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a  b  s  t  r a  c  t

A  model poly­epoxy surface  formed by the  reaction of DGEBA and EDA is studied  by  the  combination

of experiments  and DFT calculations.  A  special synthesis  protocol  is presented  leading to the formation

of a  surface that is smooth  (Sa <  1 nm), chemically  homogeneous, and that  presents  a low­defect  density

(0.21 mm−2),  as  shown  by AFM  characterizations.  Then, XPS is used for the  determination  of the  elemental

and functional  groups’ surface composition.  DFT allows the identification  and assignment  of individual

bonds contributions  to  the experimental  1s  core­level peaks.  Overall,  we demonstrate  that  such  a model

sample  is perfectly  suitable for  a use  as  a template  for  the study of poly­epoxy surface functionalization.

1. Introduction

Poly­epoxy polymers are widely implemented in three families

of applications: adhesives, paints, and composite materials [1]. The

latters, such as epoxy/C fibers composites are increasingly found in

a wealth of devices and parts in the fields of leisure (skis, rackets,

boats, golf clubs, etc.), or transports, aeronautics and space (cars,

aircrafts, satellites, etc.), to name but a few. These composite mate­

rials possess stiffness and Young’s modulus that compare well with

metallic alloys but with a  much lower chemical reactivity and den­

sity. Therefore, they allow mass reduction and a  large increase of

parts durability.

Replacement of metallic or ceramic parts by polymers often

requires surface functionalization in order to acquire optical, elec­

trical, magnetic, biomedical, esthetic, or chemical properties. The

main drawback when it comes to  coat or to graft the surface of

polymer­based composites comes from the very low surface energy

of such materials once polymerized. This leads to a poor wett­

ability rendering painting or  gluing difficult, and resulting in poor

adhesion. The surface energy of poly­ether ether ketone (PEEK)

or poly­epoxy is approximately 40–50 mJ/m2 to be compared to
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approximately 500  mJ/m2 for aluminum. Moreover, the polar com­

ponent (due to H  bonding) is as low as 6–7 mJ/m2 which inhibits

the use of simple functionalization protocols [2–4]. Hence, a  large

number of particular protocols has been described or patented,

where the increase of reactivity and roughness is  sought. A  selec­

tion amongst the wealth of publications can be found in  Refs.

[5–16].

Such protocols or methods that have been used until now

remain empirical despite the resulting improvement of the targeted

properties and/or the extension of the durability of the mate­

rial. Therefore, the need exists to  access the basic mechanisms

which control the surface functionalization of polymers and to con­

trol them so as to achieve satisfactory functional properties and

adhesion. By subscribing in this perspective, our approach aims

at describing the nucleation and growth of metallic thin films on

polymer surfaces, by using an integrated method where all the

elementary mechanisms are taken into account. The first step in

this frame – object of the present study – is to obtain a model

of the polymer surface, both experimental and theoretical, at the

atomic/molecular level. Such a  model will serve as a template

for further surface treatments, including pretreatments, molecu­

lar grafting, or application of films and coatings. It is worth noting

that, to the authors’ knowledge, no such a theoretical surface model

exists, most likely because of structural disorder and a lack of exper­

imental inputs.

http://dx.doi.org/10.1016/j.apsusc.2014.10.096



Regarding our objectives, specifications of such an experimental

model polymer surface include:

• A 100% polymerization after curing to be comparable with calcu­

lations, where total polymerization is assumed.
• A low surface arithmetic roughness, namely Ra < 1  nm to make

sure that we can observe nano­islands or nano­clusters of a  given

thin film. Otherwise, they would be hindered by roughness.
• A very low defect density to avoid heterogeneous nucleation at

defects.
• Chemical homogeneity to make sure that calculation models

where homogeneity is assumed are representative of the tracked

chemical reactivity. Also to  make sure that chemical composition

is independent on the analyzed surface area corresponding to a

given probe size.

