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MINIMAX ADAPTIVE ESTIMATION OF NON-PARAMETRIC
HIDDEN MARKOV MODELS

Y. DE CASTRO, E. GASSIAT, AND C. LACOUR

ABSTRACT. In this paper, we consider stationary hidden Markov models with
finite state space and non parametric modeling of the emission distributions.
We propose a new penalized least-squares estimator for the emission distri-
butions which we prove to be asymptotically rate minimax adaptive up to a
logarithmic term when there are two hidden states. This non parametric es-
timator requires the computation of a preliminary estimator of the transition
matrix of the hidden chain for which we propose to use the spectral estimator
recently presented in [HKZ12|. We also investigate the asymptotic proper-
ties of a spectral estimator of the emission distributions derived from that
of [HKZ12]. The spectral estimator can not achieve the asymptotic minimax
rate, but it is very useful to avoid initialization problems in our least squares
minimization algorithm. Simulations are given that show the improvement
obtained when applying the least-squares minimization consecutively to the
spectral estimation.

1. INTRODUCTION

1.1. Context and motivations. Finite state space hidden Markov models (HMMs
for short) are widely used to model data evolving in time and coming from hetero-
geneous populations. They seem to be reliable models to depict practical situations
in a variety of applications such as economics, genomics, signal processing and im-
age analysis, ecology, environment, speech recognition, to name but a few. From a
statistical view point, finite state space HMMs are stochastic processes (X;,Y;);>0
where (X);>0 is a Markov chain living in a finite state space and conditionally on
(X;);j>0 the Y;’s are independent with a distribution depending only on X, and
living in Y. The observations are Yi., = (Y1, --,Y,,) and the associated states
X1.n = (X3,--+, X,,) are unobserved. The parameters of the model are the initial
distribution, the transition matrix of the hidden chain, and the emission distribu-
tions of the observations, that is the probability distributions of the Yj’s condi-
tionnally to X; = x for all possible 2’s. In this paper we shall consider stationary
ergodic HMMSs so that the initial distribution is the stationary distribution of the
(ergodic) hidden Markov chain.

Until very recently, asymptotic performances of estimators were proved theo-
retically only in the parametric frame (that is, with finitely many unknown pa-
rameters). Though, non parametric methods for HMMs have been considered in
applied papers, see for instance [CCO00] for voice activity detection, [LWMO3] for
climate state identification, [Lef03] for automatic speech recognition, [SC09] for fa-
cial expression recognition, [VBMMRI13| for methylation comparison of proteins,
[YPRH11] for copy number variants identification in DNA analysis. Recent papers
that contain theoretical results on different kinds of non parametric HMMs are
[GR13|, where the emitted distributions are translated of each other, and [DL12] in
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which the authors consider regression models with hidden regressor variables that
can be markovian on a continuous state space.

The preliminary obstacle to obtain theoretical results on general finite state
space non parametric HMMs was to understand when such models are indeed iden-
tifiable. The papers [AMRO09|, [HKZ12| and [AHK12| paved the way to obtain
identifiability under reasonable assumptions. In [AHK12| the authors point out a
structural link between multivariate mixtures with conditionally independent ob-
servations and finite state space HMMs. In [HKZ12] the authors propose a spectral
method to estimate all parameters for finite state space HMMs (with finitely many
observations), under the assumption that the transition matrix of the hidden chain
is non singular, and that the (finitely valued) emission distributions are linearly
independent. Extension to emission distributions on any space, under the linear
independence assumptions (and keeping the assumption of non singularity of the
transition matrix), allowed to prove the general identifiability result for finite state
space HMMs;, see [GCR13], where also model selection likelihood methods and non
parametric kernel methods are proposed to get non parametric estimators. Let
us notice also [Verl3] that proves theoretical consistency of the posterior in non
parametric Bayesian methods for finite state space HMMs with adequate assump-
tions. Later, [AH14] obtained identifiability when the emission distributions are all
distinct (not necessarily linearly independent) and still when the transition matrix
of the hidden chain is non singular. In the non parametric multivariate mixture
model, [SADX14] prove that any linear functional of the emission distributions may
be estimated with parametric rate of convergence in the context of reproducing ker-
nel Hilbert spaces. The latter uses spectral methods, not the same but similar to
the ones proposed in [HKZ12] and [AHK12|. Those spectral methods have the ex-
tremely interesting characteristic that to compute the estimator the algorithms do
not require initialization as is usual in latent variable models estimation when using
the EM algorithm. They may be used under the linear independence assumption.

1.2. Contribution. The aim of our paper is to propose a non parametric estima-
tor of the emission distributions that achieves the minimax rate of estimation in
an adaptive setting. For this purpose we propose a new penalized least squares
estimator in the model selection frame. Our perspective is based on estimating the
projections of the emission laws onto nested subspaces of increasing complexity.
Our analysis encompasses any family of nested subspaces of Hilbert spaces and
works with a large variety of models.

We start from the remarkable works of Anandkumar, Hsu, Kakade and Zhang on
spectral methods in the parametric frame. Their papers [HKZ12, AHK12| present
an efficient algorithm for learning HMMs. They give theoretical guarantees for
observation prediction and the £s-error on estimating the parametric emission laws.
They present spectral estimators for the stationary distribution and the transition
matrix of the hidden Markov chain.

In this paper, we first extend spectral methods to the non-parametric frame.
Since projections are linear functionals of the distributions, it is possible to use
spectral methods to estimate the projections. Then, to get the best risk for the
non parametric estimator of the emission distributions, one has as usual to balance
a bias term and a variance term. Our work brings a new quantitative insight on
the tradeoff between sampling size and approximation complexity for spectral esti-
mators. Doing so, we get the best possible rate for the non parametric estimation
of emission densities using spectral methods. Roughly speaking, when the observa-
tions are one dimensional, that is when ) is a subset of R, the obtained rate is of
order N—%/(25+3) ' N being the number of observations and s the smoothness of the
emission densities. This would be the right minimax rate if the observations were
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living in a 3-dimensional space, that is if )) was a subset of R3. This rate is easily
understood by the fact that the spectral estimators come from empirical estima-
tors of the three dimensional marginal of the process, that is of the distribution of
(Y1,Y2,Y3) which is indeed 3-dimensional. But in case ) is a subset of R, one could
hope to achieve the rate N—5/(25t1) for the estimators of the emission densities.
Indeed, using model selection to estimate the density of (Y7, Y2, Y3) with the HMM
modelization, and using sieves for the emission densities on ), one can obtain the
best rate of N=5/(25+1) up to a log N term for Lo-risk of the estimator of the density
of (Y1,Y2,Y3). The key point is then to be able to go back to the emission densities.
This is the cornerstone of our result, see Lemma 2 where we prove that under some
appropriate assumptions, the quadratic risk for the density of (Y7, Y2,Y3) is lower
bounded by some positive constant multiplied by the quadratic risk of the emission
densities.

Thus our approach is the following. First, get a preliminary estimate of the initial
distribution and the transition matrix of the hidden chain. We propose one obtained
using spectral methods, for which we prove new precise asymptotics. Second, apply
penalized least squares estimation on the density of three consecutive observations,
using HMM modelization, model selection on the emission densities, and initial
distribution and stationary matrix of the hidden chain set at the estimated value.
This gives emission density estimators. When the observations form a stationary
HMM with two hidden states, this leads to a minimax adaptive estimator, as our
main result states, see Theorem 1. Moreover, since the family of sieves we consider
is that given by finite dimensional spaces described by an orthonormal basis, we
are able to use the spectral estimators of the coefficients of the densities as initial
points in the least squares minimization. This is important since here, in the HMM
framework, least squares minimization does not have an explicit solution and may
lead to several local minima. However, since the spectral estimates are proved to be
consistent, we may be confident that their use as initial point is enough. Simulations
indeed confirm this point. To conclude we claim that our results support a powerful
new approach to estimate non-parametric HMMs with a statistically optimal and
practically tractable method.

1.3. Outline of the paper. In Section 2, we set the notations, the model we shall
study, and the assumptions we shall consider. We then define the spectral estima-
tors we shall use as preliminary step, and we present our penalized least squares
estimation method. In Section 3 we give our main results. We first prove in Section
3.1 that, when the HMM has two hidden states, when the transition matrix is irre-
ducible and aperiodic, when the emission distributions are distinct and the penalty
is adequately chosen, then the penalized least squares estimator is asymptotically
minimax adaptive up to a log N term, see Theorem 1 and Corollary 1. The proof
is based on three intermediate results. First, we prove an oracle inequality for the
least squares estimator of the density of three consecutive observations, see Proposi-
tion 2. Then, we prove the key lemma relating the risk of the density of (Y7, Y2,Y3)
to that of the emission densities, see Lemma 2. Finally, we need the performances
of the spectral estimator of the transition matrix and the stationary distributions
which are consequences of the further section. We then give in Section 3.2 precise
upper bounds for the quadratic risk of all the spectral estimators, see Theorem 3.
Here, the important point is to make explicit the upper bound in the complexity
parameter of the sieve, M, together with the number of observations, N. We finally
present simulations in Section 4 to illustrate our theoretical results. Those simula-
tions show in particular the improvment obtained when applying the least-squares
minimization consecutively to the spectral estimation. Detailed proofs are given in
Section 6 and in the Appendices.
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2. ESTIMATION METHODS

2.1. Non-parametric Hidden Markov Model. Let K, D be positive integers
and let £ be the Lebesgue measure on R”. Denote by X the set {1,..., K} of
hidden states, Y = [0, 1]” the observation space, and Ax the space of probability
measures on X identified to the (K — 1)-dimensional simplex. Let (X,)n>1 be
a Markov chain on X with K x K transition matrix Q* and initial distribution
7 € Ag. Let (Yy,)n>1 be a sequence of observed random variables on ). Assume
that, conditional on (X,,),>1, the observations (Y},),>1 are independent and, for
all n € N; the distribution of Y,, depends only on X,:

ﬁ((Yn)n>l| n n>1 ®£ Y |X
n>1

Observe that, for all n € N and for all £ € X, conditional on {X,, = k}, the law
of Y,, depends only on the state k. Denote by uj; this conditional law and assume
that ;7 has density f; with respect to the measure LP on Y:

Vke X, duf= frdcP.
Denote by §* := {f7,..., fi} the set of emission densities with respect to the

Lebesgue measure. Then, for any integer n, the distribution of (Y3,...,Y},) has
density with respect to (£P)®"
K
Yo T R)Q (ks ko) o QF (R k) [ (1) - 7 ()
E1yeokn=1

We shall denote ¢g* the density of (Y7, Ys,Y3).

In this paper we shall address two observations schemes. We shall consider N
ii.d. samples (Yl(s), YQ(S), 1/3(5))521 of three consecutive observations (Scenario A)
or consecutive observations of the same chain (Scenario B):

Vs e {1,...,N}, (N v vE) = (Y, Yaga, Vi)

2.2. Projections of the population joint laws. Denote by (L2(Y, L), | |2)
the Banach space of square integrable functions on ) with respect to the Lebesgue
measure £ equipped with the usual inner product (-,-) on L2(), £P). Assume
I C L2y, LP).

Let (My,)n>1 be an increasing sequence of integers, and let (Pas, )n>1 be a se-
quence of nested subspaces such that their union is dense in L?(), £P). Let ®;, :=
{p1,.-.,¢n, } be an orthonormal basis of By, . Note that for all f € L2(), LP),

M,
(1) dim Y (S om)om = 1
m=1

in L2(Y, LP). Note that changing M,, may change all functions ¢,,, 1 < m < M,
in the basis ®jy, , which we shall not indicate in the notation for sake of readability.
One can consider the following standard examples:

(Spline) The space of piecewise polynomials of degree bounded by d, based on
the regular partition with p2 regular pieces on J = [0,1]”. Consider the
Legendre basis on each piece p:

l
opr(z) = H (2r; +1)2 Py, (—1 + 2pupy.i(2))
=1

where p € {1,...,p,}", r € {0,...,d,}”, P}, denotes the kth Legendre
polynomial and p, ;(x) € [0,1/p,] denotes the ith coordinate of = on the
piece p. It holds that M,, = (d, + 1)PpZ.
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(Trig.) The space of real trigonometric polynomials on ) = [0, 1]” with degree less
than n:

D
or(z) = H{\/icos(Qﬂriaci)]l{TKo} + \/§sin(27rrixi)]l{n>0} + 1=y}

i=1
where 7 € {—n,...,n}P. It holds that M,, = (2n + 1)7.

(Wav.) A wavelet basis ®;, of scale n on J = [0,1]P, see [Mey92]. One can
consider the collection of functions which are D-tensors of 1jq 1 and v, ,
j=0,...,n,7=0,...,27 — 1 with for z € [0, 1]

(@) =222 — )
for some mother function ¢, for instance ¢ = 1y 1,20 — L[1/2,1]- It holds
that M, = 2"+DD.

For sake of readability, we drop the dependence on n and write M instead of M,,.
The following vectors, matrices and tensors will be used:

e Denote by Ly, € RM the projection of the distribution of one observation,
for instance Y7, on the basis ®;;:

Vae{l,...,M}, L]\/j(a):E((pa(Yi))

e Denote by Mj; € RM*MXM the joint distribution of three consecutive
observations, for instance (Y7, Y2,Y3), on the basis @ y:

V(a, b, C) € {15 R M}Sa MM(aa b, C) = E((Pa(yl)@b(yé)@c(yé)) .

e Denote by Ny € RM*M the joint distribution of two consecutive observa-
tions, for instance (Y7,Y3), on the basis ®p;:

V(avb) € {17'-'5M}27 NM(avb) :E(@a(yl)%(Y?))
e Denote by O, € RMXK the conditional distribution of one observation on
the basis ®p:
V(m,k) e {l,...,M} x X, Opn(m,k) =E(om(Y1)|X1 =k) = ([}, om) -

e Define the projection of the emission laws on the subspace Pay:

M
VEEX, [firwi= Y Om(m,k)gm,

m=1
and note £y, = (fz*w,p e fz*w,K)-
e Denote by Py € RM*M the joint distribution of (Y7, Y3), on the basis ®;:
V(G,C) e {15"'5M}2) PM(G/,C):E(QDa(H)QDC(}%))

2.3. Assumptions and further notations.

2.3.1. Assumptions on the hidden chain. We shall use the following assumptions

[H1] The transition matriz Q* has full rank,

[H2] The Markov chain (X,)n>1 is @rreducible and aperiodic,

[H3]| The initial distribution 7 = (7}, ..., %) is the stationary distribution
Notice that under [H1], [H2] and [H3], one has

Vke X, mp>mh,>0.

Those assumptions appear in spectral methods, see for instance [HKZ12, AHK12|,
and in identifiability issues, see for instance [AMR09, GCR13, AH14].
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2.3.2. Norms, singular values and matriz notation. We shall use the following com-
mon notation throughout the paper. Let A be a (p x ¢) matrix with p > ¢. Denote
01(A) > 02(A) > ... > 04,(A) > 0 its singular values, ||-|| its operator norm and
I]| 7 its Frobenius norm. When A is invertible, denote r(A4) := 01(A4)/04(A) its
condition number. Denote AT the transpose matrix of A, A(k,l) its (k,l)th entry,
A(.,1) its Ith column and A(k,.) its kth line. When A is a (p X p) diagonalizable
matrix, denote A;(A) > Aa2(A) > ... > A\, (A) its eigenvalues.

For vectors, denote |[|-||, the usual £, norm, for 1 < ¢ < +o0. Let v be a vector
of size p. We denote by Diag[v] the diagonal matrix with diagonal entries v; and,
by abuse of notation, Diag[v] = Diaglv'].

2.3.3. Separation of the emission laws. Assume that the family §* = {f7,..., [k}
is linearly independent. Therefore the (K x K) Gram matrix denoted by O, O,
and defined by O] O, := ((f7,. f%,))k1.keex is invertible. Let:

(2)  egear = [|03On — O Oull= 1((fAr ks Fires) — (Fis Fi ) ka kol
From (1), one can check that there exists Mz« > 1 such that for all M > Mg«
3)\K(OIO*)

1 .

Remark — One can give an explicit expression of Mz« in terms of the reqular-
ity of the emission laws. Indeed, standard results in approzimation theory [DL93]
show that one can upper bound the approzimation error || fi — fir xll2 by O(M~?)
where s > 0 denotes a regularity parameter (e.g. §* is included in a well-chosen
Besov space). As a matter of fact, under standard hypothesis on the emission laws
densities, one can prove that eg« pr < Cz» M ™7 where Cz+ s > 0 is a constant that
may depend on §* and a reqularity parameter s. Hence, one can consider:

My = ((3;(0(%50*));1'

Invoke Weyl’s inequality (see Theorem 6) to show
7% (Onr) = Me(01,0n) = Ak (0] 0,)/4.

Set 0 (0,) := A% (0] 0,) and notice that for all M > Mz, 0% (Onr) > o (0,)/2.
It shows that one can consider that:

g M <

[H4] There exists a constant 0 < o 5+ < 1 and a positive integer Mg+ such that:
VM > Mg+, og(Om)>o0kz >0.

Conversely, if [H4] holds, one can check that O] O, is invertible. We deduce that

[H4] is equivalent to:

[H4b] The family of emission densities §* = {f7,..., fi} is linearly independent.

Assumption [H4b] appears in spectral methods, see [HKZ12, AHK12], and in iden-

tifiability issues, see for instance [AMR09, GCR13|. Notice that in case K = 2,
[H4Db] reduces to the fact that f; # f3.

