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ABSTRACT 
The  dissolution  of  geological  formations  containing 

gypsum can  rapidly create  various  karstic  features,  and 
may potentially generate great  risks  such  as  subsidence 
and  collapse.  To  understand  the  gypsum  dissolution 
mechanism is very important to develop safety measures. 
In  practical  applications,  it  is  not  feasible  to  take  into 
account all the pore-scale details at a large-scale by direct 
numerical  modeling, therefore some sort  of  macro-scale 
modeling is  necessary.  In  this  study,  we will  develop a 
general expression of the macro-scale model for gypsum 
dissolution, starting from the pore-scale transport problem 
with boundary condition of thermodynamic equilibrium or 
non-linear reaction, making use of the method of volume 
averaging. Then, this macro-scale porous medium model 
will be used as a diffuse interface model (DIM) to solve 
for  large-scale  cavity  dissolution  examples,  typical  of 
situations leading to sinkhole formations,  with the mass 
exchange term for Ca2+ given  in the form of a first order 
reaction. A work-flow is proposed to choose properly the 
parameters in the model to reflect accurately the interface 
recession. Additional tests are performed to check which 
type of momentum balance equation should be used. It is 
shown  that  a  proper choice for  the  mass  exchange 
coefficient leads  to  satisfactory  results with  the  macro-
scale  model, and  that  Darcy-Darcy  and  Darcy-Navier-
Stokes  formulations  give  almost  the  same  cavity 
formation for the studied cases.

INTRODUCTION
Dissolution  of  gypsum  cavities  are  found  in  many 

fields, such as karst formation, aquifer evolution, and dam 
stability  (1)(2),  etc.  It  causes  concern  because  of  the 
potential  to  raise  some  undesirable  effects,  for  instance 
collapse and subsidence. The understanding of dissolution 
processes is a crucial issue for effective planning control 
and  engineering  practice.  The  mass  and  momentum 
transport  in  the  dissolution  process  often  happens  in  a 
hierarchical, multi-scale system, as schematically depicted 
in Fig. 1. In such a system with multi-scale aspects, taking 
into account all the pore-scale details at  a large-scale is 
inaccessible by direct numerical simulations (DNSs).  To 
describe the dissolution of gypsum which is contained in a 
porous formation, it is essential to develop some sort of 
macro-scale models. Such a macro-scale porous medium 
model  can  also  serve  as  a  diffuse  interface  model  to 
describe the dissolution at a fluid-solid interface, as done 
in  (3)(4).  In  the developed macro-scale model, effective 
properties  are  generally  employed  to  represent  the 
averaged behaviors of the micro-scale features and various 
related studies can be found in the literature. An overview 

of dispersion in porous media with and without reaction 
has been presented by Rudraiah and Ng (5).

Figure 1. Multi-scale description of the 
dissolution system

Regarding developments associated to the upscaling of 
dissolution problems, in  (6) and  (7), equilibrium or non-
equilibrium  macro-scale  models  for  thermodynamic 
dissolution  with  a  Dirichlet  condition  were  obtained, 
neglecting  contributions  of  the  interface  velocity  in  the 
closure problems. In  (8),  the authors  solved the case of 
mass  exchange  controlled  by  partitioning  expressions 
(Raoult's  law,  Henry's  law,  etc...),  and  they  took  into 
account the interface velocity in the closure problems for 
this particular case.  The case of first-order reaction rate 
has been studied by Whitaker (9) and Valdés-Parada et al.
(10). 

Concerning  numerical  investigation  on  gypsum 
cavities, studies are scarce. Some examples are available 
for  gypsum  dissolution,  Rehrl  et  al.  (11) simulated  a 
conduit  development  under  artesian  conditions,  by 
analyzing  the  variations  of  conduit  diameters  and 
hydraulic heads at different stages, with a continuum-pipe 
flow  model.  To  our  knowledge,  few  papers  have  been 
published on the large-scale gypsum dissolution model or 
the numerical simulation for gypsum cavity evolution with 
a moving interface. 

