264 t~2 x76 +
3556 t~4 x"6 + 9920 t~6 x"6 + 5728 t~8 x"6 + 495 x”8 +

4551 t~4 x~8 + 11424 t°6 x~8 + 6264 t~8 x~8 + 162 x~10 +

3810 t~4 x~10 + 8592 t°6 x~10 + 4512 t~8 x~10 +

27 x~12 + 1979 t74 x~12 + 4120 t°6 x~12 +

2096 t~8 x~12 + 576 t~4 x~14 + 1152 t°6 x~14 + 576 t°8 x~14 +

72 t74 x716 + 144 t76 x"16 + 72 t78 x"16 + 144 y~2 + 480 t~2 y~2 +
784 t~4 y~2 + 704 t76 y~2 + 256 t°8 y~2 + 576 x"2 y~2 +

2064 t72 x72 y©2 + 4192 t74 x72 y~2 + 4496 t76 x72 y~2 +

1792 t°8 x°2 y~2 + 1080 x4 y~2 + 4104 t°2 x~4 y~2 +

10760 t~4 x~4 y~2 + 13528 t~6 x74 y~2 + 5792 t°8 x74 y~2 +

1224 x°6 y°2 + 5016 t°2 x"6 y~2 + 17592 t~4 x~6 y~2 +

25032 t76 x"6 y~2 + 11232 t~8 x~6 y~2 + 900 x"8 y~2 +

4224 t72 x°8 y~2 + 19924 t~4 x~8 y~2 + 30776 t~6 x~8 y~2 +

14176 t~8 x~8 y~2 + 432 x~10 y~2 + 2520 t~2 x~10 y~2 +

15584 t~4 x~10 y~2 + 25336 t~6 x~10 y~2 + 11840 t~8 x~10 y~2 +

108 x712 y~2 + 936 t72 x712 y~2 + 7916 t74 x"12 y~2 +

13456 t76 x712 y~2 + 6368 t~8 x712 y~2 + 144 t°2 x714 y~2 +

2304 t~4 x~14 y~2 + 4176 t~6 x~14 y~2 + 2016 t~8 x~14 y~2 +

288 t"4 x716 y~2 + 576 t76 x~16 y~2 + 288 t~8 x716 y~2 + 144 y~4 +
480 t72 y"4 + 624 t74 y"4 + 384 t76 y"4 + 96 t°8 y"4 + 576 x72 y~4 +
2208 t72 x72 y~4 + 3392 t74 x72 y"4 + 2464 t76 x72 y"4 +

704 t°8 x72 y~4 + 1188 x74 y~4 + 5256 t°2 x"4 y~4 +

9636 t74 x"4 y~4 + 8256 t76 x"4 y~4 + 2688 t78 x74 y~4 +

1548 x°6 y~4 + 8112 t°2 x"6 y~4 + 18076 t~4 x~6 y~4 +

18008 t°6 x"6 y~4 + 6496 t°8 x~6 y~4 + 1359 x"8 y~4 +

8598 t72 x°8 y~4 + 23375 t~4 x"8 y~4 + 26392 t76 x"8 y~4 +

10256 t~8 x~8 y~4 + 810 x~10 y~4 + 6156 t~2 x~10 y~4 +

20442 t~4 x~10 y~4 + 25656 t~6 x~10 y~4 + 10560 t~8 x~10 y~4 +

243 x~12 y~4 + 2574 t72 x712 y~4 + 11299 t~4 x~12 y~4 +

15848 t76 x~12 y~4 + 6880 t78 x712 y~4 + 432 t72 x"14 y~4 +

3456 t~4 x"14 y~4 + 5616 t~6 x~14 y~4 + 2592 t°8 x"14 y~4 +

432 t74 x716 y~4 + 864 t°6 x"16 y~4 + 432 t°8 x"16 y~4 +

216 x74 y°6 + 720 t72 x74 y™6 + 952 t°4 x"4 y"6 + 608 t°6 x"4 y~6 +
160 t°8 x74 y~6 + 648 x~6 y~6 + 2592 t72 x"6 y~6 +