2.3.4. Identifiability issues. For any f = (f1,...,fx) € (L%, £LP))X and any
irreducible transition matrix Q, denote ¢@f : Y3 — R the function given by
K

B g¥ vy = D wlk)Q(k, k2)QUka, ks) fr, (y1) Fro (y2) fis (us),

k1,k2,k3=1

where 7 is the stationary distribution of Q. When Q = Q* and f = f*, ¢Q"f" = g*.
When f1,..., fix are probability densities on ), g@f is the probability distribution
of three consecutive observations of a stationary HMM.
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We now state a Lemma that gathers all what we need about identifiability.

Lemma 1 — Assume that Q is a transition matriz for which [H1] and [H2]
hold. Assume that [H4] (or [H4b)) holds. Define Tq the set of permutations T
such that for all i and j, Q(7(i),7(5)) = Q(i,5). Then for any h € (L*(Y,LP))K

gQ’fUrh = gQ’f* <= dr € Tq such that h; = f:(j) — fj*, j=1,.... K.
In particular, if Tq reduces to the identity permutation,
g :gQ’f*<:>h:(0,...,0).

Proof. In [HKZ12] it is proved that when [H1], [H2], [H3] hold and ok (Oxs) > 0,
the knowledge of M, allows to recover Oj; and Q up to relabelling of the hidden
states, using only spectral methods on Mj,. Thus, when [H1], [H2], [H3] and
[H4b)] hold, the knowledge of g®f" is equivalent to the knowledge of the sequence
(M s)a which allows to recover Q and the sequence (Opr)as, up to relabelling of
the hidden states, which allows to recover f* = (f5, ..., f%) up to relabelling of the
hidden states, thanks to (1). See also [GCR13|. O

Q.f*+h

2.4. Spectral estimation. The following procedure describes a tractable approach
to non-parametric emission density estimation and transition matrix estimation. It
is based on recent developments in parametric estimation of HMMs. For each fixed
M, we estimate the projection of the emission distributions on the basis ®; us-
ing the spectral method proposed in [AHK12]. As the authors of the latter paper
explain, this allows further to estimate the transition matrix (we use a modified ver-
sion of their estimator), and we set the estimator of the stationary distribution as
the stationary distribution of the estimator of the transition matrix. The computa-
tion of those estimators is particularly simple: it is based on one SVD, some matrix
inversions and one diagonalization. One can prove, with overwhelming probability,
all matrix inversions and the diagonalization can be done rightfully, see Theorem 4
and Theorem 5.

[Step 1] Consider the following empirical estimators: For any a,b,cin {1,..., M},
| X
:NZ%M%

M (a,b, ) == N Z% 9017 Y( ))%(Y(s))

=

g

&
i

mwm:NZ%w> b(¥3")

1 S S
szwwﬂw.
s=1

[Step 2] Let U be the M x K matrix of orthonormal right singular vectors of P
corresponding to its top K singular values.
[Step 3] Form the matrices:

voe{l,...,M}, B(b):=(UTPy,U) U Mp(,b.)0.

[Step 4] Set © a (K x K) random unitary matrix uniformly drawn and form the
matrices:

M
Vke{l,....K}, C(k):=> (U0)(b, k)B(b).

b=1

and Pys(a,c) :
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[Step 5] Compute R a (K x K) unit Euclidean norm columns matrix that diago-
nalizes the matrix C(1):

R'C(1)R = Diag[(A(1,1),...,A(1, K))].
[Step 6] Set:
Ve K e X, Ak k) := (RIC(R)R)K,K),

and O M= UOA. .
[Step 7] Consider the emission laws estimator (fasx)rex defined by:

M
Ve X, fur=Y_ On(m k)om,

m=1
[Step 8] Set
T = (IAJTOM)ilIAJT]ZI\/[.
[Step 9] Consider the transition matrix estimator:
Q = HTM((ﬂTOwjgiag[fT])71'[AJTNMIAJ(O;[IIAJ)71) ,

where IITy denotes the projection (with respect to the scalar product
given by the Frobenius norm) onto the convex set of transition matrices,
and define 7 as the stationary distribution of Q.

Remark — The projection Ity (and the projection Ia,. ) can be computed us-
ing alternating projections. Indeed, observe the set of transpose transition matrices
can be viewed as the product A X --- X Ag. Note the simplex Ak is the inter-
section between two “simple” convex sets: an affine space and the orthant. Hence,
an alternating projection method can be used to compute the projection Ilty. We
deduce that with O(K?) simple projections (onto affine spaces and orthants) one
can compute the projection onto the set of transition matrices.

2.5. Least squares estimation. In this section we shall estimate the density g*
of (Y7,Y2,Y3) using the so-called penalized least squares method. The idea is the
following: starting from the operator ¢ — ||t — g*||3 — ||g*[|3 = [|t||3 — 2 [ tg* which
is minimum for the target g*, we introduce the corresponding empirical contrast
yn. Namely, for any t € L2()3, L',D®3), set

N
2
w () =t - = D t(Z),
s=1

with Z; := (Y7,Y5,Ys) (Scenario A) or Z, := (Ys, Ysi1, Ysi2) (Scenario B). As
N tends to infinity, yv (t) — vn (¢*) converges almost surely to ||t — g*[|2, thus the
name least squares contrast function. A natural estimator is then a function ¢ such
that v (t) is minimum over a judicious approximation space S. We thus define
a whole collection of estimates gps, each M indexing an approximation subspace
S(M) (also called model). It then remains to select the best model, that is to
choose M which minimizes ||gas — ¢*||5 — |lg*||3. This quantity is close to vn (gar),
but we need to take into account the deviations of the process v — yn. Then we
rather minimize yn(Ga) + pen(N, M) where pen(N, M) is a penalty term to be
specified.

More precisely, considering (3) we shall introduce a collection of model of func-
tions by projection of possible f’s on the subspaces (Pas)ar. We fix a compact
subset F of L?(Y, £P) such that for any f € F, [ fdCP =1 and || f||« < Cr o for
some fixed C'r o, > 0. Recall that F is a compact subset of L2(Y, £P) if and only if
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F is closed, bounded, and for a complete orthonormal basis (e;);>1 of L%(Y, £P),
it holds
Ve > 0, 3J such that Vf € F, Z(f, ej)? <e.
J>J
In particular, there exists Cx o > 0 such that for all f € F, ||f|l2 < Cra. Also,
when B, is defined as the subspace generated by ((pm)lngM = ®,,, for the
(Trig.) or (Wav.) examples, with ¢; = 1y, one may choose F by setting a small
8 >0,alarge L > 0, and let
(4)
F={feL?W,L") : (fier) =1, |flloc < Crroo and Y m**(f,n)* < L},
m>2
In such a case, when f € F, then for all M, if fj, is the projection of f onto Py,
then fyr € F. Also, if moreover 8 > D/2, embedding theorems of Sobolev spaces
(see [AF03] for instance) show that if

(5)  F={feLPM.LP) : (fip1)=1and Y m*(f,pm)? < L%}

there exists C'r oo > 0 such that ||f|lcc < Cr o for all f € F.

For any irreducible transition matrix Q with stationary distribution , we define
S(Q, M) as the set of functions g@f such that, for each k = 1,..., K, f € F, and
there exists (amk)1<m<m € RM such that

M
fk = Z AmkPm-
m=1

Let now Q be an estimator of Q*. For any M, define gy as a minimizer of vy (t)
for t € S(Q, M). Then §y can be written as gy = g@f" with £ € (F)X and

M
Ig\/[: dek@ma k:17aK
m=1

for some (@ k)1<m<m € RM k =1,...,K. The least squares estimator does
not have an explicit form such as in usual nonparametric estimation, so that one
has to use numerical minimization algorithms. As initial point of the minimization
algorithm, we shall use the spectral estimator, see Section 4 for more details.

Our final estimator will be a penalized least squares estimator. We then set a
penalty function pen(N, M) and choose

M =arg min {yx(gar) + pen(N, M)}

Notice that, with N observations, we consider N subspaces as candidates for model
selection. Then the estimator of g* is § = gy, and the estimator of f* is f such
that

f.=fM
so that § = ¢@f.

3. MAIN RESULTS

3.1. Adaptive non parametric estimation when K = 2. Here we specialize to
the situation where K = 2. In such a case, f* = (f7, f5), and

o [ 1=p* p* )
Q ( q* 17(1*

for some p*, ¢* in [0, 1]. We shall assume



10 Y. DE CASTRO, E. GASSIAT, AND C. LACOUR

[HB]| The coefficients p* and g* verify
0<p'<l,0<qg" <1, p"#1-g"

[HF] F is a compact subset of L2(Y, LP) such that: for any f € F, [ fdCP =1
and || flloec < CF o for some fivred Cr o > 0.

We denote Cr o =supsez || fll2 < oo.

Let f be the penalized least squares estimator of f* when Q = Q n is chosen as
the spectral estimator of Q* with M := My such that n3(®as, ) (defined in Section
3.2) is equal to v/log N. The following theorem gives an oracle inequality for the
estimators of the emission distributions provided the penalty is adequately chosen.

Theorem 1 (Adaptive estimation) — Assume [HF]. Assume that [HB] holds
for Q*. Assume also £* € F2, f{ # f3, and that for all M, £}, € F2. Then, there
exists positive constants A*, B* (depending on Q*, £*, Cr o and Cr ), a positive
integer N* (depending on Q* and §*) and a positive constant p* (depending on
Cr2 and Cr o (Scenario A) or on Q*, Crs and Cr  (Scenario B)) such
that, if
. M log M

N

then for all x > 0, for all N > (x\/x2)N* log N, there exists a permutation TN € Sa
such that, with probability larger than 1 — 8e™7,

pen(N, M) > p

Hf{ - fTN(l)H% + Hf2* - fTN(Q)H% <
* |z * x
A [inf {167 = Firal3 + 15 = Frall3 + pen(N, M)} +
+1Q* = Pry QuPL, I3+ = Pry i3]

and

. log N log N
1Q* - Py QuPL|I< B*\/%x and |7 — Pryitn||2< B*\/%x.

Here, P, is the permutation matriz associated to Tn .

Remark — An important consequence of the oracle inequality is that a right
choice of the penalty leads to a rate minimaz adaptive estimator up to alog N term,
see Corollary 1 below.

Remark — Notice that in the situation where F is given as in (4), £* € F>
implies that for all M, £5, € F>.

Proof. The proof consists in three steps. First, we control the spectral estimator
QN. This is done in Section 3.2, see Corollary 2. Then, we obtain an oracle
inequality for the estimation of ¢g* which is stated below in Proposition 2 and
proved in Section 6.1. Notice that this proposition holds for any cardinality K of
hidden states (not only K = 2) as may be seen from its proof.

Proposition 2 — Assume that [HB] holds for Q*. Assume also £* € F2, for
all M, £5, € F?, and f; # f5. Then, there exists positive constants p* and A}
(depending on Cr 2 and Cr o (Scenario B) or on Q*, Cr 2 and Cr o (Scenario
B)) such that, if
. M log M

pen(N, M) = p*—
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for all x > 0, for all N, for any permutation T € Sz, one has with probability
l—(e—1)"te®

R . * * ok *x
13 =915 < Ginf {Jlg" — g 5|3 + pen(N, M) | + AT
+18C%,(1Q" — P-QP] |7 + |7+ — P-#3)

Then, finally we lower bound the risk of g by that of f up to relabelling of the
states. This uses the following Lemma which is proved in Section 6.2. Recall that
Tq is the set of permutations such that for all i and j, Q(¢,7) = Q(7(i), 7(4)).
Thus, if Q(1,2) # Q(2,1), Tq reduces to the identity, while if Q(1,2) = Q(2,1),

2
TQ = 52. For any h = (hl, hg) S (LQ()J,[,D)) denote Hh”g = Hh1||2 + ||h2||2

Lemma 2 — Let K be a compact subset of (L2(JJ,£D))2 such that if h =
(h1,h2) € K, then fhid[,D =0,7=1,2. LetV be a compact neighborhood of Q*
such that, for all Q € V, Q verifies 0 <p <1, 0 <qg<1, p#1—gq. Assume
that [HB] holds for Q* and that f{ # f5. Then there exists a positive constant
c(IC,V,§*) such that

Vh = (hl, hQ) € ’C27 VQ S Va ||gQ7f*+h - gQﬁf*HQ > C(’C,V,S*)Hh”Q
Here, [hllq = minrerg (I + ff — Pl + s+ 73 — Fron o).

Let K = {h = f—f* ,f € F2}. Let V be a compact set such as in Lemma 2 and let
€ > 0 be such that if Q is a transition matrix such that ||Q — Q*|| < ¢, then Q € V.
We shall use Theorem 3 stated in the forthcoming section. Set B* = C(Q*,§*) and
let N* be an integer larger than C(Q*, §*)?/€? and larger than N(Q*, §*). Observe
that for all z and N > (z V 2?)N*log N, one has ¢ > zC(Q*,§*)/log N/N. Now
using Proposition 2 and Theorem 3 with My such that n3(®ar, ) = V1og N we get
that for all z > 0, for all N > (zV2?)N*log N, there exists a permutation 7 such
that with probability 1 — 8e™*, one has

©  lg-g13 < Ginf{lg" — g W3+ pen(N, M)} + AT

+18C% 5 (1Q" — Pry QP [} + 7 — Py 713
and

log N
N

A log N
(1) 11Q* - P, QNP < B* O;gv z and |7 — Pry 7y |la< B* -

so that in particular ]P’TNQ NIP’IN € V. Notice that writing

2
G (y1,y2,y3) = Z (Pry7%) (k1) (Pry QP ) (K1, ko) (Pry QP ) (Ko, k3)
k1,ka,ks=1
X forng k) W1) Fr () (Y2) Fre (k) (U3)
and applying Lemma 2 we get,
N A 1

8 * o * _ < I |
( ) Hfl fTN(l)H2+Hf2 fTN(2)||2 = C(K:,V,S’*)”g g
Indeed, in case Q*(1,2) # Q*(2,1) one may set V so that for all Q € V, Q(1,2) #
Q(2,1) and in case Q*(1,2) = Q*(2,1) one can swap the labels in the estimation

of Q* so that one may choose 7 in such a way that (8) holds.
Now by the triangular inequality

Py QEL ),

N P, QP £* N * g P, QP f*
(9) g —g" Ty < 1§ — g¥ll2 + 199 — gty ¥ T
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We have

(gQ*,f* _ gPTNQPfN vf*) (y1,92,y3) =
2
S (R R)Q k) Q (ks k) — (Bry ) () (B QT (k. B2 (Bry QT )k, ) )
ki,ko,ks=1

X fi ) 7, (2) 7, (ys)
so that

*px P, QP! f* * n * A
(10)  [lg®F = gFx Vo Ty < VBC, [lIn* — Pl +2]1Q" — PrQPT |

In the same way,

(97 = 9%) (1, 2,05) =
2

>0 w k) QF (ka, k) Q* (ka, ks) (£, () £, (w2) £, (W3) — Farps (Wn) Firns (W2) Far e, (Us))
kl,kz,kszl
so that

lg* — 9@ Bll2 < 3CF pmax{|[ff — firall: I1f5 — Firall}-

Thus collecting (6), (7), (8), (9), (10) and with an appropriate choice of A* we get
Theorem 1. (]

Corollary 1 — Under the assumptions of Theorem 1, there exists a sequence
of permutations Ty € Sa such that as N tends to infinity,

E 15 = Fre I3+ 155 = Frue) 1] =

: * * * * IOgN
0 (igg {17 = FiealP +155 ~ ol + pen(v. a0} + 25,

and

210 P ] =0 (%) anasiie 2wt =0 ({57

Thus, choosing pen(N, M) = pMlog M/N for a large p leads to the minimax
asymptotic rate of convergence up to log N. Indeed, as already said in Section
2.3.3, standard results in approximation theory [DL93] show that one can upper
bound the approximation error || — fi; |l by O(M~*) where s > 0 denotes a

regularity parameter. Then the trade-off is obtained for M ~ (N/log N)'/(2s+D)
which leads to the quasi-optimal rate (N/log N)~%/(2s+P) for the non parametric
estimation when the minimal smoothness of the emission densities is s. Notice that
the algorithm automatically selects the best M leading to this rate.

To implement the estimator, it remains to choose a value for p in the penalty.
The calibration of this parameter is a classical issue and could be the subject of a
full paper. In practice one can use the slope heuristic [BMM12].

Proof. We shall give the proof concerning the risk of Q ~, the proofs for 7 and
for f are similar. First of all, we have

N ~
li E|./——||Q* —P- PT
lim sup l\/IOgNIQ ~ QNP |
VN

+oo
B* li Pl ——— Q" —P,. QNPT ||> 2 | da.
[ (B*W”Q v ”"‘”) )

<
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Then, Theorem 1 gives that for any x > log8,

N ~
lim sup P (L ]P’TNQNIP’fNHZ z) <8 *

N ——+oco

B*/log N Q"=

so that
N ~
li E|./——|Q* —P- PT
lim sup l\/IOgNIQ ~ QNP

3.2. Risk of the spectral estimators. We can now state the Theorem which
allows to derive the asymptotic properties of the spectral estimators. As usual in
non parametric estimation, the risk is decomposed in a bias term, which comes
from the approximating properties of the spaces (Pas)a and decreases when M
increases, and in a variance term which comes from the estimator, and increases
when M increases. A good choice of M has to balance those two terms. The aim of
the following result is to bound the so-called variance term, and what is important
is to get a precise behavior of the upper bound with respect to both N and M.
The way it depends in M is described by the following quantity. Let us define

+oo
< B* {10g8 + 8/ e_””d:c} .
log 8

O

M
m(@u) = sup Y (paly1)ee(y2)ee(ys) — 2a(yh)en(Uh)pe(yh)*.
YU EVE  pe=1
Note that in the examples (Spline), (Trig.) and (Wav.) we have:
13(ar) < Cy M2
where C), > 0 is a constant.