Our experimental approach is based on  the method described

in [17,18] for forming model poly­epoxy surfaces. It consists

in the polymerization of the poly­epoxy in an Ar gloves box

at ambient temperature for at least 24 h, followed by a  post­

curing at elevated temperature (polymer­dependent). Gu et al. [17]

synthesize samples from a stoichiometric mixture of DGEBA + 1,3­

di(aminomethyl)­cyclohexane, with a small amount of toluene for

decreasing viscosity and favoring an homogeneous stirring (7 min).

Samples are then stored for 24 h at ambient temperature, and post­

cured for 2 h at 130 ◦C in an air furnace. Characterizations of the

free surfaces are performed by atomic force microscopy (AFM) in

Tapping® mode. Surface roughness and phase contrast are deter­

mined. It  is shown that samples synthesized in an Ar glove box show

a lower surface roughness than those prepared in ambient condi­

tions, and that they are homogeneous in composition. Kansow et

al. [18] use a similar method with the aim of characterizing the for­

mation of Al, Cu, Ag, and Au films by physical vapour deposition.

DGEBA reacts with diethylene triamine in low excess at 55 ◦C under

controlled atmosphere, before it is left for 48 h  at ambient temper­

ature. At this step, polymerization rate is about 75%. Completion is

achieved by post curing for 1 h at 120 ◦C. Surface roughness is about

1 nm.

Theoretically, our greatest challenge is  to circumvent the

description of the disordered/amorphous structure and to limit

the number of atoms. To that end, we start with a  small macro­

molecule made from the reaction of bisphenol A diglycidyl ether

(DGEBA) with ethylenediamine (EDA) (61 atoms). Even for this

moderately complex system, the analysis of the experimental

core­level XPS spectrum is not trivial and can lead to incorrect

conclusions. The help of accurate theoretical tools is thus needed

and density­functional theory (DFT) is usually used for computing

XPS core­level shifts in the case of small organic or inorganic sys­

tems. The application of this theoretical method to large systems,

e.g. polymers, is a  challenge but it is established that experimental

spectra are directly related to the electronic states obtained from

calculations on smaller model molecules. For instance, Endo et al.

presented a comprehensive analysis of the XPS C 1s spectra for poly­

mers using the negative of the energy of molecular orbitals [19,20].

More recently, they used the ‘transition state’ theory [21] for the

calculation of the core electron binding energies [22,23]. Follow­

ing this work and in a  first approach, we compute the molecular

orbitals energies on model molecules as preliminary input for  the

assignment of experimental XPS spectra of the investigated poly­

mer.

We complement these results in the different DGEBA + EDA sys­

tem by implementing a more detailed description of surfaces by

AFM and XPS characterizations complemented by DFT calculations.

The paper is organized as follows. Experimental and computational

details are given in Section 2, followed by results in Section 3. Con­

clusions and perspectives are presented in Section 4.

2.  Experimental and computational details

2.1. Synthesis

We use a  stoichiometric mixture of DGEBA (DER 332, Dow

Chemicals, n = 0.03) and EDA (analytical grade, purity > 99.5%,

Sigma Aldrich). The mass of DGEBA (mDGEBA)  is fixed to  5 g. The

mass of EDA mEDA is thus determined following Eq. (1).

mDAE =
fDGEBA

fDAE
×

MDAE × mDGEBA

MDGEBA
= 0.43 g  (1)

where MDGEBA is the molar mass (348.52 g/mol) of this DGEBA

and fDGEBA is its functionality (2), and MEDA is the molar mass

(60.10 g/mol) and fDAE is the functionality (4) of the EDA. We assume

that no etherification occurs.

The mixture is then mechanically stirred (in an Ar glove box

when specified) for 7 min before it is  poured into different molds

or deposited as  a  thin droplet on aluminum foil. Polymerization is

then allowed for 48 h at ambient temperature, followed by a  post

curing of 2 h at 140 ◦C.  For roughness comparison, we consider the

following poly­epoxy surfaces formed:

­ At free surfaces, surfaces ref. either epoxyAir or epoxyArgon.