Given this research background, the objectives of this 
study are: (i) to develop the general forms of the gypsum 
dissolution  macro-scale  model,  starting  from  pore-scale 
problems  with  thermodynamic,  or  nonlinear  reactive 
boundary conditions, and taking into account the role of 
interface velocity, (ii) to implement numerical simulations 
with COMSOL® to solve for large-scale cavity dissolution 
examples,  typical  of  situations  leading  to  sinkhole 
formations. 



PORE-SCALE MODEL
As  schematically  illustrated  in  Fig.  1,  the  porous 

medium under consideration consists  of  three  phases  at 
the  pore-scale:  two  solid  phases,  one  being  soluble 
(gypsum), denoted s, the other insoluble, denoted i, and a 
liquid phase (water + dissolved species), denoted l. 

We adopt  in  this  paper  the  assumption that  gypsum 
dissolution  can  be  described  by  the  dissolution  of  a 
pseudo-gypsum water  component.  For convenience,  and 
for  the purpose of  future introduction in  more complex 
geochemistry models, we choose to follow the ion Ca2+.

The  pore-scale  problem  under  consideration 
corresponding  to  the  mass  and  momentum  transfer  of 
calcium is described by the following equations

   in Vl  (1)

    in Vl (2)

where, ρl is the liquid density, vl is the liquid velocity, ωl is 
the mass fraction of Ca2+ and Dl is the molecular diffusion 
coefficient.

One  must  be  reminded  that  these  equations  can  be 
potentially simplified greatly if one assumes that   is a 
constant. If necessary, Boussinesq's approximation may be 
introduced to evaluate the potential for natural convection 
and this should be accurate enough.

The boundary conditions for Ca2+ mass balance at the 
interface with the solid phase may be written as a kinetic 
condition following

     

       

                           at Als (3)

where,  nls is  the normal vector pointing from the liquid 
towards the solid, wsl is the solid-liquid interface velocity, 
MCa is the molar weight of Ca2+, ks is the surface reaction 
rate constant, ωeq is the equilibrium mass fraction of Ca2+, 
n is  the  order  of  the  chemical  reaction,  ρs is  the  solid 
density,  ωs is  the  mass  fraction  of  Ca2+ in  Vs and  Als 

denotes the solid-liquid interface.
Mass balance for the solid phase gives the following 

boundary condition 

  

                    at Als (4)

where  Mg is  the molar  weight  of  gypsum and we have 
νs=Mg/MCa. 

The  total  mass  balance  boundary  condition  may  be 
written formally as

 

(5)

which can be used to calculate the liquid velocity.
For computational purposes, it is convenient to express 

the diffusive flux at the surface approximately as

(BC I)   

(6)
which neglected the interface velocity since it is only on 
the order of 10-3.

In  the above, we talked about the case of a reactive 
boundary condition, while when the solid-liquid interface 
is  under  thermodynamic  equilibrium,  the  boundary 
condition can be described as

(BC II)  (7)

which  is  the  limit  of  the  reactive  condition  for  large 
Damkhöler numbers.

The  problem  has  to  be  completed  with  momentum 
balance equations:  Navier-Stokes equations for instance. 
Assuming  that   and   are  constants,  and  that  the 
velocity of dissolution is small compared to the relaxation 
time of the viscous flow, the problem for the momentum 
balance equations is independent of the concentration field 
and, therefore, can be treated independently.  Hence, one 
may  readily  assume  that  the  macro-scale  momentum 
equations has  any type  suitable  for  the  flow conditions 
under consideration, i.e., Darcy's law, etc... Consequently, 
we can focus on the transport problem assuming that  , 
and its average value, is a known field. 