Theorem 3 (Spectral estimators) — Assume [H1]|-[H4]. Then, there exist
positive constant numbers C(Q*,F*) and N(Q*,F*) such that the following holds.
For any x > 0, for any M > Mgz~ , there exists a permutation Tay € Sk such that the
spectral method estimators fM,k, # and Q enjoy: for any N > N(Q*, 5 )n3(® )3z,
with probability greater than 1 — 6e™",

. [}
ik — Fatmasoll2< c<Q*,s*>L\/N””x,
I — By, < C(Q*,m&\/f—f)w,
1Q* — P, QP < c(Q*, 5) B (22,

VN

Let us set the consequences of this theorem.

Corollary 2 — Assume [H1]-[H4]. Let My be a sequence of integers tending
to infinity such that n3(®ary ) = o(v/N). For each N, define fx, Qn and #n as the
estimators obtained by the spectral algorithm with this choice of My. Then there
erists a sequence of permutations Ty € Sk such that

E(ll fary k= Fnmniollz) VE[Q =Py QNPL || V E[||7*—Pry 7 |l2] = 0(773\/N

Here, the expectations are taken on the observations and on the random unitary
matriz drawn at [Step 4] of the spectral algorithm.

(Pary)

).
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The proof of Corollary 2 follows the same lines as that of Corollary 1. Let us
comment on this Corollary. Concerning the parametric part, if we choose M such
as 73(®ary ) = (log N)° for some positive d, as is done to compute the penalized
least squares estimator, we get that

5
Ellr* — Pryivla] =0 (L2520

Concerning the non parametric part, Corollary 2 gives a control of the so-called
variance term, which is of order M3? /N in typical situations such as in the examples
(Spline), (Trig.) and (Wav.). To get a control on the risk || f; — ]gN7TN(k;)||2 one
has to make a trade-off with the bias term || fi — f3,,, & ll2, which has order O(M ~*)

where s is the minimal regularity of the emission laws. Choosing M;O(,D +25 N, this
leads to to the rate N —%/(253D) for the non parametric estimation. This is similar
to the rate of estimation of a density in dimension 3D with smoothness s. This loss
of rate compared to the minimax rate obtained in Theorem 1 may be understood
by the fact that spectral estimators are built from the empirical estimate of the
three-dimensional marginal distribution (thus in a 3D-dimensional space) of the
observations.

B[l - 2aveh ] <o

and

4. NUMERICAL EXPERIMENTS

This section is devoted to numerically advocate the performances of the adaptive
estimation method studied in this paper. We recall that the experimenter knows
nothing about the underlying hidden Markov model but the number of hidden
states K. In this set of experiments, we consider the regular histogram basis for
estimating K = 2 emission laws given by beta laws of parameters (2,5) and (4, 3)
from a single chain of size N = 30, 000.

Our method is based on the computation of least squares estimators gy; defined
as minimizers of the empirical contrast vy. Then, the values of yn(Gar) (as M
varies) are used to heuristically calibrate the penalty pen(N, M) so as to, eventually,
compute the adaptive choice of the size of the model, namely

M = arg i {y~(gm) + pen(N, M)} .

We understand that a crucial step lies in computing least squares estimators gus.
One may struggle to compute gy since the function vy is non-convex. It follows
that an acceptable procedure must start from a good approximation of gp;. This
is done by the spectral method. Observe that the key leitmotiv throughout this
paper is a two steps estimation procedure that starts by the spectral estimator.
This latter has rate of convergence of the order of N=/(25%3) and seems to be
a good candidate to initialize an iterative scheme that will converge towards ga;.
Hence we compute gps for each M =1,..., N as follows

e First compute the spectral estimator. This is straightforward using the
procedure described by [Step1-9], Section 2.4. In particular, the spectral
estimator gives an estimation Q,fr of the transition matrix and its sta-
tionary distribution which is used to compute the least squares contrast
function.

e Use the spectral estimator of the emission densities as a starting point
for “Covariance Matrix Adaptation Evolution Strategy” (CMA-ES), see
[HanO06]. This iterative algorithm may ultimately find a local/global mini-
mum of the contrast function.
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Our numerical experiments follow this path.

Variance

0021~ —+— Spectral method
—o— Empirical Contrast method
1 ! 1 1 1 1 !

12 14 16 18 20 22 24 26 28

FiGURE 1. Comparison of the variances of the spectral and the
least squares estimators.

A first numerical experiment, depicted in Figure 1, compares, for each M, the
variances (i.e. the ¢o-distance between the estimator and the orthogonal projection
onto the subspace generated by the basis ®,;) obtained by the spectral method and
the empirical least squares method over 100 iterations on chains of length 40, 000.
It consolidates the idea that the least square method significantly improves the
{o-distance to the best approximation of the emission laws. Indeed, even for small
values of M, one may see that the variance is divided by two in Figure 1.

Emission law 1 Emission law 2

""" True density
,,,,,,, - — ~ L2 projection

—<— Spectral method

~——— Empirical Contrast method

FIGURE 2. Estimators of the emissions densities.

Interestingly, we are able to proceed the slope heuristic procedure in the non-
parametric HMM’s frame. This compelling data-driven procedure allows us to
tune the penalty appearing in our estimator. More precisely, typical behaviors
of the function M — ~(gn) and the function p — argmin{~y(ga) + ppen(M)}
usher the experimenter to the right tuning parameter, an interested reader may
consult [BMM12]. Note that the size M of the projection space for the spectral
estimator has been set as the one chosen by the slope heuristic for the least squares
estimators. One can see on Figure 2 that our method also qualitatively improve
upon the spectral method.
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5. DISCUSSION

We have proposed two procedures to estimate the law of a hidden Markov chain.
The spectral method has the advantage of being based on simple matrix computa-
tions and it provides an estimator of the dynamics of the hidden chain. As for it,
the penalized least-squares method allows to obtain quasi-optimal estimates of the
emission laws. The result is stated only for K = 2 but we can conjecture that it
can be generalized to any K. Indeed, the limitation comes only from Lemma 2 and
seems purely technical.

Another interesting extension of our work would be to consider emission laws
fi with different smothnesses s, and to find a procedure which adapts to each
behaviour, i.e. which selects a different approximation level M for each hidden
state k.

6. PROOFS

6.1. Proof of Proposition 2. The proof is written for any fixed K, not only for
K = 2. Throughout the proof N is fixed, and we write 7 (instead of vx) for the
contrast function.

6.1.1. Beginning of the proof: algebraic manipulations.
Let us fix some M and some permutation 7. Using the definitions of gy, and M,
we can write

N - N £
Ydgy) + pen(M, N) < v(gnr) + pen(M, N) < v(¢%5=1) 4 pen(M, N)

where f;\},r*l = (fz*w,rl(l)v e f;\},rl(K)) (here we use that f;\},rl c FX). But

we can compute for all functions 1, s,
Y(t) = (t2) = It — g3~ [tz — g*[I3-20(ts — t2),
where v is the centered empirical process
u(t) = 1 zth(Yw) v vy — /tg*
N & IEEECIEE £ :
This gives
(1) 1g1—9"13< llg®5er=t — g [3+20(3, — ¥ 51+ pen(M, N) — pen(M, N)

Now, we denote Ry, = ||g;; — g*[|3 the squared risk and By = [|gQ"fir — ¢*||3 a
biais term. We also set Sy = UQS(Q, M) and

{ v(t = g7)| }

Z =
M e T = g 13+a2,

teSM

for xps to be determined later. Notice that gQ’fftffl = gPTQPI’fI*W. Then

A,f* _ A7f* _ * ok * px
lg® =t —g*5 < 2)g Pl — g Q| 340)|g R — g3
AP T f* * px
< 2 gt @i — gQVA 3428y,
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But, using Schwarz inequality, ||g@*fir — gQ2fir||2 can be bounded by

M K
> Y (mk)Qulkr, k2)Qu(ke, ks) — ma(ki)Qa(kn, k2)Qa(k, ks))
my,mz,ma3=1 |kqi,ko,ks=1
(s )l ma ) Fly s

K
< Z (1 (k1) Qu (k1 k2)Qu (K2, k) — ma (k1) Qa(kr, k2) Qo (ka, ks))? C3 ,C% ,CF
kr K k=1
<30% 5 (Im — mll3+2(1Q1 — Q21%)

so that
A £* . ~
lg st — g3 < 6C%, (IPo# — 7 |3+2|P-QPT - Q*|}) + 2B

Next
Q’fztf,r*l) _ V(gM 79*) + I/(g* —gQ’fJ:Lr*I)

N Q.fF
Zylgg — g 13+22%) + Zur(lg® B — g*[3+a3))

V(gM -9

IN

so that (11) becomes
Ry < 6C%, (”PTﬁ' —m*[3+2(|P,QP] — Q*H%) + 2By +2Z 5 (R, + xfw)
+2201(60% 5 (1B — n*3+21B, QBT — QI3 +2Bar + 23))

+2pen(M, N) — pen(M, N) —pen(M,N),
(2 + 4Z]V[>BIV[ + QPGD(M, N)

H(1+220)6C%, (|IB-7 - = [3+2]B-QP] — Q°[17)
+2sup(2Zyp a3, — pen(M’,N)).
M’

Ry (1-2Zpy)

IN

To conclude it is then sufficient to establish the bounds, with probability greater
than 1 — (e — 1)~ te™%, it holds
1
sup Zyp <~ and  sup(2Zyp a3, — pen(M',N)) < AZ ,
M 4 M N
with A a constant depending only on Q* and f* and not on N, M, z. Thus we will
have, for any M,

1
SRy < 3Bu+2pen(M.N) + 2A%

+9C% 5 (P, 7 — 7 3+2]P, QP] - Q*[[})
which is the announced result.

The heart of the proof is then the study of Z5;. We introduce uy; the projection
of g* on Sy and we split Zys in two terms: Zyr < 4Zpq + Zy 2 with

lv(t — unm)|
Zp,1 = sup [
teSm ||t - uM||%+4z?\J
S = g)]
M2

lunr — g*[13+27,
Indeed uy,, verifies: for all t € Sy,

luar = g*[2< ([t = g"[lo and [Juar — tlla< 2]t = g*[|2-
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6.1.2. Deviation inequality for Zy ».
Bernstein inequality for HMM (31) gives, with probability larger than 1 — e~

z.

lv(uar — g7 §2\/QC*IIUMQ 121> ||oo +2v2¢" unr — g ||oo

—Zz.

Then, using a® + b? > 2ab, with probability larger than 1 — e

v (unm — g%)| " < untllcotllg*lloo 2
P < 220 gy o 2V

lune — g*ll5+2%, Lhr

But any function ¢ in Sy, can be written

K

t= Y w(k)QUk1, k2)Qka, ks) fry @ fry ® fiy »

k1,k2,k3=1
with fi, € Ffork =1,..., K, so that sup,cg,, [[t]lc< C% .. Then, with probability

larger than 1 — e *M %

zM+z M+ 2
Zye < v/ 2% 9% oo +4v2 CJ-‘oo 2 :

x5 N

6.1.3. Deviation inequality for Zyr .
We shall first study the term sup,cp_[v(t — upr)| where

B, = {t € Su, ||t — unl[2< o}
Remark that, for all t € S(Q, M),

K K
< > m2(k)Q2 (k1 k2)Q3(ka ks) Y C%,C%,C%, < K*CS,
k1,ko,k3=1 k1,k2,k3=1

Then, if t € By, ||t — upll2< 0 A 2K3/QC%2. Notice also that for all t € Sy,
[t —unrlloo< 2C% . Now Proposition 10 (applied to a countable dense set in B,)

gives
b + = lo ! + 207 o lo !
N T\ N e\ pa) N %\ P

E=VN /0 VH @) A Ndu + (2C% ., +2K%2C3 ,)H(o).

We shall compute this term later and find o,s and ¢ such that

EA(sup u(t — uar))) < C°

)

and

(12) Vo>ou  E<(1+20%  +2K%2C% ,)p(0)VN.

(see Section 6.1.4). We then use Lemma 4.23 in [Mas07] to write (for zas > o)

1

EA (sup { vt = ua)| }) <9

tesw LIt —unl3+4a3, ) — a3,
Finally, Lemma 2.4 in [Mas07] ensures that, with probability 1 — e™*™ ~#:
(13)

pQRov) o 2tz oo zutz
;@M\/ﬁ z2, N T g2 N

C—F=

Zy,1 = sup
teSn

Lt [v(t — uar)| } <t

— upr||3+4x3,

2x l
C —|— T og P (P

(4)

)
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6.1.4. Computation of the entropy and function ¢.

The definition of H given in Proposition 10 shows that H(d) is bounded by the
classical bracketing entropy for L distance at point 6/C% _ (where C% _ bounds
the sup norm of ¢g*): H(J) < H((S/C%OO,SM,LQ). We denote by N(u,S,L?) =
eH(wSL*) the minimal number of L2-balls of radius u to cover S. Now, observe
that Sy = UQS(Q, M) is a set of mixture of parametric functions. Denoting
k = (k1, ko, k3), Sas is included in

Z M(k)fk1®fk2®fk37 /’Lzov Z :u‘(k)::lv kaJ:ﬁSpan(@la-“a(PM)

ke{l,...,K}3 ke{l,...,.K}3
Set
-Ak - {fk1®sz®fksafkiefmspa'n((pla"'v(pM)}
M
= {t('a a7k> = Z Amy kg Amoks Gmsks Pmy © Pmy @ Pmy, Zamki@m € ‘F}
mi,mz,mz=1 m

such that Sy is included in the mixture of Ay, k € {1,..., K}3. Following the
proof in Appendix A of [BT13], we can prove

c K3—-1 -
2y (2L £ 2)
N(5,SM7L)_<E) || N(S,Ak,L)
ke{l,...,K}3

where C; depends on K and C'x 5. Notice that if (., a, k) € Ay, the vector a € RME

verifies "M > = ||f&,[I3< C% 5. Moreover, for t(.,a,k) and #(.,b,k) € Ax
M
Ht('va’ak) 7t('ab7 k)H% - Z |am1k1am2k2am3k3 - bmlklbm2k2bm3k3|2
mi,ma,m3=1
M
< Z |am1k1 Amaks (a’mzks - bmskz)

mi,mg,m3=1

Fm,ky (a’ﬂukz - bm2k2)a’m3k3 + (a”ﬂh ki — bmlkl )bm2k2 bmsks |2
< 303‘,2”‘1 - b”?MK

Thus, Ay is a parametric family where the L2-distance is controlled by the ¢,
distance in RM% . Then combinatorial computations give

MK
2CF 2/ K)

u, Ay, L?
M, A L) < (a/MOH

We deduce

) ﬁ K?—1 20]:2\/—K e
N(u, Sy, L )§< ) 1;[<u/ 3\/_0%2)> ,

and then

1/2
H(u, Sar,12) < (K2 — 1) log(Ch /u) + MK log <C2L> 7
u
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with Cy depending on K and Cr>. To conclude we use that foa +/log (%)dw <
o(v/7+ /log (1)) (see [MMOS|). Finally we can write

/Oa VH(u)du < Csv/'Mo (1 + 4 /log (M;/2)> ,

where C'3 depends on K, Cr o and Cr . Set

o(z) = CsvV Mz (1 + 4/log <M;/2>>

The function ¢ is increasing, and ¢(x)/x is decreasing. Moreover (o) > foa v H(u)du
and ¢?(o) > 02H (o).

6.1.5. End of the proof, choice of parameters.
We define o), as the solution of equation ¢(x) = VNz2. Then, for all o > oy,
oV'N.

Ho) < 20 L #0)

This yields, for all o > oy,
E<(1+420%  +2K%2C% )p(0)VN,

which was required in (12).
Moreover “Q(Q—T/Mﬁ) < 20y as soon as xp; > op. Combining (13) and (12), we
X M

obtain, with probability 1 — e™*M~%:

o M+ 2 M+ 2
e
XM ‘TMN .TI\/[N

where C** depends on K, Cr 5, CF o, Q*. Now let us choose zpy = 071y /02, + ZMT"’Z

with 6 such that 20 + 6% < (C**)~!/4. This choice entails: x3; > 67 lop and
x3, > 672242 Then with probability 1 — e™#M =%

ZM S C**

)

Zy <O (0 +60+06%).

We now choose zpy = M which implies > ,,~, e = (e — 1)~!. Then, with
probability 1 — (e — 1)~te™?

VM Zy < C(20+6%) <

)

M+ 2 M+ 2
OMTM + T/ MN + MN

2
Ccr o (oM byt Z) yomMTE

I

and for all M,

ZM-T?\/[ S C**

IN

N N

Then, with probability 1 — (e — 1)"te™*, for all M,

M
Zuzhy — C* <2910}2\4 +(2071 + 1)W> <O (207 + 1)% .
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Then the result is proved as soon as pen(M, N) > 2C** (20103, 4+ (20~ + 1)),

Recall that oy is defined as the solution of equation 2C3v Mz (1+ 4 /log (Ml/Z)
4+/N22. Then we obtain that

M
om = Cuy N(l + V/log(M)),
and pen(M, N) > p*%(M). Notice that the dependence on Q* in p* arises from
Propositions 9 and 10, so that it vanishes in Scenario A.
6.2. Proof of Lemma 2. Let h = (hy,h2) € (L?(Y, £P))? and let
_(1-p p )
Q= ( g 1—gq

be a 2 x 2 transition matrix. The fact that Q € V implies that

(14) 0<p<l, 0<gqg<l1l, and p#1—gq.
Denote N(Q,h) = ||g@f +P — ¢QF||2. What we want to prove is that
N(Q,h
ci=c(K,V,5)? = inf & > 0.