­ At the interface with a 1 cm × 1 cm × 0.2 cm silicone mold, itself

molded on a Si wafer for transferring atomic flatness. Interfaces

ref. SiOSi/epoxyAir or SiOSi/epoxyArgon.

­ At the interface with a 1 cm × 1 cm × 0.2 cm silicone mold, itself

molded on polystyrene (PS). Interfaces ref. SiOPS/epoxyAir or

SiOPS/epoxyArgon.

­ By mechanical polishing up  to a ¼ mm with diamond paste. Sur­

faces ref. polishedAir.

Interfaces formed in the same molds but in air or Ar show

different roughnesses (shown hereafter). This is the reason

why SiOSi/epoxyAir and SiOSi/epoxyArgon,  and SiOPS/epoxyAir and

SiOPS/epoxyArgon are  differentiated.

2.2. Bulk characterizations

Differential scanning calorimetry (DSC) is used for the determi­

nation of the glass transition temperature (Tg)  of the poly­epoxy

under investigation. We use a DSC 204 Phoenix Series (NETZSCH)

coupled with a  TASC 414/4 controller. The apparatus is calibrated

against melting temperatures of In, Hg, Sn, Bi, and Zn, applying a

+10◦/min temperature ramp. Samples are placed in aluminum cap­

sules. Mass is measured with an accuracy of ±0.1 mg. We choose to

report the onset Tg­onset temperature.

Fourier transform infrared spectroscopy, FTIR (Frontier,

PerkinElmer equipped with a NIR TGS detector), is performed in

transmission in the 4000–8000 cm−1 range. 16 scans are collected

for each analysis with a resolution of 4  cm−1. We monitor the

characteristic epoxy band (combination band of the –CH2 of

the epoxy group) at 4530 cm−1 with increasing polymerization

time, and after post curing treatment. The reference band is the

combination band of C C with aromatic CH at 4623 cm−1 [24].

Peak areas are then used for calculating the conversion rate (XeNIR)

of epoxy groups, following Eq. (2).

XeNIR =  1 −

(

Aepoxy/Areference

)

t=t
(

Aepoxy/Areference

)

t=0

(2)

where Aepoxy and Areference are the peak areas of the epoxy and

reference groups, respectively.



Fig.  1. Model dimer (1  DGEBA +  1  EDA).

2.3. Surface characterizations

Surface roughness and viscoelastic homogeneity are deter­

mined by AFM (Agilent Technologies model 5500) in ambient

conditions. The former is performed in contact mode with tips of

spring constant k approx. 0.292 N/m, whereas the latter is  per­

formed in Tapping® mode with tips of k  = 25–75 N/m (AppNano).

Scanning rate is 2 mm/s. Images are processed with the softwares

Gwyddion version 2.19 [25] and Pico Image (Agilent Technologies).

Surface roughness parameters follow the Geometric Product Spec­

ifications ISO 25178. Sa is  the arithmetic roughness, Sq is the root

mean square roughness, and Sz is the total roughness (maximum

peak­to­valley), determined by processing the AFM images.

XPS analysis is  performed using a Thermoelectron Kalpha appa­

ratus. Photoemission spectra are recorded using Al­Ka radiation

(h� = 1486.6 eV) from a  monochromatized source. The X­ray spot

diameter on the sample surface is 400 mm. The pass energy is

fixed at 30 eV for narrow scan and 170 eV  for survey scans. The

spectrometer energy calibration was performed using the Au 4f7/2

(83.9 ± 0.1 eV) and Cu 2p3/2 (932.8 ± 0.1 eV) photoelectron lines.

The background signal is removed using the Shirley method. Atomic

concentrations are determined from photoelectron peak areas

using the atomic sensitivity factors reported by Scofield [26] and

taking into account the transmission function of the analyzer. This

function was determined at different pass energies from Ag 3d and

Ag MNN peaks collected on a silver standard. Finally, photoelectron

peaks are analyzed and deconvoluted using a Lorentzian/Gaussian

(L/G = 30) peak fitting.

2.4. Calculations

We used the model molecule shown in Fig. 1 that results of the

addition of one DGEBA and one EDA molecule.