UPSCALING
To develop an upscaled model, several methods can be 

adopted,  for  instance,  volume averaging  (12),  moments 
matching  (13) and  multi-scale  asymptotics  (14).  In  this 
present study, we choose to follow the developments of a 
macro-scale  model  based  on  the  method  of  volume 
averaging.  The  general  framework  has  been  developed 
over  several  decades  and  a  comprehensive  presentation 
can be found in (12).

As  defined  in  Fig.  1,  the  corresponding micro-scale 
(pore-scale) characteristic lengths are defined as ll, ls and li 

respectively,  and the macro-scale characteristic length is 
denoted  L. In addition, a third length scale, the so-called 
support  scale,  r0 in  this  study,  is  associated  with  the 
representative  volume.  A fundamental  hypothesis  which 
should be kept in mind to perform volume averaging is 
that, in terms of length scales, we have ll, ls and li «r0  «L.

Averages are defined in the traditional manner so the 
superficial average velocity gives



(8)

where  Ul is  the  intrinsic  average  velocity  and   is  the 
porosity. 

The intrinsic average mass fraction is defined as 

(9)

We introduce the following deviation fields

  ,  (10) , (11)

By applying Eqs. (10) , (11) to the pore-scale problem, 
we can obtain a set of problem for  . However, at this 
stage,  the problem is still  a  coupling of different scales 
which is difficult to solve. To develop a closed form of the 
problems, we propose the following approximate solution 
for  the  coupled  solution  of  the  macro-scale  and  micro-
scale governing equations for  and ,

(12)

where,  sl and  bl are  called  the  closure  variables. 
Neglecting terms involving   or higher derivatives, 
collecting terms for  and  and then applying 
the fundamental  lemma, we obtain two sets of  “closure 
problems” for sl and bl respectively. 

In order to solve the closure problems, we must know 
the interface position and velocity, as well as the macro-
scale concentration because of the reaction non-linearity. 
We  are  faced  here  with  the  classical  geochemistry 
problem,  and,  in  principle,  we  must  solve  the  coupled 
pore-scale  (here  the  closure  problems)  and  macro-scale 
equations  at  each  time  step  in  order  to  compute  the 
interface  evolution  and  .  In  geochemistry  (or  other 
problems  involving  changing  geometries)  it  is  often 
assumed  a  given  interface  evolution  and  the  closure 
problems are  solved  for  each  realization,  which  in  turn 
yields effective properties dependent on, for instance, the 
medium porosity. In turn, these effective properties can be 
used in  a  macro-scale simulation without the need of a 
coupled micro-scale/macro-scale solution. Of course, it is 
well  known  that  some  history  effects  are  lost  in  this 
process,  but  it  has  the  advantage  that  this  is  far  more 
practical  than solving the coupled problem. We will not 
discuss further this difficulty which is well known when 
solving dissolution or crystallization problems.

If we assume that mass fluxes near the interface are 
triggered  by  the  diffusive  flux,  which  in  the  case  of 
gypsum is consistent with some quantitative analysis, we 
may develop approximate closure problems.

The  closure  problems  can  be  developed  following 
ideas available in the literature, see (6)(8)(10) for the full 
deduction of the upscaling procedure, and we present only 
the  final  macro-scale  equations  for  the  mass  balance, 

which gives

 (13)

with  the  dispersion  tensor,  the  non-traditional  effective 
velocity and the mass exchange term given by

                                                        (14)

                                        (15)

and

 

 (16)

respectively, where the effective reaction rate coefficient 
and the additional gradient term coefficient are given by

(17)

and

(18)

One  must  remember  that  the  macro-scale  problems 
involve also the following averaged equations

 

and

(19)

(20)

with the relation

(21)

All the effective parameters mentioned above can be 
obtained by solving closure problems for sl and bl.



The averaging of the momentum equation would have 
led to  a  macro-scale equation,  for  instance Darcy's  law 
expressed as

(22)

where  the  liquid  permeability  Kl will  depend  on  the 
dissolution  history.  As  a  classical  geochemistry 
approximation, we will assume it depends, like the other 
effective parameters, on the volume fractions, in our case 
we will have .