= m
QeV,hek?,||h[q#0 ||h|\?g

Let (Qn,h,), be a sequence in V x K such that ¢ = lim,, % Let (Q, fl) be
"HQn

a limit point of the sequence in the compact set V x K. Then one has (considering
the cases Q(1,2) # Q(2,1) and Q(1,2) = Q(2,1)) that
. > T -
tim g, > Bl

Thus if Hfl”Q# 0, then using Lemma 1
N(Q,h
Jim by (g,
If ||f1|\Q: 0, we shall consider separately the situation where Q(1,2) # Q(2,1) and
the situation where Q(l, 2) = Q(Q, 1).

Let us first consider the situation where Q(1,2) # Q(2,1). In this situation,
[hilg= [/h[[2. Direct computation shows that N(Q,h) is polynomial in the vari-
ables p, q, (f, f7), (hi, f), (hi, hj) without linear part. Let D(Q,h) denote the
quadratic part with respect to the variable h. One gets

N(Q,h) = D(Q,h) + O (||h3)

where the O() depends only on f*. Let us first notice that D(-,-) is always non
negative. Indeed, since for all Q € V and all h € (L2(), £P))? one has N(Q, h) > 0,

it holds s N
vQ eV, h e (L2, L)), % +O(|nl) > 0,
2

so that, since for all A € R, D(Q, A\h) = A\>D(Q, h),
(15) YQ eV, Vh e (L2(),£"))?, D(Q,h) > 0.
Then we obtain in the case (a) where HBHQ: 0 and Q(1,2) # Q(2,1) that

) h,
¢=lim D(Qu ).

Indeed in this case for large enough n, Q,,(1,2) # Q. (2, 1) so that ||hy||q, = ||hnll2-

We shall now study the function D(Q, a) for a = (ay, az) of form ﬁ with h € K2
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Let u = (u1,u2) be such that w;, i = 1,2, is the orthogonal projection of a; on the
subspace of L?(Y, LP) orthogonal to f; and fi. Direct computation gives that

D(Q,a) = T(Q,u) +D(Q,af u)

where for any Q and u,

T(Q,u) Z {{Q" Aw);, (Q" Aw),) (7, £7)((QF):, (QF);)
7,7=1
H(QTAE"), (QTAF) ) (us, us) (QF)i, (QFF);)
H(QTAL)i, (QTAF),)(f7, f7){(Qu)s, (Qu)j) } -
Here, A = ®iag[n] with 7 the stationary distribution of Q. But when Q and A are
full rank, and §* is linearly independent, the matrices

(), (((QTAF), (QTAF"))), . and  (((QF):, (QF);)), ; -
are positive definite.

Remark — We shall now use the fact that if B and C are symmetric positive
definite K x K matrices, then the K x K matriz I/ given by E;; = B;;C; ;,
1,7 = 1,..., K is positive definite. Indeed, let Uy,..., Uk be the eigenvectors
of B with corresponding eigenvalues A1 (B) > -+ > Ag(B) > 0, so that B =
Zle A (B)U,UL. Let also \1(C) > -+ > Ak (C) > 0 be the eigenvalues of C. Let
now x € RX. Then

K K K
2T Ex = Z 2;B; ;C; joj = Z)\T(B) Z z;(Uy)i(Ur);Ci
=1 r=1 ij=1
K
2 ( pin Ar(©)( pin, Mr(B)) 33 _(wi(U))?

Thus, if R, V, W are the matrices given by, for all 7,7 = 1,2,

QTAf* )i QAR (U ),
I, QE):, (QF);)), 5

QTAf* Z,QTAf*)'>)- ; ({(QF7):, (QF);)),

((
and if we denote A(Q) the minimum of their eigenvalues, then A(Q) > 0 and we
have for any u € (L2(Y, LP))?,

T(Quu) = / ((QT Aw)” (,)V(QT Au)(y) + u” ()W u(y) + (Qu)T (45 R(Qu)(y)) d(L”)* (1)

> [ Q) (197 Au(w) P+ )+ IQuw) ) de”)7 )
— A(Q) (17 Awy B 1(QT Aujal3+us 3+ s+ 1 Qu)s [+ (Qua )

Moreover, we have

R;
Vi
Wi

(C
(CfF
(
Q

lim A(Qn) =A(Q) >0

n—roo

Let a,, =

the subspace of L2(), £P) orthogonal to f} and f§. We get ¢ > A(Q) lim inf,, _o0|[t, |2
so that in case liminf,, o ||u,||2> 0, we get ¢ > 0.
Else, using the subsequence for which liminf,, ,||u,||2= 0 we have

¢ > liminf D (Q,,a, —u,).
n—oo

”ﬁ‘ﬁ, u,, the orthogonal projection (coordinate by coordinate) of a, on
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But (a, — u,), is a sequence with coordinates in the finite dimensional space
spanned by fi and fJ, so that it has a limit point a = (a1,a2), and ¢ > D(Q,a).
Since on the subsequence lim,,_,  ||u,[[2= 0, we get [ a1dLP =0 and [ a2dCP =0,
so that there exist real numbers « and 8 such that a1 = a(f7 — f3) and as = B(f7 —
f3). Now brute force computation gives D(Q,a) = D1 1a? + 2D 2 + Do 23
with, denoting p = Q(1,2) and ¢ = Q(2,1):

qQ(ffq)2 —2(1— plf7 — BIPIFIPI = ) f + 0PI - D)5+ pEISE — £
T+ ap(L—p) (L= p)fE +pffafi + (L= IS U FDIE — £
22067 — IR P agt + (1 — )5
21— p)? (L= D)t +f5 ff — BRI
+2p (af + (L= ) f3, £ — BN IF3 1P
T ap(L—p)afi + (1= @) f3, f7 — BN = D) +pF5 = 05 1)
A= p) (U= PV L+ pI5 IF — FVUE S — I = D)5 + prg I
+4p((L = p) ff +of3, 1 = ), fr = (A =p)ff +of3,aff +(1—aq)fs),
p?(lpij)z —221f — BIPIFIPIC = )ff +pEIP+Hlaf + (= @147 — £1P
40 - Qq (U= PVt +pf5 aft + (= @) U NS — 1P
21— 27— BIPIEIPlaft + (1 - 9 S22
L2 (L= p) i} +pff £f — BRI
+2(1— g ((aff + (A= ) f5. £ = £5))° |1 fall?
(= q)aft + (1= )5 £ — BN = D)5+ pF5 £ — I U £5)
Faglafi + (= Q) f5 ff — B S — BN = D)+ ol afi + (1 — @) f2)
A= Qaft+ (1= Q)5 F— I 1 — Dl + (1 — ) f )12
and:
m —2(1 — pall f7 — BIPIIPIC - p)ff + o212

+2[pg+ (1 —p)(1 — Q) (A = p)fT +pf5,aft + A=) f3)) (5 O = f511°
+({(L=p)ff +pf3.aft + A= f3)°I1fF = 151

+2p(1 = )llff = 1P NafT + (=) f5 1P

+2q(1—p) (L= p)fF +pf3 F5 = BN

+2p(1—q) ((aff + (L= ) f3, f5 = £ 1311

+2pq(aft + L= ) f3, fT = SN —p)fT +pf3 fr — U5 [

+2(1=p)(1 = @)afif + (XL —a)f3. fr — 50 = p) fT +pf5, 1 = )T f3)

+ (L =p)f +pfs, [T = B = I =)+ pf3II°

+2(1 =p)afi + (A=) fs, f1 = U5 = A =p)ff +pfsaff + (1 —a)f3)
+2(1 = g){((1 =p)fi +ofs, f1 — ) s, i = A =p) i +pfs,aff +(1—a)f3)
+2p(afT + (L= Q) f3, [T = )3, 1 — I)llafi + A=) f3]1%.

Since we already know that the quadratic form is non negative, it only remains to
prove that the determinant of the matrix defining the quadratic form is positive,
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that is to prove that:

Di1Ds o — Dig
P’¢*(p+q)?
whenever f} and f are distinct probability densities, and (14) holds. We shall now

write DET (f7, f3,p, q) using

DET (f{, f3.p,q) :=

)

UL
5l 2112
for which the range is [1,00[?>%[0,1[. Doing so, we obtain a polynomial P; in the
variables n1, no, a, p and q.
First observe that, by symmetry,

DET (f, f3,p.q) = DET (f3, f{,a,p) -
so that it is sufficient to prove that the polynomial P; is positive on the domain
(16) 1 S no S ny,

and0<a<land 0<p#qg<1.
Furthermore, consider the change of variable

g=1-p+d

n1 = || f{ll2, n2 = [ f5]l2, a

then we have a polynomial P, in the variables ni, ns, a, p and d which factorizes
with
p?(1 — a?®)d*n1?n22%(1 + d — p)?
(1+d)* '
Dividing by this factor, one gets a polynomial P3 which is homogeneous of degree
8 in ny and ng, so that one may set n; = 1 and keep b = ny €]0,1] (observe that
we have used (16) to reduce the problem to the domain ny/ny < 1) and obtain a
polynomial P, in the variables b, a, p and d. It remains to prove that Pj is positive
on Dy ={b€]0,1],a € [0,1],p €]0,1[,d €]p — 1,0[U]0, p[}.
Consider now the following change of variables
2 2 2
O At R PR ) it S
1422 1492 1422 (T+2)(1+22)
mapping (z,y, 2,t) € R* onto (b,a,p,d) € D5 = {b €]0,1],a € [0,1[,p € [0,1],d €
lp — 1,p[} which contains D4. This change of variables maps P, onto a rational
fraction with positive denominator, namely
(14 2)1 1+ 92 1+ )11+ )

So it remains to prove that its numerator Ps, which is polynomial, is positive on
R*. An expression of P5 can be found in Appendix D.
Observe that Ps is polynomial in x2, 42, 22 and t? and there are only three monomi-
als with negative coefficients. These monomials can be expressed as sum of squares
using others monomials, namely:

o 18222 + 27212 4 19792'2t* = 18212 + 9(2 — 25¢2)2 + 197021244,

o 1082192 +197021 24 +4952% = 43928 +56(z* —2512)2 + 19142124 + 442210,

o and —1142%¢2 + 9722* + 1914212t* = 9152 + 57(2? — 25¢2)2 4 1857212t
Thus Ps5 is equal to 144 more a sum of squares, hence it is positive. This proves
that DET is positive.

There remains to consider the case (b) where ||f1HQ: 0 and Q(1,2) = Q(2,1).
But from the sequence (Q,,, h;,), one may extract a subsequence in which (Q,,,,, h,)
such that always ||h,,, |lq,, = [[hn,,[|2, in which case we may argue as for case (a),
or always |[hy,,[|qQ,,. = |[(hn,, )1+ ff = f3ll2+||(hy,, )2+ f5 — f]l2. In this last case,
exchanging the states in the transition matrix one is back to case (a).
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6.3. Proof of Theorem 3. Let us introduce some notation for latter use. Define
the pseudo spectral gap Gps of the Markov chain (X,,),>1 as:

@iag[w*]-l(Q*U’C@iag[w*]@’“)}
k b

G
Gps = r,glgf{

where G is the spectral gap of an L2?(r*)-self-adjoint operator A (with spectral
radius 1):

G(4) = 1 —max{\ : X eigenvalue of A, A # 1} if eigenvalue 1 has multiplicity 1,
"o otherwise.

Remark — If Q* is irreducible then Diag[r*]~'Q* ' Diag[r*]Q* is irreducible
and Gps > 0.

Remark — If (X,,)n>1 is reversible then Q* is an L?(m*)-self-adjoint opera-
tor (i.e. Diag[r*|Q* = Q* Diag[r*]) and its pseudo spectral gap enjoys Gps =
Q)2 - G(QY) > 0.

Define the mixing time Tyix of the Markov chain (X,,),>1 as:

1+2log2 —logmy;,
Gps

Tmix =

This mixing time has a deeper interpretation in terms of convergence toward the
stationary distribution in total variation norm. An interested reader may read

[Paul4].
For any ¢ € (0,1) set:

C.(Q%,6) = 0.71(1 + /—logd) (Scenario A),
Tl V24 20/ 2T i logd)  (Scenario B).

which is a constant that depends only on Q* and J.
Let us also define (recalling the definition of 73 (®x/))

M

R (Do) = sup > (@aly) = 0a¥))?,

M

M (@) = sup > (alyr)en(y2) — a(¥h)en(yh)?
yy'ey? a,b=1

M

and  75(Par) == s D (Pay)en(y2)ee(ys) — wa(y))on(ys) e (v5)) -
y.y'€ a,b,c=1

Remark — Note that in the examples (Spline), (Trig.) and (Wav.) we have:
(17) Vke{1,2,3} m <C,M?,
where C,, > 0 is a constant.

Remark — For any orthonormal family (®yr), it holds:
(18) Mny < VMns <.

Indeed, observe that ||, ¢2||ec> Y. l¢cll3= M and for any e > 0, there exists
y €Y such that ., ©2(y) > M —e. Set ys = y4 =y to show that vV Mny < 3.

Theorem 3 follows from the following more precise result.
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Theorem 4 — Assume [H1]-[H4]. Let § € (0,1) then, with probability greater
than 1 — 69, there exists a permutation T € Sk such that the spectral method esti-
mators fak, ™ and Q (see Section 2.4 for a definition) enjoy for any M > Mz,

(19)
R [0
YN > NU(QHF B 0) Yk € X, |fie—Farrll2s cwf(Q*,s*,(s)c*(Q*,a)LmM) ,

(20)

. [
YN > Na(Q', 5 0ar,8), [|QF — B, QBT [[< Dar(Q, 5, 0). (Q*, )L E)

3

2

13 ((I)M)

(21) VN = N3(Q*, 3", ®n,0), 7" — Prifl2< Em(Q”, §7,6)C(Q", 6)

)

2

where P is the permutation matriz associated to T, and:

41K

Nl(Q*,S*,(I)M,(S) = 302 CM(Q*vg*v5)26*(Q*76)2773((I)M)27
K3
4
N2 (Q", %, s, 0) := W*TDM(Q*,%*,(S)Q C(Q,0)°n3(Par)?,
4
N3(Q*, ", P, 6) := mDM(Q*,%*,5)2C*(Q*75)2773(‘1)M)27
2 .
with notation:
6 *
2(05VK3 K2, ]3 6(Q*\K5 3+ maXkaHQ K2 .
Cr(Q*, 5, 9) ;[13 f(Q ) i f(Q ) e (1+ (2log —)%)
WminaK(Q* )O-K,&'* 0 WminUK(Q* ) UK,S* d
* 1 ) max | f7|2
X{lJr . 2||9||2 ! }Jr _kex _
7-‘-mino-K,{s"*O-K(CQ* ) VM v MUK,&'*WminUK(Q* )
* ek 2 . % . 3\/§o' 3+
Di(Q"§"0) =5 — [AVECw (Q,F",6) maagl fi 2 + S
* 8||f*y1 Ys ”2
DM(Q ag 55) ::ﬁ
K, §* min
B .
X DM(Q*,C€*,5)+4v3K7TEnnCM(Q*7$*75)+$./],
|: ”f(*yhys)HQ M
16| fiy, vy ll2
En(Q"F,0) = e

o (Aq- )U%(,g* ™ i

X |:D§\/I(Q*7 S’*a 6) +4v 3K7T;1incf\/f(Q*7 175’*7 6) +

5%

”f(*yl,ya)HQ Vv M:| 7

where kg is given in Lemma 3 and 0% (Aq-+) is the k-th largest singular value of

_ *\ T
(IdK ]1$Q ) ) which is positive.
K

To prove Theorem 4, we shall use the analysis of Anandkumar, Hsu and Kakade
in [AHK12] to control the ¢-error of the estimation using the spectral method
described in Section 2.4. To use their result in the non-parametric HMMs frame,
it is essential to state explicitly how all constants depend on the dimension M.
We thus recast and optimize Anandkumar, Hsu and Kakade’s argument. This is
exactly what is performed below and proved in Appendix C.
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Theorem 5 — Let 0 < § < 1. If it holds 3|Pyr — Pas||< ok (Par) and

(22)
5 x2(Q*0})) ~ Mz o2l Par — Pasll
82K2(K —1 M My — Muslloo.2+ o0, <1,
( )57(0M)0K(PM) [H M M lloc.2 ox(Par) }
(23)
1(Q*0;)) ~ Mz o2l Par — Pasll
134K (K — 1) (QOn My — Mo lloo o+ o0, <1,
( )57(0M)0K(PM) [H M M lloc.2 ox(Par) } =
M
where (O ) = kIg&HOM(-vkl)*OM(-,k2)|\2 and || Al|oo,2:= Hgﬁaflﬂz v A(., b, . )]
2T =1

for all A € RM>MxM

then, with probability greater than 1 — 26, the matriz UTP,U is invertible, the
random matriz C(l) is diagonalisable (see Section 2.4), and there exists a permu-
tation T € Sk such that for allk € X, |Opr(., k) —Ons (., 7(k))||2 is upper bounded
by:

1 /»;Q(Q*OT ) 1 n"’(Q*OT )NOarll2
13K2 —=~ M) 4 116K5(1 + (2log(K?/6))2 M 120
[ ok (Par) (14 (2log(K7/0))*) 5v(On)ok (Par)
- IMaslloo2Par — Pasll [Par — Pl
X | IMar — M| so,2+ . +2 (0] o
[H M Mlloo,2 o (Par) } o (Par) 102,

where || Al|2,00:= Igl&))((HA(. JK)||l2 for all A € RM*E,
€

Let us now prove Theorem 4.

