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MINIMAX ADAPTIVE ESTIMATION OF NON-PARAMETRIC

HIDDEN MARKOV MODELS

Y. DE CASTRO, É. GASSIAT, AND C. LACOUR

Abstract. In this paper, we consider stationary hidden Markov models with
finite state space and non parametric modeling of the emission distributions.
We propose a new penalized least-squares estimator for the emission distri-
butions which we prove to be asymptotically rate minimax adaptive up to a
logarithmic term when there are two hidden states. This non parametric es-
timator requires the computation of a preliminary estimator of the transition
matrix of the hidden chain for which we propose to use the spectral estimator
recently presented in [HKZ12]. We also investigate the asymptotic proper-
ties of a spectral estimator of the emission distributions derived from that
of [HKZ12]. The spectral estimator can not achieve the asymptotic minimax
rate, but it is very useful to avoid initialization problems in our least squares
minimization algorithm. Simulations are given that show the improvement
obtained when applying the least-squares minimization consecutively to the
spectral estimation.

1. Introduction

1.1. Context and motivations. Finite state space hidden Markov models (HMMs
for short) are widely used to model data evolving in time and coming from hetero-
geneous populations. They seem to be reliable models to depict practical situations
in a variety of applications such as economics, genomics, signal processing and im-
age analysis, ecology, environment, speech recognition, to name but a few. From a
statistical view point, finite state space HMMs are stochastic processes (Xj , Yj)j≥0

where (Xj)j≥0 is a Markov chain living in a finite state space and conditionally on
(Xj)j≥0 the Yj ’s are independent with a distribution depending only on Xj and
living in Y. The observations are Y1:n = (Y1, · · · , Yn) and the associated states
X1:n = (X1, · · · , Xn) are unobserved. The parameters of the model are the initial
distribution, the transition matrix of the hidden chain, and the emission distribu-
tions of the observations, that is the probability distributions of the Yj ’s condi-
tionnally to Xj = x for all possible x’s. In this paper we shall consider stationary
ergodic HMMs so that the initial distribution is the stationary distribution of the
(ergodic) hidden Markov chain.

Until very recently, asymptotic performances of estimators were proved theo-
retically only in the parametric frame (that is, with finitely many unknown pa-
rameters). Though, non parametric methods for HMMs have been considered in
applied papers, see for instance [CC00] for voice activity detection, [LWM03] for
climate state identification, [Lef03] for automatic speech recognition, [SC09] for fa-
cial expression recognition, [VBMMR13] for methylation comparison of proteins,
[YPRH11] for copy number variants identification in DNA analysis. Recent papers
that contain theoretical results on different kinds of non parametric HMMs are
[GR13], where the emitted distributions are translated of each other, and [DL12] in
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which the authors consider regression models with hidden regressor variables that
can be markovian on a continuous state space.

The preliminary obstacle to obtain theoretical results on general finite state
space non parametric HMMs was to understand when such models are indeed iden-
tifiable. The papers [AMR09], [HKZ12] and [AHK12] paved the way to obtain
identifiability under reasonable assumptions. In [AHK12] the authors point out a
structural link between multivariate mixtures with conditionally independent ob-
servations and finite state space HMMs. In [HKZ12] the authors propose a spectral
method to estimate all parameters for finite state space HMMs (with finitely many
observations), under the assumption that the transition matrix of the hidden chain
is non singular, and that the (finitely valued) emission distributions are linearly
independent. Extension to emission distributions on any space, under the linear
independence assumptions (and keeping the assumption of non singularity of the
transition matrix), allowed to prove the general identifiability result for finite state
space HMMs, see [GCR13], where also model selection likelihood methods and non
parametric kernel methods are proposed to get non parametric estimators. Let
us notice also [Ver13] that proves theoretical consistency of the posterior in non
parametric Bayesian methods for finite state space HMMs with adequate assump-
tions. Later, [AH14] obtained identifiability when the emission distributions are all
distinct (not necessarily linearly independent) and still when the transition matrix
of the hidden chain is non singular. In the non parametric multivariate mixture
model, [SADX14] prove that any linear functional of the emission distributions may
be estimated with parametric rate of convergence in the context of reproducing ker-
nel Hilbert spaces. The latter uses spectral methods, not the same but similar to
the ones proposed in [HKZ12] and [AHK12]. Those spectral methods have the ex-
tremely interesting characteristic that to compute the estimator the algorithms do
not require initialization as is usual in latent variable models estimation when using
the EM algorithm. They may be used under the linear independence assumption.

1.2. Contribution. The aim of our paper is to propose a non parametric estima-
tor of the emission distributions that achieves the minimax rate of estimation in
an adaptive setting. For this purpose we propose a new penalized least squares
estimator in the model selection frame. Our perspective is based on estimating the
projections of the emission laws onto nested subspaces of increasing complexity.
Our analysis encompasses any family of nested subspaces of Hilbert spaces and
works with a large variety of models.

We start from the remarkable works of Anandkumar, Hsu, Kakade and Zhang on
spectral methods in the parametric frame. Their papers [HKZ12, AHK12] present
an efficient algorithm for learning HMMs. They give theoretical guarantees for
observation prediction and the ℓ2-error on estimating the parametric emission laws.
They present spectral estimators for the stationary distribution and the transition
matrix of the hidden Markov chain.

In this paper, we first extend spectral methods to the non-parametric frame.
Since projections are linear functionals of the distributions, it is possible to use
spectral methods to estimate the projections. Then, to get the best risk for the
non parametric estimator of the emission distributions, one has as usual to balance
a bias term and a variance term. Our work brings a new quantitative insight on
the tradeoff between sampling size and approximation complexity for spectral esti-
mators. Doing so, we get the best possible rate for the non parametric estimation
of emission densities using spectral methods. Roughly speaking, when the observa-
tions are one dimensional, that is when Y is a subset of R, the obtained rate is of
order N−s/(2s+3), N being the number of observations and s the smoothness of the
emission densities. This would be the right minimax rate if the observations were
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living in a 3-dimensional space, that is if Y was a subset of R3. This rate is easily
understood by the fact that the spectral estimators come from empirical estima-
tors of the three dimensional marginal of the process, that is of the distribution of
(Y1, Y2, Y3) which is indeed 3-dimensional. But in case Y is a subset of R, one could
hope to achieve the rate N−s/(2s+1) for the estimators of the emission densities.
Indeed, using model selection to estimate the density of (Y1, Y2, Y3) with the HMM
modelization, and using sieves for the emission densities on Y, one can obtain the
best rate of N−s/(2s+1) up to a logN term for L2-risk of the estimator of the density
of (Y1, Y2, Y3). The key point is then to be able to go back to the emission densities.
This is the cornerstone of our result, see Lemma 2 where we prove that under some
appropriate assumptions, the quadratic risk for the density of (Y1, Y2, Y3) is lower
bounded by some positive constant multiplied by the quadratic risk of the emission
densities.

Thus our approach is the following. First, get a preliminary estimate of the initial
distribution and the transition matrix of the hidden chain. We propose one obtained
using spectral methods, for which we prove new precise asymptotics. Second, apply
penalized least squares estimation on the density of three consecutive observations,
using HMM modelization, model selection on the emission densities, and initial
distribution and stationary matrix of the hidden chain set at the estimated value.
This gives emission density estimators. When the observations form a stationary
HMM with two hidden states, this leads to a minimax adaptive estimator, as our
main result states, see Theorem 1. Moreover, since the family of sieves we consider
is that given by finite dimensional spaces described by an orthonormal basis, we
are able to use the spectral estimators of the coefficients of the densities as initial
points in the least squares minimization. This is important since here, in the HMM
framework, least squares minimization does not have an explicit solution and may
lead to several local minima. However, since the spectral estimates are proved to be
consistent, we may be confident that their use as initial point is enough. Simulations
indeed confirm this point. To conclude we claim that our results support a powerful
new approach to estimate non-parametric HMMs with a statistically optimal and
practically tractable method.

1.3. Outline of the paper. In Section 2, we set the notations, the model we shall
study, and the assumptions we shall consider. We then define the spectral estima-
tors we shall use as preliminary step, and we present our penalized least squares
estimation method. In Section 3 we give our main results. We first prove in Section
3.1 that, when the HMM has two hidden states, when the transition matrix is irre-
ducible and aperiodic, when the emission distributions are distinct and the penalty
is adequately chosen, then the penalized least squares estimator is asymptotically
minimax adaptive up to a logN term, see Theorem 1 and Corollary 1. The proof
is based on three intermediate results. First, we prove an oracle inequality for the
least squares estimator of the density of three consecutive observations, see Proposi-
tion 2. Then, we prove the key lemma relating the risk of the density of (Y1, Y2, Y3)
to that of the emission densities, see Lemma 2. Finally, we need the performances
of the spectral estimator of the transition matrix and the stationary distributions
which are consequences of the further section. We then give in Section 3.2 precise
upper bounds for the quadratic risk of all the spectral estimators, see Theorem 3.
Here, the important point is to make explicit the upper bound in the complexity
parameter of the sieve, M , together with the number of observations, N . We finally
present simulations in Section 4 to illustrate our theoretical results. Those simula-
tions show in particular the improvment obtained when applying the least-squares
minimization consecutively to the spectral estimation. Detailed proofs are given in
Section 6 and in the Appendices.
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2. Estimation methods

2.1. Non-parametric Hidden Markov Model. Let K, D be positive integers
and let LD be the Lebesgue measure on RD. Denote by X the set {1, . . . ,K} of
hidden states, Y = [0, 1]D the observation space, and ∆K the space of probability
measures on X identified to the (K − 1)-dimensional simplex. Let (Xn)n≥1 be
a Markov chain on X with K × K transition matrix Q⋆ and initial distribution
π⋆ ∈ ∆K . Let (Yn)n≥1 be a sequence of observed random variables on Y. Assume
that, conditional on (Xn)n≥1, the observations (Yn)n≥1 are independent and, for
all n ∈ N, the distribution of Yn depends only on Xn:

L((Yn)n≥1|(Xn)n≥1) =
⊗

n≥1

L(Yn|Xn) .

Observe that, for all n ∈ N and for all k ∈ X , conditional on {Xn = k}, the law
of Yn depends only on the state k. Denote by µ⋆

k this conditional law and assume
that µ⋆

k has density f⋆
k with respect to the measure LD on Y:

∀k ∈ X , dµ⋆
k = f⋆

kdLD .
Denote by F⋆ := {f⋆

1 , . . . , f
⋆
K} the set of emission densities with respect to the

Lebesgue measure. Then, for any integer n, the distribution of (Y1, . . . , Yn) has
density with respect to (LD)⊗n

K
∑

k1,...,kn=1

π⋆(k1)Q
⋆(k1, k2) . . .Q

⋆(kn−1, kn)f
⋆
k1
(y1) . . . f

⋆
kn
(yn).

We shall denote g⋆ the density of (Y1, Y2, Y3).
In this paper we shall address two observations schemes. We shall consider N

i.i.d. samples (Y
(s)
1 , Y

(s)
2 , Y

(s)
3 )Ns=1 of three consecutive observations (Scenario A)

or consecutive observations of the same chain (Scenario B):

∀s ∈ {1, . . . , N}, (Y
(s)
1 , Y

(s)
2 , Y

(s)
3 ) := (Ys, Ys+1, Ys+2) .

2.2. Projections of the population joint laws. Denote by (L2(Y,LD), ‖· ‖2)
the Banach space of square integrable functions on Y with respect to the Lebesgue
measure LD equipped with the usual inner product 〈· , · 〉 on L2(Y,LD). Assume
F⋆ ⊂ L2(Y,LD).

Let (Mn)n≥1 be an increasing sequence of integers, and let (PMn)n≥1 be a se-
quence of nested subspaces such that their union is dense in L2(Y,LD). Let ΦMn :=
{ϕ1, . . . , ϕMn} be an orthonormal basis of PMn . Note that for all f ∈ L2(Y,LD),

(1) lim
n→∞

Mn
∑

m=1

〈f, ϕm〉ϕm = f ,

in L2(Y,LD). Note that changing Mn may change all functions ϕm, 1 ≤ m ≤ Mn

in the basis ΦMn , which we shall not indicate in the notation for sake of readability.
One can consider the following standard examples:

(Spline) The space of piecewise polynomials of degree bounded by dn based on
the regular partition with pDn regular pieces on Y = [0, 1]D. Consider the
Legendre basis on each piece p:

ϕp,r(x) := p
D
2

n

D
∏

i=1

(2ri + 1)
1

2Pri(−1 + 2pnρp,i(x))

where p ∈ {1, . . . , pn}D, r ∈ {0, . . . , dn}D, Pk denotes the kth Legendre
polynomial and ρp,i(x) ∈ [0, 1/pn] denotes the ith coordinate of x on the
piece p. It holds that Mn = (dn + 1)DpDn .
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(Trig.) The space of real trigonometric polynomials on Y = [0, 1]D with degree less
than n:

ϕr(x) :=

D
∏

i=1

{
√
2 cos(2πrixi)1{ri<0} +

√
2 sin(2πrixi)1{ri>0} + 1{ri=0}} ,

where r ∈ {−n, . . . , n}D. It holds that Mn = (2n+ 1)D.
(Wav.) A wavelet basis ΦMn of scale n on Y = [0, 1]D, see [Mey92]. One can

consider the collection of functions which are D-tensors of 1[0,1] and ψj,r,

j = 0, . . . , n, r = 0, . . . , 2j − 1 with for x ∈ [0, 1]

ψj,r(x) = 2j/2ψ(2jx− r)
for some mother function ψ, for instance ψ = 1[0,1/2[ − 1[1/2,1]. It holds

that Mn = 2(n+1)D.

For sake of readability, we drop the dependence on n and write M instead of Mn.
The following vectors, matrices and tensors will be used:

• Denote by LM ∈ RM the projection of the distribution of one observation,
for instance Y1, on the basis ΦM :

∀a ∈ {1, . . . ,M}, LM (a) = E(ϕa(Y1)) .

• Denote by MM ∈ RM×M×M the joint distribution of three consecutive
observations, for instance (Y1, Y2, Y3), on the basis ΦM :

∀(a, b, c) ∈ {1, . . . ,M}3, MM (a, b, c) = E(ϕa(Y1)ϕb(Y2)ϕc(Y3)) .

• Denote by NM ∈ RM×M the joint distribution of two consecutive observa-
tions, for instance (Y1, Y2), on the basis ΦM :

∀(a, b) ∈ {1, . . . ,M}2, NM (a, b) = E(ϕa(Y1)ϕb(Y2)) .

• Denote by OM ∈ RM×K the conditional distribution of one observation on
the basis ΦM :

∀(m, k) ∈ {1, . . . ,M} × X , OM (m, k) = E(ϕm(Y1)|X1 = k) = 〈f⋆
k , ϕm〉 .

• Define the projection of the emission laws on the subspace PM :

∀k ∈ X , f⋆
M,k :=

M
∑

m=1

OM (m, k)ϕm ,

and note f⋆M = (f⋆
M,1, . . . , f

⋆
M,K).

• Denote by PM ∈ RM×M the joint distribution of (Y1, Y3), on the basis ΦM :

∀(a, c) ∈ {1, . . . ,M}2, PM (a, c) = E(ϕa(Y1)ϕc(Y3)) .

2.3. Assumptions and further notations.

2.3.1. Assumptions on the hidden chain. We shall use the following assumptions

[H1] The transition matrix Q⋆ has full rank,
[H2] The Markov chain (Xn)n≥1 is irreducible and aperiodic,
[H3] The initial distribution π⋆ = (π⋆

1 , . . . , π
⋆
K) is the stationary distribution

Notice that under [H1], [H2] and [H3], one has

∀k ∈ X , π⋆
k ≥ π⋆

min > 0 .

Those assumptions appear in spectral methods, see for instance [HKZ12, AHK12],
and in identifiability issues, see for instance [AMR09, GCR13, AH14].
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2.3.2. Norms, singular values and matrix notation. We shall use the following com-
mon notation throughout the paper. Let A be a (p× q) matrix with p ≥ q. Denote
σ1(A) ≥ σ2(A) ≥ . . . ≥ σq(A) ≥ 0 its singular values, ‖·‖ its operator norm and
‖·‖F its Frobenius norm. When A is invertible, denote κ(A) := σ1(A)/σq(A) its
condition number. Denote A⊤ the transpose matrix of A, A(k, l) its (k, l)th entry,
A(. , l) its lth column and A(k, . ) its kth line. When A is a (p× p) diagonalizable
matrix, denote λ1(A) ≥ λ2(A) ≥ . . . ≥ λp(A) its eigenvalues.

For vectors, denote ‖·‖q the usual ℓq norm, for 1 ≤ q ≤ +∞. Let v be a vector
of size p. We denote by Diag[v] the diagonal matrix with diagonal entries vi and,
by abuse of notation, Diag[v] = Diag[v⊤].

2.3.3. Separation of the emission laws. Assume that the family F⋆ = {f⋆
1 , . . . , f

⋆
K}

is linearly independent. Therefore the (K × K) Gram matrix denoted by O⊤
⋆ O⋆

and defined by O⊤
⋆ O⋆ := (〈f⋆

k1
, f⋆

k2
〉)k1,k2∈X is invertible. Let:

(2) εF⋆,M := ‖O⊤
MOM −O⊤

⋆ O⋆‖= ‖(〈f⋆
M,k1

, f⋆
M,k2
〉 − 〈f⋆

k1
, f⋆

k2
〉)k1,k2∈X ‖ .

From (1), one can check that there exists MF⋆ ≥ 1 such that for all M ≥MF⋆

εF⋆,M ≤
3λK(O⊤

⋆ O⋆)

4
.

Remark — One can give an explicit expression of MF⋆ in terms of the regular-
ity of the emission laws. Indeed, standard results in approximation theory [DL93]
show that one can upper bound the approximation error ‖f⋆

k − f⋆
M,k‖2 by O(M−s)

where s > 0 denotes a regularity parameter (e.g. F⋆ is included in a well-chosen
Besov space). As a matter of fact, under standard hypothesis on the emission laws
densities, one can prove that εF⋆,M ≤ CF⋆,sM

−s where CF⋆,s > 0 is a constant that
may depend on F⋆ and a regularity parameter s. Hence, one can consider:

MF⋆ := ⌈
( 4CF⋆,s

3λK(O⊤
⋆ O⋆)

)
1

s ⌉ .

Invoke Weyl’s inequality (see Theorem 6) to show

σ2
K(OM ) = λk(O

⊤
MOM ) ≥ λK(O⊤

⋆ O⋆)/4 .

Set σK(O⋆) := λ
1

2

K(O⊤
⋆ O⋆) and notice that for allM ≥MF⋆ , σK(OM ) ≥ σK(O⋆)/2.

It shows that one can consider that:

[H4] There exists a constant 0 < σK,F⋆ ≤ 1 and a positive integer MF⋆ such that:

∀M ≥MF⋆ , σK(OM ) ≥ σK,F⋆ > 0 .

Conversely, if [H4] holds, one can check that O⊤
⋆ O⋆ is invertible. We deduce that

[H4] is equivalent to:

[H4b] The family of emission densities F⋆ := {f⋆
1 , . . . , f

⋆
K} is linearly independent.

Assumption [H4b] appears in spectral methods, see [HKZ12, AHK12], and in iden-
tifiability issues, see for instance [AMR09, GCR13]. Notice that in case K = 2,
[H4b] reduces to the fact that f⋆

1 6= f⋆
2 .

2.3.4. Identifiability issues. For any f = (f1, . . . , fK) ∈ (L2(Y,LD))K and any
irreducible transition matrix Q, denote gQ,f : Y3 → R the function given by

(3) gQ,f (y1, y2, y3) =

K
∑

k1,k2,k3=1

π(k1)Q(k1, k2)Q(k2, k3)fk1
(y1)fk2

(y2)fk3
(y3),

where π is the stationary distribution of Q. When Q = Q⋆ and f = f⋆, gQ
⋆,f⋆ = g⋆.

When f1, . . . , fK are probability densities on Y, gQ,f is the probability distribution
of three consecutive observations of a stationary HMM.



ESTIMATION OF NON-PARAMETRIC HIDDEN MARKOV MODELS 7

We now state a Lemma that gathers all what we need about identifiability.

Lemma 1 — Assume that Q is a transition matrix for which [H1] and [H2]
hold. Assume that [H4] (or [H4b]) holds. Define TQ the set of permutations τ
such that for all i and j, Q(τ(i), τ(j)) = Q(i, j). Then for any h ∈ (L2(Y,LD))K ,

gQ,f⋆+h = gQ,f⋆ ⇐⇒ ∃τ ∈ TQ such that hj = f⋆
τ(j) − f⋆

j , j = 1, . . . ,K.

In particular, if TQ reduces to the identity permutation,

gQ,f⋆+h = gQ,f⋆ ⇐⇒ h = (0, . . . , 0).

Proof. In [HKZ12] it is proved that when [H1], [H2], [H3] hold and σK(OM ) > 0,
the knowledge of MM allows to recover OM and Q up to relabelling of the hidden
states, using only spectral methods on MM . Thus, when [H1], [H2], [H3] and

[H4b] hold, the knowledge of gQ,f⋆ is equivalent to the knowledge of the sequence
(MM )M which allows to recover Q and the sequence (OM )M , up to relabelling of
the hidden states, which allows to recover f⋆ = (f⋆

1 , . . . , f
⋆
K) up to relabelling of the

hidden states, thanks to (1). See also [GCR13]. �

2.4. Spectral estimation. The following procedure describes a tractable approach
to non-parametric emission density estimation and transition matrix estimation. It
is based on recent developments in parametric estimation of HMMs. For each fixed
M , we estimate the projection of the emission distributions on the basis ΦM us-
ing the spectral method proposed in [AHK12]. As the authors of the latter paper
explain, this allows further to estimate the transition matrix (we use a modified ver-
sion of their estimator), and we set the estimator of the stationary distribution as
the stationary distribution of the estimator of the transition matrix. The computa-
tion of those estimators is particularly simple: it is based on one SVD, some matrix
inversions and one diagonalization. One can prove, with overwhelming probability,
all matrix inversions and the diagonalization can be done rightfully, see Theorem 4
and Theorem 5.

