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Dynamics of a thin liquid film interacting with an
oscillating nano-probe

René Ledesma-Alonso,* Philippe Tordjeman and Dominique Legendre

The dynamic interaction between a local probe and a viscous liquid film, which provokes the deformation of

the latter, has been studied. The pressure difference across the air–liquid interface is calculated with a

modified Young–Laplace equation, which takes into account the effects of gravity, surface tension, and

liquid film–substrate and probe–liquid attractive interaction potentials. This pressure difference is

injected into the lubrication approximation equation, in order to depict the evolution of a viscous thin-

film. Additionally, a simple periodic function is added to an average separation distance, in order to

define the probe motion. The aforementioned coupled equations, which describe the liquid film

dynamics, were analysed and numerically solved. The liquid surface undergoes a periodic motion: the

approaching probe provides an input energy to the film, which is stored by the latter by increasing its

surface deformation; afterwards, when the probe moves away, an energy dissipation process occurs as

the surface attempts to recover its original flat shape. Asymptotic regimes of the film surface oscillation

are discerned, for extreme probe oscillation frequencies, and several length, wavenumber and time

scales are yielded from our analysis, which is based on the Hankel transform. For a given probe–liquid–

substrate system, with well-known physical and geometric parameters, a periodic stationary regime and

instantaneous and delayed probe wetting events are discerned from the numerical results, depending on

the combination of oscillation parameters. Our results provide an interpretation of the probe–liquid film

coupling phenomenon, which occurs whenever an AFM test is performed over a liquid sample.

1 Introduction

Over the past two decades, the application of dynamic mode

atomic force microscopy (AFM) techniques has become a

current practice for scanning so matter samples.1 Neverthe-

less, the choice of AFM imaging mode should be made carefully

in order to prevent inconveniences and undesired phenomena.

Indeed, whenever a probe is brought into close proximity to a

surface, molecules jump from the surface to the probe2 due to

the attractive van der Waals tip sample interaction. This state-

ment has been extensively discussed1,3,4 and observed experi-

mentally, when a probe is brought close to a high temperature

solid sample5,6 and to polymeric liquid lms.7,8 As a probe quasi-

statically approaches a liquid sample, or a liquid layer deposited

over a solid substrate, the liquid surface performs a jump

towards the probe at a minimum separation distance.9–11 The

intermittent contact mode (IC-AFM) reduces the probe–sample

interaction time, by oscillating the probe in the vicinity of the

sample surface and provoking a so probe–sample contact.

Images of liquid droplets using IC-AFM had been obtained,12,13

also registering a large phase contrast when the probe–liquid

contact occurs, which indicates the presence of an energy

dissipation phenomenon. Indeed, every time the probe comes

close to the liquid sample surface, a capillary neck forms

between the probe and the sample.14,15 This may cause as well

the liquid volume to split into two parts, one remaining as the

sample and the other placed over the probe surface.

Imaging of the droplet prole using non-contact mode (NC-

AFM), which avoids the probe–liquid contact, has been shown

as a possible solution.1,16–22 A recipe to obtain good resolution

topographies, consisting of the use of an oscillation frequency

about 100 Hz higher than the cantilever resonance frequency, a

free oscillation amplitude of around 10 nm and a probe–sample

distance between 22 and 50 nm, which is heuristically deter-

mined, has been recently exposed and successfully

employed.20,21,23 If larger amplitudes or shorter probe–sample

distances are used, an “accidental” contact between the tip and

the sample is provoked and, as a consequence, distorted droplet

proles are captured. Although the proposed methodology

provides quality results, a formal justication of this experi-

mental combination of parameters still remains to be revealed.

Despite the non-intrusive nature of NC-AFM, the surface of a

so sample encounters the growth of a nano-protuberance

under the action of the oscillating probe.24 Using a Kelvin–Voigt

viscoelastic material to model the so sample, in which inertial

effects are disregarded, and a forced non-linear damped
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oscillator, including a sphere/at surface interaction force, to

mimic the NC-AFM operation,25 the sample deformation is

estimated aer the model parameters are determined by tting

experimental data. When NC-AFM experiments are performed,

it is advisable to use stiff cantilevers, which provides cantilever

deection stability, and to minimize the probe–liquid separa-

tion distance, which increases the probe sensitivity, in order to

accomplish true atomic resolution. In this scenario, the suitable

scanning parameters must be dened to prevent the probe–so

sample contact and the loss of the original shape of the sample

and shrinking of volume. Therefore, the NC-AFM jump-to-

contact distance and the sample surface deformation should be

deduced and compared to those for a static probe–liquid

interaction.

In this paper, we present a theoretical and numerical study

of the liquid lm dynamics, generated by its interaction with an

oscillating nano-probe. First, in Section II, we present equations

that describe the probe and lm dynamics. In Section III, we

describe an implemented pseudo-spectral method to solve the

probe–lm dynamics. Section IV is devoted to the results of the

numerical simulations, performed for different probe oscilla-

tion conditions. In Section V, we submit a theoretical analysis in

the wavenumber domain and a solution for the lm surface

position. Section VI reports the critical oscillation parameters

that lead to the probe wetting. Finally, in Section VII we discuss

the consequences of the probe–liquid dynamic coupling on

AFM experimental situations.

2 Problem formulation

A liquid lm of thickness E, density r, dynamic viscosity m and

air–liquid surface tension g deposited over a at horizontal

substrate, as shown in Fig. 1, is considered. Within a cylindrical

axisymmetric coordinate system, the position of the lm free

surface z ¼ h is a function of the radial position r and time t.

When the lm surface is perturbed from its original at shape

h ¼ 0 due to its interaction with an oscillating probe, a periodic

response of the liquid is expected. Herein, the periodic probe

motion is described by the following expression:

D ¼ Dþ A cosðutÞ; (1)

where D is the time-average probe position, A is the oscillation

amplitude and u is the angular frequency.

In addition, in a liquid lm of thickness below the corre-

sponding capillary length, a viscous ow is also envisaged. Let

us dene yr and yz as the radial and axial components of the

velocity eld, respectively. The corresponding lm boundary

conditions, of no-slip at the substrate and shear-free at the free

surface,26,27 are given by:

yr ¼ 0 at z ¼ %E;

vyr

vz
¼ 0 at z ¼ h:

(2)

In addition, since the velocity eld (yr, yz) and the lm free

surface velocity in the direction normal to the surface should be

equal, in order to respect the mass conservation, the kinematic

condition at the liquid surface26,28 is written as:

vh

vt
¼ yz % yr

vh

vr
at z ¼ h; (3)

and the pressure eld P within the liquid lm is identied as

the addition of the air atmospheric pressure P0, which is

considered to be constant, and the pressure difference DP

across the interface, located at z ¼ h. Therefore, for a thin

viscous lm, the momentum and continuity equations reduce

to a typical Reynolds lubrication equation:

vh

vt
¼ 1

r

v

vr

"

r

(

½E þ h'3
3m

vDP

vr

)#

: (4)

Solving eqn (4) for DP shows that this pressure difference

also represents the effect of viscous drainage within the thin

lm, due to the surface motion.

According to the Hamaker theory,29 which takes into account

the effect of van der Waals (vdW) forces to explain the interac-

tion between macroscopic objects, the liquid lm interacts with

the surrounding bodies, including the substrate. In the present

work, a lm disturbance is created by the approach of a local

probe, which, for simplicity, is considered to be a rigid sphere of

radius R.10 Disregarding the air density, the pressure difference

across the interface is decomposed as:

DP ¼ rgh + 2gk + Pls + Ppl, (5)

where g is the acceleration of gravity, k is the local mean

curvature, Pls and Ppl are the liquid–substrate and the probe–

liquid interaction potentials. In the presented reference system,

the local mean curvature takes the form:

k ¼ % 1

2

(

1

r

v

vr

"

r
vh

vr

%&

vh

vr

'2

þ 1

(%1=2
#)

: (6)Fig. 1 Scheme of the liquid film and the deformation of its surface due
to its interaction with a probe. An oscillating sphere has been used as
an AFM probe model. The geometric and physical parameters are
defined in the text.