6.3.1. Preliminary lemmas.
Lemma 3 — There exists a constant kg« that depends only on §* such that:
VM > Mg+, kK(Opn) < Kge,
where Mg« is given by [H4]. It holds:
VM > Mz, r(Q*0},)) < rz-r(Q¥).

Proof. Note that O O, is non-singular. From (1) and (2) we deduce that O},0
tends to O] O, as M grows. This proves the first point.

Recall that o;(AB) < 01(A)oi(B) for i = 1,..., K. Take A = Q* "' and B
Q*OL to get that ok (Q*)or(On) < O‘K(Q*O;[). It follows that H(Q*O;[)
k(Q*)k(Oys). The second claim follows from the first claim.

CIA I

Lemma 4 — It holds:
VM = Mg, (On) = min [On(- k) = Oui(e k2)ll2= V20rcge

and:
p— < *
10 |2,00: gleagl\OM(-,k)llz_gleagl\fkl\z-

Proof. Observe that ||Opo|2> ox(Oar)||v]l2. With an appropriate choice of v
and [H4] we prove the first point. Since @), is an orthonormal family, it yields
10 (., k)||2< || f#]l2- This proves the second claim. O

Lemma 5 — It holds:

M
[Mar]foo,2:= ”gll‘aXIHZUbMIV[(-,b, < Mg™ 2
270 =1
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Proof. From [H4b] one can check that g* € L?()?, £D®3). Denote (., . )y2(ys goes)

the inner product of L2()3, £2%%). Check that Gabe(Y1,Y2,Y3) = ©a(y1)n(y2)pe(ys)
is an orthonormal family of L?()3, £D®3). Hence:

M |[o,2 = e ||ZUbMM = e Z|Ub||\MM I

< (S ) < (ZIIMM(-,@-)II%)%,

M M

W=
N[

= (Y Eea)en(V2)ee))?) " = (30 (0% Pandiagys coon))
a,b,c=1 a,b,c=1
< llg*ll=-
using Cauchy-Schwarz inequality O

Lemma 6 — It holds:
[Mas — Mas]loo2< [|[Mar — M| -

Proof. One has:

M
IMar — Mooz = e ||va (M —Mu)(.,b,. )< e Z|Ub||\ (Ma = Ma)(-, b, )l
1 M 1
< (ZH(MM =M (b)) < (DI = M bl)
b=1 b=1
= My — My||F-
using Cauchy-Schwarz inequality O

Lemma 7 — It holds o (Parr) > Tminoa (On)ok (Q?). Invoke [H4] to get
that:

VM > Mz, ox(Pu) > 0% 5o Thinox (Q) .

Proof. From Lemma 14 and [H3], it holds:

O’K(P]M) OK U PMU)
o ((UTO)Diaglr*]Q"*(UT0x) )

(
(
xk(UT Oy )ok (Diag[r*]Q**(UTOy)T)
(
(

IV
)

\
)

K (Or)ok (Diaglr*]Q*(UT Ou) ")
o (Diag[r*])ar (On)ox (U On) ok (Q*?)

Thin0k (O1)ox (Q),

Y

as claimed. O
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6.3.2. First step: Estimation of the emission laws using a spectral method. Appen-
dix B shows that:

P[IEar - Ll 2 €.(@",0) 28] <6
PNt~ Ml 2 €@, 02020 <5,
[N - Nurllr 2 €@ 9 2 22)] <5,
P10 — Puslr > a(@&)”ﬁf}ﬂ <5

Using the preliminary lemmas of Section 6.3.1 and (18), deduce that (22) and
(23) along with 3||Py — Py||< ok (Par) are satisfied when M > Mz« and N >
No(Q*,§*, ®ar, ) where:

942 K3(QYK'0 K. (1 llg*[l2 1
e

NO(Q ag ,q)l\/[,(S) = ?77’*2 ] U%((Q*Q) 0.?(3* * U%(S*UK(Q*Q) "M

Using Theorem 5, one can check that, with probability greater than 1 — 66, there
exists a permutation 7 satisfying for any M > Mz., N > No(Q*,F*, Pas,0) and
ke X,

) C.(@t 0@

10a:(., k) — Onr(-, 7(B))||l2< Car(Q*, §*, 6)C. (Q, ‘DM\/%[) '

This proves the first part of Theorem 4.

6.3.3. Second step: Preliminary estimation of the stationary density using a spectral
method. For sake of readability, assume that 7 is the identity permutation. Observe
that:

Nl(Q*7 %’*7 (I)M7 5) Z NO(Q*7 1?5'*7 (I)Ma 6) .
Recall 7 := (ﬂTOM)_lﬂT]Z]M and 7 = (IAJ—TO]M)_lIAJTLM.
Lemma 8 — With probability greater than 1 — 65, if N > N1(Q*,§*, P, 9)
then it holds:

2 nl(q)M) \/Nl(Q*,S*;q)Ma(S)
\/50'[{13* \/N \/N_ \/Nl(Q*7S’*7(I)M76)

Proof. Set A= [AJTOM, A=UTO, and B = fJT(OM — (A)M). Compute:
IBII< |Oxm — OmI< [|On — Ol p< \/?m,f}XHOM(- k) = On (k)2

m(Pam)
VN

[7—7"]l2< [C.(Q",9) )l

(max| i 12+C.(Q", )

Hence it holds ||B||< VKCy(Q*, §*,0)C.(Q*,8)n3(®as)/v/N. Similarly, invoke
Claim (iii) of Lemma 16 to get that:

A7 Bl A7 1Bl o () Bl 2Rl Onler ) = Ourle Wl

\/§UK(OM)
So that: JE
-1 2VK * ok * 773((I)M)

Observe that the condition on N and M ensures that ||A~'B||< 1. Apply Theorem
7 to get that:

2 \/Nl(Q*aS’*v(I)Maé)
V3ok 3 VN — /N1(Q*, §*, s, 0)

(24)  (UTOx) ™" = (UTOMm) "<
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Furthermore, using (24) it holds:

17— ¥l = [[(OTOx) U Ly — (UTON) " UL

= ||( T M U L]u — (U OM)_IIAJ—T]ZJM + (IAJ—TO]M)_IIAJT:EJM — (IAJ—TOJM)_lfJ—TLMHQ

)
) 1
< ||(UT0M) L — (U OuM) M Lar o+ A7 Las — Ly |2

\/Nl(Q*a ‘S*a q)l\/fv 5)
\/_O'KS* \/N* \/Nl(Q*,S*,(I)M,(S)

Denote fy, = Zkl:l 7(k1)f, (y1) the density of Y. Observe that:

||LM L2+

(arlla+[Lar = Lngl2))

M 1 M 1
ILasllz = (Zl(moa(yl)f) - (Zl<f§1,saa>2) < 1312 < max| iz
The result follows. O

Deduce that

- - (0]
(25) ¥N 2 ANV(Q.F",Bar,0), [ —Pr o< Dy (Q7 57 0)C. (@, 8) B2
VN
with notation of Theorem 4.

6.3.4. Third step: Estimation of the transition matrix using a spectral method. De-
note Q := (IjTOMQiag[ﬁ])_1IAJTNMIAJ(OLIAJ)_1. Observe Q = TI7x(Q) and
Q* = II7p(Q*) and hence, by non-expansivity of the projection onto convex sets,
1Q — Q*[#< ||Q — Q*|| . Moreover, notice that:

NQ(Q*,%*,(I)M,(S) > 4N1(Q*73*7(I)M75) > NO(Q*,%*,(I)M,(S) .

Lemma 9 — With probability greater than 1 — 66, if N > Na(Q*,F*, Pas, d)
then it holds:

Q- Q< LYJH - *||2+aeM<Q*,s* 5)C *(Q*,é)%\(f;—f),
where:
Ev(Q.0) = fom* VRCH(Q D) v, It
Proof. Observe that (21) shows that |7 — n*||2< 7%,;,/2. Deduce that for any
keX:
(26) T > % >0.

Set V.= (UTO,) 'UT and V = (UTO,,)'UT. Note Q = Diag[7] 'VN, VT
and:
Q = Diag[r*] " 'VN,, V.
Set E=V —V and F = Nj; — Ny,. Using (24) it yields:
2 N, (Q*, 3, D, 0 8\/_ ) . P
I1E]< VRUQ 800 0) VK o 5 e (a5 02
\/30'}(73* \/N— \/Nl(Q*,S'*,(I)M,(S) 3 K&'* \/N

Invoke Claim (iii) of Lemma 16 to get that:

2

HV||< O 7 (UTO]\/[ .
K \/_O'K,Cf*



ESTIMATION OF NON-PARAMETRIC HIDDEN MARKOV MODELS 31

Furthermore, ¢4 «(Y1,y3) := ¢a(y1)@c(ys) is an orthonormal family of L?())?, £D®2)
and it holds:
M 1 M 1
INlle= (D2 Eea¥)ee(¥2)?)" = (3 (v vays Paciagmcoen)) < 1wl
a,c=1 a,c=1

Compute:

[VNy, VT = VN, V|| = |[VNy, VT —(V+E)(Ny +F)(V+E)T,

=||[VNyET +VEVT + VFET + ENy/ V' + ENyET + EFVT + EFET|,

<2 E[IIVIINyv+2 ENVIIIE NI EIZ N HIVIPEHIE]PF -

It yields:
[VNp VT _VNMVTllg?J?\/I_(CM(Q*,%*,5)C*(Q*a5)||f(Y1,Y3)H2 " C..(Q*,0) n3(Por)
3\/_0?(3* ||f{y1,Y3)H2 \/W
2\/_CM(Q* §%,6)C(Q*,0) n3(Par)
V30K g+ VN
V30K 5+ 1

4CM(Q* §* 5)”f(yl y3)||2\/_\/_
2VKCM (Q*, §*,0)C(Q*,0)2 n2(Par) ] m3(Par)
\/gaK,S*Hf(*YhYS)”? N\/M \/N

Note N > N»(Q*, 3%, ®ar,0) > 4AN1(Q*, §*, Ps, 6) = 16? Car(Q*,§%,0)? C.(Q*,0)%n3(Par).
It yields: ’

n3(Par)

(27) [VNy VT = VN, VT[< En(Q, §%,0)C.(QF, 0) = N

Observe that:
1Q* — Q| = || (Diag[r*] ! — Diag[#] ")VN V" + Diag[#] (VN V' — VN, V)|
|Diag[m*] " — Diag[#] |||V Nas||+ | Diag[#] ||| VNy VT = VN, V|

< 4||f(*Y1,Y3)||2 - n3(Pamr)

IN

ax(ny " — 7 +max v (QFF0)C.(Q, 0) Tt

301%(13* kex VN
SHf(*Y Y- 2 (Par)
< oY) T2 . " PG
B g Q0 QT
using (26) and (27). O

Combining (25) and Lemma 9 we prove the second point of Theorem 4.

6.3.5. Last step: Final estimation of the stationary distribution. From our model
hypothesis [H2], we know that the transition matrix Q* is irreducible and aperiodic.
Perron-Frobenius theorem shows that Q* has a unique stationary distribution 7*.
More precisely, it holds

e R.7* =ker(Idg — (Q*)") so that (R.7*)* = range(Idx — Q*),

o and (7%, 1k) =1,
where 1 = (1,...,1) € RE. We deduce 1 ¢ range(Idx — Q*) and

Rank (IdK _—(FQ*)T) =K.
Ig
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Set - -
A= (IdK_Q ) and A = (IdK_(Q*) > .

1y 1
We first derive an upper bound on ||[At — (A*)T|| where AT denotes the Moore-
Penrose pseudo-inverse of A. One has
(28) AT — (AN = (AT (A — A)AT — (AT (Idg — AAT).
The last term can be written as
(A7)F (I gy — AAT) = (A")F (A% (A7) ") (g1 — AAT),
= (A*)+Prange(A*)Prange(A)i )
where Pange(ar) = A*(A*)T denotes the orthogonal projection onto range(A*) and
Prange(ayr = Idg41 — AAT denotes the orthogonal projection onto the orthogonal
of range(A). Set s(Q*) = ox (A*), we have the following perturbation lemma.
Lemma 10 — If ||Q — Q*||< s(Q*)/2 then Rank(A) = Rank(A*) = K and
2)Q — Q|
P * P < )
|| range(A*) range(A)LH_ S(Q*)

Proof. The first point follows from Weyl’s inequality, see Theorem 6. Invoking
[Wed72], one has

HPrange(A*)lPrange(A) ||: HPrange(A)iPrange(A*) H .
Moreover, since projections P are orthogonal
(Prange(A)i range(A*))T = Prange(A*)Prange(A)i .
Using notation of [Wed72|, one may notice that
Hsin@(range(A), range(A*))H: HPrange(A*)lPrange(A) H .

Denote s(Q*) = ok (A*) and invoke Wedin’s theorem [Wed72| to get the following
result: If

S *
oxe(a) > 1Y)
then 24— 4|
sin f(range(A), range(A*))[|< 2——1
[[sin f(range(A), range(A”))|| o (A7)
We conclude using Weyl’s inequality, see Theorem 6. (]
Triangular inequality in (28) gives
2
AT — (AT < ||(A9)T —Q*|I(|AT+———
4 = (A < 1A IR - @l (14 5—)-
1Q —Q 3
<= _=2(||AT — (45T
<oy (A= @) I —s)

using that ||(4*)T||= 1/0k(A*). Deduce that if ||Q — Q*||< ok (A*)/2 then
ja* - (ary < 99
o (A*)
From Weyl’s inequality, if ||Q — Q*||< ok (A*)/2 then ok (A) > ox(A*)/2. As a
matter of fact, matrix Idx — Q" has rank K — 1 and the eigenspace ker(Idg — Q")
has dimension 1. Thus, Q is an irreducible and aperiodic transition matrix, and 7

is the unique solution to
Idg — QT 0
17 =11
K
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Now
I — 7 [l2< | AT — (A,
and the last part of Theorem 4 is proved.

APPENDIX A. MATRIX PERTURBATION

We gather in this section some useful results in matrix perturbation theory.
An interested reader can found the proofs of the following theorem in [SS90] for
instance.

Theorem 6 (Weyl’s inequality) — Let A, B be (p X q) matrices with p > q then
it holds:
Vi:lv"'aqv |O—’L(A+B)7O—’L(A)|SO—1(B)
Theorem 7 — Let A, B be (p x p) matrices. If A is invertible and |A=1B|< 1
then A :== A+ B is invertible and it holds:
IBIIA~?

-1 A1y« .
e e Ve

Theorem 8 (Bauer-Fike) — Let A, B be (p x p) matrices and A := A + B.
Suppose that A is diagonalizable, i.e. X 'AX = A, where A = Diag[(A1,...,)\)].
Then:

(29) sva(4) < s(X)|B],

where sva(A) := maxmin|\; — \;| and \; denotes the eigenvalues of A.
j i

Remark — Moreover, if the disks:
D :={¢ « |- N|< w(X)| B}
are isolated from the others, then (29) holds with the matching distance:
md(4, A) < w(X)|B],
where md(A, A) = Pégi mflx|5\7(i) —\i|. Bventually, if A, A are real valued matrices

then A has p distinct real eigenvalues.

APPENDIX B. CONCENTRATION INEQUALITIES

We first recall results that hold both for (Scenario A) (where we consider
N iid. samples (Y, ¥ ", V)N | of three consecutive observations) and for
(Scenario B) (where we consider consecutive observations of the same chain).

The following proposition is the classical Bernstein’s inequality for (Scenario
A) and is proved in [Paul3], Theorem 2.4, for (Scenario B).

Proposition 9 — Let t be a real valued and measurable bounded function on
V3. Let V. =E[t?(Z1)]. There exists a positive constant c* depending only on Q*
such that for all 0 < X < 1/(2v2¢*||t] ) -

_ 2NV
T 1= 22|t so A

(30) log E exp

N
A (#H(Z.) — Et(Zs))

so that for all x > 0,

(31) P (Z (t(Zs) —Bt(Z,)) > 2V2Nc*Va + 2\/§C*|t|ooz> <e®,

s=1
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We now state a deviation inequality, which comes from [Mas07] Theorem 6.8
and Corollary 6.9 for (Scenario A). For (Scenario B) the proof of the following
proposition follows mutatis mutandis from the proof of Theorem 6.8 (and then
Corollary 6.9) in [Mas07] the early first step being equation (30). Recall that when
t; and to are real valued functions, the bracket [t1,¢2] is the set of real valued
functions ¢ such that ¢1(-) < #(-) < ta(-). For any measurable set A such that
P(A) > 0, and any integrable random variable Z, denote E4[Z] = E[Z1 4]/P(A).