The  macro-scale  equations  for  the  case  with 
thermodynamic equilibrium boundary condition at  pore-
scale are the same as before, but for a different expression 
of the mass exchange term which can be written as

(23)

where  we  have  adopted  the  following  notation  for  the 
mass exchange coefficient

(24)

and the additional gradient term

(25)

In order to understand the effective macro-scale model 
developed above, we are interested in getting solutions for 
the  longitudinal  dispersion  coefficient,  (Dl

*)xx,  and  the 
effective reaction rate coefficient, ks,eff, for the case with 
non-linear  reactive  boundary  conditions  for  the  2D 
problem.  The  geometry  of  a  representative  unit  cell  is 
depicted in Fig.  2 and it  is  only composed of  s- and l- 
phase.  The  problem  under  consideration  is  assumed  at 
steady-state,  and  the  variation  of  the  liquid  density  is 
negligible.

Figure 2. 2D geometry of the unit cell

As the reaction order for gypsum dissolution is ranging 

from  1  to  4.5  at  different  stages,  in  the  following 
numerical  simulations,  we will  test  for  n=[1, 3,  5].  The 
porosity is about 0.37 hereby and after. The velocity field 
is  obtained  by  solving  Navier-Stokes  equations  with 
Re=10-6,  in  which  condition  the  inertia  effects  are 
negligible. The Reynolds number is defined as

(26)

with the characteristic length defined as the diameter of 
the  solid  phase,  lr=d0,  and  the  characteristic  velocity  is 
defined as the intrinsic average of the component of the 
velocity in the x-direction, .

Since  we  solve  the  closure  problems  in  a 
dimensionless  form,  we  define  two  more  important 
parameters, the pore-scale Damkhöler and Péclet numbers 
as

(27)

(28)

The  numerical  simulations  are  performed  with 
COMSOL®.  The  first  parameter  to  be  discussed  is  the 
longitudinal dispersion coefficient in terms of (Dl

*)xx/Dl. It 
can be written in a classical form as 

(29)

As presented in Fig. 3, (Dl
*)xx/Dl is smaller than 1 at 

small Pe, which is the result of the tortuosity effects. The 
impact of Da is dependent on the Pe value. When Pe<20, 
(Dl

*)xx/Dl increases with Da, while after a transition zone, a 
large Da will lead to a smaller (Dl

*)xx/Dl when Pe>30. This 
reversed effect of Da is consistent with the results reported 
in (10) for the linear case.

In  addition to  Pe and Da,  the  reaction order  is  also 
playing a role. One may observe from Fig. 3 that for small 
Pe with Da=1, (Dl

*)xx/Dl increases with n, while for large 
Pe with Da=100, (Dl

*)xx/Dl decreases with n.
Another parameter under investigation is the effective 

reaction  rate  coefficient  ks,eff.  In  Fig.  4,  we  plot  ks,eff/ks 

versus Da for Pe=1 and Pe=10. One sees from the figure 
that  whatever the value of Pe and  n,  ks,eff/ks   is equal to 
about 1 at small Da. At this stage, the dissolution process 
is  limited  by  the  nonlinear  reaction,  so  the  effective 
reaction  rate  coefficient  is  the  same  as  the  pore-scale 
reaction rate  coefficient.  With the increase  of  Da,  mass 
transport  becomes  a  limiting  mechanism  and  the  ratio 
ks,eff/ks tends to decrease until it reaches another constant, 
about zero, at very large Da. One should note that with the 
increase of Da,  ks,eff will increase with  ks,  and when the 
mass transport is limiting the dissolution process at large 



Da,  i.e.,  ks, tends  to  become  infinitely  large,  ks,eff stops 
growing and the ratio ks,eff/ks  is consequently rather small. 
Actually, in the case of a large Da, the boundary condition 
will  become  thermodynamic  equilibrium  and  the  mass 
exchange  coefficient  should  be  predicted  by  Eq.  (24) 
instead of Eq. (17).