Each interaction potential that contributes to the interface

displacement corresponds to the potential energy difference

between the perturbed state and the originally undisturbed

state. The potential eld created by the interaction between the

substrate and the liquid lm, at z ¼ h, is described by:

Pls ¼ %Hls

6p

(

1

½E þ h'3
% 1

½E'3

)

; (7)

where Hls is the Hamaker constant of the liquid–substrate

interaction. In turn, a local probe placed at a distance D from

the lm surface, as shown in Fig. 1, provokes the displacement

of the originally at interface. Thus, at z ¼ h, the interaction

potential mutually exerted between the spherical probe and the

liquid lm is given by:

Ppl ¼ % 4HplR
3

3p

1
n

½D% h'2 þ r2 % R2

o3
; (8)

where Hpl is the Hamaker constant of the probe–liquid inter-

action. The procedure to obtain eqn (7) and (8) has been

previously detailed.11 The combination of eqn (4)–(8) describes

the behaviour of the lm surface in terms of the radial position

and time, as well as the physical and geometric parameters.

Note that any driving function D(t) can be embedded into eqn

(8), including the AFM-like periodic motion of the probe given

in eqn (1).

Let us nondimensionalize using the probe radius R and the

average gap x ¼ D % R as the characteristic radial and defor-

mation length scales, respectively. Thus, we have:

E* ¼ E=R; D* ¼ D=R; r* ¼ r=R;
z* ¼ z=x; h* ¼ h=x; k* ¼ Rk:

(9)

We also dene the ratio of the two characteristic length

scales, the dimensionless average gap, as:

x* ¼ x/R. (10)

In addition, by introducing s, a characteristic time scale, the

dimensionless time variable is written as t* ¼ t/s. Employing

these length and time scales, the dimensionless thin-lm

equation describing the dynamics of the perturbed liquid lm is

given by:

vh*

vt*
¼ 1

r*

v

vr*

%

r*

&

1þ x*h*

E*

'3
vDP*

vr*

(

; (11a)

DP* ¼ Boh*þ
2

x*
k*þ ĤHa

8x*ðE*Þ3
P*

ls þ
Ha

x*
P*

pl: (11b)

where:

k* ¼ % x*

2

(

1

r*

v

vr*

"

r*
vh*

vr*

%&

x*
vh*

vr*

'2

þ 1

(%1=2
#)

; (12a)

Ppl* ¼ %1
n

½D*% x*h*'2 þ ½r*'2 % 1
o3

; (12b)

Pls* ¼ %
(

&

1þ x*h*

E*

'%3

% 1

)

: (12c)

Moreover, three dimensionless parameters, which charac-

terize the interface behavior, are yielded: the Bond number Bo ¼
[rgR2]/g, the Hamaker constant ratio Ĥ ¼Hls/Hpl and amodied

Hamaker number Ha ¼ 4Hpl/[3pgR
2]. Finally, for the consis-

tency of the nondimensionalization process, the characteristic

time scale results:

s ¼ 3mR4

gE3
; (13)

which denition corresponds to the product of a classic capillary/

viscous time30–32 sc ¼ mR/g and the reciprocal of the cube of the

dimensionless lm thickness E*. The value of s indicates the

time that the liquid lm takes to move against the action of

viscosity, when its surface is to be deformed. Therefore,

depending on the liquid physical properties and the ratio of the

lm thickness to the probe size, with the use of eqn (13), one can

infer the reaction time of the lm. For a given liquid with known

physical properties and a well characterized probe, one can

conclude that a thick lm, with a small s, displays a fast response,

whereas a thin lm, with a large s, provides a slow feedback.

Finally, the dimensionless probe periodic motion is given by

the expression:

D* ¼ D*þ A* cosðfþ 2ppÞ; (14)

with:

D* ¼ D=R; A* ¼ A=R;
u* ¼ us; f ¼ u*t*% 2pp;

(15)

where the phase takes values within the range f ˛ [0, 2p] and

the number of cycles is p ˛ Z
+.

3 Resolution method

With the aim of performing a theoretical analysis, com-

plemented by a numerical solution, we seek to reduce eqn (11).

Considering small interface deformations x*h*/E* ( 1 and

slopes x*[vh*/vr*] ( 1, hypotheses which were veried a pos-

teriori, one is able to simplify the mean curvature, the liquid–

substrate term and the cubic term in the lubrication equation.

The following quasi-linear partial differential equation, which

depicts the evolution of the viscous thin-lm interacting with a

spherical probe, is deduced:

vh*

vt*
¼ 1

r*

v

vr*

&

r*
vDP*

vr*

'

; (16a)

DP* ¼ % 1

r*

v

vr*

&

r*
vh*

vr*

'

þ h*

½lCF*'2
þ Ha

x*
Ppl*; (16b)

where the modied capillary length lCF*, dened as11

lCF* ¼

8

<

:

Bo þ
3ĤHa

8½E*'4

9

=

;

%1=2

; (17)
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appears. For a localized surface disturbance, which is radially

transmitted due to surface tension effects, lCF* is the length

scale at which the surface displacement is restrained by

hydrostatic and substrate interaction effects. The nature and

consequences of lCF* have been extensively discussed

elsewhere.11,33

3.1 Hankel transform

Despite the previous assumptions, eqn (16) retains a nonlinear

term, i.e. the probe–liquid interaction potential Ppl*. As it is

crucial to understand the natural response of the thin-lm to

any perturbation, a theoretical analysis is devised. For this

reason, we recall the Hankel transform of order zero (see

Appendix A), which takes a variable dened in the spatial r* and

temporal t* domains, and redenes it in the angular wave-

number k* ¼ Rk and time t* ¼ t/s domains. The application of

this transform turns the quasi-linear thin-lm equation, given

by eqn (16), into:

vN *

vt*
¼ % n*N *% Ha

x*
½k*'2Q *; (18)

where N * and Q * are:

N *ðk*; t*Þ ¼ ℍ0fh*ðr*; t*Þg;
Q *ðk*; t*Þ ¼ ℍ0

1

Ppl*ðr*; t*Þ
2

;
(19)

the Hankel transforms of the surface position and the probe–

liquid interaction, respectively. In addition, n* is dened as:

n* ¼ ½k*'2
n

½k*'2 þ ½lCF*'%2
o

; (20)

which is also identied as a wavenumber dependent time decay

coefficient. This coefficient indicates that the relaxation time of

a particular wavenumber k* is proportional to [k*]%4 for

large wavenumbers (short wavelengths), whereas it scales as

[lCF*/k*]
2 for relatively small wavenumbers (long wavelengths).

In eqn (20), it is clear that [lCF*]
%1 takes the role of a threshold

wavenumber between the two behaviours.

3.2 Numerical method

The combination of eqn (12b) and (16) was solved with a home-

made Fortran code, which employs a pseudo-spectral method.

The implemented algorithm is based on the discrete Hankel

and inverse Hankel transforms of order zero, which are

computed in terms of Fourier–Bessel series, following a well-

known procedure.34 For instance, the Fourier–Bessel series of h*

in terms of Bessel functions of the rst kind and order zero is

dened as:

h*ðr*; t*Þ ¼
X

N

m¼1

CmJ0

4

bm

r*

arlCF*

5

; (21)

where bm is the mth root of J0(x) ¼ 0. Using the denition of the

Hankel transform (see eqn (34)), the Fourier–Bessel coefficients

Cm can be approximated by:

Cmx

N *

4

bm

arlCF*
; t*

5

p½arlCF*J1ðbmÞ'2
: (22)

The radial position r* ¼ arlCF*, with ar ˛ R
+, is the extent

beyond which the lm surface remains unperturbed.

Similarly, the Fourier–Bessel series of N * in terms of Bessel

functions of the rst kind and order zero is:

N *ðk*; t*Þ ¼
X

N

n¼1

GnJ0

4

bn

k*

akkmax*

5

; (23)

where, once more, bn is the nth root of J0(x) ¼ 0. Using the

denition of the inverse Hankel transform (see eqn (35)), the

Fourier–Bessel coefficients Gn are estimated from:

Gnx

4ph*

4

bn

akkmax*
; t*

5

½akkmax*J1ðbnÞ'2
: (24)

Herein, considering ak ˛ R
+, the wavenumber akkmax*

designates a cutoff beyond which no other spatial frequencies

are excited. The angular wavenumber kmax* has been obtained

analytically from the coupling between the thin lm equation

and the probe–liquid interaction, and will be formally intro-

duced in the following sections. Equivalent expressions were

developed to calculate the discrete Hankel and inverse Hankel

transforms of the probe–liquid interaction potential in space

Ppl* and wavenumber Q * domains.