Proposition 10 — Let T be some countable class of real valued and measurable
functions on V3. Assume that there exists some positive numbers o and b such that
forallt € T, |[t]| o< b and E[t*(Z1)] < o
Assume furthermore that for any positive number §, there exists some finite set Bs
of brackets covering F such that for any bracket [t1,t2] € Bs, |[t1 — t2]|o< b and
E[(t; —t2)%(Z1)] < 62. Let ) denote the minimal cardinality of such a covering.
Then, there exists a positive constant C* depending only on Q* such that: for any

measurable set A,
E+ N1 ! + 0l !
TYEER@)) TR
and for all positive number x

<supz >>) <
(sup Z Z,)) > C*[E + oV Nz + bz]) < exp(—x)

S —
teT
where "
E= \/N/ VH(u) A Ndu+ (b+ o)H (o)
0
We now separate statements for the two different scenarios.

B.1. Independent samples. In this subsection we assume independent samples.
Consider N i.i.d. samples Z := (Yl(s), YQ(S), Y3(S)) of three consecutive observations.

Lemma 11 — [t holds, for any positive x, any M and any N :

N [}
P Ll > ";(Q_JNW’ (1+0)] < exp(=a?).
P{HMM*MMHFZ 1 1+z} < exp(—z7),
]P’{HN]\J*NMHFZU 1+:L'} <exp s
A 772
P[”PM_PMHFZ 1+x} < exp(—

Proof. Set:

|Las(Z1,Za, ..., ZN) — Lagll2,
M (Z1, Zs, ... Zn) — M|l e,
INw(Z1, Zoy ..., Zn) — Nl F
|Pr(Z1, Zoy .., ZN) — Purllr

Cuy(Z1,Zay ..., ZN
Sy (Z1, 2o, ..., ZN
Ny (21,29, ..., ZN
Cpy (Z1,Z9,...,ZN

where, for instance fJM(Zl, Z, ..., Zn) denotes the dependence of I;M inZy,Zs,...,ZN.
We begin with (m,,, other cases are similar. Form the difference with respect to
the coordinate i:

Ci = sup |§MM(’217"';Ziflvziazi+17"'7ZN)7§MM(’217"'7Zi*1727/;azi+17"'7ZN)|'
2;€Y3,2,€Y3
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Invoke the triangular inequality to get that:

¢ < sup |\MM(21,---,Ziflvzi,zwrl,---vZN)*MM(Zh---,Ziflvzl{,zwrlv---vZN)||F
z;€Y3,2[eY?

So that:

1 (4) (i) (3) (3) /() 1(4)
< i
asy o (Sl a)ed) e atew)r)

N[=

a,b,c

Eventually, we get that ¢; < n3(®a)/N. By McDiarmid’s inequality, one has:
N - 2N 2

VZL'>0, P(HMIV[*MMHFZ EHMM*MM”F‘HL') §exp(727).

3 (Par)

Futhermore, it holds:

1

BNy — Ma|[r < [B[Ma — Mul3]

W=

< [EX (5 S etren i) vi?) ~ Bou(r)a(a)ee ()]

a,b,c s=1

N

[ZEZ V)en (V5 )pe(¥5™) = Bpa (V) (Ya) e (¥a)))?]

a,b,c s=1

<[> ZE(%[%MS’)%(S@(S’>wc<Y3<5>> ~ Epu(V)es(V2)pe (1))

a,b,c s=1

N

1

< —= | 2 Blpa(¥)pn(¥a)ee(Ys) — Epa(Y)pu(Ya)pe (Y2))?]

a,b,c

)—‘%H

V2N {]E > (a(Y1)n(Ya)pe(Vs) — wa(Y’l)wb(Y’z)wc(Y’a))z} 0
- n3(®Par)
V2N
using Jensen’s inequality and 2E(U —EU)? < E(U —U’)? where U is any real valued
random variable with finite second moment and U’ an independent copy of U. The
proof is similar for Ly;, N, and Pyy. O

a,b,c

B.2. Same chain sampling. Consider consecutive observations of the same hid-
den Markov chain Z; := (Y, Yiy1, Ysqo) for 1 <s < N,

Lemma 12 — [t holds, for any positive x, any M and any N :

2 (Par)

%
=
KA
i

P[ s — Ll > (1 + 22/T + 10g(8/7 min))

;

ps
n3(P

S

i

P{HMM*MMHF> )

%
@

M (1+ 2;0\/1 + 10g(8/7* min))

)

}
5, J<

)

N
i
i

]P){HNM —Nuyllr >

=

E
=
=
s

P[HPM — Pyl > (1+ 221/ + 1og(8/7 mm))

=

Gps

Proof. With the same notation as previous lemma, we get that:

sup |§MM (Zla ce ey Rl Ry Ridly e e ZN)icMM(Zla ce ey Zi—1, Z7/;7 Zidly s ZN)|S T
2;€Y3,z€Ys



36 Y. DE CASTRO, E. GASSIAT, AND C. LACOUR

By McDiarmid’s inequality [Pauld4|, one has:

Naz?

Vo >0, P(|My —Muyllp> E|My — My || p+a) < exp(—

We need the following lemma that can be deduced from [Paul4].

Lemma 13 — For any a,b,c € {1,..., M},

E(Z %[‘pa(yts)(pb(yts-l-l)()oc(yvs-iﬁ) - E(lo‘l(yi)(‘Db(YVQ)(‘DC(YE)’)])2

s=1

< E([pa(Y1)en(Y2)pe(Ys) — Epa(Y1)en(Ya)pe(Y3)])? .

NGps

Proof. Notice that (X1,Y7), (X2,Y2),... is homogenous, irreducible, aperiodic and
stationary Markov chain on X' x ), whose stationary distribution is 7 (x,dy) =
otz (dy). Observe that its transition kernel Q enjoys:

Vao,o' € X,y,y' €Y, Qla,y; 2, dy) = Q(z, 2 ) e (dy) .

The transition kernel Q can be viewed as an operator Q on the Hilbert space L?(7)
defined by:

VFELAE), (@N)(0y) = Egpy () = 3 Q(,2) /y P&y o ().

z'eX

Notice Qf(x,y) does not depend on y. Set E := {f(x,y) € L2(%) : f does not depend on y}
and observe the L?(7)-self-adjoint operator:

Ve LAR), (Hpf)(ny) = /y £ e ()

is the orthogonal projection onto E. Since [IzQIlp = @Q then the set of non-zero
eigenvalues of QQ is exactly the set of non-zero eigenvalues of the K dimensional
linear operator I zQI1z. Eventually, note that the matrix of Q in the basis ((z,y) —
1=z )rex is the matrix Q*. We deduce that the pseudo spectral gap of Q is equal
to Gps (the pseudo spectral gap of Q).

Furthermore, note the same analysis can be lead for (X1, Xs, X3, Z1), (X2, X3, X4, Z2), . ..
and one can check that its pseudo spectral gap is the pseudo spectral gap of the
Markov chain (X7, Xo, X3), (X2, X3, X4), ... which is Gp. Indeed, the set of non-
zero eigenvalues of the Markov chain (X1, Xo2, X3), (X2, X3, X4), ... is equal to the
set of non-zero eigenvalues of the Markov chain X7, Xs,....

Eventually, set g(X57 Xoy1, Xoqo, Zs) = (1/N>90a(YS%Ob(YSJrl)(PC(}/SJr?) and in-
voke Theorem 3.7 in [Paul4| to get the result. O
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Hence it holds:

ENLy — Moy < [EINGy ~ Myll3]

1
2

< [B X (5 D eatianen)entens) B (1))

a,b,c

W=

< [ Z E(Z %[‘Pa(YS)@b(Yerl)‘PC(Yerﬁ - Ewa(yl)@b(Yﬂ@c(YB)])Q} )

a,b,c s=1

< ;G [ > E(pa(Y1)on(Ya) e (Ys) — E%(yl)%%)%%))g} :
ps a,b,c
= (Né )5 [E Z(@Q(Yl)%(ig)%(yg) - (Pa(Yll)(pb(Y/Q)(pC(Y/s))Q} 2 :
ps a,b,c
27]2(@ ) 3
<(Feo )

using Jensen’s inequality, Lemma 13 and then 2E(U —EU)? < E(U—U")? where U is
any real valued random variable with finite second moment and U’ an independent
copy of U. The proof is similar for Ly;, N; and Py, O

APPENDIX C. PROOF OF THEOREM b
C.1. Preliminaries lemmas.
Lemma 14 — It holds:
Vbe{l,...,M}, My(.,b,.)=0yDiag[r*|Q*Diag[O (h,.)]Q* O}, .
Similarly, we get that Py = Oy Diag[r*|Q**0},.
Proof. Let a,c € {1,..., M}? and observe that:
(OnDiag[r*]Q*Diag[On (b, .)]Q*0},)(a, c)
= > Ou(a,))m()Q"(i,5)On (b, 5)Q" (j, k)Ona (e, k),

(i,5,k)ex3
= Y EleaY)IX1 = i)P(X1 = i)P(Xs = j| X1 = i)
(i,5,k)ex3
x E(pp(Y2)| X2 = j)P(X3 = k| X2 = j)E(pc(Y3)| X5 = k),
= E(0a(Y1)pn(Y2)pc(Y3)),

as claimed. Similarly, it holds:

(OnDiag[r']Q0,)(a,0) = Y Owr(a,))m()Q* (i, )Q"(j, k) O (e, k),

(i,4,k)eX3
= > ElpaM)IXy = )P(X) = i)P(X2 = j[ X1 =)
(i,4,k)eX3
x P(X3 = k[ X2 = j)E(pc(Y3)| X5 = k),
= E(pa(Y1)pe(Y3)),
as announced. O

Lemma 15 — Let U be any (M x K) matriz such that Py U has rank K.
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e [t holds:
voe{l,...,M}, B(b):=(PyU)Muy(,b,.)U=RDiag[On(b,. )R,

where R™! := Q*0},U and (P U)" := (U'P],PyU)"'U'P}, denotes
the Moore-Penrose pseudoinverse of the matriz Py U.
e Furthermore, observe that UTP ;U is invertible and it holds:

vbe{l,...,M}, B() =(U'PyU) U Mu(.,b,.)U=RDiag[Op(b,.)]R7 .
Proof. Observe that:
M (., b,.)U = OyDiag[r*]|Q*Diag[Ox (b, . )JR !,
= P/ URDiag[O(b,. )R,
as claimed O

Lemma 16 — Assume that 2Hf’M — Puyll< ox(Par), then the following is
true.

(i) It holds:

I [Par — Pl
" ok (Pu) — [Py — Pyl 7
(i)
. ox(Py) — Py — P ox (P

1

(iii) oK(I:JTU) >(1-¢ep,)7,
(Z"U) O’K(UTPk[U) Z (1 — EQPM)O'K(PIW), X .

(v) foralla € RE cmd]for allv € Range(Py), [[Ua—v|3< [[a=UTv[3+e3, [v]3.
(vi) Furthermore, if 3|Py — Pas||< ox (Pas) then:

T o P
o (UTPy,U) > @7
(vii) and:
[(OTPy,U)! — (UTP,U) Y < [Pa — P A
ok (Pa)(1 =3, ) (1 =€, )Jox (Par) = [|Pa = Purl)
K\t M Py Epy )OK\E M M M
< 3lPy —Pull
o (Pur)

Proof. See Lemma C.1 in [AHK12]| for the first five claims. The sixth claim follows
from the fourth point and Theorem 6. The seventh point follows from the fourth
claim and Theorem 7. O

C.2. Control of the observable operator. Claim (iv) in Lemma 16 and Lemma
15 ensure that:

voe{1,...,M}, B():= (U PyU) U 'My(.,b,.)U =RDiag[On(b,. )R},
where one can pick:

R~ := Diag[(|(Q*04,0) (., Dz, ..., [(Q*O,U) (., K)|2)]Q* 0}, U.
Set A :=0TUTO,; and:

Vke{l,...,K}, C(k):=) (UO)(b k)B(b) = RDiag[A(k,. )R
b=1

As a matter of fact, observe R has unit Euclidean norm columns:

R = (Q 04, U)"! Diag[(|(Q"05,U) 7' (-, Dllz, -, I(Q"O3,U) ' (., K)2)] 7",
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corresponding to unit Euclidean norm eigenvectors of C(k).

Lemma 17 — Assume that 3Hf’M — Puy|I€ ok (Par), then it holds for all
be{l,...,M},

Mz (b, )l pIMar(-,b,.) = Mp (b, [P — PMH}

IBO) - BO)lI< 3.2 05 M (b, )l ox (Pa)

and:

A ) Mooz [IIMar — Maslloc2  |Par —P
ke {17-“’K}’ ||C(k)—C(k)||§ 3'2|01<](Vi)|1ufs2 H flﬁ\dMll::Il . ” UJZ(PMJ)\J'} -
Proof. Observe that:
IB(b) = B®)[<[(UTPyU) U ™My (.,b,.)U = (UTP{U) U My (.,0,.)U
+ [(OTPy,U) U ™M (o, b, U — (UTP U PU ™My, (L0, ) U,
<O (Ma(-,b,.) = Mag(-,0,.)) U (TTP0) |
+[(CTP,O) ™ = (UTPLU) U ™M (-, b,.) U,
<[Mar(-,b,.) = Mus (-, b, )log (UTP L, U)
+ Mar (-, b, (TP U) = (TTPLU) Y

Invoke claims (vi) and (vii) of Lemma 16 to get that:

N, e X X Py —P
30k (UTPy,U) > ok (Py) and [(UTP,U) ' —(UTP,U) < 3.2”¥7MH,
o (Pur)
as claimed. Replacing M (.,b,.) by Z{il(ﬂ@)(b, E)Mas(.,b,.), the same result
holds for ||C(k) — C(k)|. 0

Lemma 18 — Assume that 2|Py — Posl|< ox(Pur), then the following is
true.

(i) It holds:

*M T
K(R) = [RIIR < (@ 0}, 1) < (X0
1-— €p
(i) and:
R 5 R 5 2 *OT R N
svom (G(1)) < k(R)IE(1) - €M) “fQiE%M’m(l) — e,
where svc(l)(é(l)) = max lglelr}vlj\(l’ k1) — (1, k2)|.
(iii) If
2 *OT R B 1
2 60) - ()< g min JALLK) — ALK

then C(l) has K distinct real eigenvalues and:

IiQ *(y | R N
F QO ey - ey,

md(C(1), C(1)) < 3
1 —€p,,

where md(C(1),C(1)) := Tnel‘lS‘I}({Il?Ga;%dA(l’ 7(k)) — A(1, k)|
Proof. Observe that U is an orthonormal basis of range of Oj,;. The first point
follows from claim (iii) of Lemma 16. The second point is derived from Theorem 8
and the first point. The remark following Theorem 8 proves the last point. (]
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C.3. Control of its spectrum.

Lemma 19 — It holds:
€ )%
]P’[Vk,kl # ko, [Nk k1) — A(k, ko) [> —PMW(OM)} >1-4.

Furthermore:

1+«/210g 2/8)
P[4 [0lla.] < 6

Proof. Observe that:
Ak, k) = Ak ko) = (O(, k), (UTOM) (. k1) = (UTOwm)(- k2))
=(0(., k), UT(On(., k1) — Onr(-, k2))) .
Furthermore, from (iii) in Lemma 16, we get that:
IO (O (- k1) =0 (- k2))ll2> (1= b, )2 [Ons (- F1)=Ons (- k2) 2 (1 — B, ) 57(O)
Similarly, note that:
A= maxl(O(.. k), U7 Oar(.. K]
and [[UTOu (., k)]|2< |0a(-, ) [|2< ||Oar|2,00- For sake of readability, we bor-

row the result of Lemma F.2 and the argument of Lemma C.6 in [AHKI2| to
conclude. 0

C.4. Perturbation of simultaneously diagonalizable matrices.

Lemma 20 — If 3”151\/[ — P]\/[HS O’K(PM) and:

(32)
5 x*(QOy,) ~ [Mar|oo2||Par — Pl
8.2K2(K —1 M M — Maslloo.2+ % <1,
( )57(0M)0K(PM) [” M Mlleo2 ox(Par) }
(33)
1(QOy) ~ [Mar|oo2||Par — P
434K (K — 1)— " (QOu M — Myl ooat o, <1,
( )57(0M)0K(PM) [” M Mlleo2 ox(Par) }_
and: 3
30
Vk k1 £ ko, [A(k k1) — Ak, ko)|> ——220 £ (Ow),
1 # k2, [A(K, k1) — Ak, ko) \/EKE(K—l)W( M)
and:

L+ V2Ioa(R20)
\/E M||2,00 5

then there exists T € Sk such that Vk € X':

[[A o<

JAC &) = AC,7(k))]| o< {13M + 116K % (K — 1)(1 + (2log(K?/8))*)
ok (Pu)
k5(QO},) - Py — Pyl
5+(On)or (Par) J < [INEar = Moo+ 1 (Par) E

Proof. Note ep,, < 1/2. Invoke the last part of Claim 4 of Lemma C.4 in [AHK12]

with:
V30
S i - O
2 T
o n(R) « 2 QO%) ((goM)

~ 4k2(QO},)
. IR 290
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.EA%32MMNm2HMM7thm2 HPM*PMH'
orx(Pa) (IM s ] 00,2 ok (Par)
1+ +/2log(K2/$
L )\max — g( / )||OI\/[|‘2,OO
VK
and observe that (32) agrees with €3 < 1/2 and (33) agrees with e4 < 1/2. O

Since © T is an isometry, observe that:
OTOM (-, k)=OA(, 7(K))ll2= [IA(, k) =AC, (k) o< VE A, B)=A, 7(k)) | -
Claim (v) in Lemma 16 (with o = OA(.,7(k)) and v = Op(. , k)) gives:

081 5) = O (7l < 1070 (.. k) = OA( 7+ 2 8 o 1)
< VERIACH) = Al = oy )

Using Lemma 20, Theorem 5 follows.