Regarding the impact of Pe and  n, for linear reactive 
case or the case with larger Pe, the decrease of ks,eff/ks is 
delayed.

Some additional numerical tests were performed to see 
the accuracy of this macro-scale model. The comparison 
between the results obtained by the DNSs and this macro-
scale model agree very well, leading to an error smaller 
than 1%, for Pe and Da in the range [0.001,100].

Figure 3. (Dl
*)xx/Dl as a function of Pe

Figure 4. ks,eff/ks as a function of Da

LARGE-SCALE MODELING
As stated previously, the macro-scale model developed 

for  the  porous  medium can  also employed as  a  diffuse 
interface model (DIM) for the case of solid dissolution. In 
this  section,  we  are  interested  in  implementing  it  for  a 
large-scale  cavity  evolution  example.  The  geometry  is 
illustrated in Fig. 5, where subdomain d contains soluble 
gypsum (denoted s), insoluble material (denoted i), and a 
liquid  phase  (denoted  l)  which  contains  water  and  the 
dissolved  gypsum.  Subdomains  a and  e  are  composed 
only by the fluid phase and insoluble solid initially, with 

different  permeability  and  porosity.  The  geometric  and 
physical  parameters  are  presented  in  Table  1.  With  the 
injection  of  a  fluid  (water  in  this  study)  from  the  left  
boundary of subdomain a at a velocity of , solid gypsum 
in subdomain  d will be dissolved and gradually create a 
cavity. 

As there is insoluble materials in this studied case, we 
transformed the macro-scale model developed in the last 
section to a form suitable for this particular problem.

Mass balance of the liquid phase gives

(30)

Figure 5. Schematic description of the dissolution system

Table. 1 Geometric features and physical properties

Parameters Description Value Unit

w1 width of e1 3 m

w2 width of e2 3 m

wd width of d 5 m

hed height of e and d 5 m

ha height of a 5 m

ɛa porosity of a 0.35 dimensionless

ɛe porosity of e 0.2 dimensionless

ɛ porosity of d 0.9 dimensionless

Mass balance of solid gypsum gives

(31)

Mass balance of Ca2+ gives

(32)

where

(33)

Fluid and solid gypsum saturation are defined as 



  ,  (34), (35)

with   and   the volume fraction of  the fluid and the 
solid gypsum respectively. We have the constraints that 

, (36), (37)

where  is the volume fraction of the insoluble material.
The mass exchange of calcium gives

(38)

In fact, because dissolution may lead to a true cavity 
without the solid phase, we may use a modified version of 
Navier-Stokes equation in the dissolved region 

  

    

  (39)

where   is  the  fluid  viscosity  and   is  the  so-called 
effective viscosity of the fluid, which is dependent on the 
porous medium property. In general,   is heterogeneous 
due to the large variations of material properties, however, 
in practice it  is often assumed that effective viscosity is 
homogeneous and that  for simplification. If local 
Reynolds number is small, the role of inertial  terms are 
negligible,  and  Equation  (39) turns  out  to  be  the 
Brinkman-Darcy equation

(40)

When  permeability  is  infinite  we  obtain  Stokes' 
equation

(41)

and  when  the  permeability  is  small  enough  we  have 
Darcy's law

(42)

We took

(43)

for subdomain d
From Eqs. (30) and (31), we have

(44)

For all three subdomains, the problems are in the same 

form, except that for subdomains a and e

, , (45), (46), (47)