4168 t~4 x76 y~6 + 3152 t76 x76 y~6 + 928 t"8 x76 y~6 +

918 x°8 y~6 + 4428 t~2 x~8 y~6 + 8502 t"4 x"8 y°6 +

7392 t76 x°8 y~6 + 2400 t°8 x"8 y~6 + 756 x~10 y~6 +

4392 t72 x~10 y~6 + 10036 t~4 x~10 y~6 + 9920 t~6 x~10 y~6 +

3520 t78 x~10 y~6 + 270 x~12 y~6 + 2268 t~2 x"12 y°6 +

6766 t~4 x~12 y"6 + 7808 t~6 x~12 y~6 + 3040 t~8 x~12 y°6 +

432 t72 x714 y~6 + 2304 t4 x~14 y~6 + 3312 t76 x"14 y~6 +

1440 t°8 x~14 y~6 + 288 t~4 x~16 y~6 + 576 t°6 x~16 y~6 +

288 t~8 x716 y~6 + 108 x”8 y~™8 + 360 t~2 x"8 y~8 + 468 t~4 x°8 y~8 +
288 t76 x"8 y"8 + 72 t78 x78 y™8 + 216 x~10 y~8 + 864 t~2 x~10 y~8 +
1368 t~4 x~10 y~8 + 1008 t~6 x~10 y~8 + 288 t~8 x~10 y~8 +

108 x~12 y~8 + 648 t~2 x~12 y~8 + 1404 t~4 x~12 y~8 +

27
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1296 t76 x712 y~8 + 432 t78 x712 y~8 + 144 t~2 x714 y~8 +

576 t74 x~14 y~8 + 720 t76 x"14 y~8 + 288 t~8 x~14 y~8 +

72 t74 x716 y~8 + 144 t76 x716 y~8 + 72 t°8 x716 y~8 + 192 z"2 +
416 t°2 z72 + 288 t74 z"2 + 320 t76 z"2 + 256 t°8 z"2 +

912 x72 z72 + 1664 t72 x72 z72 + 1248 t74 x72 z72 +

2304 t76 x72 z72 + 1808 t~8 x72 z"2 + 1728 x74 z"2 +

2520 t72 x74 z72 + 2776 t74 x74 z72 + 7624 t76 x74 z72 +

5640 t~8 x74 z72 + 1704 x°6 z72 + 1736 t°2 x76 z"2 +

4664 t~4 x°6 z~2 + 14808 t~6 x"6 z~2 + 10176 t~8 x"6 z"2 +

966 x78 z72 + 494 t~2 x°8 z"2 + 6098 t°4 x°8 z"2 +

18218 t76 x°8 z72 + 11648 t~8 x°8 z72 + 324 x710 z~2 +

36 t72 x710 z"2 + 5468 t74 x~10 z"2 + 14444 t°6 x~10 z~2 +

8688 t~8 x710 z"2 + 54 x712 z72 + 6 t72 x712 z72 +

3002 t74 x712 z72 + 7186 t76 x712 z72 + 4136 t78 x712 z°2 +

896 t~4 x~14 z~2 + 2048 t~6 x~14 z"2 + 1152 t°8 x"14 z~2 +

112 t74 x~16 z"2 + 256 t76 x~16 z~2 + 144 t°8 x"16 z~2 +

480 y~2 z72 + 1312 t72 y~2 z72 + 1888 t74 y~2 z72 +

1760 t76 y~2 z°2 + 704 t°8 y°2 z72 + 1776 x"2 y~2 z"2 +

5248 t72 x72 y~2 z72 + 9504 t74 x72 y~2 z72 +

10624 t76 x72 y~2 z72 + 4592 £78 x72 y~2 z72 + 3096 x74 y~2 z72 +
9904 t°2 x4 y~2 z°2 + 23104 t74 x4 y~2 z72 +

30288 t°6 x74 y~2 z72 + 13992 t°8 x74 y~2 z"2 + 3144 x76 y~2 z"2 +
11344 t°2 x°6 y~2 z"2 + 35712 t74 x°6 y~°2 z72 +

53424 t°6 x76 y~2 z72 + 25912 t78 x76 y~2 z"2 + 2064 x"8 y~2 z°2 +
9016 t72 x°8 y~2 z"2 + 38552 t4 x"8 y~2 z°2 +

63192 t76 x78 y~2 z72 + 31592 t78 x7"8 y~2 z"2 + 936 x710 y~2 z72 +
5248 t~2 x710 y~2 z72 + 29072 t~4 x~10 y~2 z"2 +

50464 t°6 x~10 y~2 z"2 + 25704 t°8 x~10 y~2 z°2 + 216 x712 y~2 z72 +
1872 t°2 x712 y~2 z72 + 14192 t°4 x~12 y°2 z°2 +