[Step 1] Consider the following empirical estimators: For any a, b, c in {1, . . . ,M},

L̂M (a) :=
1

N

N
∑

s=1

ϕa(Y
(s)
1 ) ,

M̂M (a, b, c) :=
1

N

N
∑

s=1

ϕa(Y
(s)
1 )ϕb(Y

(s)
2 )ϕc(Y

(s)
3 ) ,

N̂M (a, b) :=
1

N

N
∑

s=1

ϕa(Y
(s)
1 )ϕb(Y

(s)
2 ) ,

and P̂M (a, c) :=
1

N

N
∑

s=1

ϕa(Y
(s)
1 )ϕc(Y

(s)
3 ) .

[Step 2] Let Û be the M ×K matrix of orthonormal right singular vectors of P̂M

corresponding to its top K singular values.
[Step 3] Form the matrices:

∀b ∈ {1, . . . ,M}, B̂(b) := (Û⊤P̂MÛ)−1Û⊤M̂M (. , b, . )Û .

[Step 4] Set Θ a (K ×K) random unitary matrix uniformly drawn and form the
matrices:

∀k ∈ {1, . . . ,K}, Ĉ(k) :=

M
∑

b=1

(ÛΘ)(b, k)B̂(b) .
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[Step 5] Compute R̂ a (K ×K) unit Euclidean norm columns matrix that diago-

nalizes the matrix Ĉ(1):

R̂−1Ĉ(1)R̂ = Diag[(Λ̂(1, 1), . . . , Λ̂(1,K))] .

[Step 6] Set:

∀k, k′ ∈ X , Λ̂(k, k′) := (R̂−1Ĉ(k)R̂)(k′, k′) ,

and ÔM := ÛΘΛ̂.
[Step 7] Consider the emission laws estimator (f̂M,k)k∈X defined by:

∀k ∈ X , f̂M,k :=
M
∑

m=1

ÔM (m, k)ϕm ,

[Step 8] Set

π̃ :=
(

Û⊤ÔM

)−1
Û⊤L̂M .

[Step 9] Consider the transition matrix estimator:

Q̂ := ΠTM

(

(

Û⊤ÔMDiag[π̃]
)−1

Û⊤N̂MÛ
(

Ô⊤
MÛ

)−1
)

,

where ΠTM denotes the projection (with respect to the scalar product
given by the Frobenius norm) onto the convex set of transition matrices,

and define π̂ as the stationary distribution of Q̂.

Remark — The projection ΠTM (and the projection Π∆K ) can be computed us-
ing alternating projections. Indeed, observe the set of transpose transition matrices
can be viewed as the product ∆K × · · · × ∆K . Note the simplex ∆K is the inter-
section between two “simple” convex sets: an affine space and the orthant. Hence,
an alternating projection method can be used to compute the projection ΠTM. We
deduce that with O(K2) simple projections (onto affine spaces and orthants) one
can compute the projection onto the set of transition matrices.

2.5. Least squares estimation. In this section we shall estimate the density g⋆

of (Y1, Y2, Y3) using the so-called penalized least squares method. The idea is the
following: starting from the operator t 7→ ‖t− g⋆‖22 − ‖g⋆‖22 = ‖t‖22 − 2

∫

tg⋆ which
is minimum for the target g⋆, we introduce the corresponding empirical contrast

γN . Namely, for any t ∈ L2(Y3,LD⊗3
), set

γN (t) = ‖t‖22 −
2

N

N
∑

s=1

t (Zs) ,

with Zs := (Y s
1 , Y

s
2 , Y

s
3 ) (Scenario A) or Zs := (Ys, Ys+1, Ys+2) (Scenario B). As

N tends to infinity, γN (t)− γN (g⋆) converges almost surely to ‖t− g⋆‖22, thus the
name least squares contrast function. A natural estimator is then a function t such
that γN (t) is minimum over a judicious approximation space S. We thus define
a whole collection of estimates ĝM , each M indexing an approximation subspace
S(M) (also called model). It then remains to select the best model, that is to
choose M which minimizes ‖ĝM − g⋆‖22 − ‖g⋆‖22. This quantity is close to γN (ĝM ),
but we need to take into account the deviations of the process γ − γN . Then we
rather minimize γN (ĝM ) + pen(N,M) where pen(N,M) is a penalty term to be
specified.

More precisely, considering (3) we shall introduce a collection of model of func-
tions by projection of possible f ’s on the subspaces (PM )M . We fix a compact
subset F of L2(Y,LD) such that for any f ∈ F ,

∫

fdLD = 1 and ‖f‖∞ ≤ CF ,∞ for

some fixed CF ,∞ > 0. Recall that F is a compact subset of L2(Y,LD) if and only if
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F is closed, bounded, and for a complete orthonormal basis (ej)j≥1 of L2(Y,LD),
it holds

∀ǫ > 0, ∃J such that ∀f ∈ F ,
∑

j>J

〈f, ej〉2 < ǫ.

In particular, there exists CF ,2 > 0 such that for all f ∈ F , ‖f‖2 ≤ CF ,2. Also,
when PM is defined as the subspace generated by (ϕm)1≤m≤M = ΦM , for the
(Trig.) or (Wav.) examples, with ϕ1 = 1Y , one may choose F by setting a small
β > 0, a large L > 0, and let
(4)

F = {f ∈ L2(Y,LD) : 〈f, ϕ1〉 = 1, ‖f‖∞ ≤ CF ,∞ and
∑

m≥2

m2β〈f, ϕm〉2 ≤ L2}.

In such a case, when f ∈ F , then for all M , if fM is the projection of f onto PM ,
then fM ∈ F . Also, if moreover β > D/2, embedding theorems of Sobolev spaces
(see [AF03] for instance) show that if

(5) F = {f ∈ L2(Y,LD) : 〈f, ϕ1〉 = 1 and
∑

m≥2

m2β〈f, ϕm〉2 ≤ L2}

there exists CF ,∞ > 0 such that ‖f‖∞ ≤ CF ,∞ for all f ∈ F .
For any irreducible transition matrix Q with stationary distribution π, we define

S(Q,M) as the set of functions gQ,f such that, for each k = 1, . . . ,K, fk ∈ F , and
there exists (amk)1≤m≤M ∈ RM such that

fk =

M
∑

m=1

amkϕm.

Let now Q̂ be an estimator of Q⋆. For any M , define ĝM as a minimizer of γN (t)

for t ∈ S(Q̂,M). Then ĝM can be written as ĝM = gQ̂,f̂M with f̂M ∈ (F)K and

f̂M
k =

M
∑

m=1

âmkϕm, k = 1, . . . ,K

for some (âm,k)1≤m≤M ∈ RM , k = 1, . . . ,K. The least squares estimator does
not have an explicit form such as in usual nonparametric estimation, so that one
has to use numerical minimization algorithms. As initial point of the minimization
algorithm, we shall use the spectral estimator, see Section 4 for more details.

Our final estimator will be a penalized least squares estimator. We then set a
penalty function pen(N,M) and choose

M̂ = arg min
M=1,...,N

{γN (ĝM ) + pen(N,M)} .

Notice that, with N observations, we consider N subspaces as candidates for model

selection. Then the estimator of g⋆ is ĝ = ĝM̂ , and the estimator of f⋆ is f̂ such
that

f̂ := f̂M̂

so that ĝ = gQ̂,f̂ .

3. Main results

3.1. Adaptive non parametric estimation when K = 2. Here we specialize to
the situation where K = 2. In such a case, f⋆ = (f⋆

1 , f
⋆
2 ), and

Q⋆ =

(

1− p⋆ p⋆

q⋆ 1− q⋆
)

for some p⋆, q⋆ in [0, 1]. We shall assume
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[HB] The coefficients p⋆ and q⋆ verify

0 < p⋆ < 1, 0 < q⋆ < 1, p⋆ 6= 1− q⋆.

[HF] F is a compact subset of L2(Y,LD) such that: for any f ∈ F ,
∫

fdLD = 1
and ‖f‖∞ ≤ CF ,∞ for some fixed CF ,∞ > 0.
We denote CF ,2 = supf∈F ‖f‖2 <∞.

Let f̂ be the penalized least squares estimator of f⋆ when Q̂ := Q̂N is chosen as
the spectral estimator of Q⋆ with M :=MN such that η3(ΦMN ) (defined in Section
3.2) is equal to

√
logN . The following theorem gives an oracle inequality for the

estimators of the emission distributions provided the penalty is adequately chosen.

Theorem 1 (Adaptive estimation) — Assume [HF]. Assume that [HB] holds
for Q⋆. Assume also f⋆ ∈ F2, f⋆

1 6= f⋆
2 , and that for all M , f⋆M ∈ F2. Then, there

exists positive constants A⋆, B⋆ (depending on Q⋆, f⋆, CF ,2 and CF ,∞), a positive
integer N⋆ (depending on Q⋆ and F⋆) and a positive constant ρ⋆ (depending on
CF ,2 and CF ,∞ (Scenario A) or on Q⋆, CF ,2 and CF ,∞ (Scenario B)) such
that, if

pen(N,M) ≥ ρ⋆M logM

N

then for all x > 0, for all N ≥ (x∨x2)N⋆ logN , there exists a permutation τN ∈ S2
such that, with probability larger than 1− 8e−x,

‖f⋆
1 − f̂τN(1)‖22 + ‖f⋆

2 − f̂τN (2)‖22 ≤

A⋆
[

inf
M

{

‖f⋆
1 − f⋆

M,1‖22 + ‖f⋆
2 − f⋆

M,2‖22 + pen(N,M)
}

+
x

N

+‖Q⋆ − PτN Q̂NP⊤
τN‖2F+‖π⋆ − PτN π̂N‖22

]

and

‖Q⋆ − PτN Q̂NP⊤
τN‖≤ B

⋆

√

logN

N
x and ‖π⋆ − PτN π̂N‖2≤ B⋆

√

logN

N
x .

Here, PτN is the permutation matrix associated to τN .

Remark — An important consequence of the oracle inequality is that a right
choice of the penalty leads to a rate minimax adaptive estimator up to a logN term,
see Corollary 1 below.

Remark — Notice that in the situation where F is given as in (4), f⋆ ∈ F2

implies that for all M , f⋆M ∈ F2.

Proof. The proof consists in three steps. First, we control the spectral estimator

Q̂N . This is done in Section 3.2, see Corollary 2. Then, we obtain an oracle
inequality for the estimation of g⋆ which is stated below in Proposition 2 and
proved in Section 6.1. Notice that this proposition holds for any cardinality K of
hidden states (not only K = 2) as may be seen from its proof.

Proposition 2 — Assume that [HB] holds for Q⋆. Assume also f⋆ ∈ F2, for
all M , f⋆M ∈ F2, and f⋆

1 6= f⋆
2 . Then, there exists positive constants ρ⋆ and A⋆

1

(depending on CF ,2 and CF ,∞ (Scenario B) or on Q⋆, CF ,2 and CF ,∞ (Scenario
B)) such that, if

pen(N,M) ≥ ρ⋆M logM

N
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for all x > 0, for all N , for any permutation τ ∈ S2, one has with probability
1− (e− 1)−1e−x

‖ĝ − g⋆‖22 ≤ 6 inf
M

{

‖g⋆ − gQ⋆,f⋆M ‖22 + pen(N,M)
}

+A⋆
1

x

N

+18C6
F ,2

(

‖Q⋆ − PτQ̂P⊤
τ ‖2F + ‖π⋆ − Pτ π̂‖22

)

Then, finally we lower bound the risk of ĝ by that of f̂ up to relabelling of the
states. This uses the following Lemma which is proved in Section 6.2. Recall that
TQ is the set of permutations such that for all i and j, Q(i, j) = Q(τ(i), τ(j)).
Thus, if Q(1, 2) 6= Q(2, 1), TQ reduces to the identity, while if Q(1, 2) = Q(2, 1),

TQ = S2. For any h = (h1, h2) ∈
(

L2(Y,LD)
)2

denote ‖h‖2 = ‖h1‖2 + ‖h2‖2.

Lemma 2 — Let K be a compact subset of
(

L2(Y,LD)
)2

such that if h =

(h1, h2) ∈ K, then
∫

hidLD = 0, i = 1, 2. Let V be a compact neighborhood of Q⋆

such that, for all Q ∈ V, Q verifies 0 < p < 1, 0 < q < 1, p 6= 1 − q. Assume
that [HB] holds for Q⋆ and that f⋆

1 6= f⋆
2 . Then there exists a positive constant

c(K,V ,F⋆) such that

∀h = (h1, h2) ∈ K2, ∀Q ∈ V , ‖gQ,f⋆+h − gQ,f⋆‖2 ≥ c(K,V ,F⋆)‖h‖Q.
Here, ‖h‖Q := minτ∈TQ

{‖h1 + f⋆
1 − f⋆

τ(1)‖2 + ‖h2 + f⋆
2 − f⋆

τ(2)‖2}.

Let K = {h = f−f⋆, f ∈ F2}. Let V be a compact set such as in Lemma 2 and let
ǫ > 0 be such that if Q is a transition matrix such that ‖Q−Q⋆‖ ≤ ǫ, then Q ∈ V .
We shall use Theorem 3 stated in the forthcoming section. Set B⋆ = C(Q⋆,F⋆) and
let N⋆ be an integer larger than C(Q⋆,F⋆)2/ǫ2 and larger than N(Q⋆,F⋆). Observe

that for all x and N ≥ (x ∨ x2)N⋆ logN , one has ǫ ≥ xC(Q⋆,F⋆)
√

logN/N . Now
using Proposition 2 and Theorem 3 with MN such that η3(ΦMN ) =

√
logN we get

that for all x > 0, for all N ≥ (x∨x2)N⋆ logN , there exists a permutation τN such
that with probability 1− 8e−x, one has

‖ĝ − g⋆‖22 ≤ 6 inf
M

{

‖g⋆ − gQ⋆,f⋆M ‖22 + pen(N,M)
}

+A⋆
1

x

N
(6)

+18C6
F ,2

(

‖Q⋆ − PτN Q̂P⊤
τN‖2F + ‖π⋆ − PτN π̂‖22

)

and

(7) ‖Q⋆ − PτN Q̂NP⊤
τN‖≤ B

⋆

√

logN

N
x and ‖π⋆ − PτN π̂N‖2≤ B⋆

√

logN

N
x.

so that in particular PτN Q̂NP⊤
τN ∈ V . Notice that writing

ĝ (y1, y2, y3) =

2
∑

k1,k2,k3=1

(PτN π̂
⋆)(k1)(PτN Q̂P⊤

τN )(k1, k2)(PτN Q̂P⊤
τN )(k2, k3)

× f̂τN (k1)(y1)f̂τN (k2)(y2)f̂τN (k3)(y3) ,

and applying Lemma 2 we get,

(8) ‖f⋆
1 − f̂τN (1)‖2 + ‖f⋆

2 − f̂τN (2)‖2 ≤
1

c(K,V ,F⋆)
‖ĝ − gPτN

Q̂P
⊤
τN

,f⋆‖2.

Indeed, in case Q⋆(1, 2) 6= Q⋆(2, 1) one may set V so that for all Q ∈ V , Q(1, 2) 6=
Q(2, 1) and in case Q⋆(1, 2) = Q⋆(2, 1) one can swap the labels in the estimation
of Q⋆ so that one may choose τN in such a way that (8) holds.
Now by the triangular inequality

(9) ‖ĝ − gPτN
Q̂P

⊤
τN

,f⋆‖2 ≤ ‖ĝ − g⋆‖2 + ‖gQ
⋆,f⋆ − gPτN

Q̂P
⊤
τN

,f⋆‖2
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We have
(

gQ
⋆,f⋆ − gPτN

Q̂P
⊤
τN

,f⋆
)

(y1, y2, y3) =

2
∑

k1,k2,k3=1

(

π⋆(k1)Q
⋆(k1, k2)Q

⋆(k2, k3)− (PτN π̂
⋆)(k1)(PτN Q̂P⊤

τN )(k1, k2)(PτN Q̂P⊤
τN )(k2, k3)

)

× f⋆
k1
(y1)f

⋆
k2
(y2)f

⋆
k3
(y3) ,

so that

(10) ‖gQ⋆,f⋆ − gPτN
Q̂P

⊤
τN

,f⋆‖2 ≤
√
3C3

F ,2

[

‖π⋆ − Pτ π̂‖2 + 2‖Q⋆ − PτQ̂P⊤
τ ‖F

]

.

In the same way,
(

g⋆ − gQ⋆,f⋆M

)

(y1, y2, y3) =

2
∑

k1,k2,k3=1

π⋆(k1)Q
⋆(k1, k2)Q

⋆(k2, k3)
(

f⋆
k1
(y1)f

⋆
k2
(y2)f

⋆
k3
(y3)− f⋆

M,k1
(y1)f

⋆
M,k2

(y2)f
⋆
M,k3

(y3)
)

so that
‖g⋆ − gQ⋆,f⋆M ‖2 ≤ 3C2

F ,2max{‖f⋆
1 − f⋆

M,1‖; ‖f⋆
2 − f⋆

M,2‖}.
Thus collecting (6), (7), (8), (9), (10) and with an appropriate choice of A⋆ we get
Theorem 1. �

Corollary 1 — Under the assumptions of Theorem 1, there exists a sequence
of permutations τN ∈ S2 such that as N tends to infinity,

E

[

‖f⋆
1 − f̂τN (1)‖22 + ‖f⋆

2 − f̂τN(2)‖22
]

=

O

(

inf
M

{

‖f⋆
1 − f⋆

M,1‖2 + ‖f⋆
2 − f⋆

M,2‖2 + pen(N,M)
}

+
logN

N

)

,

and

E

[

‖Q⋆ − PτN Q̂NP⊤
τN‖
]

= O

(

√

logN

N

)

and E [‖π⋆ − PτN π̂N‖2] = O

(

√

logN

N

)

.

Thus, choosing pen(N,M) = ρM logM/N for a large ρ leads to the minimax
asymptotic rate of convergence up to logN . Indeed, as already said in Section
2.3.3, standard results in approximation theory [DL93] show that one can upper
bound the approximation error ‖f⋆

k − f⋆
M,k‖2 by O(M−s) where s > 0 denotes a

regularity parameter. Then the trade-off is obtained for M ∼ (N/ logN)1/(2s+D),
which leads to the quasi-optimal rate (N/ logN)−s/(2s+D) for the non parametric
estimation when the minimal smoothness of the emission densities is s. Notice that
the algorithm automatically selects the best M leading to this rate.

To implement the estimator, it remains to choose a value for ρ in the penalty.
The calibration of this parameter is a classical issue and could be the subject of a
full paper. In practice one can use the slope heuristic [BMM12].

Proof. We shall give the proof concerning the risk of Q̂N , the proofs for π̂N and

for f̂ are similar. First of all, we have

lim sup
N→+∞

E

[
√

N

logN
‖Q⋆ − PτN Q̂NPT

τN‖
]

≤

B⋆

∫ +∞

0

lim sup
N→+∞

P

( √
N

B⋆
√
logN

‖Q⋆ − PτN Q̂NPT
τN‖≥ x

)

dx.
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Then, Theorem 1 gives that for any x > log 8,

lim sup
N→+∞

P

( √
N

B⋆
√
logN

‖Q⋆ − PτN Q̂NPT
τN‖≥ x

)

≤ 8e−x

so that

lim sup
N→+∞

E

[
√

N

logN
‖Q⋆ − PτN Q̂NPT

τN‖
]

≤ B⋆

[

log 8 + 8

∫ +∞

log 8

e−xdx

]

.

�

3.2. Risk of the spectral estimators. We can now state the Theorem which
allows to derive the asymptotic properties of the spectral estimators. As usual in
non parametric estimation, the risk is decomposed in a bias term, which comes
from the approximating properties of the spaces (PM )M and decreases when M
increases, and in a variance term which comes from the estimator, and increases
when M increases. A good choice of M has to balance those two terms. The aim of
the following result is to bound the so-called variance term, and what is important
is to get a precise behavior of the upper bound with respect to both N and M .
The way it depends in M is described by the following quantity. Let us define

η23(ΦM ) := sup
y,y′∈Y3

M
∑

a,b,c=1

(ϕa(y1)ϕb(y2)ϕc(y3)− ϕa(y
′
1)ϕb(y

′
2)ϕc(y

′
3))

2.

Note that in the examples (Spline), (Trig.) and (Wav.) we have:

η3(ΦM ) ≤ CηM
3

2

where Cη > 0 is a constant.

Theorem 3 (Spectral estimators) — Assume [H1]-[H4]. Then, there exist
positive constant numbers C(Q⋆,F⋆) and N(Q⋆,F⋆) such that the following holds.
For any x > 0, for any M ≥MF⋆ , there exists a permutation τM ∈ SK such that the

spectral method estimators f̂M,k, π̂ and Q̂ enjoy: for any N ≥ N(Q⋆,F⋆)η3(ΦM )2x,
with probability greater than 1− 6e−x,

‖f⋆
M,k − f̂M,τM(k)‖2≤ C(Q⋆,F⋆)

η3(ΦM )√
N

x ,

‖π⋆ − PτM π̂‖2≤ C(Q⋆,F⋆)
η3(ΦM )√

N
x ,

‖Q⋆ − PτM Q̂P⊤
τM ‖≤ C(Q

⋆,F⋆)
η3(ΦM )√

N
x .

Let us set the consequences of this theorem.

Corollary 2 — Assume [H1]-[H4]. Let MN be a sequence of integers tending

to infinity such that η3(ΦMN ) = o(
√
N). For each N , define f̂N , Q̂N and π̂N as the

estimators obtained by the spectral algorithm with this choice of MN . Then there
exists a sequence of permutations τN ∈ SK such that

E
[

‖f⋆
MN ,k−f̂N,τN(k)‖2

]

∨ E
[

‖Q⋆−PτN Q̂NPT
τN‖
]

∨ E
[

‖π⋆−PτN π̂N‖2
]

= O
(η3(ΦMN )√

N

)

.