To briey summarize, the implemented method starts with

discrete Hankel transforms of the surface position and the

probe–liquid interaction, which is obtained from the combi-

nation of discrete versions of eqn (14) and (12b); a temporal

resolution in the wavenumber domain, using a rst order semi-

implicit Euler method to discretize eqn (18), follows in

sequence; and nally, a discrete inverse Hankel transform is

applied to obtain the surface evolution in the space domain.

3.3 Parameters range

Numerical solutions were obtained forHa ¼ 5.5+ 10%3, Bo ¼ 3.1

+ 10%11, Ĥ ¼ 1, E* ¼ 1 and s ¼ 1.35 + 10%7 s. These parameters

correspond to typical silicon oil (PDMS) physical properties g ¼
3.1+ 10%2 Nm%1, m¼ 1.4+ 10%1 Pa s and r¼ 9.7+ 102 kg m%3,

with a lm thickness of E ¼ 10%8 m, generic silicon probes with

R ¼ 10%8 m, and silicon probe/PDMS/silicon substrate interac-

tion parameters Hpl ¼ 4 + 10%20 N m and Hls ¼ 4 + 10%20 N m,

which are usually found in the literature or obtained from

typical AFM experiments.9 Nevertheless, the present analysis

can be extrapolated for other non-polar liquids (oils, liquid

hydrocarbons and liquids consisting of diatomic molecules for

instance), and ordinary AFM probes.

Considering the xed aforementioned parameters, simula-

tions were performed for different oscillation parameters. The

angular frequency was varied within u ˛ [2.2 + 105, 2.2 + 107]

s%1. The time-average probe position was swept in the range D ˛

(R + A,N), in order to analyse the impact of this parameter for a

xed A. The value D¼ R + A indicates contact between the probe,

at its lower oscillation position, and the liquid surface, even

without the deformation of the liquid surface. In turn, the

oscillation amplitude was varied within A ˛ (0, 2R]. Therefore,



the dimensionless ranges become u* ˛ [3 + 10%2, 3 + 100],

D*˛ð1þ A*;N' and A* ˛ (0, 2].

In addition, we recall the dimensionless static minimum

separation distance Dmin* ¼ D*/R, already introduced in the

literature,11 which indicates the wetting threshold distance for

the interaction with a static probe. For the employed dimen-

sionless parameters, this threshold takes the value Dmin* ¼
1.2017, which has been previously obtained11 with a precision of

order O (10%4). Notice that the average position D* ¼ Dmin*þ A*

is contained within the proposed range, which entails a probe

lower position D*% A* ¼ Dmin*.

Since the problem has been solved using the aforementioned

Hankel transform, discrete space (radial) and angular wave-

number domains were dened. A radial extent arlCF*, with ar ¼
17.4 and lCF* ¼ 22.1, and a cutoff wavenumber akkmax*, with ak

¼ 5.7 and kmax* ¼ 4.4, were selected. The values of ar and ak

were chosen by a heuristic approach, verifying the convergence

of the solution. The discretization procedure is based on the

roots of a Bessel function of order zero, which are regularly

spaced-out of bn+1 % bn z p for n [ 1. Therefore, the discrete

radial positions and angular wavenumbers are dened as rn* ¼
bn/[akkmax*] and km*¼ bm/[arlCF*], respectively. In addition, the

number of meshpoints in both domains was xed to N ¼ 3071.

Numerical convergence of the solution for the liquid surface

position was tested, implying a relative error of order O (10%3).

For D*% A*$Dmin*, a time-step Dt* ¼ 10%2 was employed,

whereas, for D*% A*\Dmin*, a time-step Dt* ¼ 2 + 10%3 was

selected. Besides, we had arbitrarily chosen p ¼ 200 as the

maximum number of cycles for the simulations.

4 Results
4.1 Film surface dynamics

In Fig. 2, a typical surface shape is shown at different instants of

different oscillation cycles, using a phase-locking methodology

that provides a long view of the surface evolution. During the

rst quarter of the oscillation period, from f¼ 0 to①, while the

probe is relatively far from the surface, the liquid is quiescent,

showing the shape acquired at the end of the previous cycle. In

the case of the rst oscillation cycle p ¼ 0, the shape is a at

prole. When the probe moves below its average position, up to

②, the probe–liquid interaction increases, provoking the

formation of a small bump atop the former surface shape.

When the probe reaches its lower position at③, the bump is fed

on the liquid that is drained from the immediate surroundings.

Therefore, the bump surpasses the magnitude of the original

surface prole, but presents a sharp contour. Aerwards, from

④ to ⑤, the probe retreat diminishes the probe–liquid inter-

action, inducing a decrease in the magnitude of the surface

bump, together with a prole widening due to the liquid

spreading. Note that, when comparing approach and retreat

instants with the same probe distance (for instance, ②/④ and

①/⑤), the surface shape does not follow the same deformation

path, and the downward motion of the surface during the probe

retreat is slower than its upward displacement during the probe

approach. Finally, at the end of the cycle ⑥, the liquid bump

exhibits a wide shape with a slightly increased size, with respect

to the one observed at the beginning of the oscillation period. A

progressive accumulation of an important liquid amount below

the probe position takes place, as it can be observed from the

comparison between surface proles of the same phase f at

different oscillation cycles p. Throughout the rst 200 oscilla-

tions, in the transient regime for the case presented in Fig. 2b,

the bump rises vertically from 0 to almost 10%2 times R, at the

instant of maximum probe–liquid interaction, which is close to

③, and expands laterally up to the modied capillary length lCF.

In Fig. 2c, the surface shape evolution shown in Fig. 2b is

portrayed in the wavenumber domain, using the same phase-

locking methodology. When the probe is far from the liquid

surface, from f ¼ 0 to①, a bell-shaped distribution is observed

in a range of relatively small wavenumbers k* < 1, which

represents the remnant surface bump, due to the amassed

liquid of the previous oscillation cycle. As the probe approaches,

from ② to ③, a second bell-shaped distribution appears and

grows in magnitude, in a range of relatively large wavenumbers

k* > 0.2. This secondary protuberance corresponds to the

wavenumbers excited by the probe. At ③, the probe excited

wavenumber distribution reaches its zenith shape, which is a

direct consequence of the shortest probe–liquid separation

distance. Aerwards, from④ to⑤, as the probe retreats and the

probe–liquid interaction lessens, the secondary bell decreases

in size and moves towards smaller wavenumbers, until it

merges with the former small wavenumber distribution. Finally

at ⑥, the wavenumber distribution regains its original single

bell-shape, with a higher magnitude than the one observed at

the beginning of the cycle. Throughout the entire phenomenon,

the distribution grows slowly in magnitude and shis towards

smaller wavenumbers, as the number of oscillation cycles

increases. This wavenumber mutation indicates the diffusion of

deformation energy along gradually larger lm regions, from r*

¼ 1 to lCF*, which is coupled to the moderated lm relaxation

(drainage). In addition, the part of the distribution, which

corresponds to the wavenumbers excited by the probe, attains

quickly a stationary shape, overlaying almost exactly with one

another at every oscillation cycle and indicating that the probe–

liquid interaction reaches a nearly periodic steady-state.

The surface evolution at r* ¼ 0, dened as the surface apex

h0*, for the same conditions of the results displayed in Fig. 2, is

shown in Fig. 3. This consists of a case for which the lower

probe position D*% A* is larger than the threshold distance

Dmin*, corresponding to the jump condition in a static probe

situation. The transitory regime of h0* is displayed in Fig. 3a, for

the rst ve oscillations with p ¼ 0, 1, 2, 3, 4, and in Fig. 3b, for

the last cycle, with p¼ 199. As the probe approaches the lm, an

abrupt increase of h0* occurs aer an important deferring.

Aerwards, when the probe moves away, a slow shrinkage of h0*

is observed as a consequence of an unhurried lm drainage.

The increase of the h0* lower level, at the end of each oscillation,

is also a consequence of this fact. In addition, even though the

transitory regime is not entirely shown, the surface oscillation

amplitude, dened as W* ¼ max(h0*) % min(h0*), quickly

attains a constant value, which occurs because the probe–liquid

interaction reaches rapidly a steady-state.