APPENDIX D. EXPRESSION OF POLYNOMIAL Ps

Computer assisted computations (available on Yohann’s web page) give that:
P =

144 - 114 t°2 x°8 - 108 t72 x~10 - 18 t72 x712 +

192 t72 + 128 t74 + 266 t76 + 176 t~8 + 576 x72 + 624 t~2 x~2 +
672 t74 x72 + 1776 t76 x72 + 1152 t78 x72 + 972 x74 + 720 t°2 x74 +
1884 t~4 x~4 + 5496 t°6 x"4 + 3360 t~8 x"4 + 900 x76 + 264 t~2 x"6 +
3556 t~4 x~6 + 9920 t°6 x"6 + 5728 t°8 x"6 + 495 x~8 +

4551 t74 x°8 + 11424 t°6 x"8 + 6264 t~8 x~8 + 162 x~10 +

3810 t74 x~10 + 8592 t~6 x~10 + 4512 t°8 x~10 +

27 x~12 + 1979 t~4 x~12 + 4120 t°6 x~12 +

2096 t°8 x712 + 576 t74 x"14 + 1152 t°6 x~14 + 576 t~8 x"14 +

72 t74 x716 + 144 t76 x716 + 72 t78 x716 + 144 y~2 + 480 t72 y~2 +
784 t~4 y~2 + 704 t76 y~2 + 256 t°8 y~2 + 576 x"2 y~2 +

2064 t72 x72 y©2 + 4192 t74 x72 y~2 + 4496 t76 x72 y~2 +

1792 t~8 x2 y~2 + 1080 x~4 y~2 + 4104 t~2 x"4 y~2 +

10760 t~4 x~4 y~2 + 13528 t~6 x~4 y~2 + 5792 t~8 x~4 y~2 +

1224 x76 y~2 + 5016 t~2 x76 y~2 + 17592 t74 x"6 y~2 +

25032 t76 x76 y~2 + 11232 t7°8 x76 y~2 + 900 x"8 y~2 +

4224 t~2 x~8 y~2 + 19924 t~4 x~8 y~2 + 30776 t~6 x~8 y~2 +

14176 t78 x78 y~2 + 432 x~10 y~2 + 2520 t72 x710 y~2 +

15584 t~4 x~10 y~2 + 25336 t~6 x~10 y~2 + 11840 t~8 x~10 y~2 +

108 x~12 y~2 + 936 t~2 x~12 y~2 + 7916 t~4 x~12 y~2 +

13456 t°6 x~12 y~2 + 6368 t~8 x~12 y~2 + 144 t~2 x~14 y~2 +

2304 t~4 x~14 y~2 + 4176 t~6 x~14 y~2 + 2016 t~8 x~14 y~2 +

288 t~4 x~16 y~2 + 576 t°6 x~16 y~2 + 288 t~8 x~16 y~2 + 144 y~4 +
480 t72 y"4 + 624 t™4 y"4 + 384 t76 y"4 + 96 t78 y"4 + 576 x72 y~4 +
2208 t°2 x~2 y~4 + 3392 t~4 x°2 y~4 + 2464 t°6 x~2 y~4 +

704 t°8 x~2 y~4 + 1188 x4 y~4 + 5256 t~2 x~4 y~4 +

9636 t74 x"4 y~4 + 8256 t76 x"4 y~4 + 2688 t78 x74 y~4 +

1548 x~6 y~4 + 8112 t~2 x~6 y~4 + 18076 t~4 x~6 y~4 +

18008 t~6 x~6 y~4 + 6496 t~8 x~6 y~4 + 1359 x~8 y~4 +

8598 t72 x"8 y~4 + 23375 t74 x78 y"4 + 26392 t76 x"8 y"4 +

10256 t~8 x°8 y~4 + 810 x~10 y™4 + 6156 t~2 x710 y~4 +

20442 t~4 x~10 y~4 + 25656 t~6 x~10 y~4 + 10560 t~8 x~10 y~4 +

243 x~12 y~4 + 2574 t°2 x~12 y~4 + 11299 t~4 x~12 y~4 +

15848 t~6 x~12 y~4 + 6880 t~8 x712 y~4 + 432 t72 x"14 y~4 +

3456 t~4 x~14 y~4 + 5616 t~6 x~14 y~4 + 2592 t~8 x~14 y~4 +
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432 t74 x716 y"4 + 864 t76 x716 y~4 + 432 t78 x716 y"4 +

216 x74 y~6 + 720 t72 x74 y~6 + 952 t74 x4 y~6 + 608 t76 x"4 y°6 +
160 t°8 x74 y~6 + 648 x~6 y~6 + 2592 t72 x76 y~6 +

4168 t74 x"6 y~6 + 3152 t76 x76 y~6 + 928 t78 x76 y~6 +

918 x78 y~6 + 4428 t~2 x~8 y~6 + 8502 t74 x78 y°6 +

7392 t76 x78 y~6 + 2400 t~8 x~8 y~6 + 756 x~10 y~6 +

4392 t72 x710 y~6 + 10036 t~4 x~10 y~6 + 9920 t~6 x~10 y~6 +

3520 t78 x710 y~6 + 270 x~12 y~6 + 2268 t~2 x712 y~6 +

6766 t~4 x"12 y~"6 + 7808 t~6 x"12 y~6 + 3040 t~8 x712 y°6 +

432 t72 x714 y~6 + 2304 t"4 x714 y~6 + 3312 t76 x"14 y°6 +

1440 t°8 x~14 y~6 + 288 t74 x~16 y~6 + 576 t°6 x~16 y~6 +

288 t78 x716 y~6 + 108 x"8 y~8 + 360 t~2 x"8 y~8 + 468 t~4 x°8 y~8 +
288 t°6 x°8 y°8 + 72 t~8 x78 y~8 + 216 x~10 y~8 + 864 t~2 x~10 y~8 +
1368 t74 x~10 y~8 + 1008 t°6 x~10 y~8 + 288 t~8 x~10 y~8 +

108 x712 y™8 + 648 t72 x712 y~8 + 1404 t~4 x712 y~8 +

1296 t76 x712 y~8 + 432 t78 x712 y~8 + 144 t72 x714 y~8 +

576 t74 x~14 y~8 + 720 t76 x"14 y~8 + 288 t~8 x"14 y~8 +

72 t74 x716 y~8 + 144 t76 x716 y~8 + 72 t78 x716 y~8 + 192 z"2 +
416 t72 z"2 + 288 t74 z72 + 320 t76 z72 + 256 t°8 z"2 +

912 x72 z72 + 1664 t72 x72 z72 + 1248 t74 x72 z72 +

2304 t76 x72 z72 + 1808 t78 x72 z72 + 1728 x74 z72 +

2520 t72 x74 z72 + 2776 t74 x74 z72 + 7624 t76 x74 z72 +

5640 t°8 x4 z72 + 1704 x7°6 z72 + 1736 t~2 x76 z"2 +

4664 t~4 x~6 z72 + 14808 t76 x76 z"2 + 10176 t°8 x76 z"2 +

966 x78 z"2 + 494 t~2 x°8 z"2 + 6098 t°4 x°8 z"2 +

18218 t76 x7°8 z72 + 11648 t~8 x°8 z72 + 324 x710 z72 +

36 t72 x710 z72 + 5468 t~4 x710 z72 + 14444 t°6 x~10 z"2 +

8688 t78 x710 z"2 + 54 x712 z72 + 6 t72 x712 z72 +

3002 t74 x712 z72 + 7186 t76 x712 z72 + 4136 t78 x712 z72 +

896 t~4 x~14 z72 + 2048 t76 x~14 z"2 + 1152 t°8 x~14 z"2 +

112 t74 x716 z"2 + 2566 t76 x716 z72 + 144 t°8 x716 z"2 +

480 y~2 z72 + 1312 t72 y~2 z72 + 1888 t74 y~2 z72 +

1760 t76 y~2 z°2 + 704 t°8 y~2 z72 + 1776 x"2 y~2 z"2 +

5248 t72 x72 y~2 z72 + 9504 t°4 x72 y°2 z72 +

10624 t76 x72 y~2 z72 + 4592 £78 x72 y~2 z72 + 3096 x74 y~2 z72 +
9904 t°2 x4 y~2 z°2 + 23104 t74 x4 y~2 z72 +

30288 t76 x74 y~2 z"2 + 13992 t78 x74 y~2 z"2 + 3144 x76 y"2 z"2 +
11344 t°2 x76 y~2 z72 + 35712 t°4 x76 y~2 z°2 +

53424 t°6 x76 y~2 z72 + 25912 t78 x76 y~2 z"2 + 2064 x"8 y~2 z"2 +
9016 t°2 x78 y~2 z72 + 38552 t74 x78 y"2 z"2 +

63192 t76 x78 y~2 z72 + 31592 t78 x78 y~2 z"2 + 936 x710 y~2 z72 +
5248 t72 x710 y~2 z72 + 29072 t~4 x~10 y°2 z"2 +

50464 t°6 x~10 y~2 z"2 + 25704 t°8 x710 y~2 z72 + 216 x712 y~2 z72 +
1872 t°2 x712 y~2 z72 + 14192 t°4 x~12 y°2 z°2 +

26056 t°6 x~12 y~2 z"2 + 13520 t~8 x712 y~2 z°2 +

264 t72 x714 y©2 z72 + 3896 t74 x"14 y©2 z72 +

7808 t~6 x~14 y~2 z72 + 4176 t~8 x~14 y~2 z"2 +

448 t~4 x716 y~2 z"2 + 1024 t76 x716 y~2 z72 +

576 t78 x716 y~2 z72 + 480 y~4 z"2 + 1632 t72 y"4 z"2 +

2208 t74 y~4 z72 + 1440 t76 y"4 z"2 + 384 t78 y~4 z72 +

1632 x72 y~4 z72 + 6528 t72 x72 y"4 z"2 + 10688 t74 x"2 y~4 z72 +
8320 t76 x72 y~4 z72 + 2528 t78 x72 y~4 z"2 + 3240 x74 y~4 z72 +
14280 t72 x4 y~4 z72 + 27448 t74 x74 y~4 z72 +

25048 t°6 x74 y~4 z"2 + 8640 t°8 x74 y~4 z"2 + 3936 x"6 y~4 z"2 +
19992 t°2 x76 y~4 z~2 + 46552 t°4 x°6 y~4 z°2 +

49352 t76 x76 y"4 z"2 + 18856 t°8 x76 y"4 z"2 + 3198 x"8 y"4 z"2 +
19518 t72 x°8 y~4 z~2 + 55218 t°4 x°8 y~4 z°2 +



ESTIMATION OF NON-PARAMETRIC HIDDEN MARKOV MODELS 43

66170 t°6 x"8 y~4 z"2 + 27272 t°8 x"8 y~4 z"2 + 1836 x710 y~4 z"2 +
13332 t72 x710 y~4 z°2 + 44988 t~4 x~10 y~4 z~2 +

59580 t°6 x710 y~4 z~2 + 26088 t~8 x710 y~4 z72 + 486 x712 y~4 z72 +
5214 t72 x712 y~4 z72 + 22994 t°4 x"12 y°4 z72 +

34194 t°6 x712 y~4 z"2 + 15928 t°8 x712 y~4 z°2 +

792 t72 x714 y~4 z"2 + 6312 t74 x714 y~4 z72 +

11136 t°6 x~14 y~4 z"2 + 5616 t°8 x~14 y~4 z"2 +

672 t74 x716 y~4 z"2 + 1536 t76 x"16 y~4 z"2 +

864 t~8 x716 y~4 z"2 + 720 x4 y~6 z"2 + 2480 t°2 x74 y~6 z"2 +
3472 t74 x74 y~6 z72 + 2384 t76 x74 y~6 z72 + 672 t78 x74 y"6 z72 +
1728 x76 y~6 z"2 + 7440 t72 x76 y~6 z"2 + 13072 t74 x"6 y~6 z72 +
10736 t76 x°6 y~6 z"2 + 3376 t°8 x"6 y"6 z"2 + 2268 x"8 y~6 z72 +
11484 t°2 x°8 y~6 z"2 + 23812 t°4 x"8 y~6 z72 +

22276 t°6 x"8 y~6 z72 + 7680 t~°8 x78 y~6 z"2 + 1800 x~10 y~6 z"2 +
10568 t~2 x~10 y~6 z~2 + 25560 t~4 x~10 y°6 z"2 +

26872 t76 x710 y~6 z"2 + 10080 t~8 x~10 y~6 z~2 + 540 x~12 y~6 z72 +
4836 t~2 x712 y°6 z"2 + 15420 t~4 x~12 y~6 z"2 +

18964 t~6 x~12 y~6 z~2 + 7840 t~8 x~12 y~6 z"2 +

792 t72 x714 y~6 z"2 + 4520 t74 x"14 y~6 z"2 +

7040 t76 x~14 y~6 z72 + 3312 t7°8 x714 y~6 z"2 +

448 t~4 x716 y~6 z"2 + 1024 t76 x716 y~6 z"2 +

576 t~8 x716 y~6 z"2 + 360 x"8 y~8 z72 + 1224 t~2 x°8 y~8 z72 +
1656 t74 x°8 y~8 z72 + 1080 t~6 x~8 y~8 z72 + 288 t°8 x"8 y°8 z72 +
576 x~10 y~8 z72 + 2448 t°2 x710 y~8 z"2 + 4176 t~4 x710 y~8 z"2 +
3312 t76 x710 y°8 z"2 + 1008 t°8 x~10 y~8 z"2 + 216 x~12 y~8 z"2 +
1488 t°2 x~12 y~8 z72 + 3616 t~4 x~12 y°8 z"2 +

3640 t76 x~712 y~8 z72 + 1296 t~8 x"12 y~8 z"2 +

264 t°2 x~14 y~8 z72 + 1208 t°4 x~14 y~°8 z"2 +

1664 t76 x~14 y~8 z72 + 720 t78 x714 y~8 z72 +

112 t74 x716 y~8 z72 + 2566 t76 x716 y~8 z"2 + 144 t°8 x716 y~8 z"2 +
128 z~4 + 288 t72 z74 + 352 t74 z"4 + 384 t°6 z"4 + 256 t78 z74 +
352 x72 z~4 + 1056 t72 x°2 z~4 + 1408 t°4 x°2 z74 +

1952 t76 x72 z74 + 1504 t°8 x72 z"4 + 764 x"4 z74 +

2104 t°2 x74 z°4 + 2616 t74 x~4 z~4 + 5016 t76 x~4 z°4 +

4252 t°8 x74 z°4 + 804 x76 z~4 + 1912 t°2 x76 z"4 +

2920 t74 x76 z"4 + 8536 t76 x"6 z"4 + 7364 t°8 x76 z74 +

471 x°8 z"4 + 898 t°2 x°8 z"4 + 2694 t°4 x°8 z°4 +

10058 t°6 x°8 z74 + 8335 t°8 x78 z"4 + 162 x710 z"4 +

252 t72 x710 z74 + 2164 t74 x~10 z74 + 7980 t76 x~10 z°4 +

6226 t78 x710 z74 + 27 x712 z"4 + 42 £t72 x712 z74 +

1182 t~4 x~12 z~4 + 4018 t76 x~12 z~4 + 2979 t°8 x~12 z°4 +

352 t74 x~14 z~4 + 1162 t76 x714 z°4 + 832 t78 x"14 z°4 +

44 t~4 x°16 z~4 + 144 t°6 x716 z"4 + 104 t°8 x716 z"4 +

784 y~2 z~4 + 1888 t72 y~2 z"4 + 2208 t74 y~2 z74 +

1888 t76 y~°2 z"4 + 784 t°8 y~2 z"4 + 2080 x"2 y~2 z°4 +

5600 t72 x72 y~2 z74 + 8832 t74 x72 y~2 z74 + 9952 t76 x72 y~2 z74 +
4640 t78 x72 y~2 z74 + 3368 x74 y~2 z74 + 9440 t72 x74 y~2 z74 +

18928 t74 x4 y~2 z"4 + 25952 t°6 x74 y°2 z°4 +

13224 t78 x4 y~2 z"4 + 2840 x76 y~2 z74 + 9056 t°2 x76 y~2 z74 +
25872 t°4 x76 y~2 z"4 + 42464 t°6 x°6 y~°2 z"4 +

23192 t78 x76 y~2 z74 + 1524 x78 y~2 z"4 + 6072 t72 x"8 y"2 z74 +
25016 t~4 x~8 y~2 z74 + 46792 t~6 x"8 y~2 z"4 +

26900 t°8 x78 y"2 z"4 + 576 x~10 y°2 z"4 + 3184 t°2 x710 y"2 z"4 +
17216 t~4 x~10 y~2 z~4 + 35024 t~6 x~10 y°2 z°4 +

20928 t°8 x710 y~2 z"4 + 108 x712 y~2 z"4 + 1008 t~2 x712 y~2 z74 +

7584 t~4 x712 y°2 z"4 + 16968 t76 x712 y~2 z74 +
10572 t78 x712 y~2 z74 + 120 t°2 x~14 y~2 z74 +
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1816 t~4 x~14 y~2 z~4 + 4736 t76 x"14 y~°2 z°4 +