The geometry of the model molecule was optimized at the

B3LYP/6­31G* level of theory using the Gaussian 03 software

package [27].

3. Results

Bulk characterizations are performed on samples polymerized

under ambient conditions. DSC is  used for the determination of

Tg­onset.  Temperature ramps are doubled for each sample in order

to ensure that there is no physical aging and to verify that polymer­

ization is complete. For all samples Tg­onset = 113 ± 1 ◦C.  We assume

that Tg­onset is not different after polymerization in the Ar glove box

(no bulk characterization for these samples).

We then monitor the polymerization rate with reaction duration

by following the gradual decrease of the epoxy peak area by FTIR,

and calculating the conversion rate using Eq. (2). Results are shown

in Fig. 2.

Experiments are performed from 15 min to  11520 min (8 days)

after mixing of the reactants. The conversion rate increases slowly

in the first hours and reaches an asymptote between 24 and

48 h. The maximum conversion at ambient temperature is 84% for

t ≥ 48 h. The only mean for achieving a  complete polymerization

is to set the sample at a  temperature above its glass transi­

tion. The post curing treatment (140 ◦C, 2 h) leads to a  complete

Fig. 2.  Epoxy  group  conversion  rate as a function of  polymerization  over an  8­day

period  of time. Dashed  line indicates that  polymerization is  complete  after  post

curing  at  140 ◦C  for  2 h.

polymerization (>98%, taking into account the FTIR spectrometer

sensitivity) illustrated by the dashed line in Fig. 2.

The different surfaces that we consider are then characterized by

AFM over 3 mm × 3 mm surface area images in order to  determine

roughness parameters. Results are summarized in Fig. 3.

Roughness of the free surfaces is reduced by three orders of

magnitude when polymerization is performed in the Ar glove box.

Under Ar, Sa and Sq do  not exceed 1.5 nm, except for sample

SiOSi/epoxyArgon,  for which these two values are 4.9 nm and 6.8  nm,

respectively. The latter is not acceptable for the AFM observation

of metallic nanoislands or clusters that we target, in the range

of 1–20 nm in diameter [18]. In order to transfer atomic flatness

to the molds, and then to  the SiOSi/epoxy surfaces, we mold sili­

cone molds against Si wafer or against PS. In these conditions, the

lowest roughness is again obtained when the surfaces are formed

under Ar atmosphere, and is similar between Si and PS processes.

Somehow, atmosphere also plays a role regarding roughness at the

substrate/polymer interface. However, a roughness as  low as at that

of the free epoxyArgon surface is not achieved, indicating that mold­

ing in these conditions is not well suited for our purpose. Finally, the

roughness parameters of the polished surface are quite low but AFM

images show many scratches where nucleation may preferentially

occur. Since we want to  avoid heterogeneous nucleation in  order

to compare nucleation with adsorption energies at the molecular

level, polishing is abandoned.

Fig. 3. Roughness  parameters determined  by image  processing  on  3  mm  × 3 mm sur­

faces  characterized  by AFM in contact  mode.  A polynomial  of  degree  2  is used  in

order  to correct  image  curvature.



Fig.  4. AFM  images of the epoxyAir (a and b)  and  epoxyArgon (c and d)  surfaces.  Left  column  shows topographic  images  after a polynomial  of  degree 2  correction,  and  right

column  shows  deflection  images  (or phase  contrast).

Fig. 4 shows a selection of AFM images of the epoxyAir (a  and

b) and epoxyArgon (c and d) surfaces, obtained in Tapping® mode.

Right column (Fig. 4a and c) corresponds to the surface topography

and left column (Fig. 4b and d)  to the deflection of the cantilever, i.e.

to  the phase contrast. Whereas Tapping® mode leads to different

apparent values of roughness compared to  contact mode, rough­

ness is again lower on the epoxyArgon surface, as can be noticed on

the contrast scale, on the right­hand side of the images. However,

both surfaces are quite flat and exhibit a  very low phase contrast.