Here, the expectations are taken on the observations and on the random unitary
matrix drawn at [Step 4] of the spectral algorithm.
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The proof of Corollary 2 follows the same lines as that of Corollary 1. Let us
comment on this Corollary. Concerning the parametric part, if we choose MN such
as η3(ΦMN ) = (logN)δ for some positive δ, as is done to compute the penalized
least squares estimator, we get that

E

[

‖Q⋆ − PτN Q̂NPT
τN‖
]

= O

(

(logN)δ√
N

)

and

E [‖π⋆ − PτN π̂N‖2] = O

(

(logN)δ√
N

)

.

Concerning the non parametric part, Corollary 2 gives a control of the so-called
variance term, which is of orderM3D/N in typical situations such as in the examples

(Spline), (Trig.) and (Wav.). To get a control on the risk ‖f⋆
k − f̂N,τN(k)‖2 one

has to make a trade-off with the bias term ‖f⋆
k −f⋆

MN ,k‖2, which has order O(M−s)

where s is the minimal regularity of the emission laws. Choosing M3D+2s
N ∼ N , this

leads to to the rate N−s/(2s+3D) for the non parametric estimation. This is similar
to the rate of estimation of a density in dimension 3D with smoothness s. This loss
of rate compared to the minimax rate obtained in Theorem 1 may be understood
by the fact that spectral estimators are built from the empirical estimate of the
three-dimensional marginal distribution (thus in a 3D-dimensional space) of the
observations.

4. Numerical experiments

This section is devoted to numerically advocate the performances of the adaptive
estimation method studied in this paper. We recall that the experimenter knows
nothing about the underlying hidden Markov model but the number of hidden
states K. In this set of experiments, we consider the regular histogram basis for
estimating K = 2 emission laws given by beta laws of parameters (2, 5) and (4, 3)
from a single chain of size N = 30, 000.

Our method is based on the computation of least squares estimators ĝM defined
as minimizers of the empirical contrast γN . Then, the values of γN (ĝM ) (as M
varies) are used to heuristically calibrate the penalty pen(N,M) so as to, eventually,
compute the adaptive choice of the size of the model, namely

M̂ = arg min
M=1,...,N

{γN (ĝM ) + pen(N,M)} .

We understand that a crucial step lies in computing least squares estimators ĝM .
One may struggle to compute ĝM since the function γN is non-convex. It follows
that an acceptable procedure must start from a good approximation of ĝM . This
is done by the spectral method. Observe that the key leitmotiv throughout this
paper is a two steps estimation procedure that starts by the spectral estimator.
This latter has rate of convergence of the order of N−s/(2s+3) and seems to be
a good candidate to initialize an iterative scheme that will converge towards ĝM .
Hence we compute ĝM for each M = 1, . . . , N as follows

• First compute the spectral estimator. This is straightforward using the
procedure described by [Step1-9], Section 2.4. In particular, the spectral

estimator gives an estimation Q̂, π̂ of the transition matrix and its sta-
tionary distribution which is used to compute the least squares contrast
function.
• Use the spectral estimator of the emission densities as a starting point

for “Covariance Matrix Adaptation Evolution Strategy” (CMA-ES), see
[Han06]. This iterative algorithm may ultimately find a local/global mini-
mum of the contrast function.
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Our numerical experiments follow this path.
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Figure 1. Comparison of the variances of the spectral and the
least squares estimators.

A first numerical experiment, depicted in Figure 1, compares, for each M , the
variances (i.e. the ℓ2-distance between the estimator and the orthogonal projection
onto the subspace generated by the basis ΦM ) obtained by the spectral method and
the empirical least squares method over 100 iterations on chains of length 40, 000.
It consolidates the idea that the least square method significantly improves the
ℓ2-distance to the best approximation of the emission laws. Indeed, even for small
values of M , one may see that the variance is divided by two in Figure 1.
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Figure 2. Estimators of the emissions densities.

Interestingly, we are able to proceed the slope heuristic procedure in the non-
parametric HMM’s frame. This compelling data-driven procedure allows us to
tune the penalty appearing in our estimator. More precisely, typical behaviors
of the function M 7→ γ(ĝM ) and the function ρ 7→ argmin{γ(ĝM) + ρ pen(M)}
usher the experimenter to the right tuning parameter, an interested reader may
consult [BMM12]. Note that the size M of the projection space for the spectral
estimator has been set as the one chosen by the slope heuristic for the least squares
estimators. One can see on Figure 2 that our method also qualitatively improve
upon the spectral method.
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5. Discussion

We have proposed two procedures to estimate the law of a hidden Markov chain.
The spectral method has the advantage of being based on simple matrix computa-
tions and it provides an estimator of the dynamics of the hidden chain. As for it,
the penalized least-squares method allows to obtain quasi-optimal estimates of the
emission laws. The result is stated only for K = 2 but we can conjecture that it
can be generalized to any K. Indeed, the limitation comes only from Lemma 2 and
seems purely technical.

Another interesting extension of our work would be to consider emission laws
f⋆
k with different smothnesses sk and to find a procedure which adapts to each

behaviour, i.e. which selects a different approximation level M for each hidden
state k.

6. Proofs

6.1. Proof of Proposition 2. The proof is written for any fixed K, not only for
K = 2. Throughout the proof N is fixed, and we write γ (instead of γN ) for the
contrast function.

6.1.1. Beginning of the proof: algebraic manipulations.
Let us fix some M and some permutation τ . Using the definitions of ĝM and M̂ ,
we can write

γ(ĝM̂ ) + pen(M̂,N) ≤ γ(ĝM ) + pen(M,N) ≤ γ(gQ̂,f⋆
M,τ−1 ) + pen(M,N) ,

where f⋆M,τ−1 = (f⋆
M,τ−1(1), . . . , f

⋆
M,τ−1(K)) (here we use that f⋆M,τ−1 ∈ FK). But

we can compute for all functions t1, t2,

γ(t1)− γ(t2) = ‖t1 − g⋆‖22−‖t2 − g⋆‖22−2ν(t1 − t2) ,

where ν is the centered empirical process

ν(t) =
1

N

N
∑

s=1

t(Y
(s)
1 , Y

(s)
2 , Y

(s)
3 )−

∫

tg⋆ .

This gives

(11) ‖ĝM̂−g⋆‖22≤ ‖g
Q̂,f⋆

M,τ−1−g⋆‖22+2ν(ĝM̂−g
Q̂,f⋆

M,τ−1 )+pen(M,N)−pen(M̂,N)

Now, we denote RM̂ = ‖ĝM̂ − g⋆‖22 the squared risk and BM = ‖gQ⋆,f⋆M − g⋆‖22 a
biais term. We also set SM = ∪QS(Q,M) and

ZM = sup
t∈SM

[ |ν(t − g⋆)|
‖t− g⋆‖22+x2M

]

for xM to be determined later. Notice that g
Q̂,f⋆

M,τ−1 = gPτQ̂P
⊤
τ ,f⋆M . Then

‖gQ̂,f⋆
M,τ−1 − g⋆‖22 ≤ 2‖gQ̂,f⋆

M,τ−1 − gQ⋆,f⋆M ‖22+2‖gQ⋆,f⋆M − g⋆‖22
≤ 2‖gPτQ̂P

⊤
τ ,f⋆M − gQ⋆,f⋆M ‖22+2BM .
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But, using Schwarz inequality, ‖gQ1,f
⋆
M − gQ2,f

⋆
M ‖22 can be bounded by

M
∑

m1,m2,m3=1

∣

∣

∣

∣

∣

∣

K
∑

k1,k2,k3=1

(π1(k1)Q1(k1, k2)Q1(k2, k3)− π2(k1)Q2(k1, k2)Q2(k2, k3))

〈f⋆
k1
, ϕm1

〉〈f⋆
k2
, ϕm2

〉〈f⋆
k3
, ϕm3

〉
∣

∣

2

≤
K
∑

k1,k2,k3=1

(π1(k1)Q1(k1, k2)Q1(k2, k3)− π2(k1)Q2(k1, k2)Q2(k2, k3))
2
C2

F ,2C
2
F ,2C

2
F ,2

≤ 3C6
F ,2

(

‖π1 − π2‖22+2‖Q1 −Q2‖2F
)

so that

‖gQ̂,f⋆
M,τ−1 − g⋆‖22 ≤ 6C6

F ,2

(

‖Pτ π̂ − π⋆‖22+2‖PτQ̂P⊤
τ −Q⋆‖2F

)

+ 2BM .

Next

ν(ĝM̂ − g
Q̂,f⋆

M,τ−1 ) = ν(ĝM̂ − g⋆) + ν(g⋆ − gQ̂,f⋆
M,τ−1 )

≤ ZM̂ (‖ĝM̂ − g⋆‖22+x2M̂ ) + ZM (‖gQ̂,f⋆
M,τ−1 − g⋆‖22+x2M )

so that (11) becomes

RM̂ ≤ 6C6
F ,2

(

‖Pτ π̂ − π⋆‖22+2‖PτQ̂P⊤
τ −Q⋆‖2F

)

+ 2BM + 2ZM̂ (RM̂ + x2
M̂
)

+2ZM(6C6
F ,2

(

‖Pτ π̂ − π⋆‖22+2‖PτQ̂P⊤
τ −Q⋆‖2F

)

+ 2BM + x2M )

+2pen(M,N)− pen(M̂,N)− pen(M,N) ,

RM̂ (1− 2ZM̂ ) ≤ (2 + 4ZM )BM + 2pen(M,N)

+(1 + 2ZM)6C6
F ,2

(

‖Pτ π̂ − π⋆‖22+2‖PτQ̂P⊤
τ −Q⋆‖2F

)

+2 sup
M ′

(2ZM ′x2M ′ − pen(M ′, N)) .

To conclude it is then sufficient to establish the bounds, with probability greater
than 1− (e− 1)−1e−x, it holds

sup
M ′

ZM ′ ≤ 1

4
and sup

M ′

(2ZM ′x2M ′ − pen(M ′, N)) ≤ A x

N
,

with A a constant depending only on Q⋆ and f⋆ and not on N,M, x. Thus we will
have, for any M ,

1

2
RM̂ ≤ 3BM + 2pen(M,N) + 2A

x

N

+9C6
F ,2

(

‖Pτ π̂ − π⋆‖22+2‖PτQ̂P⊤
τ −Q⋆‖2F

)

which is the announced result.
The heart of the proof is then the study of ZM . We introduce uM the projection

of g⋆ on SM and we split ZM in two terms: ZM ≤ 4ZM,1 + ZM,2 with














ZM,1 = sup
t∈SM

[ |ν(t− uM )|
‖t− uM‖22+4x2M

]

ZM,2 =
|ν(uM − g⋆)|
‖uM − g⋆‖22+x2M

Indeed uM verifies: for all t ∈ SM ,

‖uM − g⋆‖2≤ ‖t− g⋆‖2 and ‖uM − t‖2≤ 2‖t− g⋆‖2 .
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6.1.2. Deviation inequality for ZM,2.
Bernstein inequality for HMM (31) gives, with probability larger than 1− e−z:

|ν(uM − g⋆)| ≤ 2

√

2c⋆‖uM − g⋆‖22‖g⋆‖∞
z

N
+ 2
√
2c⋆‖uM − g⋆‖∞

z

N
.

Then, using a2 + b2 ≥ 2ab, with probability larger than 1− e−z:

|ν(uM − g⋆)|
‖uM − g⋆‖22+x2M

≤ 2
√

2c⋆‖g⋆‖∞
1

2xM

√

z

N
+ 2
√
2c⋆
‖uM‖∞+‖g⋆‖∞

x2M

z

N
.

But any function t in SM can be written

t =
K
∑

k1,k2,k3=1

π(k1)Q(k1, k2)Q(k2, k3)fk1
⊗ fk2

⊗ fk3
,

with fk ∈ F for k = 1, . . . ,K, so that supt∈SM
‖t‖∞≤ C3

F ,∞. Then, with probability

larger than 1− e−zM−z

ZM,2 ≤
√

2c⋆‖g⋆‖∞
√

zM + z

x2MN
+ 4
√
2c⋆C3

F ,∞
zM + z

x2MN
.

6.1.3. Deviation inequality for ZM,1.
We shall first study the term supt∈Bσ

|ν(t− uM )| where

Bσ = {t ∈ SM , ‖t− uM‖2≤ σ}.

Remark that, for all t ∈ S(Q,M),

‖t‖22≤
K
∑

k1,k2,k3=1

π2(k1)Q
2(k1, k2)Q

2(k2, k3)

K
∑

k1,k2,k3=1

C2
F ,2C

2
F ,2C

2
F ,2 ≤ K3C6

F ,2

Then, if t ∈ Bσ, ‖t − uM‖2≤ σ ∧ 2K3/2C3
F ,2. Notice also that for all t ∈ SM ,

‖t− uM‖∞≤ 2C3
F ,∞. Now Proposition 10 (applied to a countable dense set in Bσ)

gives

EA( sup
t∈Bσ

|ν(t− uM )|) ≤ C⋆

[

E

N
+ σ

√

1

N
log

(

1

P(A)

)

+
2C3

F ,∞
N

log

(

1

P(A)

)

]

,

and

E =
√
N

∫ σ

0

√

H(u) ∧Ndu+ (2C3
F ,∞ + 2K3/2C3

F ,2)H(σ) .

We shall compute this term later and find σM and ϕ such that

(12) ∀σ ≥ σM E ≤ (1 + 2C3
F ,∞ + 2K3/2C3

F ,2)ϕ(σ)
√
N.

(see Section 6.1.4). We then use Lemma 4.23 in [Mas07] to write (for xM ≥ σM )

EA

(

sup
t∈SM

[ |ν(t− uM )|
‖t− uM‖22+4x2M

])

≤ C⋆

x2M

[

C
ϕ(2xM )√

N
+ 2xM

√

1

N
log

(

1

P(A)

)

+
2C3

F ,∞
N

log

(

1

P(A)

)

]

Finally, Lemma 2.4 in [Mas07] ensures that, with probability 1− e−zM−z:
(13)

ZM,1 = sup
t∈SM

[ |ν(t− uM )|
‖t− uM‖22+4x2M

]

≤ C⋆

[

C
ϕ(2xM )

x2M
√
N

+ 2

√

zM + z

x2MN
+ 2C3

F ,∞
zM + z

x2MN

]
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6.1.4. Computation of the entropy and function ϕ.
The definition of H given in Proposition 10 shows that H(δ) is bounded by the
classical bracketing entropy for L2 distance at point δ/C3

F ,∞ (where C3
F ,∞ bounds

the sup norm of g⋆): H(δ) ≤ H(δ/C3
F ,∞, SM ,L

2). We denote by N(u, S,L2) =

eH(u,S,L2) the minimal number of L2-balls of radius u to cover S. Now, observe
that SM = ∪QS(Q,M) is a set of mixture of parametric functions. Denoting
k = (k1, k2, k3), SM is included in







∑

k∈{1,...,K}3

µ(k)fk1
⊗ fk2

⊗ fk3
, µ ≥ 0,

∑

k∈{1,...,K}3

µ(k) = 1, fk ∈ F ∩ Span(ϕ1, . . . , ϕM )







.

Set

Ak = {fk1
⊗ fk2

⊗ fk3
, fki ∈ F ∩ Span(ϕ1, . . . , ϕM )}

= {t(., a,k) :=
M
∑

m1,m2,m3=1

am1k1
am2k2

am3k3
ϕm1

⊗ ϕm2
⊗ ϕm3

,
∑

m

amkiϕm ∈ F} .

such that SM is included in the mixture of Ak, k ∈ {1, . . . ,K}3. Following the
proof in Appendix A of [BT13], we can prove

N(ε, SM ,L
2) ≤

(

C1

ε

)K3−1
∏

k∈{1,...,K}3

N
(ε

3
,Ak,L

2
)

.

where C1 depends onK and CF ,2. Notice that if t(., a,k) ∈ Ak, the vector a ∈ RMK

verifies
∑M

m=1 |amki |2 = ‖fki‖22≤ C2
F ,2. Moreover, for t(., a,k) and t(., b,k) ∈ Ak

‖t(., a,k)− t(., b,k)‖22 =

M
∑

m1,m2,m3=1

|am1k1
am2k2

am3k3
− bm1k1

bm2k2
bm3k3

|2

≤
M
∑

m1,m2,m3=1

|am1k1
am2k2

(am3k3
− bm3k3

)

+am1k1
(am2k2

− bm2k2
)am3k3

+ (am1k1
− bm1k1

)bm2k2
bm3k3

|2

≤ 3C4
F ,2‖a− b‖2MK

Thus, Ak is a parametric family where the L2-distance is controlled by the ℓ2
distance in RMK . Then combinatorial computations give

N(u,Ak,L
2) ≤

(

2CF ,2

√
MK

u/(
√
3C2

F ,2)

)MK

.

We deduce

N(u, SM ,L
2) ≤

(

C1

u

)K3−1
∏

k

(

2CF ,2

√
MK

u/(3
√
3C2

F ,2)

)MK

,

and then

H(u, SM ,L
2) ≤ (K3 − 1) log(C1/u) +MK4 log

(

C2M
1/2

u

)

,
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with C2 depending on K and CF ,2. To conclude we use that
∫ σ

0

√

log
(

1
x

)

dx ≤

σ(
√
π +

√

log
(

1
σ

)

) (see [MM08]). Finally we can write

∫ σ

0

√

H(u)du ≤ C3

√
Mσ

(

1 +

√

log

(

M1/2

σ

)

)

,

where C3 depends on K, CF ,2 and CF ,∞. Set

ϕ(x) = C3

√
Mx

(

1 +

√

log

(

M1/2

x

)

)

The function ϕ is increasing, and ϕ(x)/x is decreasing. Moreover ϕ(σ) ≥
∫ σ

0

√

H(u)du

and ϕ2(σ) ≥ σ2H(σ).

6.1.5. End of the proof, choice of parameters.
We define σM as the solution of equation ϕ(x) =

√
Nx2. Then, for all σ ≥ σM ,

H(σ) ≤ ϕ(σ)2

σ2
≤ ϕ(σ)

σ
σ
√
N.

This yields, for all σ ≥ σM ,

E ≤ (1 + 2C3
F ,∞ + 2K3/2C3

F ,2)ϕ(σ)
√
N,

which was required in (12).

Moreover ϕ(2xM )

xM

√
N
≤ 2σM as soon as xM ≥ σM . Combining (13) and (12), we

obtain, with probability 1− e−zM−z:

ZM ≤ C⋆⋆

[

σM
xM

+

√

zM + z

x2MN
+
zM + z

x2MN

]

,

where C⋆⋆ depends onK, CF ,2, CF ,∞, Q⋆. Now let us choose xM = θ−1
√

σ2
M + zM+z

N

with θ such that 2θ + θ2 ≤ (C⋆⋆)−1/4. This choice entails: xM ≥ θ−1σM and
x2M ≥ θ−2 zM+z

N . Then with probability 1− e−zM−z:

ZM ≤ C⋆⋆(θ + θ + θ2).

We now choose zM = M which implies
∑

M≥1 e
−zM = (e − 1)−1. Then, with

probability 1− (e − 1)−1e−z

∀M ZM ≤ C⋆⋆(2θ + θ2) ≤ 1

4
,

and for all M ,

ZMx
2
M ≤ C⋆⋆

[

σMxM + xM

√

zM + z

N
+
zM + z

N

]

≤ C⋆⋆θ−1

(

σM +

√

zM + z

N

)2

+ C⋆⋆ zM + z

N
.

Then, with probability 1− (e − 1)−1e−z, for all M ,

ZMx
2
M − C⋆⋆

(

2θ−1σ2
M + (2θ−1 + 1)

M

N

)

≤ C⋆⋆(2θ−1 + 1)
z

N
.
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Then the result is proved as soon as pen(M,N) ≥ 2C⋆⋆
(

2θ−1σ2
M + (2θ−1 + 1)MN

)

.

Recall that σM is defined as the solution of equation 2C3

√
Mx(1+

√

log
(

M1/2

2x

)

) =

4
√
Nx2. Then we obtain that

σM ≥ C4

√

M

N
(1 +

√

log(M)) ,

and pen(M,N) ≥ ρ⋆M log(M)
N . Notice that the dependence on Q⋆ in ρ⋆ arises from

Propositions 9 and 10, so that it vanishes in Scenario A.

6.2. Proof of Lemma 2. Let h = (h1, h2) ∈ (L2(Y,LD))2 and let

Q =

(

1− p p
q 1− q

)

be a 2× 2 transition matrix. The fact that Q ∈ V implies that

(14) 0 < p < 1, 0 < q < 1, and p 6= 1− q.
Denote N(Q,h) = ‖gQ,f⋆+h − gQ,f⋆‖22. What we want to prove is that

c := c(K,V ,F⋆)2 := inf
Q∈V,h∈K2,‖h‖Q 6=0

N(Q,h)

‖h‖2Q
> 0.

Let (Qn,hn)n be a sequence in V × K such that c = limn
N(Qn,hn)
‖hn‖2

Qn

. Let (Q̃, h̃) be

a limit point of the sequence in the compact set V ×K. Then one has (considering

the cases Q̃(1, 2) 6= Q̃(2, 1) and Q̃(1, 2) = Q̃(2, 1)) that

lim
n→+∞

‖hn‖Qn≥ ‖h̃‖Q̃.

Thus if ‖h̃‖Q̃ 6= 0, then using Lemma 1

c =
N(Q̃, h̃)

lim
n→+∞

‖hn‖2Qn

> 0.

If ‖h̃‖Q̃= 0, we shall consider separately the situation where Q̃(1, 2) 6= Q̃(2, 1) and

the situation where Q̃(1, 2) = Q̃(2, 1).