The terms given in eqn (16b), evaluated at r* ¼ 0, are

depicted and correlated with the evolution of h0* for the last

oscillation cycle. The rst quarter of the cycle is depicted by a

lm relaxation stage, in which the curvature is opposed only by

the drainage effects. The remainder surface deformation from

the previous cycle lessens due to the curvature restoring action,

Fig. 2 (a) Probe center position D* as a function of the phase f, (b) surface vertical position h* as a function of the radial position r* and (c)
Fourier–Bessel coefficients Cm as a function of the wavenumber k*. The figures in (b) and (c) correspond to the different instants with phase f,
indicated in (a), and p ¼ 0, 1, 4, 9, 19, 49, 99, 199 oscillation cycles, growing in the sense of the arrows. This surface evolution has been obtained
for a probe time-average position D* ¼ 2:2121, a probe oscillation amplitude A* ¼ 1 and an angular frequency u* ¼ 3 + 10%1.



the term containing k0* in Fig. 3c. But the downward motion

(relaxation) of the surface apex h0* is signicantly opposed by

the viscous drainage term DP0*. Additionally, the probe starts

its motion far from the liquid surface, amplifying gradually its

inuence over the apex evolution. The hydrostatic-substrate

interaction term h0*[lCF*]
%2 remains negligible in comparison

with the other terms along the entire period. During the second

quarter, the increase of h0* occurs abruptly, which marks the

beginning of a strong probe–liquid interaction stage. In fact,

this interaction, which quickly attains a dominant role, pulls up

the surface, whereas the curvature term acts against the surface

deformation. The drainage effects, which had become 10 times

shorter in magnitude than the curvature and interaction terms,

also resist faintly the upward motion of h0*. The probe moves

away from the lm surface during the third quarter of the cycle,

provoking the shrinkage of the Ppl,0* interaction term. The

opposing curvature, which also decreases, becomes the domi-

nant term and acts as a restoring force that pulls the surface

towards its original non-deformed shape. At this moment, the

lm drainage turn its action against the curvature term,

opposing the downward motion of the surface apex. The drop of

h0* occurs rapidly at the beginning, until the interaction term is

overtaken by the viscous drainage term, indicating the end of

the probe–liquid interaction stage. Therefore, during the nal

quarter of the oscillation period, the lm evolution becomes

drainage-dominated and the apex slows down its downward

motion. As the probe gets away, the Ppl* interaction term loses

completely its strength, and the curvature restoring action is

only held by the lm drainage term DP0*.

One can discern from Fig. 3b that the periodic motions of the

probe and the surface apex are globally in antiphase. The

maximum apex positionmax(h0*) and the lowest probe position

D* ¼ D*% A* are almost synchronized (at f ¼ p), which is

consistent with a stage dominated by the balance between

probe–liquid interaction and curvature. In contrast, the

minimum value min(h0*) is not concurrent with the farthest

position D* ¼ D*þ A* (at f¼ 0), showing a phase shi of nearly

Df z p/2. This phase delay Df is a characteristic ngerprint of

a drainage effect, which provokes a time delay on the lm

reaction to the approaching probe. Df is thus dened as the

phase difference between the moment at which the probe starts

its downward motion and that at which the liquid lm begins

its upward displacement. Moreover, the phase fraction during

which the probe liquid interaction is signicant and mainly

opposed by the surface curvature is approximately 9Df/4.

Therefore, a wide Df indicates shorter periods of probe–liquid

interaction and larger drainage stages, and vice versa. It is

important to note that the alternation between interaction and

drainage dominated stages only occurs in the vicinity below the

probe position r* ˛ [0, 1]. For radial positions in the range r* ˛

(1, lCF*), only the balance between drainage and curvature

effects is observed along the oscillation cycle, whereas for more

distant positions beyond r* ¼ lCF*, the hydrostatic effects take

the place of drainage to resist the action of curvature.

In addition, based on the shape of the h0* curve in Fig. 3b, we

introduce the full-width half-maximum df, which points out the

sharpness of the surface oscillation response. df gives rise to

the classic nesse F denition:

Fig. 3 Probe and apex surface positions for (a) the first 5 oscillation cycles and (b) the last computed period p¼ 199, and (c) absolute value of the
capillary, probe–liquid interaction, viscous drainage and hydrostatic terms, given in eqn (16b) for the aforementioned last period. The viscous
drainage term changes its sign during each oscillation cycle, whereas the other terms keep their sense, because k0* > 0, Ppl,0* < 0 and h0* > 0.
The probe oscillation parameters correspond to the ones presented in Fig. 2.



F ¼ 2p

df
; (25)

which has been taken from the optical interference theory. This

quantity provides information about the way the deformation

energy is distributed along the lm surface. A large F indicates

an important transmission of deformation energy over a large

area of the liquid surface throughout each oscillation cycle,

whereas a short F is found when the energy remains concen-

trated below the probe position.

4.2 Probe oscillation amplitude and frequency effects

In Fig. 4, the effect of the oscillation amplitude A* is studied, for

xed angular frequency u*. The probe time-average position D*

and the oscillation amplitude A* were chosen so that the probe

lower position is the same for all the cases D*% A* ¼ 1:2121.

The qualitative description of the apex position as a function of

the phase during a period, for any considered case, corresponds

to the same evolution as the one described in Fig. 3. Despite the

qualitative similarity, important quantitative differences are

discerned when comparing the evolution curves for different

oscillation amplitudes. As A* decreases, and so does D* to keep

D*% A* constant, the probe–liquid interaction strengthens and,

as a consequence, h0* maintains a higher level along the entire

oscillation cycle. For smaller values of A*, the curvature/inter-

action stage arrives earlier in a cycle, marked by a shorter Df,

which indicates that the probe–liquid interaction is faintly

deferred by the lm drainage. In addition, a long duration and

strong interaction stage, together with a late beginning of the

drainage stage, is observed for a small amplitude A*, which is in

accordance with a higher nesse F.

In Fig. 5, different angular frequencies u* are compared,

whereas the time-average position D* and the oscillation

amplitude A* are xed. As the probe trajectory is the same,

whatever the frequency, so does the probe–liquid interaction

term. Different values of p are considered in Fig. 5, according to

the angular frequency u*, in order to compare oscillation cycles

that start at the same time (except the quasi-static case), which

in the presented case is t* ¼ 2pp/u* ¼ 421.8. The surface apex

evolution is symmetric with respect to f ¼ p for very low

angular frequencies (typically u* # 10%6), corresponding to a

quasi-static situation. For larger values of u*, a symmetry

breaking is induced by the gradually increasing role of the lm

relaxation (drainage). In addition, the maximum deformation

max(h0*) and the surface amplitude W* decrease, whereas the

lower lm position min(h0*) grows, for higher angular

frequencies u* (short oscillation periods). A more symmetric

apex evolution provokes a shorter phase delay Df and a higher

nesse F, which indicates that the curvature/interaction stage

begins earlier and lasts longer during an oscillation cycle, and

that the lm relaxation occurs faster in relation to the probe

motion (low oscillation frequency u*). An asymmetric case

denotes the opposite behaviour, as it can be clearly observed in

Fig. 5.

5 Wavenumber analysis
5.1 Cutoff wavenumbers

In order to understand the behaviour of the liquid lm, one

seeks the range of wavenumbers which are involved in this

Fig. 4 (a) Probe position D*, and (b) apex position h0*, as a function of
phase f. All the curves were obtained for the same angular frequency
u* ¼ 3 + 10%1 and probe lower position D*% A* ¼ 1:2121, but for
different values of the probe oscillation amplitude A*.

Fig. 5 (a) Probe position D*, and (b) apex position h0*, as a function of
phase f. All the curves were obtained for the same time-average probe
position D* ¼ 2:2121 and probe oscillation amplitude A* ¼ 1, but for
different values of the angular frequency u*.



phenomenon. The reciprocal of the modied capillary length

[lCF*]
%1works as the lower cutoffwavenumber of an innate band-

pass lter, since any distortion of the surface near r* ¼ 0 tends

naturally to propagate towards the modied capillary length.

The upper cutoff, which is close to the wavenumber kmax*,

wherein the initial growth rate is maximum, is thus

approximately:

kmax*x2p

&

1þ 2% e0

e1eD

'

; (26)

where:

eD ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½D*'2 % 1

q

; e0 ¼ eD

&

K1ðeDÞ
K2ðeDÞ

'

;

e1 ¼ eD

(

&

K1ðeDÞ
K2ðeDÞ

'2

% K0ðeDÞ
K2ðeDÞ

)

þ 2

&

K1ðeDÞ
K2ðeDÞ

'

:

(27)

K0, K1 and K2 are zero, rst and second order modied Bessel

function of the second kind. Themaximization procedure of the

wavenumber distribution at t* ¼ 0, which leads to nd kmax*, is

detailed in Appendix B. It is important to note that there is no

relationship between kmax* and the other parameters appearing

in eqn (18), i.e. the modied capillary length lCF* and the

Hamaker number Ha. The wavenumber kmax* that corresponds

to the lower probe position D* ¼ D*% A* operates as the upper

cutoff of the innate lm band-pass lter. Furthermore, this

particular value of kmax* has been employed as the cutoff

wavenumber in the numerical method.