26056 t°6 x~12 y~2 z"2 + 13520 t~8 x"12 y~2 z"2 +

264 t72 x714 y©2 z72 + 3896 t74 x714 y©2 z72 +

7808 t~6 x~14 y~2 z72 + 4176 t°8 x~14 y~2 z"2 +

448 t~4 x716 y~2 z"2 + 1024 t76 x716 y~2 z"2 +

576 t78 x716 y~2 z72 + 480 y~4 z"2 + 1632 t72 y"4 z"2 +

2208 t74 y~4 z72 + 1440 t76 y~4 z72 + 384 t78 y"4 z"2 +

1632 x72 y~4 z72 + 6528 t72 x72 y"4 z"2 + 10688 t74 x"2 y~4 z72 +
8320 t76 x72 y~4 z"2 + 2528 t78 x72 y~4 z"2 + 3240 x74 y~4 z72 +

14280 t72 x4 y~4 z"2 + 27448 t°4 x74 y~4 z72 +

25048 t°6 x74 y~4 z"2 + 8640 t°8 x74 y~4 z"2 + 3936 x"6 y~4 z"2 +
19992 t72 x76 y~4 z"2 + 46552 t74 x76 y~4 z72 +

49352 t76 x76 y"4 z"2 + 18856 t°8 x76 y"4 z"2 + 3198 x"8 y"4 z"2 +
19518 t°2 x°8 y~4 z~2 + 55218 t°4 x°8 y~4 z°2 +

66170 t°6 x~8 y~4 z72 + 27272 t78 x°8 y~4 z"2 + 1836 x710 y~4 z°2 +
13332 t72 x710 y~4 z72 + 44988 t~4 x~10 y~4 z72 +

59580 t°6 x~10 y~4 z~2 + 26088 t~8 x~10 y~4 z"2 + 486 x~12 y~4 z"2 +

5214 t~2 x~12 y~4 z72 + 22994 t~4 x"12 y~4 z72 +
34194 t°6 x712 y~4 z"2 + 15928 t°8 x712 y~4 z°2 +
792 t72 x714 y~4 z"2 + 6312 t74 x714 y~4 z72 +
11136 t°6 x~14 y~4 z~2 + 5616 t°8 x~14 y~4 z°2 +
672 t~4 x~16 y~4 z~2 + 1536 t°6 x~16 y~4 z"2 +

864 t~8 x716 y~4 z"2 + 720 x4 y~6 z"2 + 2480 t~2 x°4 y~6 z72 +
3472 t74 x74 y©6 z72 + 2384 t76 x"4 y©6 z72 + 672 t78 x74 y"6 z72 +
1728 x7°6 y~6 z"2 + 7440 t72 x76 y™6 z"2 + 13072 t74 x"6 y~6 z"2 +
10736 t~6 x°6 y~6 z~2 + 3376 t°8 x"6 y"6 z"2 + 2268 x"8 y~6 z"2 +

11484 t°2 x°8 y~6 z72 + 23812 t74 x78 y™6 z72 +
22276 t76 x°8 y~6 z"2 + 7680 t~8 x"8 y~6 z"2 + 1800 x~10 y~6 z"2 +
10568 t~2 x~10 y~6 z~2 + 25560 t~4 x~10 y~6 z~2 +
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26872 t76 x710 y~6 z"2 + 10080 t~8 x~10 y~6 z~2 + 540 x~12 y~6 z72 +
4836 t~2 x~12 y~6 z~2 + 15420 t~4 x~12 y~6 z"2 +

18964 t~6 x~12 y~6 z~2 + 7840 t~8 x~12 y~6 z"2 +

792 t72 x714 y~6 z"2 + 4520 t~4 x"14 y~6 z"2 +

7040 t~6 x~14 y~6 z"2 + 3312 t°8 x~14 y~6 z"2 +

448 t~4 x716 y~6 z"2 + 1024 t76 x"16 y~6 z"2 +

576 t~8 x716 y~6 z"2 + 360 x°8 y~8 z"2 + 1224 t~2 x°8 y~8 z72 +
1656 t~4 x°8 y~8 z"2 + 1080 t~6 x"8 y~"8 z"2 + 288 t°8 x"8 y~8 z"2 +
576 x~10 y~8 z72 + 2448 t°2 x710 y~8 z"2 + 4176 t~4 x~10 y~8 z"2 +
3312 t76 x710 y°8 z"2 + 1008 t°8 x~10 y~8 z"2 + 216 x~12 y~8 z"2 +
1488 t~2 x~12 y~8 z72 + 3616 t~4 x~12 y°8 z"2 +