Let us first consider the situation where Q̃(1, 2) 6= Q̃(2, 1). In this situation,
‖h‖Q̃= ‖h‖2. Direct computation shows that N(Q,h) is polynomial in the vari-

ables p, q, 〈f⋆
i , f

⋆
j 〉, 〈hi, f⋆

j 〉, 〈hi, hj〉 without linear part. Let D(Q,h) denote the
quadratic part with respect to the variable h. One gets

N(Q,h) = D(Q,h) +O
(

‖h‖32
)

where the O(·) depends only on f⋆. Let us first notice that D(·, ·) is always non
negative. Indeed, since for all Q ∈ V and all h ∈ (L2(Y,LD))2 one hasN(Q,h) ≥ 0,
it holds

∀Q ∈ V , ∀h ∈ (L2(Y,LD))2,
D(Q,h)

‖h‖22
+O(‖h‖2) ≥ 0,

so that, since for all λ ∈ R, D(Q, λh) = λ2D(Q,h),

(15) ∀Q ∈ V , ∀h ∈ (L2(Y,LD))2, D(Q,h) ≥ 0.

Then we obtain in the case (a) where ‖h̃‖Q̃= 0 and Q̃(1, 2) 6= Q̃(2, 1) that

c = lim
n→+∞

D
(

Qn,
hn

‖hn‖2
)

.

Indeed in this case for large enough n, Qn(1, 2) 6= Qn(2, 1) so that ‖hn‖Qn= ‖hn‖2.
We shall now study the function D(Q, a) for a = (a1, a2) of form h

‖h‖2
with h ∈ K2.
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Let u = (u1, u2) be such that ui, i = 1, 2, is the orthogonal projection of ai on the
subspace of L2(Y,LD) orthogonal to f⋆

1 and f⋆
2 . Direct computation gives that

D
(

Q, a
)

= T
(

Q,u
)

+D
(

Q, a− u
)

where for any Q and u,

T (Q,u) =
2
∑

i,j=1

{

〈(QTAu)i, (Q
TAu)j〉〈f⋆

i , f
⋆
j 〉〈(Qf⋆)i, (Qf⋆)j〉

+〈(QTAf⋆)i, (Q
TAf⋆)j〉〈ui, uj〉〈(Qf⋆)i, (Qf⋆)j〉

+〈(QTAf⋆)i, (Q
TAf⋆)j〉〈f⋆

i , f
⋆
j 〉〈(Qu)i, (Qu)j〉

}

.

Here, A = Diag[π] with π the stationary distribution of Q. But when Q and A are
full rank, and F⋆ is linearly independent, the matrices

(

〈f⋆
i , f

⋆
j 〉
)

i,j
,
(

〈(QTAf⋆)i, (Q
TAf⋆)j〉

)

i,j
, and (〈(Qf⋆)i, (Qf⋆)j〉)i,j ,

are positive definite.

Remark — We shall now use the fact that if B and C are symmetric positive
definite K × K matrices, then the K × K matrix E given by Ei,j = Bi,jCi,j,
i, j = 1, . . . ,K is positive definite. Indeed, let U1, . . . , UK be the eigenvectors
of B with corresponding eigenvalues λ1(B) ≥ · · · ≥ λK(B) > 0, so that B =
∑K

r=1 λr(B)UrU
T
r . Let also λ1(C) ≥ · · · ≥ λK(C) > 0 be the eigenvalues of C. Let

now x ∈ RK . Then

xTEx =

K
∑

i,j=1

xiBi,jCi,jxj =

K
∑

r=1

λr(B)

K
∑

i,j=1

xi(Ur)i(Ur)jCi,jxj

≥
(

min
r=1,...,K

λr(C)
)(

min
r=1,...,K

λr(B)
)

K
∑

r=1

K
∑

i=1

(xi(Ur)i)
2

=
(

min
r=1,...,K

λr(C)
)(

min
r=1,...,K

λr(B)
)

‖x‖2.

Thus, if R, V , W are the matrices given by, for all i, j = 1, 2,

Ri,j =
(

〈(QTAf⋆)i, (Q
TAf⋆)j〉

)

i,j

(

〈f⋆
i , f

⋆
j 〉
)

i,j
,

Vi,j =
(

〈f⋆
i , f

⋆
j 〉
)

i,j
(〈(Qf⋆)i, (Qf⋆)j〉)i,j ,

Wi,j =
(

〈(QTAf⋆)i,Q
TAf⋆)j〉

)

i,j
(〈(Qf⋆)i, (Qf⋆)j〉)i,j ,

and if we denote Λ(Q) the minimum of their eigenvalues, then Λ(Q) > 0 and we
have for any u ∈ (L2(Y,LD))2,

T (Q,u) =

∫

(

(QTAu)T (y)V (QTAu)(y) + uT (y)Wu(y) + (Qu)T (y)R(Qu)(y)
)

d(LD)⊗3(y)

≥
∫

Λ(Q)
(

‖QTAu(y)‖2+‖u(y)‖2+‖Qu(y)‖2
)

d(LD)⊗3(y)

= Λ(Q)
(

‖(QTAu)1‖22+‖(QTAu)2‖22+‖u1‖22+‖u2‖22+‖(Qu)1‖22+‖(Qu)2‖22
)

.

Moreover, we have
lim
n→∞

Λ(Qn) = Λ(Q̃) > 0.

Let an = hn

‖hn‖2
, un the orthogonal projection (coordinate by coordinate) of an on

the subspace of L2(Y,LD) orthogonal to f⋆
1 and f⋆

2 . We get c ≥ Λ(Q̃) lim infn→∞‖un‖2
so that in case lim infn→∞‖un‖2> 0, we get c > 0.
Else, using the subsequence for which lim infn→∞‖un‖2= 0 we have

c ≥ lim inf
n→∞

D (Qn, an − un) .
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But (an − un)n is a sequence with coordinates in the finite dimensional space

spanned by f⋆
1 and f⋆

2 , so that it has a limit point a = (a1, a2), and c ≥ D(Q̃, a).
Since on the subsequence limn→∞‖un‖2= 0, we get

∫

a1dLD = 0 and
∫

a2dLD = 0,
so that there exist real numbers α and β such that a1 = α(f⋆

1 −f⋆
2 ) and a2 = β(f⋆

1 −
f⋆
2 ). Now brute force computation gives D

(

Q̃, a
)

= D1,1α
2 + 2D1,2αβ + D2,2β

2

with, denoting p = Q̃(1, 2) and q = Q̃(2, 1):

D1,1

q2(p+ q)2
=2(1− p)2‖f⋆

1 − f⋆
2 ‖2‖f⋆

1 ‖2‖(1− p)f⋆
1 + pf⋆

2 ‖2+‖(1− p)f⋆
1 + pf⋆

2 ‖4‖f⋆
1 − f⋆

2 ‖2

+ 4p(1− p) (〈(1 − p)f⋆
1 + pf⋆

2 , qf
⋆
1 + (1− q)f⋆

2 〉) 〈f⋆
1 , f

⋆
2 〉‖f⋆

1 − f⋆
2 ‖2

+ 2p2‖f⋆
1 − f⋆

2 ‖2‖f⋆
2 ‖2‖qf⋆

1 + (1− q)f⋆
2 ‖2

+ 2(1− p)2 (〈(1− p)f⋆
1 + pf⋆

2 , f
⋆
1 − f⋆

2 〉)2 ‖f⋆
1 ‖2

+ 2p2 (〈qf⋆
1 + (1− q)f⋆

2 , f
⋆
1 − f⋆

2 〉)2 ‖f⋆
2 ‖2

+ 4p(1− p)〈qf⋆
1 + (1 − q)f⋆

2 , f
⋆
1 − f⋆

2 〉〈(1 − p)f⋆
1 + pf⋆

2 , f
⋆
1 − f⋆

2 〉〈f⋆
1 , f

⋆
2 〉

+ 4(1− p)〈(1 − p)f⋆
1 + pf⋆

2 , f
⋆
1 − f⋆

2 〉〈f⋆
1 , f

⋆
1 − f⋆

2 〉‖(1− p)f⋆
1 + pf⋆

2 ‖2

+ 4p〈(1− p)f⋆
1 + pf⋆

2 , f
⋆
1 − f⋆

2 〉〈f⋆
2 , f

⋆
1 − f⋆

2 〉〈(1 − p)f⋆
1 + pf⋆

2 , qf
⋆
1 + (1− q)f⋆

2 〉,

D2,2

p2(p+ q)2
=2q2‖f⋆

1 − f⋆
2 ‖2‖f⋆

1 ‖2‖(1− p)f⋆
1 + pf⋆

2 ‖2+‖qf⋆
1 + (1 − q)f⋆

2 ‖4‖f⋆
1 − f⋆

2 ‖2

+ 4(1− q)q (〈(1 − p)f⋆
1 + pf⋆

2 , qf
⋆
1 + (1− q)f⋆

2 〉) 〈f⋆
1 , f

⋆
2 〉‖f⋆

1 − f⋆
2 ‖2

+ 2(1− q)2‖f⋆
1 − f⋆

2 ‖2‖f⋆
2 ‖2‖qf⋆

1 + (1 − q)f⋆
2 ‖2

+ 2q2 (〈(1 − p)f⋆
1 + pf⋆

2 , f
⋆
1 − f⋆

2 〉)2 ‖f⋆
1 ‖2

+ 2(1− q)2 (〈qf⋆
1 + (1− q)f⋆

2 , f
⋆
1 − f⋆

2 〉)2 ‖f2‖2

+ 4q(1− q)〈qf⋆
1 + (1− q)f⋆

2 , f
⋆
1 − f⋆

2 〉〈(1 − p)f⋆
1 + pf⋆

2 , f
⋆
1 − f⋆

2 〉〈f⋆
1 , f

⋆
2 〉

+ 4q〈qf⋆
1 + (1− q)f⋆

2 , f
⋆
1 − f⋆

2 〉〈f⋆
1 , f

⋆
1 − f⋆

2 〉〈(1− p)f⋆
1 + pf⋆

2 , qf
⋆
1 + (1 − q)f⋆

2 〉
+ 4(1− q)〈qf⋆

1 + (1− q)f⋆
2 , f

⋆
1 − f⋆

2 〉〈f⋆
2 , f

⋆
1 − f⋆

2 〉‖qf⋆
1 + (1− q)f⋆

2 ‖2 ,
and:
D1,2

pq(p+ q)
=2(1− p)q‖f⋆

1 − f⋆
2 ‖2‖f⋆

1 ‖2‖(1− p)f⋆
1 + pf⋆

2 ‖2

+ 2[pq + (1 − p)(1− q)] (〈(1− p)f⋆
1 + pf⋆

2 , qf
⋆
1 + (1− q)f⋆

2 〉) 〈f⋆
1 , f

⋆
2 〉‖f⋆

1 − f⋆
2 ‖2

+ (〈(1− p)f⋆
1 + pf⋆

2 , qf
⋆
1 + (1 − q)f⋆

2 〉)2 ‖f⋆
1 − f⋆

2 ‖2

+ 2p(1− q)‖f⋆
1 − f⋆

2 ‖2‖f⋆
2 ‖2‖qf⋆

1 + (1− q)f⋆
2 ‖2

+ 2q(1− p) (〈(1− p)f⋆
1 + pf⋆

2 , f
⋆
1 − f⋆

2 〉)
2 ‖f⋆

1 ‖2

+ 2p(1− q) (〈qf⋆
1 + (1− q)f⋆

2 , f
⋆
1 − f⋆

2 〉)2 ‖f⋆
2 ‖2

+ 2pq〈qf⋆
1 + (1 − q)f⋆

2 , f
⋆
1 − f⋆

2 〉〈(1 − p)f⋆
1 + pf⋆

2 , f1 − f⋆
2 〉〈f⋆

1 , f
⋆
2 〉

+ 2(1− p)(1 − q)〈qf⋆
1 + (1− q)f⋆

2 , f1 − f⋆
2 〉〈(1 − p)f⋆

1 + pf⋆
2 , f

⋆
1 − f⋆

2 〉〈f⋆
1 , f

⋆
2 〉

+ q〈(1− p)f⋆
1 + pf⋆

2 , f
⋆
1 − f⋆

2 〉〈f⋆
1 , f

⋆
1 − f⋆

2 〉‖(1− p)f⋆
1 + pf⋆

2 ‖2

+ 2(1− p)〈qf⋆
1 + (1− q)f⋆

2 , f
⋆
1 − f⋆

2 〉〈f⋆
1 , f

⋆
1 − f⋆

2 〉〈(1 − p)f⋆
1 + pf⋆

2 , qf
⋆
1 + (1− q)f⋆

2 〉
+ 2(1− q)〈(1 − p)f⋆

1 + pf⋆
2 , f

⋆
1 − f⋆

2 〉〈f⋆
2 , f

⋆
1 − f⋆

2 〉〈(1 − p)f⋆
1 + pf⋆

2 , qf
⋆
1 + (1− q)f⋆

2 〉
+ 2p〈qf⋆

1 + (1 − q)f⋆
2 , f

⋆
1 − f⋆

2 〉〈f⋆
2 , f

⋆
1 − f⋆

2 〉‖qf⋆
1 + (1− q)f⋆

2 ‖2.
Since we already know that the quadratic form is non negative, it only remains to
prove that the determinant of the matrix defining the quadratic form is positive,
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that is to prove that:

DET (f⋆
1 , f

⋆
2 , p, q) :=

D1,1D2,2 −D2
1,2

p2q2(p+ q)2
> 0 ,

whenever f⋆
1 and f⋆

2 are distinct probability densities, and (14) holds. We shall now
write DET (f⋆

1 , f
⋆
2 , p, q) using

n1 = ‖f⋆
1 ‖2, n2 = ‖f⋆

2 ‖2, a =
〈f⋆

1 , f
⋆
2 〉

‖f⋆
1 ‖2‖f⋆

2 ‖2
,

for which the range is [1,∞[2×[0, 1[. Doing so, we obtain a polynomial P1 in the
variables n1, n2, a, p and q.
First observe that, by symmetry,

DET (f⋆
1 , f

⋆
2 , p, q) = DET (f⋆

2 , f
⋆
1 , q, p) .

so that it is sufficient to prove that the polynomial P1 is positive on the domain

(16) 1 ≤ n2 ≤ n1 ,

and 0 ≤ a < 1 and 0 < p 6= q < 1.
Furthermore, consider the change of variable

q = 1− p+ d

then we have a polynomial P2 in the variables n1, n2, a, p and d which factorizes
with

p2(1− a2)d2n12n22(1 + d− p)2
(1 + d)4

.

Dividing by this factor, one gets a polynomial P3 which is homogeneous of degree
8 in n1 and n2, so that one may set n1 = 1 and keep b = n2 ∈]0, 1] (observe that
we have used (16) to reduce the problem to the domain n2/n1 ≤ 1) and obtain a
polynomial P4 in the variables b, a, p and d. It remains to prove that P4 is positive
on D4 = {b ∈]0, 1], a ∈ [0, 1[, p ∈]0, 1[, d ∈]p− 1, 0[∪]0, p[}.
Consider now the following change of variables

b =
1

1 + x2
, a =

y2

1 + y2
, p =

z2

1 + z2
, and d =

(tz)2 − 1

(1 + t2)(1 + z2)
,

mapping (x, y, z, t) ∈ R4 onto (b, a, p, d) ∈ D5 = {b ∈]0, 1], a ∈ [0, 1[, p ∈ [0, 1[, d ∈
]p − 1, p[} which contains D4. This change of variables maps P4 onto a rational
fraction with positive denominator, namely

(1 + t2)4(1 + y2)4(1 + z2)4(1 + x2)8

So it remains to prove that its numerator P5, which is polynomial, is positive on
R4. An expression of P5 can be found in Appendix D.
Observe that P5 is polynomial in x2, y2, z2 and t2 and there are only three monomi-
als with negative coefficients. These monomials can be expressed as sum of squares
using others monomials, namely:

• −18x12t2 + 27x12 + 1979x12t4 = 18x12 + 9(x6 − x6t2)2 + 1970x12t4,
• −108x10t2+1970x12t4+495x8 = 439x8+56(x4−x6t2)2+1914x12t4+4t2x10,
• and −114x8t2 + 972x4 + 1914x12t4 = 915x4 + 57(x2 − x6t2)2 + 1857x12t4.

Thus P5 is equal to 144 more a sum of squares, hence it is positive. This proves
that DET is positive.

There remains to consider the case (b) where ‖h̃‖Q̃= 0 and Q̃(1, 2) = Q̃(2, 1).

But from the sequence (Qn,hn), one may extract a subsequence in which (Qnm ,hnm)
such that always ‖hnm‖Qnm

= ‖hnm‖2, in which case we may argue as for case (a),
or always ‖hnm‖Qnm

= ‖(hnm)1+f
⋆
1 −f⋆

2 ‖2+‖(hnm)2+f
⋆
2 −f⋆

1 ‖2. In this last case,
exchanging the states in the transition matrix one is back to case (a).
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6.3. Proof of Theorem 3. Let us introduce some notation for latter use. Define
the pseudo spectral gap Gps of the Markov chain (Xn)n≥1 as:

Gps := max
k≥1
{G(Diag[π⋆]−1(Q⋆⊤)kDiag[π⋆]Q⋆k)

k
} ,

where G is the spectral gap of an L2(π⋆)-self-adjoint operator A (with spectral
radius 1):

G(A) :=

{

1−max{λ : λ eigenvalue of A , λ 6= 1} if eigenvalue 1 has multiplicity 1,

0 otherwise.

Remark — If Q⋆ is irreducible then Diag[π⋆]−1Q⋆⊤Diag[π⋆]Q⋆ is irreducible
and Gps > 0.

Remark — If (Xn)n≥1 is reversible then Q⋆ is an L2(π⋆)-self-adjoint opera-

tor (i.e. Diag[π⋆]Q⋆ = Q⋆⊤Diag[π⋆]) and its pseudo spectral gap enjoys Gps =
G(Q⋆)(2−G(Q⋆)) > 0.

Define the mixing time Tmix of the Markov chain (Xn)n≥1 as:

Tmix :=
1 + 2 log 2− log π⋆

min

Gps
.

This mixing time has a deeper interpretation in terms of convergence toward the
stationary distribution in total variation norm. An interested reader may read
[Pau14].

For any δ ∈ (0, 1) set:

C∗(Q⋆, δ) :=

{

0.71(1 +
√− log δ) (Scenario A),√

2 + 2
√
−2Tmix log δ) (Scenario B).

which is a constant that depends only on Q⋆ and δ.
Let us also define (recalling the definition of η23(ΦM ))

η21(ΦM ) := sup
y,y′∈Y

M
∑

a=1

(ϕa(y)− ϕa(y
′))2 ,

η22(ΦM ) := sup
y,y′∈Y2

M
∑

a,b=1

(ϕa(y1)ϕb(y2)− ϕa(y
′
1)ϕb(y

′
2))

2 ,

and η23(ΦM ) := sup
y,y′∈Y3

M
∑

a,b,c=1

(ϕa(y1)ϕb(y2)ϕc(y3)− ϕa(y
′
1)ϕb(y

′
2)ϕc(y

′
3))

2 .

Remark — Note that in the examples (Spline), (Trig.) and (Wav.) we have:

(17) ∀k ∈ {1, 2, 3} ηk ≤ CηM
k
2 ,

where Cη > 0 is a constant.

Remark — For any orthonormal family (ΦM ), it holds:

(18) Mη1 ≤
√
Mη2 ≤ η3 .

Indeed, observe that ‖∑c ϕ
2
c‖∞≥

∑

c‖ϕc‖22= M and for any ε > 0, there exists

y ∈ Y such that
∑

c ϕ
2
c(y) ≥M − ε. Set y3 = y′3 = y to show that

√
Mη2 ≤ η3.

Theorem 3 follows from the following more precise result.
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Theorem 4 — Assume [H1]-[H4]. Let δ ∈ (0, 1) then, with probability greater
than 1 − 6δ, there exists a permutation τ ∈ SK such that the spectral method esti-

mators f̂M,k, π̂ and Q̂ (see Section 2.4 for a definition) enjoy for any M ≥MF⋆,
(19)

∀N ≥ N1(Q
⋆,F⋆,ΦM , δ) , ∀k ∈ X , ‖f⋆

M,k−f̂M,τ(k)‖2≤ CM (Q⋆,F⋆, δ)C∗(Q⋆, δ)
η3(ΦM )√

N
,

(20)

∀N ≥ N2(Q
⋆,F⋆,ΦM , δ) , ‖Q⋆ − PτQ̂P⊤

τ ‖≤ DM (Q⋆,F⋆, δ)C∗(Q⋆, δ)
η3(ΦM )√

N
,

(21) ∀N ≥ N3(Q
⋆,F⋆,ΦM , δ) , ‖π⋆ − Pτ π̂‖2≤ EM (Q⋆,F⋆, δ)C∗(Q⋆, δ)

η3(ΦM )√
N

,

where Pτ is the permutation matrix associated to τ , and:

N1(Q
⋆,F⋆,ΦM , δ) :=

4K

3σ2
K,F⋆

CM (Q⋆,F⋆, δ)2 C∗(Q⋆, δ)2η3(ΦM )2 ,

N2(Q
⋆,F⋆,ΦM , δ) :=

4

π⋆2
min

D′
M (Q⋆,F⋆, δ)2 C∗(Q⋆, δ)2η3(ΦM )2 ,

N3(Q
⋆,F⋆,ΦM , δ) :=

4

σ2
K(AQ⋆)

DM (Q⋆,F⋆, δ)2 C∗(Q⋆, δ)2η3(ΦM )2 ,

with notation:

CM (Q⋆,F⋆, δ) :=

[

13
κ2(Q⋆)K

1

2

π⋆
minσK(Q⋆2)

κ2F⋆

σ2
K,F⋆

+
83

δ

κ6(Q⋆)K5

π⋆
minσK(Q⋆2)

κ6F⋆ max
k∈X
‖f⋆

k‖2
σ3
K,F⋆

(1 + (2 log
K2

δ
)

1

2 )

]

×
[

1 +
‖g⋆‖2

π⋆
minσ

2
K,F⋆σK(Q⋆2)

1√
M

]

+
2√
M

max
k∈X
‖f⋆

k‖2
σ2
K,F⋆π⋆

minσK(Q⋆2)
,

D′
M (Q⋆,F⋆, δ) :=

2

3σ2
K,F⋆

[

4
√
KCM (Q⋆,F⋆, δ)max

k∈X
‖f⋆

k‖2 +
3
√
3σK,F⋆

M

]

,

DM (Q⋆,F⋆, δ) :=
8‖f⋆

(Y1,Y3)
‖2

3σ2
K,F⋆π⋆2

min

×
[

D′
M (Q⋆,F⋆, δ) + 4

√
3Kπ⋆

minCM (Q⋆,F⋆, δ) +
5π⋆

min

‖f⋆
(Y1,Y3)

‖2
√
M

]

,

EM (Q⋆,F⋆, δ) :=
16‖f⋆

(Y1,Y3)
‖2

σ2
K(AQ⋆)σ2

K,F⋆π⋆2
min

×
[

D′
M (Q⋆,F⋆, δ) + 4

√
3Kπ⋆

minCM (Q⋆,F⋆, δ) +
5π⋆

min

‖f⋆
(Y1,Y3)

‖2
√
M

]

,

where κF⋆ is given in Lemma 3 and σ2
K(AQ⋆) is the k-th largest singular value of

(

IdK − (Q⋆)⊤

1
⊤
K

)

which is positive.