The cutoff wavenumbers [lCF*]
%1 and kmax* have been pre-

sented in Fig. 2, proving the existence of a natural band-pass

lter, which arises spontaneously from the physical and

geometrical properties of the probe–lm system. In other

words, the structures that are observed at the lm surface are

always larger than [kmax*]
%1 but shorter than lCF*.

5.2 Wavenumber dynamics

Further understanding of the probe–lm coupling can be ach-

ieved by assuming that D*[ x*h*, a small surface deformation

compared to the separation distance, in eqn (12b). Aer

applying the Hankel transform to the interaction potential, one

nds Q * ¼ %[k*]2Q s*, with Q s* given by:

Q s*ðk*;D*Þ ¼
K2

4

k*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½D*'2 % 1

q

5

½D*'2 % 1
: (28)

The use of eqn (28) and a subsequent Fourier decomposition

turns eqn (18) into a linear non-homogeneous ODE with

analytical solution. This procedure, which is explained in-depth

in Appendix C, yields the solution in the wavenumber domain:

N * ¼ pHa

4x*

(

a0½1% expð % n*t*Þ'

þ
X

N

j¼1

8

aj cos
9

ju*t*% 4j

:

% ~aj exp
9

% n*t*
:;

)

;

(29)

where

~ajðk*Þ ¼
ajn*

sj

; sjðk*Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ ju*'2 þ ½n*'2
q

;

4jðk*Þ ¼ arctan

4

ju*

n*

5

:

(30)

Eqn (29) provides an entire portrait of the wavenumber

distribution dynamics and, as a consequence, the lm surface

evolution, although its Hankel transform must be obtained

numerically. Additionally, a matching wavenumber ku*

emerges from the comparison between n* and u*. Using the

denition given in eqn (20), ku* is given by:

ku* ¼ 1
ffiffiffi

2
p

%

% ½lCF*'%2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½lCF*'%4 þ 4u*

q

(1=2

: (31)

The wavenumber-dependent coefficients a0 and aj, which are

dened in Appendix C and can only be computed numerically,

together with the coefficients ãj and the phase 4j, are shown in

Fig. 6 as a function of the wavenumber k*, wherein two different

behaviours are discerned in respect of ku*. For small wave-

numbers [lCF*]
%1 < k* < ku*, the a0 coefficient dominates over

the others and a constant phase 4j ¼ p/2 is found for any value

of j. In other words, as it can be discerned from eqn (29), the

surface shape contribution, given by wavenumbers k* < ku*, is

not modied by the probe oscillation. Therefore, this wave-

number range portrays the transitory behaviour of the lm

surface, in the large time scale t* - [lCF*]
4. As k* takes values

near the matching wavenumber ku*, the rst coefficients aj and

ãj, obtained with small j values, gain importance with respect to

a0. The phase 4j displays the same trend for any j, diminishing

its value towards a zero phase as k* increases, and prematurely

triggered for the large j terms. For large wavenumbers, ku* < k* <

kmax*, all the coefficients become as weighty as a0, and a

constant phase 4j ¼ 0 is recovered for any j. Therefore, as

deduced from eqn (29), the surface shape contribution dis-

played by wavenumbers k* > ku* is completely driven by the

probe oscillation. Thence, this range of large wavenumbers

describes the periodic response of the lm surface, in the short

time scale t* - [u*]%1.

Briey, the lm surface shape is partially described by a

prole that saturates exponentially (given for k* ˛ [(lCF*)
%1,

ku*]), due to the gradual amassing of liquid below the probe.

This description is in agreement with the behaviour depicted in

Fig. 2. In turn, along an oscillation cycle, the probe motion

excites wavenumbers in the range k* ˛ [ku*, kmax*], which

provokes the surface oscillation around the saturation prole,

spanning in the radial direction from the position beneath the

probe to 15 times the probe radius. Since the time decay coef-

cient n* is a function of the wavenumber k*, this probe excited

wavenumber range, ku* < k* < kmax*, reaches a steady-state

earlier than the le-hand side wavenumber distribution, k* <

ku*.

It is important to note that for thin lms (small E* and,

consequently, shorter lCF*) and higher frequencies u*, the



matching wavenumber ku* takes larger values. In this situation,

the range of wavenumbers excited by the probe is narrowed,

which also provokes a reduction in the radial extent of the lm

surface oscillation. The inverse effect should be produced for

thick lms (large E* and lCF*) or lower frequencies u*.

Since the evolution of N * lies on the wavenumber-dependent

coefficient n*, a complete steady-state surface oscillation is

reached only when time is comparable with the reciprocal of the

lower cutoff wavenumber, i.e. t* [ [lCF*]
4. Thenceforth, the

stationary periodic regime is obtained when the exponential

functions in eqn (29) are dismissed. For the case of a “slow”

probe motion, which corresponds to a low frequency u* (
[lCF*]

%4, the matching wavenumber becomes ku* z 0, and the

coefficients sj and the phases 4j reduce to sj ¼ n* and 4j ¼ 0.

This leads to the “slow” wavenumber distribution, which in the

stationary state reduces to:

N * ¼ pHa½k*'4
4x*n*

Q s
*ðk*;D*Þ: (32)

The liquid lm has enough time to recover its nearly at

shape at the end of each oscillation cycle, which corresponds

approximately to the static deformation obtained with the

farther probe position D* ¼ D*þ A*. The lm drainage occurs

faster than the probe action, which inhibits the amassing of

liquid and the increase of the lm surface deformation.

Therefore, the lm oscillation process develops as a quasi-static

phenomenon, revealing a surface shape that is equal to the

static probe case for the same D*, at any instant of the oscilla-

tion cycle. The proof of this fact is the behaviour of the apex

deformation h0* during an oscillation, which is symmetric with

respect to f ¼ p, as shown in Fig. 7.

In contrast, the probe motion is said to be “fast” when u*[

[kmax*]
4, which yields sj ¼ ju* and 4j ¼ p/2. Since kmax* > lCF*,

therefore ku* - [u*]1/4, which implies that a0 is dominant over

any aj. As a consequence, the “fast” wavenumber distribution

for the stationary state is given by:

N * ¼ pHaa0

4x*
: (33)

In this situation, the liquid lm does not have sufficient time

to react to the probe oscillation. During the transitory regime,

the lm was not able to dissipate the energy injected at each

cycle, which has been rather stored as an excess surface energy.

Its amount is equivalent to the potential energy due to the liquid

volume gathered near the probe position. Therefore, at the

stationary state, the liquid surface remains with a “frozen-like”

deformed shape, which is described by eqn (33). Since this

expression only contains the constant term of the Fourier series

of Q s*, the surface shape does not correspond to a deformation

prole generated by a static probe. Owing to the “fast” probe

motion, the liquid lm does not have enough time to spread the

excess liquid volume, from the surroundings of r* ¼ 0 towards

the outer zone, to recover its at prole, as it does for the quasi-

static case. As it is shown in Fig. 7, the lm surface keeps the

same sharp shape (around r* ¼ 0) along the entire oscillation

cycle, as well as constant apex position h0* and a deformation

extent that is shorter than lCF*.

Also in Fig. 7, the surface apex position is shown for an

oscillating probe with a frequency of u* ¼ 3 + 10%1, corre-

sponding to the intermediate frequency case shown in Fig. 5,

which also occurs between the quasi-static and frozen-like

behaviours. As it has already been mentioned, the apex evolu-

tion is not symmetric with respect to f ¼ p because of the

Fig. 7 Stationary state apex surface position h0* as a function of phase
f, in the stationary regime. Insets display the surface position h* as a
function of the radial position r* for f ¼ 0 and f ¼ p. All the curves
were obtained with D* ¼ 2:2121 and A*¼ 1. The quasi-static behaviour
corresponds to eqn (32), in which u* ( [lCF*]

%4, whereas the frozen-
like behaviour is given by eqn (33), in which u* [ [kmax*]

4, and the
intermediate steady-state case, u* ¼ 3 + 10%1, is yielded by eqn (29)
with j ¼ 10 coefficients.