3640 t~6 x~12 y~8 z"2 + 1296 t~°8 x~12 y~8 z"2 +

264 t~2 x714 y~8 z"2 + 1208 t~4 x"14 y~8 z"2 +

1664 t76 x~14 y~8 z72 + 720 t78 x714 y~8 z72 +

112 t74 x716 y~8 z°2 + 256 t76 x716 y~8 z"2 + 144 t°8 x716 y~8 z"2 +
128 z74 + 288 t72 z74 + 352 t74 z"4 + 384 t76 z"4 + 256 t78 z74 +
352 x72 z74 + 1056 t72 x"2 z~4 + 1408 t~4 x"2 z74 +

1952 t76 x°2 z74 + 1504 t°8 x"2 z"4 + 764 x"4 z74 +

2104 t72 x74 z74 + 2616 t74 x"4 z"4 + 5016 t76 x"4 z74 +

4252 t°8 x74 z~4 + 804 x76 z~4 + 1912 t°2 x76 z~4 +

2920 t74 x76 z"4 + 8536 t76 x"6 z"4 + 7364 t°8 x"6 z74 +

471 x°8 z74 + 898 t°2 x"8 z"4 + 2694 t°4 x°8 z°4 +

10058 t°6 x~8 z~4 + 8335 t78 x"8 z~4 + 162 x~10 z~4 +

252 t72 x710 z74 + 2164 t74 x~10 z74 + 7980 t~6 x~10 z°4 +

6226 t~8 x710 z"4 + 27 x712 z74 + 42 t72 x712 z74 +

1182 t74 x~12 z~4 + 4018 t76 x~12 z~4 + 2979 t°8 x~12 z°4 +

352 t74 x~14 z~4 + 11562 t76 x"14 z°4 + 832 t78 x"14 z°4 +

44 t~4 x°16 z~4 + 144 t°6 x~16 z"4 + 104 t°8 x~16 z~4 +

784 y~2 z~4 + 1888 t72 y~2 z~4 + 2208 t74 y~2 z74 +

1888 t76 y"2 z74 + 784 t°8 y"2 z74 + 2080 x"2 y°2 z°4 +

5600 t72 x72 y~2 z74 + 8832 t74 x72 y~2 z74 + 99562 t76 x72 y~2 z74 +
4640 t°8 x72 y~2 z74 + 3368 x74 y~2 z74 + 9440 t72 x74 y~2 z74 +

18928 t74 x4 y~2 z"4 + 25952 t°6 x74 y°2 z°4 +

13224 t°8 x4 y~2 z"4 + 2840 x76 y~2 z74 + 9056 t~2 x76 y~2 z74 +
25872 t°4 x°6 y~2 z"4 + 42464 t°6 x"6 y°2 z"4 +

23192 t78 x76 y~2 z74 + 1524 x78 y~2 z"4 + 6072 t72 x"8 y"2 z74 +
25016 t~4 x~8 y~2 z~4 + 46792 t~6 x"8 y~2 z"4 +

26900 t°8 x"8 y"2 z"4 + 576 x~10 y°2 z"4 + 3184 t°2 x710 y"2 z"4 +
17216 t~4 x~10 y~2 z~4 + 35024 t~6 x~10 y°2 z°4 +

20928 t°8 x710 y~2 z"4 + 108 x712 y~2 z"4 + 1008 t~2 x712 y~2 z74 +

7584 t~4 x712 y°2 z74 + 16968 t~6 x~12 y°2 z74 +

10572 t°8 x~12 y°2 z74 + 120 t72 x~14 y~2 z74 +

1816 t~4 x~14 y~2 z"4 + 4736 t76 x"14 y~°2 z°4 +

3136 t78 x714 y~°2 z74 + 176 t74 x716 y~2 z°4 +

576 t76 x716 y~2 z"4 + 416 t~8 x716 y~°2 z"4 + 624 y~4 z~4 +

2208 t72 y™4 z74 + 3168 t74 y~4 z"4 + 2208 t76 y~4 z°4 +

624 t78 y~4 z~4 + 1600 x72 y~4 z74 + 6976 t72 x72 y~4 z74 +

12672 t74 x°2 y~4 z"4 + 10816 t°6 x"2 y~4 z°4 +

3520 t78 x72 y~4 z74 + 3364 x~4 y~4 z74 + 14456 t72 x"4 y~4 z74 +

29416 t~4 x~4 y~4 z~4 + 29016 t°6 x~4 y~4 z74 +

10692 t°8 x74 y~4 z"4 + 3452 x76 y~4 z74 + 17336 t72 x"6 y~4 z"4 +
43896 t°4 x°6 y~4 z"4 + 51032 t°6 x°6 y~4 z°4 +