To prove Theorem 4, we shall use the analysis of Anandkumar, Hsu and Kakade
in [AHK12] to control the ℓ2-error of the estimation using the spectral method
described in Section 2.4. To use their result in the non-parametric HMMs frame,
it is essential to state explicitly how all constants depend on the dimension M .
We thus recast and optimize Anandkumar, Hsu and Kakade’s argument. This is
exactly what is performed below and proved in Appendix C.
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Theorem 5 — Let 0 < δ < 1. If it holds 3‖P̂M −PM‖≤ σK(PM ) and

8.2K
5

2 (K − 1)
κ2(Q⋆O⊤

M )

δγ(OM )σK(PM )

[

‖M̂M −MM‖∞,2+
‖MM‖∞,2‖P̂M −PM‖

σK(PM )

]

< 1 ,

(22)

43.4K4(K − 1)
κ4(Q⋆O⊤

M )

δγ(OM )σK(PM )

[

‖M̂M −MM‖∞,2+
‖MM‖∞,2‖P̂M −PM‖

σK(PM )

]

≤ 1 ,

(23)

where γ(OM ) := min
k1 6=k2

‖OM(. , k1)−OM (. , k2)‖2 and ‖A‖∞,2:= max
‖v‖2=1

‖
M
∑

b=1

vbA(. , b, . )‖

for all A ∈ RM×M×M ,
then, with probability greater than 1 − 2δ, the matrix Û⊤P̂MÛ is invertible, the

random matrix Ĉ(1) is diagonalisable (see Section 2.4), and there exists a permu-

tation τ ∈ SK such that for all k ∈ X , ‖OM (. , k)−ÔM (. , τ(k))‖2 is upper bounded
by:

[

13K
1

2

κ2(Q⋆O⊤
M )

σK(PM )
+ 116K5(1 + (2 log(K2/δ))

1

2 )
κ6(Q⋆O⊤

M )‖OM‖2,∞
δγ(OM )σK(PM )

]

×
[

‖M̂M −MM‖∞,2+
‖MM‖∞,2‖P̂M −PM‖

σK(PM )

]

+ 2
‖P̂M −PM‖
σK(PM )

‖OM‖2,∞ ,

where ‖A‖2,∞:= max
k∈X
‖A(. , k)‖2 for all A ∈ RM×K .

Let us now prove Theorem 4.

6.3.1. Preliminary lemmas.

Lemma 3 — There exists a constant κF⋆ that depends only on F⋆ such that:

∀M ≥MF⋆ , κ(OM ) ≤ κF⋆ ,

where MF⋆ is given by [H4]. It holds:

∀M ≥MF⋆ , κ(Q⋆O⊤
M ) ≤ κF⋆κ(Q⋆) .

Proof. Note that O⊤
⋆ O⋆ is non-singular. From (1) and (2) we deduce that O⊤

MOM

tends to O⊤
⋆ O⋆ as M grows. This proves the first point.

Recall that σi(AB) ≤ σ1(A)σi(B) for i = 1, . . . ,K. Take A = Q⋆−1 and B =
Q⋆O⊤

M to get that σK(Q⋆)σK(OM ) ≤ σK(Q⋆O⊤
M ). It follows that κ(Q⋆O⊤

M ) ≤
κ(Q⋆)κ(OM ). The second claim follows from the first claim. �

Lemma 4 — It holds:

∀M ≥MF⋆ , γ(OM ) := min
k1 6=k2

‖OM (. , k1)−OM (. , k2)‖2≥
√
2σK,F⋆ ,

and:

‖OM‖2,∞:= max
k∈X
‖OM (. , k)‖2≤ max

k∈X
‖f⋆

k‖2 .

Proof. Observe that ‖OMv‖2≥ σK(OM )‖v‖2. With an appropriate choice of v
and [H4] we prove the first point. Since ΦM is an orthonormal family, it yields
‖OM (. , k)‖2≤ ‖f⋆

k‖2. This proves the second claim. �

Lemma 5 — It holds:

‖MM‖∞,2:= max
‖v‖2=1

‖
M
∑

b=1

vbMM (. , b, . )‖≤ ‖g⋆‖2 .
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Proof. From [H4b] one can check that g⋆ ∈ L2(Y3,LD⊗3
). Denote 〈. , . 〉L2(Y3,LD⊗3)

the inner product of L2(Y3,LD⊗3
). Check that ϕa,b,c(y1, y2, y3) := ϕa(y1)ϕb(y2)ϕc(y3)

is an orthonormal family of L2(Y3,LD⊗3
). Hence:

‖MM‖∞,2 = max
‖v‖2=1

‖
M
∑

b=1

vbMM (. , b, . )‖≤ max
‖v‖2=1

M
∑

b=1

|vb|‖MM (. , b, . )‖ ,

≤
(

M
∑

b=1

‖MM (. , b, . )‖2
)

1

2 ≤
(

M
∑

b=1

‖MM (. , b, . )‖2F
)

1

2

,

=
(

M
∑

a,b,c=1

(Eϕa(Y1)ϕb(Y2)ϕc(Y3))
2
)

1

2

=
(

M
∑

a,b,c=1

〈g⋆, ϕa,b,c〉2L2(Y3,LD⊗3)

)
1

2

,

≤ ‖g⋆‖2 .

using Cauchy-Schwarz inequality �

Lemma 6 — It holds:

‖M̂M −MM‖∞,2≤ ‖M̂M −MM‖F .

Proof. One has:

‖M̂M −MM‖∞,2 = max
‖v‖2=1

‖
M
∑

b=1

vb(M̂M −MM )(. , b, . )‖≤ max
‖v‖2=1

M
∑

b=1

|vb|‖(M̂M −MM )(. , b, . )‖ ,

≤
(

M
∑

b=1

‖(M̂M −MM )(. , b, . )‖2
)

1

2 ≤
(

M
∑

b=1

‖(M̂M −MM )(. , b, . )‖2F
)

1

2

,

= ‖M̂M −MM‖F .

using Cauchy-Schwarz inequality �

Lemma 7 — It holds σK(PM ) ≥ πminσ
2
K(OM )σK(Q2). Invoke [H4] to get

that:

∀M ≥MF⋆ , σK(PM ) ≥ σ2
K,F⋆π⋆

minσK(Q⋆2) .

Proof. From Lemma 14 and [H3], it holds:

σK(PM ) = σK(U⊤PMU)

= σK((U⊤OM )Diag[π⋆]Q⋆2(U⊤OM )⊤)

≥ σK(U⊤OM )σK(Diag[π⋆]Q⋆2(U⊤OM )⊤)

= σK(OM )σK(Diag[π⋆]Q⋆2(U⊤OM )⊤)

≥ σK(Diag[π⋆])σK(OM )σK((U⊤OM )⊤)σK(Q⋆2)

= π⋆
minσ

2
K(OM )σK(Q⋆2) ,

as claimed. �
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6.3.2. First step: Estimation of the emission laws using a spectral method. Appen-
dix B shows that:

P

[

‖L̂M − LM‖F ≥ C∗(Q⋆, δ)
η1(ΦM )√

N

]

≤ δ ,

P

[

‖M̂M −MM‖F ≥ C∗(Q⋆, δ)
η3(ΦM )√

N

]

≤ δ ,

P

[

‖N̂M −NM‖F ≥ C∗(Q⋆, δ)
η2(ΦM )√

N

]

≤ δ ,

P

[

‖P̂M −PM‖F ≥ C∗(Q⋆, δ)
η2(ΦM )√

N

]

≤ δ .

Using the preliminary lemmas of Section 6.3.1 and (18), deduce that (22) and

(23) along with 3‖P̂M − PM‖≤ σK(PM ) are satisfied when M ≥ MF⋆ and N ≥
N0(Q

⋆,F⋆,ΦM , δ) where:

N0(Q
⋆,F⋆,ΦM , δ) :=

942

δ2
κ8(Q⋆)K10

π⋆2
minσ

2
K(Q⋆2)

κ8F⋆

σ6
K,F⋆

(

1+
‖g⋆‖2

π⋆
minσ

2
K,F⋆σK(Q⋆2)

1√
M

)2

C∗(Q⋆, δ)2η3(ΦM )2 .

Using Theorem 5, one can check that, with probability greater than 1 − 6δ, there
exists a permutation τ satisfying for any M ≥ MF⋆ , N ≥ N0(Q

⋆,F⋆,ΦM , δ) and
k ∈ X ,

‖OM (. , k)− ÔM (. , τ(k))‖2≤ CM (Q⋆,F⋆, δ)C∗(Q⋆, δ)
η3(ΦM )√

N
.

This proves the first part of Theorem 4.

6.3.3. Second step: Preliminary estimation of the stationary density using a spectral
method. For sake of readability, assume that τ is the identity permutation. Observe
that:

N1(Q
⋆,F⋆,ΦM , δ) ≥ N0(Q

⋆,F⋆,ΦM , δ) .

Recall π̃ :=
(

Û⊤ÔM

)−1
Û⊤L̂M and π⋆ =

(

Û⊤OM

)−1
Û⊤LM .

Lemma 8 — With probability greater than 1 − 6δ, if N > N1(Q
⋆,F⋆,ΦM , δ)

then it holds:

‖π̃−π⋆‖2≤
2√

3σK,F⋆

[C∗(Q⋆, δ)
η1(ΦM )√

N
+

√

N1(Q⋆,F⋆,ΦM , δ)√
N −

√

N1(Q⋆,F⋆,ΦM , δ)
(max
k∈X
‖f⋆

k‖2+C∗(Q⋆, δ)
η1(ΦM )√

N
)] .

Proof. Set A = Û⊤OM , Ã = Û⊤ÔM and B = Û⊤(OM − ÔM ). Compute:

‖B‖≤ ‖OM − ÔM‖≤ ‖OM − ÔM‖F≤
√
Kmax

k
‖OM (. , k)− ÔM (. , k)‖2 .

Hence it holds ‖B‖≤
√
KCM (Q⋆,F⋆, δ)C∗(Q⋆, δ)η3(ΦM )/

√
N . Similarly, invoke

Claim (iii) of Lemma 16 to get that:

‖A−1B‖≤ ‖A−1‖‖B‖≤ σ−1
K (A)‖B‖≤ 2

√
Kmaxk‖OM (. , k)− ÔM (. , k)‖2√

3σK(OM )
.

So that:

‖A−1B‖≤ 2
√
K√

3σK,F⋆

CM (Q⋆,F⋆, δ)C∗(Q⋆, δ)
η3(ΦM )√

N
.

Observe that the condition on N and M ensures that ‖A−1B‖< 1. Apply Theorem
7 to get that:

(24) ‖(Û⊤OM )−1 − (Û⊤ÔM )−1‖≤ 2√
3σK,F⋆

√

N1(Q⋆,F⋆,ΦM , δ)√
N −

√

N1(Q⋆,F⋆,ΦM , δ)
.
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Furthermore, using (24) it holds:

‖π̃ − π⋆‖2 = ‖
(

Û⊤ÔM

)−1
Û⊤L̂M −

(

Û⊤OM

)−1
Û⊤LM‖2

= ‖
(

Û⊤ÔM

)−1
Û⊤L̂M −

(

Û⊤OM

)−1
Û⊤L̂M +

(

Û⊤OM

)−1
Û⊤L̂M −

(

Û⊤OM

)−1
Û⊤LM‖2

≤ ‖(Û⊤OM )−1 − (Û⊤ÔM )−1‖‖L̂M‖2+‖A−1‖‖L̂M − LM‖2

≤ 2√
3σK,F⋆

(

‖L̂M − LM‖2+
√

N1(Q⋆,F⋆,ΦM , δ)√
N −

√

N1(Q⋆,F⋆,ΦM , δ)
(‖LM‖2+‖L̂M − LM‖2)

)

.

Denote f⋆
Y1

=
∑K

k1=1 π(k1)f
⋆
k1
(y1) the density of Y1. Observe that:

‖LM‖2 =
(

M
∑

a=1

(Eϕa(Y1))
2
)

1

2

=
(

M
∑

a=1

〈f⋆
Y1
, ϕa〉2

)
1

2 ≤ ‖f⋆
Y1
‖2≤ max

k
‖f⋆

k‖2 .

The result follows. �

Deduce that

(25) ∀N ≥ 4N1(Q
⋆,F⋆,ΦM , δ) , ‖π⋆−Pτ π̃‖2≤ D′

M (Q⋆,F⋆, δ)C∗(Q⋆, δ)
η3(ΦM )√

N
,

with notation of Theorem 4.

6.3.4. Third step: Estimation of the transition matrix using a spectral method. De-

note Q̃ :=
(

Û⊤ÔMDiag[π̃]
)−1

Û⊤N̂MÛ
(

Ô⊤
MÛ

)−1
. Observe Q̂ = ΠTM (Q̃) and

Q⋆ = ΠTM (Q⋆) and hence, by non-expansivity of the projection onto convex sets,

‖Q̂−Q⋆‖F≤ ‖Q̃−Q⋆‖F . Moreover, notice that:

N2(Q
⋆,F⋆,ΦM , δ) ≥ 4N1(Q

⋆,F⋆,ΦM , δ) ≥ N0(Q
⋆,F⋆,ΦM , δ) .

Lemma 9 — With probability greater than 1 − 6δ, if N ≥ N2(Q
⋆,F⋆,ΦM , δ)

then it holds:

‖Q̃−Q⋆‖≤
8‖f⋆

(Y1,Y3)
‖2

3σ2
K,F⋆π⋆2

min

‖π̃ − π⋆‖2+
2

π⋆
min

ẼM (Q⋆,F⋆, δ)C∗(Q⋆, δ)
η3(ΦM )√

N
,

where:

ẼM (Q⋆,F⋆, δ) :=
16√

3σ2
K,F⋆

[√
KCM (Q⋆,F⋆, δ)‖f⋆

(Y1,Y3)
‖2+

5

4
√
3M

]

.

Proof. Observe that (21) shows that ‖π̃ − π⋆‖2≤ π⋆
min/2. Deduce that for any

k ∈ X :

(26) π̃k ≥
π⋆
min

2
> 0 .

Set V = (Û⊤OM )−1Û⊤ and V̂ = (Û⊤ÔM )−1Û⊤. Note Q̃ = Diag[π̃]−1V̂N̂MV̂⊤

and:

Q = Diag[π⋆]−1VNMV⊤ .

Set E = V̂ −V and F = N̂M −NM . Using (24) it yields:

‖E‖≤ 2√
3σK,F⋆

√

N1(Q⋆,F⋆,ΦM , δ)√
N −

√

N1(Q⋆,F⋆,ΦM , δ)
≤ 8

√
K

3σ2
K,F⋆

CM (Q⋆,F⋆, δ)C∗(Q⋆, δ)
η3(ΦM )√

N
.

Invoke Claim (iii) of Lemma 16 to get that:

‖V‖≤ σ−1
K (Û⊤OM ) ≤ 2√

3σK,F⋆

.
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Furthermore, ϕa,c(y1, y3) := ϕa(y1)ϕc(y3) is an orthonormal family of L2(Y2,LD⊗2
)

and it holds:

‖NM‖F=
(

M
∑

a,c=1

(Eϕa(Y1)ϕc(Y3))
2
)

1

2

=
(

M
∑

a,c=1

〈f⋆
(Y1,Y3)

, ϕa,c〉2L2(Y2,LD⊗2)

)
1

2 ≤ ‖f⋆
(Y1,Y3)

‖2 .

Compute:

‖VNMV⊤ − V̂N̂MV̂⊤‖ = ‖VNMV⊤ − (V + E)(NM + F )(V + E)⊤‖ ,
= ‖VNME

⊤ +VFV⊤ +VFE⊤ + ENMV⊤ + ENME
⊤ + EFV⊤ + EFE⊤‖ ,

≤ 2‖E‖‖V‖‖NM‖+2‖E‖‖V‖‖F‖+‖E‖2‖NM‖+‖V‖2‖F‖+‖E‖2‖F‖ .
It yields:

‖VNMV⊤ − V̂N̂MV̂⊤‖≤
32
√
KCM (Q⋆,F⋆, δ)C∗(Q⋆, δ)‖f⋆

(Y1,Y3)
‖2

3
√
3σ3

K,F⋆

[

1 +
C∗(Q⋆, δ)

‖f⋆
(Y1,Y3)

‖2
η3(ΦM )√
NM

+
2
√
KCM (Q⋆,F⋆, δ)C∗(Q⋆, δ)√

3σK,F⋆

η3(ΦM )√
N

+

√
3σK,F⋆

4CM (Q⋆,F⋆, δ)‖f⋆
(Y1,Y3)

‖2
√
K

1√
M

+
2
√
KCM (Q⋆,F⋆, δ)C∗(Q⋆, δ)2√

3σK,F⋆‖f⋆
(Y1,Y3)

‖2
η23(ΦM )

N
√
M

]

η3(ΦM )√
N

NoteN ≥ N2(Q
⋆,F⋆,ΦM , δ) ≥ 4N1(Q

⋆,F⋆,ΦM , δ) =
16K

3σ2

K,F⋆
CM (Q⋆,F⋆, δ)2 C∗(Q⋆, δ)2η3(ΦM )2.

It yields:

(27) ‖VNMV⊤ − V̂N̂MV̂⊤‖≤ ẼM (Q⋆,F⋆, δ)C∗(Q⋆, δ)
η3(ΦM )√

N

Observe that:

‖Q⋆ − Q̃‖ = ‖(Diag[π⋆]−1 −Diag[π̂]−1)VNMV⊤ +Diag[π̂]−1(VNMV⊤ − V̂N̂MV̂⊤)‖
≤ ‖Diag[π⋆]−1 −Diag[π̂]−1‖‖V‖2‖NM‖+‖Diag[π̂]−1‖‖VNMV⊤ − V̂N̂MV̂⊤‖

≤
4‖f⋆

(Y1,Y3)
‖2

3σ2
K,F⋆

max
k∈X

(π⋆−1
k − π̃−1

k ) + max
k∈X

π̂−1
k ẼM (Q⋆,F, δ)C∗(Q⋆, δ)

η3(ΦM )√
N

≤
8‖f⋆

(Y1,Y3)
‖2

3σ2
K,F⋆π⋆2

min

‖π̃ − π⋆‖2+
2

π⋆
min

ẼM (Q⋆,F⋆, δ)C∗(Q⋆, δ)
η3(ΦM )√

N
,

using (26) and (27). �

Combining (25) and Lemma 9 we prove the second point of Theorem 4.

6.3.5. Last step: Final estimation of the stationary distribution. From our model
hypothesis [H2], we know that the transition matrix Q⋆ is irreducible and aperiodic.
Perron-Frobenius theorem shows that Q⋆ has a unique stationary distribution π⋆.
More precisely, it holds

• R . π⋆ = ker(IdK − (Q⋆)⊤) so that (R . π⋆)⊥ = range(IdK −Q⋆),
• and 〈π⋆,1K〉 = 1,

where 1K = (1, . . . , 1) ∈ RK . We deduce 1K /∈ range(IdK −Q⋆) and

Rank

(

IdK − (Q⋆)⊤

1
⊤
K

)

= K .
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Set

A =

(

IdK −Q⊤

1
⊤
K

)

and A⋆ =

(

IdK − (Q⋆)⊤

1
⊤
K

)

.

We first derive an upper bound on ‖A+ − (A⋆)+‖ where A+ denotes the Moore-
Penrose pseudo-inverse of A. One has

(28) A+ − (A⋆)+ = (A⋆)+(A⋆ −A)A+ − (A⋆)+(IdK+1 −AA+) .

The last term can be written as

(A⋆)+(IdK+1 −AA+) = (A⋆)+(A⋆(A⋆)+)(IdK+1 −AA+) ,

= (A⋆)+Prange(A⋆)Prange(A)⊥ ,

where Prange(A⋆) = A⋆(A⋆)+ denotes the orthogonal projection onto range(A⋆) and

Prange(A)⊥ = IdK+1 −AA+ denotes the orthogonal projection onto the orthogonal
of range(A). Set s(Q⋆) = σK(A⋆), we have the following perturbation lemma.

Lemma 10 — If ‖Q−Q⋆‖≤ s(Q⋆)/2 then Rank(A) = Rank(A⋆) = K and

‖Prange(A⋆)Prange(A)⊥‖≤
2‖Q−Q⋆‖
s(Q⋆)

.

Proof. The first point follows from Weyl’s inequality, see Theorem 6. Invoking
[Wed72], one has

‖Prange(A⋆)⊥Prange(A)‖= ‖Prange(A)⊥Prange(A⋆)‖ .
Moreover, since projections P are orthogonal

(Prange(A)⊥Prange(A⋆))
⊤ = Prange(A⋆)Prange(A)⊥ .