Fig. 6 (a) Coefficients and (b) phase of the solution given by eqn (29),
for D* ¼ 2:2121, A* ¼ 1 and u* ¼ 3 + 10%1. The arrows indicate the
terms corresponding to an increasing value of j.



alternating dominant role between lm drainage and probe–

liquid interaction. In addition, as it can be discerned from a

comparison between eqn (29) and (33), a lm surface, in the

intermediate regime and the steady-state, oscillates around the

frozen-like shape.

6 Critical oscillation parameters and
wetting transition

Fig. 8 shows the surface vertical position and the Fourier–Bessel

coefficients Cm for different probe lower positions, above and

below the value D*% A* ¼ Dmin*, at the instant of maximum

probe–liquid interaction f ¼ p. For relatively large distances

D*% A*$Dmin*, the lm surface shows a narrow prole, below

the probe position r* ˛ [0, 2], surrounded by a not deep annular

crater. Even though the vertical position of the liquid surface

increases at each cycle, it remains far away from the probe lower

surface. In addition, the direct effect of the probe–liquid inter-

action, represented by the large wavenumber side k* > ku* of the

Cm distribution, quickly reaches a steady-state, opposite to the

small wavenumber side k* < ku*, which indicates the slow

diffusion of deformation energy towards larger radial positions,

before attaining the stationary regime. On the other hand, for

shorter separation distances D*% A*\Dmin*, the surface

prole can never reach a steady-state, because the liquid jumps-

to-contact the probe. The probe–liquid interaction increases at

each oscillation, provoking the amassing of liquid below the

probe position. Thus, the lm surface exhibits progressively a

more stretched prole, which becomes a vertical column of

liquid at the last observable oscillation. At this last p cycle, at

which the p value decreases along with the lower probe position

D*% A*, the liquid touches the probe surface. Under these

circumstances, the Cm distribution of the last period p presents

a large wavenumber side k* > ku*, that is considerably magni-

ed with respect to the previous cycles, highlighting a signi-

cant augmentation of the probe–liquid interaction, which

cannot attain a stationary regime. As observed when comparing

Fig. 8e and f, the probe wetting is characterized by a Cm distri-

bution of the same shape and magnitude in the wavenumber

range k* > ku*. As a consequence, the same deformation below

the probe and a threshold intensity of the interaction are found,

regardless of the number of cycles p before the jump-to-contact

occurs. Nevertheless, the value of p indicates the periods that

the system takes to attain this interaction frontier, due to the

alternating attraction–relaxation stages. Therefore, a sequential

transition from a stable surface oscillation regime with p/N,

observed for distant lower probe positions D*% A*.Dmin*, to a

delayed wetting phenomenon with p > 0, for D*% A*\Dmin*,

and an instantaneous probe wetting event for p ¼ 0, for closer

values D*% A* ( Dmin*, is discerned.

In Fig. 9, the surface oscillation amplitude W*, the phase

delay Df and the nesse F, already dened in Fig. 3 and eqn

(25), are shown as a function of the number of oscillation cycles

p and for a probe oscillation amplitude A* ¼ 1. For relatively

large lower distances D*% A*$Dmin*, a stationary state is

pursued, and thusW* and Df reach a saturation value aer the

transient regime, consisting of several oscillation cycles pz 25,

whereas F slowly converges towards a constant level. The nal

stage of W*, Df and F becomes higher as D*% A* diminishes

and approaches Dmin*. For slightly shorter distances

0:95Dmin*\D*% A*\Dmin*, aer the initial stage of the

Fig. 8 (a–c) Surface vertical position h* as a function of the radial position r* and (d–f) Fourier–Bessel coefficients Cm as a function of the
wavenumber k*, for (a and d) D*% A* ¼ 1:009Dmin*, a non-wetting regime, (b and e) D*% A* ¼ 0:948Dmin*, a delayed wetting, and (c and f)
D*% A* ¼ 0:945Dmin*, an instantaneous wetting phenomenon. All the curves were obtained for A*¼ 1 and u*¼ 3+ 10%1, and they correspond to
the phase f ¼ p.



transient regime, the growing rates of W*, Df and F tend to

stabilize, although, they slowly continue to increase with faint

slopes. For D*% A*\0:95Dmin*, the surface amplitude W* and

the nesse F curves look like inverse hyperbolic tangents. These

quantities always increase, suffering from an important

decrease in the growth rate during the rst cycles and reaching

a minimum slope, and then, as the growth rate becomes

unbounded again, W* and F are amplied until they diverge

near a vertical asymptote. In turn, for these relatively small

probe lower distances D*% A*, the phase delay Df increases

strongly during the rst oscillations, which corresponds to an

enhancement of the lm drainage effects and an important

surface deformation along each oscillation cycle. Aerwards, as

the cycles go by, Df calms down and its growth rate shows more

gentle slopes, until it reaches a critical value Df - 0.58p,

wherein it completely halts.

The divergence of W* and F, together with the halt of Df,

indicates the wetting of the probe by the liquid lm depending

on the lower probe position D*% A*. In Fig. 10, typical phase

spaces, of the apex position h0* and the separation distance D*,

are shown for different values of D*% A*. For

D*% A* ¼ 1:01Dmin*, the liquid lm reaches the oscillatory

steady-state, a non-wetting behaviour, and thus a limit cycle

attractor is observed in the phase space. This limit periodic

trajectory, of h0* as a function of D*, exhibits a “chistera” shape,

following a clockwise motion with smooth slopes around

D* ¼ D*þ A* and a stepper path near D* ¼ D*% A*. This

particular pattern is shown in Fig. 10a, up to p ¼ 199 oscillation

cycles. For D*% A* ¼ 0:95Dmin*, a delayed probe wetting of p ¼
17 cycles is observed. In this case, although the apex displace-

ment seems to reach a periodic orbit, its trajectory shis

constantly towards greater values of h0*. As a consequence of

this gradual augmentation, the probe–liquid interaction

becomes unbounded and the liquid rises to touch the probe, at

the half-period of the p ¼ 17 cycle in Fig. 10b. Finally for

D*% A* ¼ 0:94Dmin*, the liquid lm touches the probe at the

rst oscillation cycle, as it is shown in Fig. 10c. Therefore, at the

half-period of the rst cycle p ¼ 0, the instant of maximum

probe–liquid interaction, an instantaneous wetting process

occurs aer a single barely curved trajectory of the liquid lm

apex h0*. In brief, the liquid lm wets the probe for

D*% A*\Dmin* at a limit number of cycles p, which lessens as

the probe lower position D*% A* is shortened.

Fig. 9 (a) Surface oscillation amplitude W*, (b) phase delay Df and (c)
finesse F as a function of the number of cycles p. All the curves were
obtained for the same angular frequency u* ¼ 3 + 10%1 and probe
oscillation amplitude A* ¼ 1, but for different time-average probe
positions in the range D*˛½2:1383; 2:2121'. D* decreases in the sense
of black arrows.

Fig. 10 Phase diagram of the apex position h0* and the separation
distance D* of the three different behaviours: (a) non-wetting for
D*% A* ¼ 1:01Dmin*, showing a transient regime and approaching a
limit periodic orbit in the permanent state, (b) delayed wetting for
D*% A* ¼ 0:95Dmin*, showing a similar transient regime but diverging
from a possible limit orbit at the half-period of the p ¼ 17 cycle, and (c)
instantaneous wetting for D*% A* ¼ 0:94Dmin*, showing a monotonic
trajectory that diverges immediately at p ¼ 0. Curves obtained with
A* ¼ 1 and u* ¼ 3 + 10%1.



7 AFM experimental consequences

The results presented in this theoretical study correspond to a

typical AFM–lm system, consisting of a silicon probe oscil-

lating near a liquid PDMS lm placed over a silicon wafer

(substrate), with specic physical and geometrical properties

and a single combination of dimensionless parameters (Ha, Bo,

Ĥ, E*), which has been already given in Section 3.3. The effect of

these dimensionless numbers can be observed and analysed

through their relationship with the merging length, time and

wavenumber scales (see eqn (13) and (17) and Fig. 2): modied

capillary length lCF ¼ 2.2 + 10%7 m, lm time scale s ¼ 1.35 +
10%7 s, transitory regime duration t - s[lCF/R]

4 ¼ 3.2 + 10%2 s

and lower cutoff wavenumber k ¼ [lCF]
%1 ¼ 4.5 + 106 m%1. In

addition, we recall the static threshold Dmin, the separation

distance below which the liquid jumps-to-contact a static

probe, which for the aforementioned parameters is Dmin ¼
1.2017 + 10%8 m.