The measure of phase contrast probes the local viscoelastic prop­

erties that we assume to  be an indication of chemical homogeneity

in the nanometer range. Finally, Fig. 4c and d  is chosen on  purpose

in order to illustrate the presence of defects, in the form of approx.

50 nm­in­diameter troughs. The density shown in  Fig. 4 is not rep­

resentative (overestimated). A thorough count over a total 90 mm2

surface area gives a defect density equal to 0.21 mm−2.

EpoxyArgon is selected as the best candidate for an experimen­

tal model surface of poly­epoxy. Thus, we investigate its surface

chemical composition by XPS and use the output of DFT calcula­

tions for peak identifications and binding energy assignments. A

first observation is made on free surfaces of samples synthesized in

silicone molds (i.e. that were not in contact with the mold). Survey

spectra show a  strong Si 2p contribution at 101.8 ± 0.1 eV, which is

characteristic of siloxane groups [28]. It represents a large amount

of adsorbed silicone on the surface (approx. 8 at.%). Consequently,

epoxyAr samples are now synthesized on Al foil (and silicone is

banished from the glove box). The significant thickness of the poly­

epoxy coupons (1 mm) ensures that Al does not diffuse up to the

free surface, since the measured interphases do not exceed 300 mm

[29].

The XPS survey spectrum of epoxyArgon surfaces polymerized

on aluminum foil show neither Si nor other elements than the one

expected in the polymer or  from adsorbed molecules from the air.

Atomic composition of the surface is determined by 1s peaks fitting,

repeated at different x–y coordinates on the sample surface. We

determine the following surface composition:

81.5 at.% C, 1.8 at.% N, and 16.7 at.% O

The result is slightly different from the bulk composition of

the poly­epoxy, where the basic motif is made of 2 DGEBA

(2 × 21 C + 2 × 4 O atoms) molecules for 1 EDA (2 C +  2 N atoms)

molecule, resulting in a  bulk composition of:81.5 at . % C, 3.7 at .  % N,

and 14.8 at . % O. Whereas the composition of the surface shows a

similar carbon content, it is richer in oxygen and poorer in nitro­

gen than the bulk. This is an indication of a mild surface oxidation

that may occur in the course of post­curing, when polymerization

is not yet complete (post­curing starts at 85% polymerization rate).

It is questioning though that the carbon content is apparently not

affected as well.

In order to further investigate the surface chemistry of the model

poly­epoxy surface, molecular orbitals extracted directly from DFT

results are studied. Table 1 shows the binding energies of 1s elec­

trons involved in the different bonds of the model dimer. The dimer

is made of 1 DGEBA and 1 EDA that virtually bonded through 1

epoxy/1 amine proton reaction. Therefore, there are a  few discrep­

ancies between the experimental fully­polymerized samples and

the model dimer. They are enlightened by the gray coloring of the

lines corresponding to secondary and primary amines (all should be

ternary) and to the epoxy group (no more epoxy rings in the 100%

polymerized sample). The binding energies shown are the nega­

tive value of the molecular orbitals energies. Therefore, absolute

values are not correct because (i) XPS binding energies correspond

to a multi­step process where photoelectrons interact with the cre­

ated holes, with the matrix and with their image before and after

extraction into vacuum, (ii) temperature is  not considered, (iii) of

the limitation of Kohn–Sham orbital energies as  reflecting initial

state effects [30]. Nevertheless, chemical shifts can be used if one

consider the latter processes constant in a given energy domain.

A minimum mean chemical shift of 0.2 eV is technically observ­

able with our XPS apparatus. Therefore, we discriminate phenyl

groups from CH3 groups, and C  OH & part of the C O C bonds

from the other C O  C bonds. Thanks to  the support of DFT results,

we use 5 contributions to the C 1s peak deconvolution and 2 con­

tributions to the O  1s peak deconvolution. The fine fitting of the C

1s and O 1s spectra are shown in Fig. 5. N 1s spectrum is not shown

because it exhibits only one contribution for C N bonds centered



Table  1

Molecular  orbitals  involving  O, N, and C  1s  atomic orbitals  from  DFT calculations  on  the model DGEBA–EDA  dimer.  Corresponding electronic  binding  energies ((−1) ×  orbital

energy),  and  mean chemical shifts  for  the given  bond.  Grayed  cells  do  not  have  a counterpart  in the experimental  fully­reticulated  poly­epoxy.