Using notation of [Wed72], one may notice that

‖sin θ(range(A), range(A⋆))‖= ‖Prange(A⋆)⊥Prange(A)‖ .
Denote s(Q⋆) = σK(A⋆) and invoke Wedin’s theorem [Wed72] to get the following
result: If

σK(A) ≥ s(Q⋆)

2
then

‖sin θ(range(A), range(A⋆))‖≤ 2‖A−A⋆‖
σK(A⋆)

We conclude using Weyl’s inequality, see Theorem 6. �

Triangular inequality in (28) gives

‖A+ − (A⋆)+‖ ≤ ‖(A⋆)+‖‖Q−Q⋆‖
(

‖A+‖+ 2

σK(A⋆)

)

,

≤ ‖Q−Q⋆‖
σK(A⋆)

(

‖A+ − (A⋆)+‖+ 3

σK(A⋆)

)

,

using that ‖(A⋆)+‖= 1/σK(A⋆). Deduce that if ‖Q−Q⋆‖≤ σK(A⋆)/2 then

‖A+ − (A⋆)+‖≤ 6‖Q−Q⋆‖
σ2
K(A⋆)

.

From Weyl’s inequality, if ‖Q −Q⋆‖≤ σK(A⋆)/2 then σK(A) ≥ σK(A⋆)/2. As a
matter of fact, matrix IdK −Q⊤ has rank K− 1 and the eigenspace ker(IdK −Q⊤)
has dimension 1. Thus, Q is an irreducible and aperiodic transition matrix, and π
is the unique solution to

(

IdK −Q⊤

1
⊤
K

)

π =

(

0
1

)

.
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Now

‖π − π⋆‖2≤ ‖A+ − (A⋆)+‖ ,
and the last part of Theorem 4 is proved.

Appendix A. Matrix perturbation

We gather in this section some useful results in matrix perturbation theory.
An interested reader can found the proofs of the following theorem in [SS90] for
instance.

Theorem 6 (Weyl’s inequality) — Let A,B be (p×q) matrices with p ≥ q then
it holds:

∀i = 1, . . . , q, |σi(A+B)− σi(A)|≤ σ1(B) .

Theorem 7 — Let A,B be (p×p) matrices. If A is invertible and ‖A−1B‖< 1

then Ã := A+B is invertible and it holds:

‖Ã−1 −A−1‖≤ ‖B‖‖A
−1‖2

1− ‖A−1B‖ .

Theorem 8 (Bauer-Fike) — Let A,B be (p × p) matrices and Ã := A + B.
Suppose that A is diagonalizable, i.e. X−1AX = Λ, where Λ = Diag[(λ1, . . . , λp)].
Then:

(29) svA(Ã) ≤ κ(X)‖B‖ ,
where svA(Ã) := max

j
min
i
|λ̃j − λi| and λ̃j denotes the eigenvalues of Ã.

Remark — Moreover, if the disks:

Di := {ξ : |ξ − λi|≤ κ(X)‖B‖}
are isolated from the others, then (29) holds with the matching distance:

md(A, Ã) ≤ κ(X)‖B‖ ,
where md(A, Ã) := min

τ∈Sp

max
i
|λ̂τ(i)−λi|. Eventually, if Λ, Ã are real valued matrices

then Ã has p distinct real eigenvalues.

Appendix B. Concentration inequalities

We first recall results that hold both for (Scenario A) (where we consider

N i.i.d. samples (Y
(s)
1 , Y

(s)
2 , Y

(s)
3 )Ns=1 of three consecutive observations) and for

(Scenario B) (where we consider consecutive observations of the same chain).
The following proposition is the classical Bernstein’s inequality for (Scenario

A) and is proved in [Pau13], Theorem 2.4, for (Scenario B).

Proposition 9 — Let t be a real valued and measurable bounded function on
Y3. Let V = E[t2(Z1)]. There exists a positive constant c⋆ depending only on Q⋆

such that for all 0 ≤ λ ≤ 1/(2
√
2c⋆‖t‖∞) :

(30) logE exp

[

λ

N
∑

s=1

(t(Zs)− Et(Zs))

]

≤ 2Nc⋆V λ2

1− 2
√
2c⋆‖t‖∞λ

so that for all x ≥ 0,

(31) P

(

N
∑

s=1

(t(Zs)− Et(Zs)) ≥ 2
√
2Nc⋆V x+ 2

√
2c⋆‖t‖∞x

)

≤ e−x.
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We now state a deviation inequality, which comes from [Mas07] Theorem 6.8
and Corollary 6.9 for (Scenario A). For (Scenario B) the proof of the following
proposition follows mutatis mutandis from the proof of Theorem 6.8 (and then
Corollary 6.9) in [Mas07] the early first step being equation (30). Recall that when
t1 and t2 are real valued functions, the bracket [t1, t2] is the set of real valued
functions t such that t1(·) ≤ t(·) ≤ t2(·). For any measurable set A such that
P(A) > 0, and any integrable random variable Z, denote EA[Z] = E[Z1A]/P(A).

Proposition 10 — Let T be some countable class of real valued and measurable
functions on Y3. Assume that there exists some positive numbers σ and b such that
for all t ∈ T , ‖t‖∞≤ b and E[t2(Z1)] ≤ σ2.
Assume furthermore that for any positive number δ, there exists some finite set Bδ

of brackets covering F such that for any bracket [t1, t2] ∈ Bδ, ‖t1 − t2‖∞≤ b and
E[(t1− t2)2(Z1)] ≤ δ2. Let eH(δ) denote the minimal cardinality of such a covering.
Then, there exists a positive constant C⋆ depending only on Q⋆ such that: for any
measurable set A,

EA

(

sup
t∈T

N
∑

s=1

(t(Zs)− Et(Zs))

)

≤ C⋆

[

E + σ

√

N log

(

1

P(A)

)

+ b log

(

1

P(A)

)

]

and for all positive number x

P

(

sup
t∈T

N
∑

s=1

(t(Zs)− Et(Zs)) ≥ C⋆[E + σ
√
Nx+ bx]

)

≤ exp(−x)

where

E =
√
N

∫ σ

0

√

H(u) ∧Ndu+ (b+ σ)H(σ)

We now separate statements for the two different scenarios.

B.1. Independent samples. In this subsection we assume independent samples.

Consider N i.i.d. samples Zs := (Y
(s)
1 , Y

(s)
2 , Y

(s)
3 ) of three consecutive observations.

Lemma 11 — It holds, for any positive x, any M and any N :

P

[

‖L̂M − LM‖F ≥
η1(ΦM )√

2N
(1 + x)

]

≤ exp(−x2) ,

P

[

‖M̂M −MM‖F ≥
η3(ΦM )√

2N
(1 + x)

]

≤ exp(−x2) ,

P

[

‖N̂M −NM‖F ≥
η2(ΦM )√

2N
(1 + x)

]

≤ exp(−x2) ,

P

[

‖P̂M −PM‖F ≥
η2(ΦM )√

2N
(1 + x)

]

≤ exp(−x2) .

Proof. Set:

ζLM (Z1, Z2, . . . , ZN) := ‖L̂M (Z1, Z2, . . . , ZN )− LM‖2 ,
ζMM (Z1, Z2, . . . , ZN) := ‖M̂M (Z1, Z2, . . . , ZN)−MM‖F ,
ζNM (Z1, Z2, . . . , ZN) := ‖N̂M (Z1, Z2, . . . , ZN)−NM‖F ,
ζPM (Z1, Z2, . . . , ZN) := ‖P̂M (Z1, Z2, . . . , ZN )−PM‖F ,

where, for instance L̂M (Z1, Z2, . . . , ZN ) denotes the dependence of L̂M in Z1, Z2, . . . , ZN .
We begin with ζMM , other cases are similar. Form the difference with respect to
the coordinate i:

ci := sup
zj∈Y3,z′

i∈Y3

|ζMM (z1, . . . , zi−1, zi, zi+1, . . . , zN)−ζMM (z1, . . . , zi−1, z
′
i, zi+1, . . . , zN)| .
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Invoke the triangular inequality to get that:

ci ≤ sup
zj∈Y3,z′

i∈Y3

‖M̂M(z1, . . . , zi−1, zi, zi+1, . . . , zN )−M̂M (z1, . . . , zi−1, z
′
i, zi+1, . . . , zN)‖F

So that:

ci ≤
1

N
sup

zi∈Y3,z′
i∈Y3

(

∑

a,b,c

(ϕa(y
(i)
1 )ϕb(y

(i)
2 )ϕc(y

(i)
3 )− ϕa(y

′(i)
1 )ϕb(y

′(i)
2 )ϕc(y

′(i)
3 ))2

)
1

2

.

Eventually, we get that ci ≤ η3(ΦM )/N . By McDiarmid’s inequality, one has:

∀x > 0 , P(‖M̂M −MM‖F≥ E‖M̂M −MM‖F+x) ≤ exp(− 2Nx2

η23(ΦM )
) .

Futhermore, it holds:

E‖M̂M −MM‖F ≤
[

E‖M̂M −MM‖2F
]

1

2

,

≤
[

E
∑

a,b,c

(
1

N

N
∑

s=1

ϕa(Y
(s)
1 )ϕb(Y

(s)
2 )ϕc(Y

(s)
3 )− Eϕa(Y1)ϕb(Y2)ϕc(Y3))

2
]

1

2

,

≤
[

∑

a,b,c

E(

N
∑

s=1

1

N
[ϕa(Y

(s)
1 )ϕb(Y

(s)
2 )ϕc(Y

(s)
3 )− Eϕa(Y1)ϕb(Y2)ϕc(Y3)])

2
]

1

2

,

≤
[

∑

a,b,c

N
∑

s=1

E(
1

N
[ϕa(Y

(s)
1 )ϕb(Y

(s)
2 )ϕc(Y

(s)
3 )− Eϕa(Y1)ϕb(Y2)ϕc(Y3)])

2
]

1

2

,

≤ 1√
N

[

∑

a,b,c

E(ϕa(Y1)ϕb(Y2)ϕc(Y3)− Eϕa(Y1)ϕb(Y2)ϕc(Y3))
2
]

1

2

,

≤ 1√
2N

[

E
∑

a,b,c

(ϕa(Y1)ϕb(Y2)ϕc(Y3)− ϕa(Y
′
1)ϕb(Y

′
2)ϕc(Y

′
3))

2
]

1

2

,

≤ η3(ΦM )√
2N

,

using Jensen’s inequality and 2E(U−EU)2 ≤ E(U−U ′)2 where U is any real valued
random variable with finite second moment and U ′ an independent copy of U . The
proof is similar for LM , NM and PM . �

B.2. Same chain sampling. Consider consecutive observations of the same hid-
den Markov chain Zs := (Ys, Ys+1, Ys+2) for 1 ≤ s ≤ N ,

Lemma 12 — It holds, for any positive x, any M and any N :

P

[

‖L̂M − LM‖F ≥
√
2η1(ΦM )
√

NGps

(1 + 2x
√

1 + log(8/π⋆
min))

]

≤ exp(−x2) ,

P

[

‖M̂M −MM‖F ≥
√
2η3(ΦM )
√

NGps

(1 + 2x
√

1 + log(8/π⋆
min))

]

≤ exp(−x2) ,

P

[

‖N̂M −NM‖F ≥
√
2η2(ΦM )
√

NGps

(1 + 2x
√

1 + log(8/π⋆
min))

]

≤ exp(−x2) ,

P

[

‖P̂M −PM‖F ≥
√
2η2(ΦM )
√

NGps

(1 + 2x
√

1 + log(8/π⋆
min))

]

≤ exp(−x2) .

Proof. With the same notation as previous lemma, we get that:

sup
zj∈Y3,z′

i∈Y3

|ζMM (z1, . . . , zi−1, zi, zi+1, . . . , zN )−ζMM (z1, . . . , zi−1, z
′
i, zi+1, . . . , zN )|≤ η3(ΦM )

N
.
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By McDiarmid’s inequality [Pau14], one has:

∀x > 0 , P(‖M̂M −MM‖F≥ E‖M̂M −MM‖F+x) ≤ exp(− Nx2

8Tmixη23(ΦM )
) .

We need the following lemma that can be deduced from [Pau14].

Lemma 13 — For any a, b, c ∈ {1, . . . ,M},

E(

N
∑

s=1

1

N
[ϕa(Ys)ϕb(Ys+1)ϕc(Ys+2)− Eϕa(Y1)ϕb(Y2)ϕc(Y3)])

2

≤ 4

NGps
E([ϕa(Y1)ϕb(Y2)ϕc(Y3)− Eϕa(Y1)ϕb(Y2)ϕc(Y3)])

2 .

Proof. Notice that (X1, Y1), (X2, Y2), . . . is homogenous, irreducible, aperiodic and
stationary Markov chain on X × Y, whose stationary distribution is π̃(x, dy) :=

πxµx(dy). Observe that its transition kernel Q̃ enjoys:

∀x, x′ ∈ X , y, y′ ∈ Y , Q̃(x, y;x′, dy′) = Q⋆(x, x′)µx′(dy′) .

The transition kernel Q̃ can be viewed as an operator Q on the Hilbert space L2(π̃)
defined by:

∀f ∈ L2(π̃) , (Qf)(x, y) := EQ̃(x,y;.,.)(f) =
∑

x′∈X
Q⋆(x, x′)

∫

Y
f(x′, y′)µx′(dy′) .

Notice Qf(x, y) does not depend on y. Set E := {f(x, y) ∈ L2(π̃) : f does not depend on y}
and observe the L2(π̃)-self-adjoint operator:

∀f ∈ L2(π̃) , (ΠEf)(x, y) :=

∫

Y
f(x, y′)µx(dy

′) ,

is the orthogonal projection onto E. Since ΠEQΠE = Q then the set of non-zero
eigenvalues of Q is exactly the set of non-zero eigenvalues of the K dimensional
linear operator ΠEQΠE . Eventually, note that the matrix of Q in the basis ((x, y) 7→
1k=x)k∈X is the matrix Q⋆. We deduce that the pseudo spectral gap of Q is equal
to Gps (the pseudo spectral gap of Q⋆).

Furthermore, note the same analysis can be lead for (X1, X2, X3, Z1), (X2, X3, X4, Z2), . . .
and one can check that its pseudo spectral gap is the pseudo spectral gap of the
Markov chain (X1, X2, X3), (X2, X3, X4), . . . which is Gps. Indeed, the set of non-
zero eigenvalues of the Markov chain (X1, X2, X3), (X2, X3, X4), . . . is equal to the
set of non-zero eigenvalues of the Markov chain X1, X2, . . ..

Eventually, set g(Xs, Xs+1, Xs+2, Zs) := (1/N)ϕa(Ys)ϕb(Ys+1)ϕc(Ys+2) and in-
voke Theorem 3.7 in [Pau14] to get the result. �
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Hence it holds:

E‖M̂M −MM‖F ≤
[

E‖M̂M −MM‖2F
]

1

2

,

≤
[

E
∑

a,b,c

(
1

N

N
∑

s=1

ϕa(Ys)ϕb(Ys+1)ϕc(Ys+2)− Eϕa(Y1)ϕb(Y2)ϕc(Y3))
2
]

1

2

,

≤
[

∑

a,b,c

E(

N
∑

s=1

1

N
[ϕa(Ys)ϕb(Ys+1)ϕc(Ys+2)− Eϕa(Y1)ϕb(Y2)ϕc(Y3)])

2
]

1

2

,

≤ 2
√

NGps

[

∑

a,b,c

E(ϕa(Y1)ϕb(Y2)ϕc(Y3)− Eϕa(Y1)ϕb(Y2)ϕc(Y3))
2
]

1

2

,

≤
( 2

NGps

)
1

2

[

E
∑

a,b,c

(ϕa(Y1)ϕb(Y2)ϕc(Y3)− ϕa(Y
′
1)ϕb(Y

′
2)ϕc(Y

′
3))

2
]

1

2

,

≤
(2η23(ΦM )

NGps

)
1

2

,

using Jensen’s inequality, Lemma 13 and then 2E(U−EU)2 ≤ E(U−U ′)2 where U is
any real valued random variable with finite second moment and U ′ an independent
copy of U . The proof is similar for LM , NM and PM . �

Appendix C. Proof of Theorem 5

C.1. Preliminaries lemmas.

Lemma 14 — It holds:

∀b ∈ {1, . . . ,M} , MM (. , b, . ) = OMDiag[π⋆]Q⋆Diag[OM (b, . )]Q⋆O⊤
M .

Similarly, we get that PM = OMDiag[π⋆]Q⋆2O⊤
M .

Proof. Let a, c ∈ {1, . . . ,M}2 and observe that:

(OMDiag[π⋆]Q⋆Diag[OM (b, . )]Q⋆O⊤
M )(a, c)

=
∑

(i,j,k)∈X 3

OM (a, i)π(i)Q⋆(i, j)OM (b, j)Q⋆(j, k)OM (c, k) ,

=
∑

(i,j,k)∈X 3

E(ϕa(Y1)|X1 = i)P(X1 = i)P(X2 = j|X1 = i)

× E(ϕb(Y2)|X2 = j)P(X3 = k|X2 = j)E(ϕc(Y3)|X3 = k) ,

= E(ϕa(Y1)ϕb(Y2)ϕc(Y3)) ,

as claimed. Similarly, it holds:

(OMDiag[π⋆]Q⋆2O⊤
M )(a, c) =

∑

(i,j,k)∈X 3

OM (a, i)π(i)Q⋆(i, j)Q⋆(j, k)OM (c, k) ,

=
∑

(i,j,k)∈X 3

E(ϕa(Y1)|X1 = i)P(X1 = i)P(X2 = j|X1 = i)

× P(X3 = k|X2 = j)E(ϕc(Y3)|X3 = k) ,

= E(ϕa(Y1)ϕc(Y3)) ,

as announced. �

Lemma 15 — Let U be any (M ×K) matrix such that PMU has rank K.
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• It holds:

∀b ∈ {1, . . . ,M} , B(b) := (PMU)†MM (. , b, . )U = RDiag[OM (b, . )]R−1 ,

where R−1 := Q⋆O⊤
MU and (PMU)† := (U⊤P⊤

MPMU)−1U⊤P⊤
M denotes

the Moore-Penrose pseudoinverse of the matrix PMU.
• Furthermore, observe that U⊤PMU is invertible and it holds:

∀b ∈ {1, . . . ,M} , B(b) = (U⊤PMU)−1U⊤MM (. , b, . )U = RDiag[OM (b, . )]R−1 .

Proof. Observe that:

MM (. , b, . )U = OMDiag[π⋆]Q⋆Diag[OM (b, . )]R−1 ,

= PMURDiag[OM (b, . )]R−1 ,

as claimed �

Lemma 16 — Assume that 2‖P̂M − PM‖< σK(PM ), then the following is
true.

(i) It holds:

εPM :=
‖P̂M −PM‖

σK(PM )− ‖P̂M −PM‖
< 1 ,

(ii)

σK(P̂M ) ≥
[σK(PM )− ‖P̂M −PM‖

σK(PM )

]

σK(PM ) >
σK(PM )

2
,

(iii) σK(Û⊤U) ≥ (1− ε2PM
)

1

2 ,

(iv) σK(Û⊤PMÛ) ≥ (1− ε2PM
)σK(PM ) ,

(v) for all α ∈ RK and for all v ∈ Range(PM ), ‖Ûα−v‖22≤ ‖α−Û⊤v‖22+ε2PM
‖v‖22.

(vi) Furthermore, if 3‖P̂M −PM‖≤ σK(PM ) then:

σK(Û⊤P̂MÛ) ≥ σK(PM )

3
,

(vii) and:

‖(Û⊤P̂MÛ)−1 − (Û⊤PMÛ)−1‖ ≤ ‖P̂M −PM‖
σK(PM )(1 − ε2PM

)((1 − ε2PM
)σK(PM )− ‖P̂M −PM‖)

,

≤ 3.2
‖P̂M −PM‖
σ2
K(PM )

.

Proof. See Lemma C.1 in [AHK12] for the first five claims. The sixth claim follows
from the fourth point and Theorem 6. The seventh point follows from the fourth
claim and Theorem 7. �

C.2. Control of the observable operator. Claim (iv) in Lemma 16 and Lemma
15 ensure that:

∀b ∈ {1, . . . ,M} , B̃(b) := (Û⊤PMÛ)−1Û⊤MM (. , b, . )Û = R̃Diag[OM (b, . )]R̃−1 ,

where one can pick:

R̃−1 := Diag[(‖(Q⋆O⊤
MÛ)−1(. , 1)‖2, . . . , ‖(Q⋆O⊤

MÛ)−1(. ,K)‖2)]Q⋆O⊤
MÛ .

Set Λ := Θ⊤Û⊤OM and:

∀k ∈ {1, . . . ,K}, C̃(k) :=

M
∑

b=1

(ÛΘ)(b, k)B̃(b) = R̃Diag[Λ(k, . )]R̃−1 .

As a matter of fact, observe R̃ has unit Euclidean norm columns:

R̃ = (Q⋆O⊤
MÛ)−1 Diag[(‖(Q⋆O⊤

MÛ)−1(. , 1)‖2, . . . , ‖(Q⋆O⊤
MÛ)−1(. ,K)‖2)]−1 ,
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corresponding to unit Euclidean norm eigenvectors of C̃(k).

Lemma 17 — Assume that 3‖P̂M − PM‖≤ σK(PM ), then it holds for all
b ∈ {1, . . . ,M},

‖B̂(b)− B̃(b)‖≤ 3.2
‖MM(. , b, . )‖
σK(PM )

[‖M̂M (. , b, . )−MM (. , b, . )‖
‖MM (. , b, . )‖ +

‖P̂M −PM‖
σK(PM )

]

,

and:

∀k ∈ {1, . . . ,K}, ‖Ĉ(k)−C̃(k)‖≤ 3.2
‖MM‖∞,2

σK(PM )

[‖M̂M −MM‖∞,2

‖MM‖∞,2
+
‖P̂M −PM‖
σK(PM )

]

.