21020 t°8 x76 y~4 z"4 + 2495 x"8 y~4 z"4 + 14658 t°2 x78 y~4 z°4 +
45814 t74 x°8 y"4 z"4 + 61162 t76 x"8 y~4 z74 +

27607 t°8 x78 y~4 z74 + 1242 x~10 y~4 z~4 + 8892 t°2 x710 y~4 z°4 +
33252 t74 x710 y~4 z"4 + 49644 t°6 x~10 y~4 z°4 +

24234 t7°8 x710 y~4 z"4 + 243 x712 y™4 z74 + 2914 t72 x712 y~4 z74 +
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14758 t~4 x~12 y~4 z~4 + 25538 t76 x712 y~4 z°4 +

13643 t°8 x712 y™4 z~4 + 360 t°2 x"14 y~4 z°4 +

3336 t74 x"14 y~4 z74 + 7296 t°6 x"14 y~4 z"4 +

4416 t°8 x~14 y~4 z~4 + 264 t~4 x716 y~4 z~4 +

864 t76 x716 y"4 z74 + 624 t78 x716 y~4 z74 + 952 x4 y~6 z"4 +

3472 t72 x74 y~6 z74 + 5232 t74 x74 y~6 z"4 + 3856 t76 x"4 y~6 z74 +
1144 t°8 x4 y~6 z°4 + 1544 x76 y°6 z74 + 7760 t°2 x"6 y°6 z"4 +
16696 t~4 x"6 y~6 z~4 + 14288 t°6 x~6 y°6 z~4 +

4808 t~8 x76 y~6 z~4 + 1942 x~8 y~6 z~4 + 10632 t72 x"8 y~6 z°4 +
24556 t~4 x~8 y~6 z~4 + 25380 t"6 x"8 y~6 z"4 +

9414 t°8 x°8 y~6 z"4 + 1332 x710 y~6 z"4 + 8408 t72 x~10 y~6 z°4 +
22952 t~4 x710 y~6 z"4 + 26776 t~6 x~10 y~6 z"4 +

10900 t°8 x~10 y~6 z"4 + 270 x~12 y~6 z~4 + 2972 t72 x712 y~°6 z"4 +
11492 t74 x712 y~6 z74 + 16244 t~6 x~12 y°6 z°4 +

7486 t78 x~12 y°6 z74 + 360 t72 x"14 y~6 z"4 +

2632 t74 x"14 y°6 z"4 + 4992 t°6 x"14 y~6 z"4 +

2752 t78 x714 y°6 z"4 + 176 t74 x716 y°6 z"4 +

576 t76 x~16 y~6 z"4 + 416 t~8 x716 y°6 z"4 + 468 x"8 y~8 z74 +

1656 t°2 x78 y~8 z74 + 2376 t~4 x"8 y~8 z"4 + 1656 t76 x"8 y~8 z"4 +
468 t78 x78 y"8 z74 + 504 x710 y~8 z74 + 2448 t~2 x~10 y°8 z74 +
4752 t~4 x~10 y~8 z~4 + 4176 t°6 x~10 y~8 z"4 +

1368 t°8 x710 y~8 z74 + 108 x712 y~8 z~4 + 1024 t°2 x~12 y~8 z74 +
3136 t74 x712 y"8 z"4 + 3656 t76 x712 y~8 z"4 +

1436 t°8 x~12 y~8 z"4 + 120 t~2 x~14 y~8 z~4 +

760 t~4 x~14 y~8 z"4 + 1280 t°6 x"14 y~8 z°4 +

640 t78 x714 y°8 z74 + 44 t74 x716 y~8 z74 + 144 t76 x716 y~8 z74 +
104 t°8 x716 y~8 z"4 + 256 z"6 + 320 t72 z76 + 384 t"4 z76 +