3136 t°8 x~14 y°2 z"4 + 176 t°4 x716 y°2 z"4 +

576 t76 x716 y~2 z°4 + 416 t~8 x716 y~2 z74 + 624 y~4 z~4 +

2208 t72 y"4 z74 + 3168 t74 y~4 z"4 + 2208 t76 y"4 z74 +

624 t78 y~4 z~4 + 1600 x72 y~4 z74 + 6976 t72 x72 y~4 z74 +

12672 t~4 x°2 y~4 z"4 + 10816 t°6 x"2 y~4 z°4 +

3520 t78 x72 y~4 z74 + 3364 x"4 y~4 z74 + 14456 t72 x"4 y°4 z°4 +

29416 t~4 x~4 y~4 z~4 + 29016 t°6 x"4 y~4 z74 +

10692 t°8 x4 y~4 z"4 + 3452 x76 y~"4 z74 + 17336 t72 x76 y~4 z"4 +
43896 t74 x"6 y"4 z"4 + 51032 t76 x76 y"4 z74 +

21020 t°8 x76 y~4 z74 + 2495 x"8 y~4 z"4 + 14658 t~2 x78 y°4 z°4 +
45814 t74 x°8 y™4 z"4 + 61162 t76 x"8 y~4 z74 +

27607 t°8 x78 y"4 z74 + 1242 x710 y~4 z74 + 8892 t72 x710 y~4 z74 +
33252 t74 x710 y~4 z"4 + 49644 t°6 x710 y~4 z°4 +

24234 t7°8 x710 y~4 z"4 + 243 x712 y™4 z74 + 2914 t72 x712 y~4 z74 +
14758 t~4 x712 y~4 z~4 + 25538 t76 x712 y~4 z"4 +

13643 t°8 x712 y~4 z°4 + 360 t°2 x"14 y~4 z°4 +

3336 t74 x"14 y~4 z74 + 7296 t76 x"14 y~4 z"4 +

4416 t°8 x~14 y~4 z~4 + 264 t~4 x716 y~4 z~4 +

864 t76 x716 y~4 z74 + 624 t78 x716 y~4 z74 + 952 x74 y~6 z"4 +

3472 t72 x74 y~6 z74 + 5232 t74 x74 y~6 z74 + 3856 t76 x"4 y~6 z74 +
1144 t°8 x4 y~6 z"4 + 1544 x76 y~°6 z74 + 7760 t°2 x°6 y°6 z"4 +
16696 t~4 x°6 y~6 z"4 + 14288 t°6 x~6 y~6 z~4 +

4808 t78 x76 y~6 z"4 + 1942 x°8 y~6 z"4 + 105632 t72 x"8 y°6 z74 +
24556 t~4 x~8 y~6 z~4 + 25380 t"6 x"8 y~6 z"4 +

9414 t°8 x°8 y~6 z"4 + 1332 x710 y~6 z"4 + 8408 t72 x710 y~6 z°4 +
22952 t~4 x710 y~6 z"4 + 26776 t~6 x~10 y~6 z"4 +

10900 t°8 x710 y~6 z74 + 270 x~12 y~6 z"4 + 2972 t72 x712 y°6 z74 +
11492 t74 x712 y~6 z74 + 16244 t76 x~12 y°6 z74 +

7486 t78 x~12 y°6 z74 + 360 t72 x"14 y~6 z74 +

2632 t74 x714 y©6 z74 + 4992 t76 x"14 y~6 z"4 +

2752 t78 x714 y°6 z"4 + 176 t74 x716 y°6 z"4 +

576 t76 x716 y~6 z"4 + 416 t~8 x716 y~°6 z~4 + 468 x"8 y~8 z74 +

1656 t°2 x78 y~8 z74 + 2376 t74 x"8 y~8 z74 + 1656 t76 x"8 y~8 z74 +
468 t78 x78 y~8 z74 + 504 x710 y~8 z74 + 2448 t°2 x710 y°8 z74 +
4752 t~4 x~10 y~8 z~4 + 4176 t°6 x~10 y~8 z"4 +

1368 t°8 x710 y~8 z"4 + 108 x712 y~8 z74 + 1024 t~2 x712 y~8 z74 +
3136 t74 x712 y™8 z"4 + 3656 t76 x712 y~8 z"4 +

1436 t°8 x~12 y~8 z"4 + 120 t~2 x~14 y~8 z~4 +

760 t~4 x~14 y~8 z~4 + 1280 t°6 x~14 y°8 z"4 +

640 t78 x714 y°8 z74 + 44 t74 x716 y~8 z74 + 144 t76 x716 y~8 z74 +
104 t°8 x716 y~8 z"4 + 256 z"6 + 320 t72 z76 + 384 t"4 z76 +

352 t76 z76 + 160 t°8 z"6 + 272 x"2 z76 + 256 t72 x72 z76 +

1120 t74 x72 z"6 + 1408 t76 x72 z76 + 784 t°8 x72 z76 +

232 x74 z76 + 456 t°2 x74 z°6 + 2104 t°4 x°4 z°6 +

2712 t76 x74 z76 + 1856 t78 x74 z"6 + 96 x76 z"6 + 472 t72 x"6 z"6 +
2072 t74 x76 z76 + 3208 t76 x76 z"6 + 2792 t78 x"6 z76 +

24 x°8 z°6 + 298 t72 x78 z76 + 1178 t74 x"8 z76 + 2686 t~6 x~8 z76 +
2870 t78 x°8 z76 + 108 t72 x~10 z"6 + 396 t~4 x~10 z°6 +

1668 t°6 x~10 z76 + 2020 t°8 x~10 z"6 + 18 t~2 x~12 z°6 +

66 t74 x712 z76 + 726 t76 x712 z"6 + 934 t°8 x712 z76 +

192 t76 x714 z"6 + 256 t78 x714 z°6 + 24 t76 x"16 z"6 +

32 t78 x716 z76 + 704 y°2 z76 + 1760 t°2 y~2 z"6 +

1888 t74 y~2 z76 + 1312 t76 y~2 z"6 + 480 t°8 y~2 z76 +

1136 x72 y~2 z"6 + 3456 t72 x"2 y~2 z76 + 5152 t74 x72 y°2 z76 +
5248 t76 x"2 y~2 z"6 + 2416 t78 x"2 y~2 z"6 + 1768 x"4 y~2 z76 +
5200 t72 x74 y~2 z°6 + 91652 t74 x°4 y~2 z76 +
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11696 t°6 x"4 y~2 z76 + 6232 t°8 x74 y~2 z76 + 1144 x°6 y~2 z"6 +
3760 t72 x76 y~2 z"6 + 9984 t°4 x76 y~2 z76 +

16720 t°6 x°6 y~2 z"6 + 10120 t°8 x76 y~2 z"6 + 456 x"8 y~2 z"6 +
1752 t72 x78 y~2 z76 + 7592 t°4 x°8 y~2 z76 +

16024 t°6 x°8 y~2 z"6 + 10880 t°8 x"8 y~2 z76 + 72 x710 y~2 z76 +
544 t~2 x710 y~2 z°6 + 3952 t74 x710 y~2 z76 +

10304 t°6 x~10 y~2 z"6 + 7848 t~8 x~10 y~2 z"6 +

72 t72 x712 y©2 z76 + 1160 t~4 x~12 y~2 z76 +

4192 t~6 x~12 y~2 z"6 + 3680 t°8 x~12 y~2 z"6 +

128 t74 x~14 y~2 z76 + 952 t°6 x"14 y~2 z76 +

1016 t78 x714 y~2 z76 + 96 t76 x716 y~2 z"6 + 128 t°8 x716 y~2 z"6 +
384 y~4 z76 + 1440 t72 y~4 z"6 + 2208 t~4 y~4 z76 +

1632 t76 y™4 z"6 + 480 t°8 y™4 z"6 + 608 x"2 y~4 z76 +

3200 t72 x72 y~4 z76 + 6848 t~4 x"2 y~4 z"6 + 6528 t76 x"2 y~4 z76 +
2272 t78 x72 y~4 z76 + 1760 x"4 y~4 z76 + 7128 t72 x"4 y~4 z76 +
15128 t74 x"4 y~4 z"6 + 16008 t°6 x~4 y~4 z°6 +
6248 t°8 x74 y~4 z"6 + 1288 x76 y"4 z76 + 6856 t"2 x76 y"4 z76 +
19576 t~4 x°6 y~4 z"6 + 25176 t°6 x~6 y~4 z°6 +

11168 t°8 x76 y"4 z"6 + 832 x"8 y™4 z"6 + 4730 t72 x"8 y"4 z76 +
17242 t~4 x~8 y~4 z~6 + 26382 t76 x"8 y~4 z°6 +

13230 t78 x78 y~4 z76 + 216 x710 y~4 z76 + 1980 t~2 x~10 y~4 z76 +
10092 t~4 x~10 y~4 z~6 + 18420 t~6 x~10 y~4 z"6 +

10476 t~8 x710 y~4 z"6 + 274 t72 x712 y™4 z76 +

3186 t~4 x~12 y~4 z°6 + 7806 t°6 x~12 y~4 z"6 +

5278 t~8 x~12 y~4 z°6 + 384 t~4 x~14 y~4 z°6 +

1704 t°6 x~14 y~4 z~6 + 1512 t°8 x~14 y~4 z°6 +

144 t°6 x~16 y™4 z"6 + 192 t°8 x~16 y~4 z"6 + 608 x~4 y™6 z"6 +

2384 t72 x74 y~6 z"6 + 3856 t74 x"4 y~6 z"6 + 2992 t76 x4 y~6 z76 +
912 t78 x74 y~6 z"6 + 496 x"6 y~6 z"6 + 3568 t"2 x"6 y"6 z76 +

8848 t~4 x~6 y~6 z76 + 8976 t~6 x~6 y~6 z~6 + 3200 t~8 x"6 y~6 z"6 +
752 x°8 y~6 z"6 + 4356 t72 x"8 y~6 z"6 + 11780 t"4 x"8 y"6 z76 +
13596 t°6 x"8 y~6 z"6 + 5420 t~8 x"8 y™6 z"6 + 288 x~10 y~6 z"6 +
2552 t~2 x~10 y°6 z°6 + 8984 t~4 x~10 y~6 z"6 +

12232 t76 x~10 y~6 z"6 + 5512 t°8 x710 y°6 z"6 +

404 t~2 x~12 y~6 z76 + 31566 t~4 x~12 y°6 z"6 +

5940 t~6 x~12 y~6 z"6 + 3252 t°8 x~12 y~6 z"6 +

384 t~4 x~14 y~6 z°6 + 1320 t°6 x~14 y°6 z"6 +

1000 t°8 x714 y~6 z"6 + 96 t76 x"16 y~6 z"6 + 128 t°8 x"16 y~6 z"6 +
288 x78 y™8 z76 + 1080 t°2 x°8 y~8 z"6 + 1656 t~4 x"8 y~8 z"6 +

1224 £76 x°8 y"8 z76 + 360 t°8 x°8 y~8 z"6 + 144 x~10 y~8 z"6 +

1008 t~2 x~10 y~8 z~6 + 2448 t~4 x~10 y~8 z"6 +

2448 t76 x~10 y™8 z76 + 864 t~8 x~10 y~8 z"6 +

184 t°2 x712 y~8 z"6 + 1064 t~4 x~12 y~8 z"6 +

1600 t76 x~12 y~8 z"6 + 720 t~8 x712 y~8 z"6 +

128 t74 x~14 y~8 z76 + 376 t76 x"14 y~8 z"6 + 248 t°8 x"14 y~8 z76 +
24 £76 x716 y°8 z76 + 32 t78 x716 y~8 z76 + 176 z"8 + 256 t"2 z°8 +
266 t74 z°8 + 160 t76 z"8 + 48 t°8 z"8 + 256 x"2 z°8 +

240 t72 x72 z78 + 544 t74 x72 z"8 + 496 t76 x72 z78 +

192 t°8 x72 z°8 + 224 x74 z°8 + 152 t72 x74 z°8 + 892 t°4 x4 z"8 +
848 t7°6 x74 z"8 + 396 t°8 x74 z°8 + 96 x"6 z"8 + 32 t72 x76 z78 +
900 t~4 x76 z°8 + 840 t°6 x"6 z"8 + 516 t°8 x76 z"8 + 24 x°8 z"8 +

8 t72 x°8 z78 + 575 t74 x°8 z°8 + 510 t76 x"8 z°8 +

463 t°8 x78 z"8 + 210 t~4 x~10 z°8 + 180 t°6 x~10 z"8 +

290 t78 x710 z78 + 35 t74 x712 z°8 + 30 t76 x712 z"8 +

123 t°8 x712 z°8 + 32 t78 x714 z°8 + 4 t°8 x716 z"8 + 266 y~2 z"8 +
704 t72 y©2 z°8 + 784 t74 y~2 z"8 + 480 t76 y°2 z"8 +

144 t°8 y~2 z°8 + 2566 x72 y~2 z78 + 1040 t72 x72 y~2 z78 +

z
~4
z
~6
z
~8
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1632 t74 x72 y~2 z78 + 1424 t76 x"2 y~2 z"8 + 576 t°8 x72 y"2 z78 +

416 x~4

y°2 z78 + 1660 t~2 x74 y~2 z"8 + 2696 t74 x74 y~2 z"8 +

2760 t76 x°4 y~2 z°8 + 1336 t78 x74 y~2 z78 + 224 x°6 y~2 z"8 +

1032 t72 x76 y~2 z78 + 2616 t74 x76 y~2 z"8 + 3416 t76 x"6 y~°2 z"8 +
1992 t78 x76 y~2 z"8 + 96 x78 y~2 z78 + 472 t72 x78 y~2 z78 +

1780 t~4 x~8 y~2 z~8 + 2800 t~6 x"8 y~2 z"8 + 1972 t°8 x"8 y~2 z"8 +
88 t72 x710 y~2 z78 + 736 t74 x710 y~2 z"8 + 1432 t76 x~10 y~2 z78 +
1296 t°8 x710 y~2 z78 + 140 t~4 x~12 y~2 z78 +

400 t~6
136 t~8
384 t~2
144 t~8

x"12 y©2 z°8 + 548 t78 x712 y~2 z"8 + 40 t°6 x"14 y~2 z78 +
x"14 y~2 z°8 + 16 t°8 x716 y~°2 z"8 + 96 y~4 z~8 +

y~4 z°8 + 624 t74 y~4 z78 + 480 t76 y"4 z78 +

y 4 z7°8 + 64 x2 y"4 z78 + 544 t72 x72 y™4 z78 +

1472 t~4 x°2 y~4 z°8 + 1568 t76 x"2 y~4 z"8 + 576 t°8 x"2 y™4 z"8 +

448 x~4

y~4 z78 + 1696 t°2 x74 y~4 z°8 + 3524 t74 x74 y~4 z°8 +

3784 t76 x°4 y~4 z°8 + 1508 t°8 x74 y~4 z°8 + 224 x°6 y~4 z°8 +

1400 t~2 x°6 y™4 z°8 +

2508 t78 x76 y~4 z"8 +

3367 t~4 x~8 y~4 z"8 + 5190 t76 x~8 y~4 z"8 + 2735 t78 x"8 y~4 z78 +
+

264 t~2

4156 t~4 x°6 y~4 z°8 + 5488 t°6 x"6 y~4 z°8 +
176 x°8 y~4 z~8 + 992 t72 x"8 y™4 z"8 +

x~10 y~4 z°8 + 1578 t74 x710 y~4 z"8 +

3084 t76 x~10 y~4 z"8 + 1962 t~8 x~10 y~4 z°8 +

315 t~4
120 t~6
160 x~4
912 t~6
656 t~2
840 t~8

x"12 y~4 z°8 + 998 t76 x712 y~4 z"8 + 875 t°8 x712 y™4 z78 +
x"14 y~4 z°8 + 216 t78 x714 y~4 z"8 + 24 t°8 x"16 y~4 z°8 +
y°6 z78 + 672 t72 x74 y~6 z78 + 1144 t°4 x"4 y~6 z"8 +

x"4 y°6 z°8 + 280 t°8 x"4 y°6 z°8 + 32 x"6 y°6 z"8 +

X"6 y°6 z°8 + 2056 t"4 x76 y~"6 z~8 + 2272 t76 x"6 y~6 z"8 +
X"6 y°6 z"8 + 160 x"8 y~6 z"8 + 880 t"2 x"8 y"6 z"8 +

2534 t~4 x~8 y~6 z78 + 3100 t76 x~8 y~6 z"8 + 1286 t~8 x"8 y~6 z"8 +

320 t~2

x710 y~6 z"8 + 1556 t~4 x~10 y~6 z"8 +

2408 t°6 x710 y~6 z"8 + 1172 t°8 x710 y~6 z"8 +

350 t~4
120 t76

x712 y°6 z78 + 916 t~6 x~12 y"6 z"8 + 598 t~8 x~12 y~6 z"8 +
x~14 y~6 z78 + 152 t78 x714 y~6 z"8 + 16 t°8 x716 y~6 z"8 +

72 x°8 y"8 z"8 + 288 t72 x78 y~8 z"8 + 468 t74 x"8 y"8 z78 +

360 t~6
504 t~4
140 t~4

x"8 y°8 z°8 + 108 t°8 x78 y"8 z78 + 144 t°2 x~10 y~8 z"8 +
x~10 y~8 z°8 + 576 t76 x710 y~8 z"8 + 216 t°8 x~10 y~"8 z~8 +
X712 y~8 z78 + 288 t76 x712 y~8 z78 + 148 t78 x712 y~8 z78 +

40 t76 x714 y°8 z°8 + 40 t°8 x"14 y°8 z°8 + 4 t~8 x716 y~8 z78
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