Proof. Observe that:

‖B̂(b)− B̃(b)‖≤‖(Û⊤P̂MÛ)−1Û⊤M̂M (. , b, . )Û− (Û⊤P̂MÛ)−1Û⊤MM (. , b, . )Û‖
+ ‖(Û⊤PMÛ)−1Û⊤MM (. , b, . )Û− (Û⊤P̂MÛ)−1Û⊤MM (. , b, . )Û‖ ,
≤‖Û⊤(M̂M (. , b, . )−MM (. , b, . ))Û‖‖(Û⊤P̂MÛ)−1‖
+ ‖(Û⊤PMÛ)−1 − (Û⊤P̂MÛ)−1‖‖Û⊤MM (. , b, . )Û‖ ,
≤‖M̂M (. , b, . )−MM (. , b, . )‖σ−1

K (Û⊤P̂MÛ)

+ ‖MM (. , b, . )‖‖(Û⊤PMÛ)−1 − (Û⊤P̂MÛ)−1‖ .
Invoke claims (vi) and (vii) of Lemma 16 to get that:

3σK(Û⊤P̂MÛ) ≥ σK(PM ) and ‖(Û⊤P̂MÛ)−1−(Û⊤PMÛ)−1‖≤ 3.2
‖P̂M −PM‖
σ2
K(PM )

,

as claimed. Replacing MM (. , b, . ) by
∑M

b=1(ÛΘ)(b, k)MM (. , b, . ), the same result

holds for ‖Ĉ(k)− C̃(k)‖. �

Lemma 18 — Assume that 2‖P̂M − PM‖< σK(PM ), then the following is
true.

(i) It holds:

κ(R̃) := ‖R̃‖‖R̃−1‖≤ κ2(Q⋆O⊤
MÛ) ≤ κ2(Q⋆O⊤

M )

1− ε2PM

,

(ii) and:

svC(1)(Ĉ(1)) ≤ κ(R̃)‖Ĉ(1)− C̃(1)‖≤ κ2(Q⋆O⊤
M )

1− ε2PM

‖Ĉ(1)− C̃(1)‖ ,

where svC(1)(Ĉ(1)) := max
k1∈X

min
k2∈X

|λ̂(1, k1)− λ(1, k2)|.
(iii) If

κ2(Q⋆O⊤
M )

1− ε2PM

‖Ĉ(1)− C̃(1)‖< 1

2
min

k,k′∈X
|Λ(1, k)− Λ(1, k′)|

then Ĉ(1) has K distinct real eigenvalues and:

md(C(1), Ĉ(1)) ≤ κ2(Q⋆O⊤
M )

1− ε2PM

‖Ĉ(1)− C̃(1)‖ ,

where md(C(1), Ĉ(1)) := min
τ∈SK

{max
k∈X
|Λ̂(1, τ(k)) − Λ(1, k)|.

Proof. Observe that U is an orthonormal basis of range of OM . The first point
follows from claim (iii) of Lemma 16. The second point is derived from Theorem 8
and the first point. The remark following Theorem 8 proves the last point. �
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C.3. Control of its spectrum.

Lemma 19 — It holds:

P

[

∀k, k1 6= k2 , |Λ(k, k1)− Λ(k, k2)|≥
2δ(1− ε2PM

)
1

2

√
eK

5

2 (K − 1)
γ(OM )

]

≥ 1− δ .

Furthermore:

P

[

‖Λ‖∞≥
1 +

√

2 log(K2/δ)√
K

‖OM‖2,∞
]

≤ δ .

Proof. Observe that:

Λ(k, k1)− Λ(k, k2) = 〈Θ(. , k), (Û⊤OM )(. , k1)− (Û⊤OM )(. , k2)〉
= 〈Θ(. , k), Û⊤(OM (. , k1)−OM (. , k2))〉 .

Furthermore, from (iii) in Lemma 16, we get that:

‖Û⊤(OM (. , k1)−OM (. , k2))‖2≥ (1− ε2PM
)

1

2 ‖OM (. , k1)−OM (. , k2)‖2≥ (1− ε2PM
)

1

2 γ(OM ) .

Similarly, note that:

‖Λ‖∞= max
k,k′
|〈Θ(. , k), Û⊤OM (. , k′)〉| ,

and ‖Û⊤OM (. , k′)‖2≤ ‖OM(. , k′)‖2≤ ‖OM‖2,∞. For sake of readability, we bor-
row the result of Lemma F.2 and the argument of Lemma C.6 in [AHK12] to
conclude. �

C.4. Perturbation of simultaneously diagonalizable matrices.

Lemma 20 — If 3‖P̂M −PM‖≤ σK(PM ) and:

8.2K
5

2 (K − 1)
κ2(QO⊤

M )

δγ(OM )σK(PM )

[

‖M̂M −MM‖∞,2+
‖MM‖∞,2‖P̂M −PM‖

σK(PM )

]

< 1 ,

(32)

43.4K4(K − 1)
κ4(QO⊤

M )

δγ(OM )σK(PM )

[

‖M̂M −MM‖∞,2+
‖MM‖∞,2‖P̂M −PM‖

σK(PM )

]

≤ 1 ,

(33)

and:

∀k, k1 6= k2 , |Λ(k, k1)− Λ(k, k2)|≥
√
3δ

√
eK

5

2 (K − 1)
γ(OM ) ,

and:

‖Λ‖∞≤
1 +

√

2 log(K2/δ)√
K

‖OM‖2,∞ ,

then there exists τ ∈ SK such that ∀k ∈ X :

‖Λ(. , k)− Λ̂(. , τ(k))‖∞≤
[

13
κ2(QO⊤

M )

σK(PM )
+ 116K

7

2 (K − 1)(1 + (2 log(K2/δ))
1

2 )

× κ6(QO⊤
M )‖OM‖2,∞

δγ(OM )σK(PM )

]

×
[

‖M̂M −MM‖∞,2+
‖MM‖∞,2‖P̂M −PM‖

σK(PM )

]

.

Proof. Note εPM ≤ 1/2. Invoke the last part of Claim 4 of Lemma C.4 in [AHK12]
with:

• γA ←
√
3δ

√
eK

5

2 (K − 1)
γ(OM )

• κ(R)← 4κ2(QO⊤
M )

3

• ‖R̃‖22←
4κ2(QO⊤

M )

3
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• ǫA ← 3.2
‖MM‖∞,2

σK(PM )

[‖M̂M −MM‖∞,2

‖MM‖∞,2
+
‖P̂M −PM‖
σK(PM )

]

.

• λmax ←
1 +

√

2 log(K2/δ)√
K

‖OM‖2,∞

and observe that (32) agrees with ε3 < 1/2 and (33) agrees with ε4 ≤ 1/2. �

Since Θ⊤ is an isometry, observe that:

‖Û⊤OM (. , k)−ΘΛ̂(. , τ(k))‖2= ‖Λ(. , k)−Λ̂(. , τ(k))‖2≤
√
K‖Λ(. , k)−Λ̂(. , τ(k))‖∞ .

Claim (v) in Lemma 16 (with α = ΘΛ̂(. , τ(k)) and v = OM (. , k)) gives:

‖OM (. , k)− ÔM (. , τ(k))‖2 ≤ ‖Û⊤OM (. , k)−ΘΛ̂(. , τ(k))‖2+
3‖P̂M −PM‖
2σK(PM )

‖OM (. , k)‖2

≤
√
K‖Λ(. , k)− Λ̂(. , τ(k))‖∞+

3‖P̂M −PM‖
2σK(PM )

‖OM (. , k)‖2.

Using Lemma 20,Theorem 5 follows.

Appendix D. Expression of polynomial P5

Computer assisted computations (available on Yohann’s web page) give that:
P5 =

144 - 114 t^2 x^8 - 108 t^2 x^10 - 18 t^2 x^12 +

192 t^2 + 128 t^4 + 256 t^6 + 176 t^8 + 576 x^2 + 624 t^2 x^2 +

672 t^4 x^2 + 1776 t^6 x^2 + 1152 t^8 x^2 + 972 x^4 + 720 t^2 x^4 +

1884 t^4 x^4 + 5496 t^6 x^4 + 3360 t^8 x^4 + 900 x^6 + 264 t^2 x^6 +

3556 t^4 x^6 + 9920 t^6 x^6 + 5728 t^8 x^6 + 495 x^8 +

4551 t^4 x^8 + 11424 t^6 x^8 + 6264 t^8 x^8 + 162 x^10 +

3810 t^4 x^10 + 8592 t^6 x^10 + 4512 t^8 x^10 +

27 x^12 + 1979 t^4 x^12 + 4120 t^6 x^12 +

2096 t^8 x^12 + 576 t^4 x^14 + 1152 t^6 x^14 + 576 t^8 x^14 +

72 t^4 x^16 + 144 t^6 x^16 + 72 t^8 x^16 + 144 y^2 + 480 t^2 y^2 +

784 t^4 y^2 + 704 t^6 y^2 + 256 t^8 y^2 + 576 x^2 y^2 +

2064 t^2 x^2 y^2 + 4192 t^4 x^2 y^2 + 4496 t^6 x^2 y^2 +

1792 t^8 x^2 y^2 + 1080 x^4 y^2 + 4104 t^2 x^4 y^2 +

10760 t^4 x^4 y^2 + 13528 t^6 x^4 y^2 + 5792 t^8 x^4 y^2 +

1224 x^6 y^2 + 5016 t^2 x^6 y^2 + 17592 t^4 x^6 y^2 +

25032 t^6 x^6 y^2 + 11232 t^8 x^6 y^2 + 900 x^8 y^2 +

4224 t^2 x^8 y^2 + 19924 t^4 x^8 y^2 + 30776 t^6 x^8 y^2 +

14176 t^8 x^8 y^2 + 432 x^10 y^2 + 2520 t^2 x^10 y^2 +

15584 t^4 x^10 y^2 + 25336 t^6 x^10 y^2 + 11840 t^8 x^10 y^2 +

108 x^12 y^2 + 936 t^2 x^12 y^2 + 7916 t^4 x^12 y^2 +

13456 t^6 x^12 y^2 + 6368 t^8 x^12 y^2 + 144 t^2 x^14 y^2 +

2304 t^4 x^14 y^2 + 4176 t^6 x^14 y^2 + 2016 t^8 x^14 y^2 +

288 t^4 x^16 y^2 + 576 t^6 x^16 y^2 + 288 t^8 x^16 y^2 + 144 y^4 +

480 t^2 y^4 + 624 t^4 y^4 + 384 t^6 y^4 + 96 t^8 y^4 + 576 x^2 y^4 +

2208 t^2 x^2 y^4 + 3392 t^4 x^2 y^4 + 2464 t^6 x^2 y^4 +

704 t^8 x^2 y^4 + 1188 x^4 y^4 + 5256 t^2 x^4 y^4 +

9636 t^4 x^4 y^4 + 8256 t^6 x^4 y^4 + 2688 t^8 x^4 y^4 +

1548 x^6 y^4 + 8112 t^2 x^6 y^4 + 18076 t^4 x^6 y^4 +

18008 t^6 x^6 y^4 + 6496 t^8 x^6 y^4 + 1359 x^8 y^4 +

8598 t^2 x^8 y^4 + 23375 t^4 x^8 y^4 + 26392 t^6 x^8 y^4 +

10256 t^8 x^8 y^4 + 810 x^10 y^4 + 6156 t^2 x^10 y^4 +

20442 t^4 x^10 y^4 + 25656 t^6 x^10 y^4 + 10560 t^8 x^10 y^4 +

243 x^12 y^4 + 2574 t^2 x^12 y^4 + 11299 t^4 x^12 y^4 +

15848 t^6 x^12 y^4 + 6880 t^8 x^12 y^4 + 432 t^2 x^14 y^4 +

3456 t^4 x^14 y^4 + 5616 t^6 x^14 y^4 + 2592 t^8 x^14 y^4 +
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432 t^4 x^16 y^4 + 864 t^6 x^16 y^4 + 432 t^8 x^16 y^4 +

216 x^4 y^6 + 720 t^2 x^4 y^6 + 952 t^4 x^4 y^6 + 608 t^6 x^4 y^6 +

160 t^8 x^4 y^6 + 648 x^6 y^6 + 2592 t^2 x^6 y^6 +

4168 t^4 x^6 y^6 + 3152 t^6 x^6 y^6 + 928 t^8 x^6 y^6 +

918 x^8 y^6 + 4428 t^2 x^8 y^6 + 8502 t^4 x^8 y^6 +

7392 t^6 x^8 y^6 + 2400 t^8 x^8 y^6 + 756 x^10 y^6 +

4392 t^2 x^10 y^6 + 10036 t^4 x^10 y^6 + 9920 t^6 x^10 y^6 +

3520 t^8 x^10 y^6 + 270 x^12 y^6 + 2268 t^2 x^12 y^6 +

6766 t^4 x^12 y^6 + 7808 t^6 x^12 y^6 + 3040 t^8 x^12 y^6 +

432 t^2 x^14 y^6 + 2304 t^4 x^14 y^6 + 3312 t^6 x^14 y^6 +

1440 t^8 x^14 y^6 + 288 t^4 x^16 y^6 + 576 t^6 x^16 y^6 +

288 t^8 x^16 y^6 + 108 x^8 y^8 + 360 t^2 x^8 y^8 + 468 t^4 x^8 y^8 +

288 t^6 x^8 y^8 + 72 t^8 x^8 y^8 + 216 x^10 y^8 + 864 t^2 x^10 y^8 +

1368 t^4 x^10 y^8 + 1008 t^6 x^10 y^8 + 288 t^8 x^10 y^8 +

108 x^12 y^8 + 648 t^2 x^12 y^8 + 1404 t^4 x^12 y^8 +

1296 t^6 x^12 y^8 + 432 t^8 x^12 y^8 + 144 t^2 x^14 y^8 +

576 t^4 x^14 y^8 + 720 t^6 x^14 y^8 + 288 t^8 x^14 y^8 +

72 t^4 x^16 y^8 + 144 t^6 x^16 y^8 + 72 t^8 x^16 y^8 + 192 z^2 +

416 t^2 z^2 + 288 t^4 z^2 + 320 t^6 z^2 + 256 t^8 z^2 +

912 x^2 z^2 + 1664 t^2 x^2 z^2 + 1248 t^4 x^2 z^2 +

2304 t^6 x^2 z^2 + 1808 t^8 x^2 z^2 + 1728 x^4 z^2 +

2520 t^2 x^4 z^2 + 2776 t^4 x^4 z^2 + 7624 t^6 x^4 z^2 +

5640 t^8 x^4 z^2 + 1704 x^6 z^2 + 1736 t^2 x^6 z^2 +

4664 t^4 x^6 z^2 + 14808 t^6 x^6 z^2 + 10176 t^8 x^6 z^2 +

966 x^8 z^2 + 494 t^2 x^8 z^2 + 6098 t^4 x^8 z^2 +

18218 t^6 x^8 z^2 + 11648 t^8 x^8 z^2 + 324 x^10 z^2 +

36 t^2 x^10 z^2 + 5468 t^4 x^10 z^2 + 14444 t^6 x^10 z^2 +

8688 t^8 x^10 z^2 + 54 x^12 z^2 + 6 t^2 x^12 z^2 +

3002 t^4 x^12 z^2 + 7186 t^6 x^12 z^2 + 4136 t^8 x^12 z^2 +

896 t^4 x^14 z^2 + 2048 t^6 x^14 z^2 + 1152 t^8 x^14 z^2 +

112 t^4 x^16 z^2 + 256 t^6 x^16 z^2 + 144 t^8 x^16 z^2 +

480 y^2 z^2 + 1312 t^2 y^2 z^2 + 1888 t^4 y^2 z^2 +

1760 t^6 y^2 z^2 + 704 t^8 y^2 z^2 + 1776 x^2 y^2 z^2 +

5248 t^2 x^2 y^2 z^2 + 9504 t^4 x^2 y^2 z^2 +

10624 t^6 x^2 y^2 z^2 + 4592 t^8 x^2 y^2 z^2 + 3096 x^4 y^2 z^2 +

9904 t^2 x^4 y^2 z^2 + 23104 t^4 x^4 y^2 z^2 +

30288 t^6 x^4 y^2 z^2 + 13992 t^8 x^4 y^2 z^2 + 3144 x^6 y^2 z^2 +

11344 t^2 x^6 y^2 z^2 + 35712 t^4 x^6 y^2 z^2 +

53424 t^6 x^6 y^2 z^2 + 25912 t^8 x^6 y^2 z^2 + 2064 x^8 y^2 z^2 +

9016 t^2 x^8 y^2 z^2 + 38552 t^4 x^8 y^2 z^2 +

63192 t^6 x^8 y^2 z^2 + 31592 t^8 x^8 y^2 z^2 + 936 x^10 y^2 z^2 +

5248 t^2 x^10 y^2 z^2 + 29072 t^4 x^10 y^2 z^2 +

50464 t^6 x^10 y^2 z^2 + 25704 t^8 x^10 y^2 z^2 + 216 x^12 y^2 z^2 +

1872 t^2 x^12 y^2 z^2 + 14192 t^4 x^12 y^2 z^2 +

26056 t^6 x^12 y^2 z^2 + 13520 t^8 x^12 y^2 z^2 +

264 t^2 x^14 y^2 z^2 + 3896 t^4 x^14 y^2 z^2 +

7808 t^6 x^14 y^2 z^2 + 4176 t^8 x^14 y^2 z^2 +

448 t^4 x^16 y^2 z^2 + 1024 t^6 x^16 y^2 z^2 +

576 t^8 x^16 y^2 z^2 + 480 y^4 z^2 + 1632 t^2 y^4 z^2 +

2208 t^4 y^4 z^2 + 1440 t^6 y^4 z^2 + 384 t^8 y^4 z^2 +

1632 x^2 y^4 z^2 + 6528 t^2 x^2 y^4 z^2 + 10688 t^4 x^2 y^4 z^2 +

8320 t^6 x^2 y^4 z^2 + 2528 t^8 x^2 y^4 z^2 + 3240 x^4 y^4 z^2 +

14280 t^2 x^4 y^4 z^2 + 27448 t^4 x^4 y^4 z^2 +

25048 t^6 x^4 y^4 z^2 + 8640 t^8 x^4 y^4 z^2 + 3936 x^6 y^4 z^2 +

19992 t^2 x^6 y^4 z^2 + 46552 t^4 x^6 y^4 z^2 +

49352 t^6 x^6 y^4 z^2 + 18856 t^8 x^6 y^4 z^2 + 3198 x^8 y^4 z^2 +

19518 t^2 x^8 y^4 z^2 + 55218 t^4 x^8 y^4 z^2 +
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66170 t^6 x^8 y^4 z^2 + 27272 t^8 x^8 y^4 z^2 + 1836 x^10 y^4 z^2 +

13332 t^2 x^10 y^4 z^2 + 44988 t^4 x^10 y^4 z^2 +

59580 t^6 x^10 y^4 z^2 + 26088 t^8 x^10 y^4 z^2 + 486 x^12 y^4 z^2 +

5214 t^2 x^12 y^4 z^2 + 22994 t^4 x^12 y^4 z^2 +

34194 t^6 x^12 y^4 z^2 + 15928 t^8 x^12 y^4 z^2 +

792 t^2 x^14 y^4 z^2 + 6312 t^4 x^14 y^4 z^2 +

11136 t^6 x^14 y^4 z^2 + 5616 t^8 x^14 y^4 z^2 +

672 t^4 x^16 y^4 z^2 + 1536 t^6 x^16 y^4 z^2 +

864 t^8 x^16 y^4 z^2 + 720 x^4 y^6 z^2 + 2480 t^2 x^4 y^6 z^2 +

3472 t^4 x^4 y^6 z^2 + 2384 t^6 x^4 y^6 z^2 + 672 t^8 x^4 y^6 z^2 +

1728 x^6 y^6 z^2 + 7440 t^2 x^6 y^6 z^2 + 13072 t^4 x^6 y^6 z^2 +

10736 t^6 x^6 y^6 z^2 + 3376 t^8 x^6 y^6 z^2 + 2268 x^8 y^6 z^2 +

11484 t^2 x^8 y^6 z^2 + 23812 t^4 x^8 y^6 z^2 +

22276 t^6 x^8 y^6 z^2 + 7680 t^8 x^8 y^6 z^2 + 1800 x^10 y^6 z^2 +

10568 t^2 x^10 y^6 z^2 + 25560 t^4 x^10 y^6 z^2 +

26872 t^6 x^10 y^6 z^2 + 10080 t^8 x^10 y^6 z^2 + 540 x^12 y^6 z^2 +

4836 t^2 x^12 y^6 z^2 + 15420 t^4 x^12 y^6 z^2 +

18964 t^6 x^12 y^6 z^2 + 7840 t^8 x^12 y^6 z^2 +

792 t^2 x^14 y^6 z^2 + 4520 t^4 x^14 y^6 z^2 +

7040 t^6 x^14 y^6 z^2 + 3312 t^8 x^14 y^6 z^2 +

448 t^4 x^16 y^6 z^2 + 1024 t^6 x^16 y^6 z^2 +

576 t^8 x^16 y^6 z^2 + 360 x^8 y^8 z^2 + 1224 t^2 x^8 y^8 z^2 +

1656 t^4 x^8 y^8 z^2 + 1080 t^6 x^8 y^8 z^2 + 288 t^8 x^8 y^8 z^2 +

576 x^10 y^8 z^2 + 2448 t^2 x^10 y^8 z^2 + 4176 t^4 x^10 y^8 z^2 +

3312 t^6 x^10 y^8 z^2 + 1008 t^8 x^10 y^8 z^2 + 216 x^12 y^8 z^2 +

1488 t^2 x^12 y^8 z^2 + 3616 t^4 x^12 y^8 z^2 +

3640 t^6 x^12 y^8 z^2 + 1296 t^8 x^12 y^8 z^2 +

264 t^2 x^14 y^8 z^2 + 1208 t^4 x^14 y^8 z^2 +

1664 t^6 x^14 y^8 z^2 + 720 t^8 x^14 y^8 z^2 +

112 t^4 x^16 y^8 z^2 + 256 t^6 x^16 y^8 z^2 + 144 t^8 x^16 y^8 z^2 +

128 z^4 + 288 t^2 z^4 + 352 t^4 z^4 + 384 t^6 z^4 + 256 t^8 z^4 +

352 x^2 z^4 + 1056 t^2 x^2 z^4 + 1408 t^4 x^2 z^4 +

1952 t^6 x^2 z^4 + 1504 t^8 x^2 z^4 + 764 x^4 z^4 +

2104 t^2 x^4 z^4 + 2616 t^4 x^4 z^4 + 5016 t^6 x^4 z^4 +

4252 t^8 x^4 z^4 + 804 x^6 z^4 + 1912 t^2 x^6 z^4 +

2920 t^4 x^6 z^4 + 8536 t^6 x^6 z^4 + 7364 t^8 x^6 z^4 +

471 x^8 z^4 + 898 t^2 x^8 z^4 + 2694 t^4 x^8 z^4 +

10058 t^6 x^8 z^4 + 8335 t^8 x^8 z^4 + 162 x^10 z^4 +

252 t^2 x^10 z^4 + 2164 t^4 x^10 z^4 + 7980 t^6 x^10 z^4 +

6226 t^8 x^10 z^4 + 27 x^12 z^4 + 42 t^2 x^12 z^4 +

1182 t^4 x^12 z^4 + 4018 t^6 x^12 z^4 + 2979 t^8 x^12 z^4 +

352 t^4 x^14 z^4 + 1152 t^6 x^14 z^4 + 832 t^8 x^14 z^4 +

44 t^4 x^16 z^4 + 144 t^6 x^16 z^4 + 104 t^8 x^16 z^4 +

784 y^2 z^4 + 1888 t^2 y^2 z^4 + 2208 t^4 y^2 z^4 +

1888 t^6 y^2 z^4 + 784 t^8 y^2 z^4 + 2080 x^2 y^2 z^4 +

5600 t^2 x^2 y^2 z^4 + 8832 t^4 x^2 y^2 z^4 + 9952 t^6 x^2 y^2 z^4 +

4640 t^8 x^2 y^2 z^4 + 3368 x^4 y^2 z^4 + 9440 t^2 x^4 y^2 z^4 +

18928 t^4 x^4 y^2 z^4 + 25952 t^6 x^4 y^2 z^4 +

13224 t^8 x^4 y^2 z^4 + 2840 x^6 y^2 z^4 + 9056 t^2 x^6 y^2 z^4 +

25872 t^4 x^6 y^2 z^4 + 42464 t^6 x^6 y^2 z^4 +

23192 t^8 x^6 y^2 z^4 + 1524 x^8 y^2 z^4 + 6072 t^2 x^8 y^2 z^4 +

25016 t^4 x^8 y^2 z^4 + 46792 t^6 x^8 y^2 z^4 +

26900 t^8 x^8 y^2 z^4 + 576 x^10 y^2 z^4 + 3184 t^2 x^10 y^2 z^4 +

17216 t^4 x^10 y^2 z^4 + 35024 t^6 x^10 y^2 z^4 +

20928 t^8 x^10 y^2 z^4 + 108 x^12 y^2 z^4 + 1008 t^2 x^12 y^2 z^4 +

7584 t^4 x^12 y^2 z^4 + 16968 t^6 x^12 y^2 z^4 +

10572 t^8 x^12 y^2 z^4 + 120 t^2 x^14 y^2 z^4 +
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1816 t^4 x^14 y^2 z^4 + 4736 t^6 x^14 y^2 z^4 +