In contrast, different combinations of the probe oscillation

parameters have been presented. The time-average probe posi-

tion D and oscillation amplitude A inuence directly the lm

surface oscillation amplitude W, the probe wetting conditions

and the corresponding limit of oscillation cycles p (see Fig. 4, 9

and 10). In addition, the impact of the probe oscillation

frequency u lies on the wavenumber scales: upper cutoff

wavenumber kmax and matching wavenumber ku (see eqn (38)

and (31)). It is important to remember that these two quantities

delimit the range of wavenumbers excited by the approach of

the probe. Considering the aforementioned probe/lm/

substrate system and common dynamic NC-AFM tests, with

frequencies in the range of 101 to 103 kHz, oscillation ampli-

tudes and probe–liquid separation distances restricted to the

range of 1–25 nm, the probe activates a wavenumber range with

lower ku ˛ [107, 108] m%1 and upper kmax ˛ [108, 109] m%1

boundaries.

This phenomenon can be analysed from an analogous

viewpoint, performing a comparison between the two main

time scales: the reciprocal of the angular frequency u
%1, cor-

responding to the experimental AFM time scale, and the char-

acteristic lm time scale s, which also refers to the lm

relaxation time.30 Therefore, the dimensionless angular

frequency u* ¼ us is also identied as the Deborah number De

¼ ugE3/3mR,4 which herein characterizes the liquid lm

response to a periodic AFM nano-probe periodic excitation.

Large Deborah numbers De are obtained for liquids of high

viscosity m or relatively thin lms E, which correspond to large

relaxation times s. This situation is also discerned when

the lm is perturbed by a probe oscillating with a high

frequency u [ [Rkmax]
4/s, where kmax depends on the lower

probe position D % A. This high frequency case also yields a

relatively large matching wavenumber, approximately ku x R

[us]1/4. In this large De regime, the lm time scale s governs the

dynamics of the liquid surface. Since the surface h(r, t) evolves

during the transient regime, nally reaching a steady-state h(r)

independent of time t (see Fig. 7), a frozen-like behaviour of the

lm is observed. Therefore, all the terms in eqn (11) become

constant over time. The viscous drainage restrains and slows

down the lm dynamics, which coherently provokes a phase

delay Df / p. As indicated by the observed nesse F / 2, the

surface deformation is restrained to a span shorter than the

modied capillary length lCF, and to relatively small vertical

displacements. The deformation energy is gathered below the

probe position, generating a very narrow surface prole, due to

the slow lm relaxation (drainage). Considering the probe–

lm–substrate system analysed in this work, this frozen-like

state should be observed for a probe oscillating around an

average position D # 35 nm with an amplitude of A ¼ 10 nm,

only at frequencies above 10 MHz, which is only achieved with

ultra-high frequency probes for high-speed AFM.

Small Deborah numbers De are found for liquids of low

viscosity m or relatively thick lms E, which yields short relax-

ation times s. Equivalent similarity conditions are also gener-

ated by low probe oscillation frequencies u( 1/s[lCF/R]
4, which

for our specic thin lm corresponds to u ( 3.1 + 101 s%1,

leading to a matching wavenumber ku ¼ 0. In this small De

regime, the AFM experimental time scale [u]%1 determines the

lm evolution, displaying a quasi-static behaviour. The viscous

drainage occurs quickly and a full-period probe–liquid inter-

action is observed, leading to a fast and full lm reaction, which

corresponds to a phase delay Df / 0. At each instant, the

surface attains the equilibrium shape of a static probe–liquid

interaction phenomenon, with a maximum vertical displace-

ment and a deformation extent that covers lCF. Therefore, the

drainage term in eqn (11) becomes negligible, and the probe–

liquid interaction is only opposed by the curvature term

throughout an oscillation cycle. This behaviour is validated by a

large valued nesse F, pointing out that the deformation energy

is spread over a large radial span, owing to a relatively rapid lm

relaxation (drainage). For the parameters of the proposed

probe–lm–substrate system, this regime is perceived for a

probe oscillating with a frequency lower than 5 Hz, which is

hardly considered as a dynamic AFM mode. Note that this

frequency increases as the thickness of the lm is reduced. For

instance, for a lm of 1 nm, the quasi-static threshold frequency

is 5 + 105 Hz, which means that almost the entire NC-AFM

operation range presents a quasi-static behaviour. This last case

must be considered for example when a thin layer of water is

adsorbed over a silicon wafer.1,15

A comparison between the different De regimes, corre-

sponding to a thin lm of 10 nm, and several AFM modes,

showing their frequency u range, is depicted in Fig. 11. The

upper limit of the quasi-static behaviour, which is xed for a

given lm thickness, also denes the limit of force spectroscopy

tests, whereas the lower boundary of the frozen-like behaviour

moves according to the probe lower position. In the presented

diagram, normal NC-AFM experiments occur in the transition

zone, above the quasi-static boundary, which indicates that the

probe oscillation provokes a signicant surface oscillation

amplitude and a transmission of surface energy to a large radial

extent, but not as important as for the quasi-static case. The

frozen-like boundary is located within the higher frequency

range of high-speed NC-AFM experiments, implying surface

proles with small surface oscillation amplitudes and



restrained radial spans, under these conditions. Although an

equivalent diagram can be obtained for a lm of different

thickness, a particular interpretation of the AFM modes should

be done due to the thickness-dependence of De, s and lCF. For

instance, considering a lm with a thickness of 1 nm, a large

range of normal NC-AFM experiments may be comprised in the

quasi-static regime. On the other hand, the quasi-static state is

never observed for NC-AFM tests over a lm of 100 nm, because

the frequency needed to reach this situation becomes ve

orders of magnitude smaller than that for the 10 nm lm case.

In Fig. 12, for a xed oscillation amplitude A* ¼ 1, the limit

number of oscillations before wetting p is shown as a function of

D*% A*% Dmin* the difference between the lower probe position

and the staticminimumseparationdistance, also corresponding

to the threshold jump-to-contact distance of a quasi-static situ-

ation. The trend for an intermediate angular frequencyu*¼ 3+
10%1, which is located in the intermediate Deborah regime

[lCF*]
%4 < De < [kmax*]

4, is shown in Fig. 12. The instantaneous

probe wetting occurs for D*% A*\Dmin*% 0:066, whereas a

delayed wetting behaviour is observed within the zone

%0:066\D*% A*% Dmin*\ % 0:057, and the oscillating steady-

state without wetting takes place for D*% A*\Dmin*% 0:057.

These three situations, which correspond to previously

mentioned behaviours (see Fig. 10), are connected by a mono-

tonically increasing dependency of p on D*% A*% Dmin*. Inter-

estingly, the non-wetting transition does not take place at

D*% A* ¼ Dmin*, the jump-to-contact threshold distance for a

static probe. In addition, the wetting transition for the two

asymptotic frequency cases is also depicted in Fig. 12, for A*¼ 1.

The right-hand side inlet in Fig. 12 corresponds to a small

Deborah regime De ( [lCF*]
%4 (quasi-static lm behaviour), in

which wetting may occur instantaneously for D*% A*\Dmin*,

following the same trend as the phase diagram in Fig. 10c with

p¼ 0. Under these conditions, an oscillating steady-state should

always be observed for D*% A*$Dmin*, equivalent to the peri-

odic trajectory shown in Fig. 10a. A delayed wetting event can

never occur for the quasi-static situation, and a straightforward

transition fromwetting tonon-wetting is observed, displayedas a

vertical asymptote overlapping the abscissaD*% A*% Dmin* ¼ 0

in the right side inlet in Fig. 12. Dynamic NC-AFM experiments

executed in this smallDe regime are restricted to large separation

distances D % A > Dmin, which reduces signicantly the probe

sensitivity, in order to inhibit the probe wetting. On the other

hand, the large Deborah regime De [ [kmax*]
4 (frozen-like lm

behaviour) is displayed in the le-hand side inlet of Fig. 12. In

this case,wetting is reprieved to shorter separationdistances and

a vertical asymptote placed at D*% A*% Dmin* ¼ %0:153 indi-

cates the wetting transition. This threshold distance has been

Fig. 11 AFM modes and liquid film behaviour depending on the Deborah number De. The boundaries for the quasi-static and frozen-like
behaviour were placed according to their values for a film thickness of 10 nm and a lower probe position 1\D*% A*\3:5. Arrows (red) indicate
the impact of decreasing the parameters: film thickness E* and the lower probe position D*% A*.