In  this  study,  we  set  a  relatively small  permeability 
K0=10-15 m2 and a saturation of solid gypsum Sinitial=0.9 for 
subdomain  d. Besides, permeability   for the dissolved 
region and  for the undissolved region in subdomain d 
have the relation Kf »Kl . For a given inlet velocity V0=10-6 

m s-1, we would like first to investigate the impact of  Kf 

on the geometry and recession velocity of the dissolving 
surface,  implementing three different equations,  i.e.,  the 
modified  Navier-Stokes  equation,  the  Brinkman-Darcy 
equation  and  Darcy's  law.  In  Fig.  6,  we  plot  the 
normalized mass flux over the dissolving surface versus 
the  cavity  permeability,  using  different  momentum 
equations. One sees that the mass flux over the dissolving 
surface  increased  dramatically  when  the  permeability 
increased  from  10-12  m2 by  an  order  of  2.  After  the 
permeability  reached  10-10 m2,  further  increases  lead  to 
only a negligible increase of the mass flux. We obtained 
nearly the same results with the modified Navier-Stokes 
equation and the Brinkman-Darcy equation for the whole 
range  of  Kf,  and  they  behave  a  little  differently  from 
Darcy's  law  when  Kf  is  higher  than  10-9  m2,  with  the 
maximum difference of about 0.24%. We may conclude 
that the inertia term is not important in this study, while 
the viscous terms play a role when permeability is large 
enough (about 10-9 m2 in this case). We may conclude that:

•below a permeability of 10-9 m2, the cavity is not well 
represented by any of the momentum equation,

•above this value,  the modified Navier-Stokes or the 
Brinkman-Darcy equation gives the same result, which is 
a  priori  close  to  the  physical  one  (i.e.,  the  flow  of  a 
viscous fluid in a cavity),

•it  is  somehow surprising  that  a  pure  Darcy model, 
with a sufficiently large permeability in the cavity gives 
almost the same dissolving flux.

This  latter  remark  is  encouraging  since  Darcy 
equations  are  much  easier  to  solve!  However,  a 
generalization of this result has to be taken with caution. 
Indeed, if we have a developing boundary layer over a flat 
surface, the Darcy Sherwood number along the boundary 
at a position x is given by

(48)

if we have a small Schmidt number, this correlation is also 
the  same  in  the  case  of  a  laminar  Navier-Stokes  flow. 
However, the Schmidt number for water is about

(49)

which suggests that  we should see a difference between 
Darcy and Navier-Stokes calculations. In addition, in the 
case of significant water density variations, we may have 
a  departure  from  the  classical  boundary  layer  solution 



because  of  buoyancy  effects.  Or  this  may also  change 
because  of  different  flow  conditions  (heterogeneities, 
roughnesses, etc...).

Figure 6. Normalized total normal flux over the dissolving 
surface as a function of cavity permeability

To study the impact of α on the dissolution process, we 
carried  out  simulations  with  the  macro-scale  equations 
presented above. To investigate the characteristic time in 
such a case, we estimate the residual time approximately 
as

(50)

and  the  dissolution  time  is  about  the  inverse  of  α. 
Therefore, we need a relatively large α to reach rapidly the 
equilibrium concentration along the dissolving surface in 
order to have an actual boundary layer similar to the one 
with a sharp interface. However,  α can not be infinite for 
simulation  reasons.  According  to  our  numerical  tests,  α 
=10-5  s-1 is a good choice to get a satisfactory result with 
DIM  for  the  investigated  problem  (given  the  fact  that 
dissolution is a very slow process here). The existence of 
the  boundary  layer  induced  the  decrease  of  mass  flux 
across the dissolving surface, from the entrance to the exit, 
which further caused the lower dissolution velocity in the 
exit region (cf. Fig. 7(c)).

As stated above, the dissolution velocity is somehow 
difficult to capture with DIM, due to the required very fine 
mesh, a relatively large  α and the artificial tweak of  Kf . 
Therefore, we have to verify that the flux exchanged in the 
DIM  between  the  solid  and  dissolved  area  is  correct. 
Contrary to small-scale simulations, it is very difficult to 
carry on ALE simulation on a large cavity, so we used the 
modified Navier-Stokes equation with a  fixed boundary 
but  without  dissolution,  as  an alternative way,  to  check 
that we have the correct concentration field and hence the 
correct  dissolution  velocity.  The  comparison  of  results 
obtained  by  different  methods  are  illustrated  in  Fig.  7, 
from which we see that  concentration fields agree very 
well with α =10-5 s-1.