Molecular orbital Binding energy  (Hartree) Binding  energy  (eV)  Mean chemical shift (±0.1  eV) Bond

O 1s −19.177  521.8  +0.8 C  O C

−19.170  521.6  C  O C

−19.165  521.5  +0.6 Epoxy

−19.145  520.9  Ref. O H

N  1s −14.324  389.8  +0.3 Secondary amine

−14.316  389.5  Ref. Primary amine

C  1s −10.249 278.9 +2.0 C  O C

−10.249  278.9  C  O C

−10.246  278.8  C  O C

−10.244  278.7  C  O C

−10.239  278.6  +1.8 C  O C

−10.239  278.6  C  O C

−10.238  278.6  C  OH

−10.212  277.9  +1.0 C  N

−10.209  277.8  C  N

−10.207  277.7  C  N

−10.205 277.7 Quaternary  C C

−10.186  277.2  +0.2 Phenyl

−10.185  277.1  Phenyl

−10.185  277.1  Phenyl

−10.183  277.1  Phenyl

−10.182 277.1 Phenyl

−10.181  277.0  Phenyl

−10.181  277.0  Phenyl

−10.181  277.0  Phenyl

−10.180  277.0  Phenyl

−10.176  276.9  Phenyl

−10.173  276.8  0.0 CH3

−10.173 276.8 Ref. CH3

Fig.  5. XPS  fine  spectra  of C  1s  and O  1s.  Spectra  are  fitted  with  contributions  derived

from  DFT calculations  on  the  model  dimer.

at 399.2 eV. Binding energy scale of the C 1s spectrum starts with

the –CH3 contribution fixed at 284.4 eV. Then, mean chemical shifts

extracted from the energy difference between molecular orbitals of

DFT (see Table 1) are used for higher­binding–energy contributions

(284.4 + 0.2, +1.0, +1.8, +2.0 eV).

The filled area shows the envelope of the fitting curve. There is

an excellent matching with both O and C 1s experimental spec­

tra. Again, calculations ensure that contributions are real; even

C N, for instance, which is  buried in the tails of neighboring con­

tributions. In order to consolidate these results, we now discuss

fitting with regards to the functional group composition shown in

Table 2.

Experimental atomic compositions in functional groups are con­

sistent. For instance, where one O 1s orbital of the C  O  C  bonds

shows a  composition of 15.5 at.%, two C 1s  orbitals of the C O  C

bonds show an approximately doubled composition of 30.5 at.%

(28.0 plus the contribution of C O C at 286.2 eV of about 3.7

(C 1s C O C, C  OH) – 1.2 (O 1s C OH) = 2.5 at.%). Similarly, N

1s  and C 1s  compare well in terms of composition in the C N

bonds (1.8 vs. 1.3 at.%). Finally, the last column of Table 2 shows

the  expected composition in functional groups in a poly­epoxy

where the DGEBA:EDA ratio equals 2:1. For instance the number

of C 1s in phenyl groups is calculated as  follows: 2 DGEBA × 2

phenyls/DGEBA × 6 C atoms = 24 C 1s. Overall, one can find 4  C 1s

in –CH3, 24 C 1s in phenyls, 2 C  1s in C N, 4 C 1s in C OH, 4 C

1s in C O C286.2 eV,  4 C 1s  in C O C286.4 eV, 2 N 1s in  C N, 4 O

1s in C  OH, and 4 O 1s in C O C. Therefore the total number of

considered 1s orbitals is 52. We observe large discrepancies con­

cerning the phenyl bonds concentration and the oxygenated bonds

C OH and C O C concentrations, a difference that was already

mentioned when considering the elemental atomic composition.