Fig. 12 Number of oscillation cycles p before wetting as a function of
the difference between the lower probe positionD*% A* and the static
minimum separation distance Dmin*, obtained with A* ¼ 1 and u* ¼ 3
+ 10%1, within an intermediate Deborah regime [lCF*]

%4 <De < [kmax*]
4.

The quasi-static and frozen-like trends, including their wetting
thresholds, are also depicted.



obtained by solving D*% A* ¼ x*h0*þ 1, with the use of eqn

(33). Therefore, when dynamic NC-AFM experiments are per-

formed in this large De regime, the liquid lm surface can be

scanned at shorter probe–liquid separation distances D % A <

Dmin, which increases the apparatus resolution without the risk

of wetting the probe or engendering a signicant surface

deformation.

When performing NC-AFM experiments over liquids, one

must prevent the sample damage and the probe wetting. The

employment of a high oscillation frequency (large De regime)

allows “freezing” of the dynamic response of the liquid lm,

which generates the following advantages:

(1) The probe–liquid separation distance can be shortened,

increasing the AFM sensitivity and preserving the sample

physical integrity. In the presented case, this distance, which

corresponds to the probe lower position D*% A*, can be

shortened by around 1.5 nm (see Fig. 12), around 13% of the

static threshold separation distance11 Dmin.

(2) The amplitude of the liquid surface oscillation is small,

thus the effect of its displacement over the measured topog-

raphy is reduced. The maximum deformation of the surface is

reduced up to 86%, from the quasi-static to the frozen-like

regime (see Fig. 7).

(3) The surface oscillation is restrained and, as a conse-

quence, the noise in the AFM signal is also diminished.

Since the probe–liquid separation distance is sometimes

hard to control precisely in experiments, high oscillation

frequencies contribute to performing successful measurements

by creating a margin of the probe lower position. In addition,

more accurate NC-AFM data can be retrieved by increasing the

probe frequency, even if the large De regime is not always

attainable.

8 Conclusions

The dynamic response of a liquid lm due to its interaction with

an oscillating nano-probe was studied by means of numerical

simulations. Our analysis yielded the wavenumber scales, that

limit the range excited by the probe at each oscillation cycle and

that corresponding to the natural lm relaxation. The time

scales which describe the transitory regime duration and the

lm relaxation were determined, as well as the phase duration

along an oscillation cycle for the governing deformation

mechanisms. The effects of the time-average probe position, the

probe oscillation amplitude and frequency were analysed. For

large separation distances, a theoretical solution in the wave-

number domain was obtained, which completely describes the

dynamics of the lm surface. Moreover, asymptotic behaviours

for the probe oscillation frequency were derived from the

solution. A quasi-static deformation regime is observed for low

oscillation frequencies, whereas a frozen-like behaviour is

found for high frequencies. For short separation distances, the

solution provided evidence of critical combinations of oscilla-

tion parameters (time-average position, amplitude and

frequency) that lead to prove wetting. Therefore, an educated

selection of the oscillation parameters can be made based on

our results, depending on the experimental objectives, instead

of nding them heuristically.

It is important to notice that the present analysis does not

include the effect of thermal agitation. Under this premise, our

work should be considered as a rst order approach, which

yields the average behaviour of a liquid lm interacting with an

oscillating probe. A posteriori and extensive analysis, including

higher order corrections (which should certainly scale with kBT),

as it has been recently done for a static probe–bulk liquid

interaction,35 must be taken into account in order to obtain

more precise picture of the lm interface.

The surface lm dynamics, exposed in this paper, may be

useful to understand liquid properties and their behaviour at

the micro- and nanoscopic scales. Furthermore, it has been

proven that the dynamic NC-AFM mode provides a non-intru-

sive tool to scan liquid samples, when a good choice of experi-

mental parameters (frequency, free and set-point amplitude) is

made. We expect that this work will lead to a quantitative

understanding of the AFM imaging of so samples, mainly in

the recovery of unspoilt sample topographies. Additionally, the

introduced ideas should also be applied to analyse AFM

experimental results when a thin lm of water covers the

sample, as it is usually observed under uncontrolled humidity

conditions. The importance of quantifying the effect of the

adsorbed thin layer has been emphasised,15 because surface

deformation and capillary effects may lead to false interpreta-

tions and to obtain inaccurate topographies.

Appendix
(A) Hankel transform and inverse transform denitions

The Hankel transform of order zero of a function f, dened in

the spatial r* and temporal t* domains, is dened by:

gðk*; t*Þ ¼ ℍ0f f ðr*; t*Þg
¼ 2p

ð

N

0

f ðr*; t*ÞJ0ðk*r*Þr*dr*; (34)

whereas the inverse transform of a function g, dened in the

angular wavenumber k*¼ Rk and time t*¼ t/s domains, is given

by:

f ðr*; t*Þ ¼ ℍ0
%1fgðk*; t*Þg

¼ 1

2p

ð

N

0

gðk*; t*ÞJ0ðk*r*Þk*dk*;
(35)

where J0 is the zero-order Bessel function of the rst kind.

(B) Upper wavenumber cutoff

At the rst stages of the phenomenon, the upper cutoff kmax*

corresponds to the wavenumber at which the growth rate is

maximum. At t* ¼ 0, the lm free surface is at h* ¼ 0 and, as a

consequence, its related wavenumber distribution is N * ¼ 0.

Nevertheless, the growth rate vN *=vt* is not null at this stage. If

one applies:

v

vk*

&

vN *

vt*

'

¼ 0 with N * ¼ vN *

vk*
¼ 0 (36)



to eqn (18), and solves for k* at t* ¼ 0, one nds the prime

wavenumber k* ¼ kmax* that is instantaneously excited for a

given separation distance D*. This procedure leads, as a rst

step, to the expression:

2Q *þ k*
vQ *

vk*
¼ 0: (37)

Making h* ¼ 0 in eqn (12b) and applying the Hankel trans-

form, the interaction potential Q * can be simplied in the same

way as for eqn (28). Taking into account this complexity

reduction, and making k* ¼ kmax*, the following non-linear

implicit equation is obtained:

kmax*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½D*'2 % 1

q

8

>

>

<

>

>

:

K1

4

kmax*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½D*'2 % 1

q

5

K2

4

kmax*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½D*'2 % 1

q

5

9

>

>

=

>

>

;

¼ 2; (38)

which relates the wavenumber kmax* and the separation

distance D*. K1 and K2 are rst and second order modied

Bessel function of the second kind. An expansion to the rst

order of the le hand-side term around kmax* ¼ 2p, the wave-

number naturally given by the probe radius, yields eqn (26). In

Fig. 13, where kmax* is displayed as a function of D*, good

agreement between the exact solution of eqn (38) and the

approximation given by eqn (26) is observed over the entire

domain of D*.

(C) Wavenumber analytical solution

Eqn (28) allows us to rewrite eqn (18), which becomes a linear

non-homogeneous ODE with analytical solution. Considering a

at surface as the problem initial condition, i.e. h* ¼ N * ¼ 0 at

t* ¼ 0, the expression of N *(q*, t*) is thus provided by:

N * ¼ pHa½k*'4
4x*

ðt*

0

Q s
*ðk*;D*Þexpð% n*½t*% Y*'ÞdY*; (39)

where the probe position is temporarily given by D* ¼ D*(Y*),

Y* being a time integration variable. Moreover, as Q s* is an even

function, it can be decomposed into a Fourier cosine series,

which is represented for D*(t*) by:

Q s
*ðk*;D*Þ ¼ n*a0

½k*'4
þ
X

N

j¼1

ajsj

½k*'4
cosð ju*t*Þ;

a0ðk*Þ ¼
½k*'4u*
2pn*

ð2p=u*

0

Q s
*ðk*;D*Þdt*;

ajðk*Þ ¼
½k*'4u*
psj

ð2p=u*

0

Q s
*ðk*;D*Þcosðju*t*Þdt*;

(40)

where sj is given in eqn (30). An in-depth analysis indicates that

a0 depends only on the time-average probe position D* and

oscillation amplitude A*, rather than on the angular frequency

u*. The Fourier decomposition allows us to nd eqn (29). A

comparison between the numerical solution and the approxi-

mation given by eqn (29), with j ¼ 10 coefficients, is shown in

Fig. 14. Excellent agreement has been found, mainly in the

qualitative behaviour of the lm surface, in both space and

wavenumber domains. The magnitude difference, obviously

due to the approximation D* [ x*h*, is 10% at the most in

space and less than 5% in the wavenumber domain.
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