  

(a)                            (b)                         (c)

             (d)                            (e)                         (f)         

 (g)                            (h)                        (i)
Figure 7. Simulation results of normalized mass fraction 
Ωl/ωeq of dissolved gypsum (surface) and velocity (arrow) 
fields at t=8×109 s. (a) DIM with modified N.S. equations, 
α =10-7 s-1; (b) DIM with modified N.S. Equations, α =10-6 

s-1; (c) DIM with modified N.S. equations, α =10-5 s-1; (d) 
DIM with Darcy'  law,  α =10-7 s-1;  (e) DIM with Darcy' 
law,  α =10-6 s-1; (f) DIM with Darcy' law,  α =10-5 s-1; (g) 
case  (a)  with  fixed  boundary;  (h)  case  (b)  with  fixed 
boundary; (i) case (c) with fixed boundary

CONCLUSION
In  this  paper  we  have  presented  an  analysis  of 

dissolution  problem  involving  gypsum.  Porous  medium 
models have been obtained theoretically for the reactive 
and equilibrium cases. They have served as the basis of a 
DIM  for  subsequent  use  to  model  large-scale  cavity 
dissolution.

Using  the  assumptions  of  a  pseudo-component 
dissolving  with  an  equilibrium  boundary  condition, 
numerical tools have been tested to solve for large-scale 
cavity  dissolution  problems,  typically  for  an  aquifer 
situation leading to  potential  sinkhole  formation.  Direct 
interface tracking, such as with ALE, was found to be very 
difficult to carry on. We proposed an alternate route using 
a DIM based on the porous medium theory. A work-flow 
was  proposed  to  choose  properly the  parameters  in  the 
DIM model that would reproduce as accurately as possible 
the concentration field and fluxes and, consequently, the 
interface  recession.  Additional  tests  were  performed  to 
check which type of momentum balance equation should 
be used. It was found that Darcy-Darcy, Darcy-Brinkmann 
or Darcy-Navier-Stokes formulation give almost the same 
cavity formation. 

NOMENCLATURE

Als  solid-liquid interface, dimensionless

bl closure variable, m



d0 diameter of the solid phase, m

Da pore-scale Damkhöler number, dimensionless

Dl molecular diffusion coefficient, m2 s-1

Dl
* dispersion tensor, m2 s-1

hl additional gradient term coefficient, mol m-1 s-1

ks surface reaction rate constant, mol m-2 s-1

ks,eff  effective reaction rate coefficient, mol m-2 s-1

K permeability, m2

li, ll  ,ls  pore-scale characteristic lengths, m

L macro-scale characteristic length, m

, mass exchange of gypsum, Ca2+, kg m-3 s-1

MCa, Mg  molar weight of Ca2+, gypsum, g mol-1

n chemical reaction order, dimensionless 

nls normal vector pointing from the liquid towards 
the solid, dimensionless 

Pe pore-scale Péclet number, dimensionless

Re pore-scale Reynolds number, dimensionless

sl closure variable, dimensionless  

S saturation, dimensionless

Ul intrinsic average velocity, m s-1 

Ul
* effective velocity, m s-1

vl  pore-scale liquid velocity, m s-1

V0 inject velocity, m s-1

Vl  superficial intrinsic average velocity, m s-1

w
sl  

 solid-liquid interface velocity, m s-1

α mass exchange coefficient, s-1

 ,    volume fraction of fluid, solid gypsum

  fluid viscosity, Pa s 

effective viscosity, Pa s  

ρl,, ρs liquid, solid density, kg m-3

ωeq equilibrium mass fraction of Ca2+

ωl, ωs mass fraction of Ca2+ in the liquid, solid phase

intrinsic average mass fraction, dimensionless
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