352 t76 z76 + 160 t°8 z"6 + 272 x"2 z76 + 256 t72 x"2 z76 +

1120 t74 x72 z"6 + 1408 t76 x"2 z76 + 784 t7°8 x72 z76 +

232 x4 z76 + 456 t°2 x74 z°6 + 2104 t°4 x°4 z°6 +

2712 t76 x74 z76 + 1856 t°8 x74 z"6 + 96 x"6 z"6 + 472 t"2 x"6 z"6 +
2072 t74 x76 z76 + 3208 t76 x76 z"6 + 2792 t78 x"6 z"6 +

24 x°8 z°6 + 298 t72 x78 z76 + 1178 t74 x~8 z"6 + 2686 t~6 x~8 z76 +
2870 t78 x°8 z76 + 108 t72 x710 z"6 + 396 t~4 x~10 z°6 +

1668 t°6 x~10 z~6 + 2020 t°8 x~10 z"6 + 18 t~2 x~12 z°6 +

66 t74 x712 z76 + 726 t76 x712 z"6 + 934 t°8 x712 z76 +

192 t76 x714 z"6 + 256 t78 x714 z°6 + 24 t76 x"16 z"6 +

32 t78 x716 z°6 + 704 y~°2 z76 + 1760 t~2 y~2 z"6 +

1888 t°4 y~2 z76 + 1312 t76 y~2 z"6 + 480 t°8 y~2 z"6 +

1136 x72 y~2 z"6 + 3456 t72 x"2 y~2 z76 + 5152 t74 x72 y°2 z76 +
5248 t76 x72 y~2 z"6 + 2416 t°8 x"2 y~2 z"6 + 1768 x"4 y~2 z76 +
5200 t°2 x74 y~2 z°6 + 9152 t74 x°4 y~2 z76 +

11696 t76 x~4 y~2 z76 + 6232 t78 x74 y~2 z76 + 1144 x76 y~2 z76 +
3760 t72 x"6 y~2 z"6 + 9984 t°4 x76 y~2 z76 +

16720 t76 x°6 y~2 z"6 + 10120 t°8 x"6 y~2 z"6 + 456 x"8 y~2 z"6 +
1752 t72 x78 y~2 z76 + 7592 t~4 x"8 y~2 z76 +

16024 t°6 x°8 y~2 z"6 + 10880 t°8 x"8 y~2 z76 + 72 x710 y~2 z76 +
544 t~2 x710 y~2 z°6 + 3952 t~4 x710 y~2 z76 +

10304 t76 x~10 y~2 z76 + 7848 t~8 x~10 y~2 z"6 +

72 t72 x712 y°2 z76 + 1160 t~4 x712 y~2 z76 +

4192 t76 x~12 y~2 z76 + 3680 t°8 x~12 y~2 z"6 +

128 t74 x714 y~2 z76 + 952 t76 x"14 y~2 z76 +

1016 t78 x714 y~2 z76 + 96 t76 x716 y~2 z"6 + 128 t°8 x716 y~2 z"6 +
384 y~4 z76 + 1440 t72 y~4 z"6 + 2208 t~4 y~4 z76 +

1632 t°6 y~4 z"6 + 480 t°8 y"4 z"6 + 608 x"2 y~4 z76 +

3200 t72 x72 y~4 z"6 + 6848 t74 x"2 y"4 z"6 + 6528 t76 x"2 y"4 z76 +
2272 t78 x72 y~4 z76 + 1760 x"4 y~4 z76 + 7128 t72 x"4 y~4 z76 +
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15128 t~4 x"4 y~4 z"6 + 16008 t°6 x~4 y~4 z°6 +

6248 t°8 x"4 y~4 z"6 + 1288 x"6 y~4 z"6 + 6856 t~2 x"6 y~4 z"6 +
19576 t~4 x°6 y~4 z"6 + 25176 t°6 x"6 y~4 z°6 +

11168 t°8 x76 y~4 z76 + 832 x"8 y™4 z°6 + 4730 t°2 x"8 y"4 z"6 +
17242 t~4 x°8 y~4 z"6 + 26382 t°6 x"8 y"4 z76 +

13230 t78 x78 y~4 z76 + 216 x~10 y~4 z76 + 1980 t~2 x~10 y~4 z76 +
10092 t~4 x~10 y~4 z~6 + 18420 t~6 x~10 y~4 z"6 +