There are two possibilities for explaining these differences: either

the  surface is oxidized and oxygenated bonds contribute to the C

1s and O 1s signals at neighboring binding energies, or the polymer

is oriented in such a way that C O C bonds emerge at the surface.



Table  2

Results  of  the  C, O,  and  N  1s  deconvolutions;  peak  binding  energy:  BE,  chemical shift  imposed  after DFT results;  height  in  counts  per second:  CPS;  full width  at  half­maximum:

FWHM;  peak  area;  scofield  relative sensitivity  factor:  RSF;  atomic fraction:  at.%;  and  the composition  expected from  the model polymer with  a  DGEBA:EDA  ratio  of 2:1.

Name  Peak  BE (eV) Chemical  shift (eV)  Height  (CPS) FWHM  (eV)  Area  (CPS  eV) Scofield  RSF At.%  2  DGEBA:EDA  motif  (at.%)

C 1s  CH3  284.4  0.0 2249.74  1.06  2578.62  1  6.5 7.7

C  1s  phenyl 284.6  0.2 11580.87  1.3  16279.01  1  40.8  46.2

C  1s  C N  285.4  1.0  328.14  1.41  500.77  1  1.3 3.8

C  1s  C O  C,  C  OH  286.2  1.8  1009.93  1.36  1488.52  1  3.7 C  OH:7.7  +  C  O C:7.7

C  1s  C O  C  286.4  2.0  7147.92  1.44  11172.06  1  28.0  7.7

C  1s  shake up 291.2  n/a 349.91  1.32  501.28  1  1.3 n/a

N  1s  C N 399.2 n/a 808.92  1.28  1195.36  1.8  1.8 3.8

O  1s  C  OH  532.0  0.0 669.53  1.73  1255.76  2.93  1.2 7.7

O  1s  C  O  C 532.9  0.9 9494.3  1.53  15728.75  2.93  15.5  7.7

If we assume that a mild oxidation occurred in the course of sam­

ple preparation, it may be assigned to sub­stoichiometric groups,

such as amines (1.3–1.8 vs.  3.8 at.% expected) and phenyls (40.8 vs.

46.2 at.% expected). In  that case deconvolution may be improved

by substituting or implementing additional contributions that we

are not able to identify now.

4. Conclusions

We selected an epoxy­amine system which permits its use as

both an experimental and a  computational template for further sur­

face treatments. DGEBA and EDA mixed in stoichiometric ratio and

slowly polymerized (48 h) in an Ar glovebox lead to the formation

of a poly­epoxy polymerized at a  rate of 85%. Total polymeriza­

tion is achieved by post­curing at 120 ◦C for 2 h. Such a poly­epoxy

exhibits a glass transition temperature onset of 113 ± 1 ◦C. Dif­

ferent substrates and atmospheres were tested and compared

in terms of surface roughness. The lowest roughness (arithmetic

roughness = 0.2 nm, peak­to­valley = 1.5 nm) is obtained at the free

surface that polymerized under Ar atmosphere. AFM observations

reveal that, in addition to the high smoothness, the defect density of

the surface is low enough to avoid defect driven undesirable nuclea­

tion. Additionally, phase contrast is almost null which indicates that

the surface is chemically homogeneous. Atomic compositions from

XPS survey spectra at different positions confirm this result. Fine

XPS spectra over C, O, and N 1s core levels are analyzed in view

of the DFT calculations results. Theoretical binding energy chemi­

cal shifts allow an excellent fitting of the experimental 1s spectra.

A limitation has been emphasized concerning the compositions in

chemical groups: the main discrepancy concerning a  much larger

composition in C O C than the one theoretically expected from

the perfect polymer model. In a near future, we will dedicate our

efforts to the improvement of (i) the poly­epoxy network model by

allowing a larger number of atoms and by using molecular dynam­

ics computations to  freeze the structure at given temperatures, and

(ii) of the core­level binding energies calculations using the gener­

alized transition state method [21] that allows a  better treatment of

the XPS photoemission process. Finally, the perspectives for exper­

imental work will be the formation of thin metallic films and the

mechanistic description of nucleation and growth.
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