3136 t^8 x^14 y^2 z^4 + 176 t^4 x^16 y^2 z^4 +

576 t^6 x^16 y^2 z^4 + 416 t^8 x^16 y^2 z^4 + 624 y^4 z^4 +

2208 t^2 y^4 z^4 + 3168 t^4 y^4 z^4 + 2208 t^6 y^4 z^4 +

624 t^8 y^4 z^4 + 1600 x^2 y^4 z^4 + 6976 t^2 x^2 y^4 z^4 +

12672 t^4 x^2 y^4 z^4 + 10816 t^6 x^2 y^4 z^4 +

3520 t^8 x^2 y^4 z^4 + 3364 x^4 y^4 z^4 + 14456 t^2 x^4 y^4 z^4 +

29416 t^4 x^4 y^4 z^4 + 29016 t^6 x^4 y^4 z^4 +

10692 t^8 x^4 y^4 z^4 + 3452 x^6 y^4 z^4 + 17336 t^2 x^6 y^4 z^4 +

43896 t^4 x^6 y^4 z^4 + 51032 t^6 x^6 y^4 z^4 +

21020 t^8 x^6 y^4 z^4 + 2495 x^8 y^4 z^4 + 14658 t^2 x^8 y^4 z^4 +

45814 t^4 x^8 y^4 z^4 + 61162 t^6 x^8 y^4 z^4 +

27607 t^8 x^8 y^4 z^4 + 1242 x^10 y^4 z^4 + 8892 t^2 x^10 y^4 z^4 +

33252 t^4 x^10 y^4 z^4 + 49644 t^6 x^10 y^4 z^4 +

24234 t^8 x^10 y^4 z^4 + 243 x^12 y^4 z^4 + 2914 t^2 x^12 y^4 z^4 +

14758 t^4 x^12 y^4 z^4 + 25538 t^6 x^12 y^4 z^4 +

13643 t^8 x^12 y^4 z^4 + 360 t^2 x^14 y^4 z^4 +

3336 t^4 x^14 y^4 z^4 + 7296 t^6 x^14 y^4 z^4 +

4416 t^8 x^14 y^4 z^4 + 264 t^4 x^16 y^4 z^4 +

864 t^6 x^16 y^4 z^4 + 624 t^8 x^16 y^4 z^4 + 952 x^4 y^6 z^4 +

3472 t^2 x^4 y^6 z^4 + 5232 t^4 x^4 y^6 z^4 + 3856 t^6 x^4 y^6 z^4 +

1144 t^8 x^4 y^6 z^4 + 1544 x^6 y^6 z^4 + 7760 t^2 x^6 y^6 z^4 +

15696 t^4 x^6 y^6 z^4 + 14288 t^6 x^6 y^6 z^4 +

4808 t^8 x^6 y^6 z^4 + 1942 x^8 y^6 z^4 + 10532 t^2 x^8 y^6 z^4 +

24556 t^4 x^8 y^6 z^4 + 25380 t^6 x^8 y^6 z^4 +

9414 t^8 x^8 y^6 z^4 + 1332 x^10 y^6 z^4 + 8408 t^2 x^10 y^6 z^4 +

22952 t^4 x^10 y^6 z^4 + 26776 t^6 x^10 y^6 z^4 +

10900 t^8 x^10 y^6 z^4 + 270 x^12 y^6 z^4 + 2972 t^2 x^12 y^6 z^4 +

11492 t^4 x^12 y^6 z^4 + 16244 t^6 x^12 y^6 z^4 +

7486 t^8 x^12 y^6 z^4 + 360 t^2 x^14 y^6 z^4 +

2632 t^4 x^14 y^6 z^4 + 4992 t^6 x^14 y^6 z^4 +

2752 t^8 x^14 y^6 z^4 + 176 t^4 x^16 y^6 z^4 +

576 t^6 x^16 y^6 z^4 + 416 t^8 x^16 y^6 z^4 + 468 x^8 y^8 z^4 +

1656 t^2 x^8 y^8 z^4 + 2376 t^4 x^8 y^8 z^4 + 1656 t^6 x^8 y^8 z^4 +

468 t^8 x^8 y^8 z^4 + 504 x^10 y^8 z^4 + 2448 t^2 x^10 y^8 z^4 +

4752 t^4 x^10 y^8 z^4 + 4176 t^6 x^10 y^8 z^4 +

1368 t^8 x^10 y^8 z^4 + 108 x^12 y^8 z^4 + 1024 t^2 x^12 y^8 z^4 +

3136 t^4 x^12 y^8 z^4 + 3656 t^6 x^12 y^8 z^4 +

1436 t^8 x^12 y^8 z^4 + 120 t^2 x^14 y^8 z^4 +

760 t^4 x^14 y^8 z^4 + 1280 t^6 x^14 y^8 z^4 +

640 t^8 x^14 y^8 z^4 + 44 t^4 x^16 y^8 z^4 + 144 t^6 x^16 y^8 z^4 +

104 t^8 x^16 y^8 z^4 + 256 z^6 + 320 t^2 z^6 + 384 t^4 z^6 +

352 t^6 z^6 + 160 t^8 z^6 + 272 x^2 z^6 + 256 t^2 x^2 z^6 +

1120 t^4 x^2 z^6 + 1408 t^6 x^2 z^6 + 784 t^8 x^2 z^6 +

232 x^4 z^6 + 456 t^2 x^4 z^6 + 2104 t^4 x^4 z^6 +

2712 t^6 x^4 z^6 + 1856 t^8 x^4 z^6 + 96 x^6 z^6 + 472 t^2 x^6 z^6 +

2072 t^4 x^6 z^6 + 3208 t^6 x^6 z^6 + 2792 t^8 x^6 z^6 +

24 x^8 z^6 + 298 t^2 x^8 z^6 + 1178 t^4 x^8 z^6 + 2686 t^6 x^8 z^6 +

2870 t^8 x^8 z^6 + 108 t^2 x^10 z^6 + 396 t^4 x^10 z^6 +

1668 t^6 x^10 z^6 + 2020 t^8 x^10 z^6 + 18 t^2 x^12 z^6 +

66 t^4 x^12 z^6 + 726 t^6 x^12 z^6 + 934 t^8 x^12 z^6 +

192 t^6 x^14 z^6 + 256 t^8 x^14 z^6 + 24 t^6 x^16 z^6 +

32 t^8 x^16 z^6 + 704 y^2 z^6 + 1760 t^2 y^2 z^6 +

1888 t^4 y^2 z^6 + 1312 t^6 y^2 z^6 + 480 t^8 y^2 z^6 +

1136 x^2 y^2 z^6 + 3456 t^2 x^2 y^2 z^6 + 5152 t^4 x^2 y^2 z^6 +

5248 t^6 x^2 y^2 z^6 + 2416 t^8 x^2 y^2 z^6 + 1768 x^4 y^2 z^6 +

5200 t^2 x^4 y^2 z^6 + 9152 t^4 x^4 y^2 z^6 +
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11696 t^6 x^4 y^2 z^6 + 6232 t^8 x^4 y^2 z^6 + 1144 x^6 y^2 z^6 +

3760 t^2 x^6 y^2 z^6 + 9984 t^4 x^6 y^2 z^6 +

16720 t^6 x^6 y^2 z^6 + 10120 t^8 x^6 y^2 z^6 + 456 x^8 y^2 z^6 +

1752 t^2 x^8 y^2 z^6 + 7592 t^4 x^8 y^2 z^6 +

16024 t^6 x^8 y^2 z^6 + 10880 t^8 x^8 y^2 z^6 + 72 x^10 y^2 z^6 +

544 t^2 x^10 y^2 z^6 + 3952 t^4 x^10 y^2 z^6 +

10304 t^6 x^10 y^2 z^6 + 7848 t^8 x^10 y^2 z^6 +

72 t^2 x^12 y^2 z^6 + 1160 t^4 x^12 y^2 z^6 +

4192 t^6 x^12 y^2 z^6 + 3680 t^8 x^12 y^2 z^6 +

128 t^4 x^14 y^2 z^6 + 952 t^6 x^14 y^2 z^6 +

1016 t^8 x^14 y^2 z^6 + 96 t^6 x^16 y^2 z^6 + 128 t^8 x^16 y^2 z^6 +

384 y^4 z^6 + 1440 t^2 y^4 z^6 + 2208 t^4 y^4 z^6 +

1632 t^6 y^4 z^6 + 480 t^8 y^4 z^6 + 608 x^2 y^4 z^6 +

3200 t^2 x^2 y^4 z^6 + 6848 t^4 x^2 y^4 z^6 + 6528 t^6 x^2 y^4 z^6 +

2272 t^8 x^2 y^4 z^6 + 1760 x^4 y^4 z^6 + 7128 t^2 x^4 y^4 z^6 +

15128 t^4 x^4 y^4 z^6 + 16008 t^6 x^4 y^4 z^6 +

6248 t^8 x^4 y^4 z^6 + 1288 x^6 y^4 z^6 + 6856 t^2 x^6 y^4 z^6 +

19576 t^4 x^6 y^4 z^6 + 25176 t^6 x^6 y^4 z^6 +

11168 t^8 x^6 y^4 z^6 + 832 x^8 y^4 z^6 + 4730 t^2 x^8 y^4 z^6 +

17242 t^4 x^8 y^4 z^6 + 26382 t^6 x^8 y^4 z^6 +

13230 t^8 x^8 y^4 z^6 + 216 x^10 y^4 z^6 + 1980 t^2 x^10 y^4 z^6 +

10092 t^4 x^10 y^4 z^6 + 18420 t^6 x^10 y^4 z^6 +

10476 t^8 x^10 y^4 z^6 + 274 t^2 x^12 y^4 z^6 +

3186 t^4 x^12 y^4 z^6 + 7806 t^6 x^12 y^4 z^6 +

5278 t^8 x^12 y^4 z^6 + 384 t^4 x^14 y^4 z^6 +

1704 t^6 x^14 y^4 z^6 + 1512 t^8 x^14 y^4 z^6 +

144 t^6 x^16 y^4 z^6 + 192 t^8 x^16 y^4 z^6 + 608 x^4 y^6 z^6 +

2384 t^2 x^4 y^6 z^6 + 3856 t^4 x^4 y^6 z^6 + 2992 t^6 x^4 y^6 z^6 +

912 t^8 x^4 y^6 z^6 + 496 x^6 y^6 z^6 + 3568 t^2 x^6 y^6 z^6 +

8848 t^4 x^6 y^6 z^6 + 8976 t^6 x^6 y^6 z^6 + 3200 t^8 x^6 y^6 z^6 +

752 x^8 y^6 z^6 + 4356 t^2 x^8 y^6 z^6 + 11780 t^4 x^8 y^6 z^6 +

13596 t^6 x^8 y^6 z^6 + 5420 t^8 x^8 y^6 z^6 + 288 x^10 y^6 z^6 +

2552 t^2 x^10 y^6 z^6 + 8984 t^4 x^10 y^6 z^6 +

12232 t^6 x^10 y^6 z^6 + 5512 t^8 x^10 y^6 z^6 +

404 t^2 x^12 y^6 z^6 + 3156 t^4 x^12 y^6 z^6 +

5940 t^6 x^12 y^6 z^6 + 3252 t^8 x^12 y^6 z^6 +

384 t^4 x^14 y^6 z^6 + 1320 t^6 x^14 y^6 z^6 +

1000 t^8 x^14 y^6 z^6 + 96 t^6 x^16 y^6 z^6 + 128 t^8 x^16 y^6 z^6 +

288 x^8 y^8 z^6 + 1080 t^2 x^8 y^8 z^6 + 1656 t^4 x^8 y^8 z^6 +

1224 t^6 x^8 y^8 z^6 + 360 t^8 x^8 y^8 z^6 + 144 x^10 y^8 z^6 +

1008 t^2 x^10 y^8 z^6 + 2448 t^4 x^10 y^8 z^6 +

2448 t^6 x^10 y^8 z^6 + 864 t^8 x^10 y^8 z^6 +

184 t^2 x^12 y^8 z^6 + 1064 t^4 x^12 y^8 z^6 +

1600 t^6 x^12 y^8 z^6 + 720 t^8 x^12 y^8 z^6 +

128 t^4 x^14 y^8 z^6 + 376 t^6 x^14 y^8 z^6 + 248 t^8 x^14 y^8 z^6 +

24 t^6 x^16 y^8 z^6 + 32 t^8 x^16 y^8 z^6 + 176 z^8 + 256 t^2 z^8 +

256 t^4 z^8 + 160 t^6 z^8 + 48 t^8 z^8 + 256 x^2 z^8 +

240 t^2 x^2 z^8 + 544 t^4 x^2 z^8 + 496 t^6 x^2 z^8 +

192 t^8 x^2 z^8 + 224 x^4 z^8 + 152 t^2 x^4 z^8 + 892 t^4 x^4 z^8 +

848 t^6 x^4 z^8 + 396 t^8 x^4 z^8 + 96 x^6 z^8 + 32 t^2 x^6 z^8 +

900 t^4 x^6 z^8 + 840 t^6 x^6 z^8 + 516 t^8 x^6 z^8 + 24 x^8 z^8 +

8 t^2 x^8 z^8 + 575 t^4 x^8 z^8 + 510 t^6 x^8 z^8 +

463 t^8 x^8 z^8 + 210 t^4 x^10 z^8 + 180 t^6 x^10 z^8 +

290 t^8 x^10 z^8 + 35 t^4 x^12 z^8 + 30 t^6 x^12 z^8 +

123 t^8 x^12 z^8 + 32 t^8 x^14 z^8 + 4 t^8 x^16 z^8 + 256 y^2 z^8 +

704 t^2 y^2 z^8 + 784 t^4 y^2 z^8 + 480 t^6 y^2 z^8 +

144 t^8 y^2 z^8 + 256 x^2 y^2 z^8 + 1040 t^2 x^2 y^2 z^8 +
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1632 t^4 x^2 y^2 z^8 + 1424 t^6 x^2 y^2 z^8 + 576 t^8 x^2 y^2 z^8 +

416 x^4 y^2 z^8 + 1560 t^2 x^4 y^2 z^8 + 2696 t^4 x^4 y^2 z^8 +

2760 t^6 x^4 y^2 z^8 + 1336 t^8 x^4 y^2 z^8 + 224 x^6 y^2 z^8 +

1032 t^2 x^6 y^2 z^8 + 2616 t^4 x^6 y^2 z^8 + 3416 t^6 x^6 y^2 z^8 +

1992 t^8 x^6 y^2 z^8 + 96 x^8 y^2 z^8 + 472 t^2 x^8 y^2 z^8 +

1780 t^4 x^8 y^2 z^8 + 2800 t^6 x^8 y^2 z^8 + 1972 t^8 x^8 y^2 z^8 +

88 t^2 x^10 y^2 z^8 + 736 t^4 x^10 y^2 z^8 + 1432 t^6 x^10 y^2 z^8 +

1296 t^8 x^10 y^2 z^8 + 140 t^4 x^12 y^2 z^8 +

400 t^6 x^12 y^2 z^8 + 548 t^8 x^12 y^2 z^8 + 40 t^6 x^14 y^2 z^8 +

136 t^8 x^14 y^2 z^8 + 16 t^8 x^16 y^2 z^8 + 96 y^4 z^8 +

384 t^2 y^4 z^8 + 624 t^4 y^4 z^8 + 480 t^6 y^4 z^8 +

144 t^8 y^4 z^8 + 64 x^2 y^4 z^8 + 544 t^2 x^2 y^4 z^8 +

1472 t^4 x^2 y^4 z^8 + 1568 t^6 x^2 y^4 z^8 + 576 t^8 x^2 y^4 z^8 +

448 x^4 y^4 z^8 + 1696 t^2 x^4 y^4 z^8 + 3524 t^4 x^4 y^4 z^8 +

3784 t^6 x^4 y^4 z^8 + 1508 t^8 x^4 y^4 z^8 + 224 x^6 y^4 z^8 +

1400 t^2 x^6 y^4 z^8 + 4156 t^4 x^6 y^4 z^8 + 5488 t^6 x^6 y^4 z^8 +

2508 t^8 x^6 y^4 z^8 + 176 x^8 y^4 z^8 + 992 t^2 x^8 y^4 z^8 +

3367 t^4 x^8 y^4 z^8 + 5190 t^6 x^8 y^4 z^8 + 2735 t^8 x^8 y^4 z^8 +

264 t^2 x^10 y^4 z^8 + 1578 t^4 x^10 y^4 z^8 +

3084 t^6 x^10 y^4 z^8 + 1962 t^8 x^10 y^4 z^8 +

315 t^4 x^12 y^4 z^8 + 998 t^6 x^12 y^4 z^8 + 875 t^8 x^12 y^4 z^8 +

120 t^6 x^14 y^4 z^8 + 216 t^8 x^14 y^4 z^8 + 24 t^8 x^16 y^4 z^8 +

160 x^4 y^6 z^8 + 672 t^2 x^4 y^6 z^8 + 1144 t^4 x^4 y^6 z^8 +

912 t^6 x^4 y^6 z^8 + 280 t^8 x^4 y^6 z^8 + 32 x^6 y^6 z^8 +

656 t^2 x^6 y^6 z^8 + 2056 t^4 x^6 y^6 z^8 + 2272 t^6 x^6 y^6 z^8 +

840 t^8 x^6 y^6 z^8 + 160 x^8 y^6 z^8 + 880 t^2 x^8 y^6 z^8 +

2534 t^4 x^8 y^6 z^8 + 3100 t^6 x^8 y^6 z^8 + 1286 t^8 x^8 y^6 z^8 +

320 t^2 x^10 y^6 z^8 + 1556 t^4 x^10 y^6 z^8 +

2408 t^6 x^10 y^6 z^8 + 1172 t^8 x^10 y^6 z^8 +

350 t^4 x^12 y^6 z^8 + 916 t^6 x^12 y^6 z^8 + 598 t^8 x^12 y^6 z^8 +

120 t^6 x^14 y^6 z^8 + 152 t^8 x^14 y^6 z^8 + 16 t^8 x^16 y^6 z^8 +

72 x^8 y^8 z^8 + 288 t^2 x^8 y^8 z^8 + 468 t^4 x^8 y^8 z^8 +

360 t^6 x^8 y^8 z^8 + 108 t^8 x^8 y^8 z^8 + 144 t^2 x^10 y^8 z^8 +

504 t^4 x^10 y^8 z^8 + 576 t^6 x^10 y^8 z^8 + 216 t^8 x^10 y^8 z^8 +

140 t^4 x^12 y^8 z^8 + 288 t^6 x^12 y^8 z^8 + 148 t^8 x^12 y^8 z^8 +

40 t^6 x^14 y^8 z^8 + 40 t^8 x^14 y^8 z^8 + 4 t^8 x^16 y^8 z^8
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