10476 t°8 x710 y~4 z"6 + 274 t72 x712 y™4 z76 +

3186 t~4 x"12 y~4 z76 + 7806 t°6 x~12 y~4 z"6 +

5278 t~8 x~12 y~4 z°6 + 384 t~4 x~14 y~4 z"6 +

1704 t°6 x~14 y~4 z~6 + 1512 t°8 x~14 y~4 z°6 +

144 t°6 x~16 y™4 z"6 + 192 t°8 x~16 y~4 z"6 + 608 x"4 y~6 z"6 +

2384 t72 x74 y~6 z76 + 3856 t74 x"4 y~6 z76 + 2992 t76 x"4 y~6 z76 +
912 t78 x74 y~6 z"6 + 496 x"6 y~6 z"6 + 3568 t"2 x"6 y"6 z"6 +

8848 t~4 x~6 y~6 z"6 + 8976 t~6 x~6 y~6 z~6 + 3200 t~8 x"6 y~6 z76 +
752 x~8 y~6 z"6 + 4356 t~2 x~8 y~6 z"6 + 11780 t~4 x"8 y~6 z76 +
13596 t°6 x°8 y~6 z"6 + 5420 t°8 x"8 y"6 z"6 + 288 x~10 y~6 z"6 +
2552 t72 x710 y°6 z76 + 8984 t~4 x~10 y~6 z"6 +

12232 t76 x~10 y°6 z~6 + 5512 t°8 x~10 y~6 z"6 +

404 t~2 x712 y~6 z"6 + 3156 t74 x"12 y"6 z76 +

5940 t~6 x~12 y°6 z~6 + 3252 t°8 x"12 y~6 z"6 +

384 t74 x"14 y~6 z°6 + 1320 t~6 x"14 y~6 z°6 +

1000 t°8 x714 y~6 z"6 + 96 t76 x"16 y~6 z"6 + 128 t°8 x~16 y~6 z"6 +
288 x78 y™8 z76 + 1080 t~2 x°8 y~8 z"6 + 1656 t~4 x"8 y~8 z"6 +

1224 t°6 x°8 y™8 z76 + 360 t°8 x°8 y~8 z"6 + 144 x~10 y~8 z"6 +

1008 t~2 x~10 y~8 z"6 + 2448 t~4 x~10 y~8 z°6 +

2448 t76 x~10 y™8 z76 + 864 t~8 x~10 y~8 z"6 +

184 t72 x712 y~8 z76 + 1064 t~4 x~12 y~8 z"6 +

1600 t°6 x~12 y~8 z"6 + 720 t~8 x~12 y~8 z"6 +

128 t74 x~14 y~8 z76 + 376 t76 x"14 y~8 z"6 + 248 t°8 x"14 y~8 z76 +
24 £76 x716 y°8 z76 + 32 t78 x716 y~8 z76 + 176 z"8 + 256 t~2 z°8 +
266 t74 z°8 + 160 t76 z"8 + 48 t78 z"8 + 256 x"2 z°8 +

240 t72 x72 z78 + 544 t74 x72 z°8 + 496 t76 x72 z°8 +

192 t°8 x72 z°8 + 224 x~4 z°8 + 152 t°2 x~4 z°8 + 892 t°4 x4 z"8 +
848 t7°6 x"4 z"°8 + 396 t°8 x"4 z°8 + 96 x"6 z"8 + 32 t72 x76 z78 +
900 t~4 x76 z"8 + 840 t°6 x"6 z"8 + 516 t°8 x"6 z"8 + 24 x"8 z"8 +

8 t72 x°8 z78 + 575 t74 x°8 z°8 + 510 t76 x"8 z°8 +

463 t°8 x78 z"8 + 210 t~4 x~10 z°8 + 180 t°6 x~10 z"8 +

290 t°8 x710 z78 + 35 t74 x712 z°8 + 30 t76 x712 z"8 +

123 t78 x712 z°8 + 32 t78 x714 z°8 + 4 t78 x716 z"8 + 256 y~2 z°8 +
704 t72 y©2 z°8 + 784 t74 y~2 z"8 + 480 t76 y~2 z°8 +

144 t°8 y~2 z°8 + 2566 x72 y~2 z78 + 1040 t°2 x72 y~2 z°8 +

1632 t74 x72 y~2 z°8 + 1424 t76 x72 y~2 z°8 + 576 t°8 x72 y°2 z°8 +
416 x~4 y~2 z78 + 1560 t~2 x74 y~2 z"8 + 2696 t"4 x4 y~2 z"8 +

2760 t°6 x°4 y~2 z°8 + 1336 t~8 x74 y~2 z78 + 224 x°6 y~2 z"8 +

1032 t72 x76 y~2 z°8 + 2616 t74 x76 y~2 z°8 + 3416 t76 x"6 y~2 z"8 +
1992 t78 x76 y~"2 z"8 + 96 x78 y~2 z78 + 472 t72 x"8 y~2 z78 +

1780 t~4 x~8 y~2 z~8 + 2800 t~6 x°8 y~2 z"8 + 1972 t°8 x"8 y~2 z°8 +
88 t72 x710 y~2 z78 + 736 t74 x710 y~2 z"8 + 1432 t76 x710 y~2 z78 +
1296 t°8 x710 y~2 z°8 + 140 t~4 x~12 y~2 z78 +

400 t76 x~12 y~2 z78 + 548 t78 x712 y~2 z78 + 40 t76 x"14 y~2 z78 +
136 t°8 x714 y~2 z"8 + 16 t78 x716 y"2 z"8 + 96 y~4 z"8 +

384 t72 y"4 z78 + 624 t74 y"4 z°8 + 480 t76 y~4 z°8 +

144 t°8 y~4 z°8 + 64 x”2 y"4 z°8 + 544 t~2 x"2 y°4 z°8 +

1472 t4 x72 y~4 z°8 + 1568 t76 x72 y~4 z°8 + 576 t°8 x"2 y™4 z°8 +
448 x~4 y~4 z"8 + 1696 t~2 x4 y~4 z"8 + 3524 t74 x4 y~4 z78 +

3784 t°6 x°4 y~4 z°8 + 1508 t°8 x74 y~4 z°8 + 224 x°6 y~4 z°8 +
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1400 t°2 x76 y~4 z"8 + 4156 t"4 x"6 y~4 z"8 + 5488 t"6 x"6 y"4 z°8 +
2508 t78 x76 y~4 z"8 + 176 x78 y~4 z"8 + 992 t72 x"8 y"4 z"8 +

3367 t~4 x~8 y~4 z78 + 5190 t76 x~8 y~4 z"8 + 2735 t78 x"8 y~4 z°8 +
264 t~2 x710 y~4 z°8 + 1578 t74 x710 y~4 z°8 +

3084 t76 x710 y™4 z°8 + 1962 t°8 x~10 y~4 z"8 +

315 t74 x712 y~4 z78 + 998 t76 x~12 y~4 z"8 + 875 t78 x712 y~4 z°8 +
120 t°6 x714 y~4 z°8 + 216 t°8 x714 y~4 z°8 + 24 t°8 x716 y"4 z"8 +
160 x"4 y™6 z"8 + 672 t72 x"4 y~6 z"8 + 1144 t°4 x"4 y~6 z°8 +

912 t76 x°4 y~°6 z"8 + 280 t°8 x"4 y°6 z”8 + 32 x”6 y™6 z"8 +

656 t~2 x"6 y~6 z"8 + 2056 t~4 x"6 y~6 z"8 + 2272 t76 x"6 y"6 z"8 +
840 t°8 x76 y~6 z"8 + 160 x"8 y~6 z"8 + 880 t"2 x"8 y"6 z"8 +

2534 t~4 x~8 y~6 z78 + 3100 t~6 x~8 y~6 z"8 + 1286 t~8 x"8 y~6 z"8 +
320 t°2 x710 y~6 z~8 + 1556 t~4 x~10 y~6 z"8 +

2408 t76 x~10 y°6 z~8 + 1172 t°8 x~10 y~6 z"8 +

350 t74 x~12 y~6 z78 + 916 t76 x~12 y~6 z78 + 598 t78 x712 y~6 z78 +
120 t°6 x714 y~6 z~8 + 152 t°8 x"14 y~6 z"8 + 16 t~8 x716 y°6 z"8 +
72 x°8 y"8 z°8 + 288 t72 x"8 y~8 z"8 + 468 t74 x"8 y"8 z78 +

360 t°6 x°8 y™8 z"8 + 108 t°8 x"8 y"8 z"8 + 144 t~2 x710 y~8 z"8 +
504 t~4 x~10 y~8 z78 + 576 t~6 x~10 y~8 z78 + 216 t~8 x~10 y~8 z"8 +
140 t74 x712 y~8 z°8 + 288 t76 x712 y~8 z°8 + 148 t~8 x712 y~8 z"8 +
40 t76 x"14 y°8 z"8 + 40 t°8 x~14 y"8 z°8 + 4 t~8 x716 y~8 z"8
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