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Abstract

In this paper, we study the inner and outer boundary densities of some
sets with self-similar boundary having Minkowski dimension s > d−1 in Rd.
These quantities turn out to be crucial in some problems of set estimation,
as we show here for the Voronoi approximation of the set with a random
input constituted by n iid points in some larger bounded domain. We prove
that some classes of such sets have positive inner and outer boundary density,
and therefore satisfy Berry-Esseen bounds in n−s/2d for Kolmogorov distance.
The Von Koch flake serves as an example, and a set with Cantor boundary
as a counter-example. We also give the almost sure rate of convergence of
Hausdorff distance between the set and its approximation.
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Notations We designate by d(., .) the Euclidean distance between points
or subsets of Rd. The closure, the interior, the topological boundary and
the diameter of a set A ⊂ Rd are designated by cl(A), int(A), ∂A, diam(A)
respectively. The open Euclidean ball with center x and radius r in Rd is
noted B(x, r).

Given two sets A,B, we write A+B for {c ∈ Rd | c = a+b, a ∈ A, b ∈ B}.
The Hausdorff distance between A and B is designated by dH(A,B), that is

dH(A,B) = inf{r > 0 : A ⊂ B +B(0, r), B ⊂ A+B(0, r)}.

Vol is the d-dimensional Lebesgue measure and κd is the volume of the Eu-
clidean unit ball. For s > 0, Hs is the s-dimensional Hausdorff measure on
Rd.

Throughout the paper, K ⊂ Rd is a non-empty compact set with positive
volume. The letters c, C are reserved to indicate positive constants that
depend only on fixed parameters like K or d, and which value may change
from line to line.

Background

Set estimation theory is a topic of nonparametric statistics where an unknown
set K is estimated, based on partial random information. The random input
generally consists in a finite sample χ of points, either IID variables [8, 19]
or a Poisson point process [13, 14, 20]. Based on the information of which of
those points belong or not to K, one can reconstruct a random approximation
Kχ of K and study the asymptotic quality of the approximation. See the
recent survey [15, Chap. 11] about related works in nonparametric statistics.

The results generally require the set to be smooth in some sense. In the
literature, the set under study is assumed to be convex [20, 23], r-convex
[9, 21], to have volume polynomial expansion [2], positive reach, or a (d−1)-
rectifiable boundary [14]. Another class of regularity assumptions usually
needed is that of sliding ball or rolling ball conditions ([7, 24, 25]). The most
common form of this condition is that in every point x of the boundary, there
must be a ball touching x and contained either in K, in Kc, or both.

In those works, the random approximation model Kχ can be the union
of balls centred in the points of χ with well tuned radius going to 0, a level
set of the sum of appropriately scaled kernels centred on the random points,
or else. Recently, a different model has been used in stochastic geometry,
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based on the Voronoi tessellation associated with χ. One defines Kχ as the
union of all Voronoi cells which centers lie in K, assuming that points of χ
fall indifferently inside and outside K, as K is unknown. This is equivalent
to defining Kχ as the set of points that are closer to χ ∩K than to χ ∩Kc.

This elegant model presents practical advantages in set estimation. For
volume estimation the bias and standard deviation rates of the Voronoi ap-
proximation seem to be best among all estimators of which the authors are
aware of, and hold under almost no assumption on K. Regarding shape es-
timation, Voronoi approximation also consistently estimates K and ∂K in
the sense of the Hausdorff distance (Proposition 3), and here again conver-
gence rates and necessary assumptions compare favourably to those of other
estimators (see Theorem 4 and the following Remarks).

An heuristic explanation of these features is that the estimator natu-
rally fills in regions inside K where the sample χ is sparse, without need for
convexity-like assumptions on K [21] or parameter tuning [3, 8, 10].

The reader will find a more formal presentation of Voronoi approximation
along with a summary of existing results [5, 13, 14, 20, 23] in Section 2.

Approach and main results

This work was inspired and is closely related to [17], in which a central limit
theorem and variance asymptotics for Vol(Kχ) were obtained for binomial
input under very weak assumptions on K. Here we slighlty enhance their
central limit theorem by showing that Vol(Kχ) can be recentered by Vol(K)
instead of E(Vol(Kχ)). Explicitly, for suitable K, we have for each ε > 0 a
constant Cε>0 such that

sup
t∈R

∣∣∣∣∣P
(

Vol(Kχn)− Vol(K)√
Var(Vol(Kχn))

> t

)
−P(N > t)

∣∣∣∣∣ 6 Cεn
−s/2d log(n)4−s/d+ε

(1)
where s is the Minkowski dimension of ∂K (see Section 1.2).

We also show that with Poisson input we have the almost sure convergence
rates for the Hausdorff distance

c 6 lim inf
n→+∞

dH(K,Kχn)

(n−1 ln(n))1/d
6 lim sup

n→+∞

dH(K,Kχn)

(n−1 ln(n))1/d
6 C, (2)

c 6 lim inf
n→+∞

dH(∂K, ∂Kχn)

(n−1 ln(n))1/d
6 lim sup

n→+∞

dH(∂K, ∂Kχn)

(n−1 ln(n))1/d
6 C, (3)
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thus answering a query raised in [13] and extending the results obtained in
[5].

The assumptions on K necessary for (1),(2) and (3) to hold are worth
of interest on their own. They are broad enough to allow for irregular K,
a feature which few estimators possess and is useful in some applications
(see [8, 14], and references therein). Also, they are not specific to Voronoi
approximation, and might be crucial for other estimators. They are mainly
concerned with the densities of K at radius r in x, defined by

fKr (x) =
Vol(K ∩B(x, r))

Vol(B(x, r))
,

fK
c

r (x) =
Vol(Kc ∩B(x, r))

Vol(B(x, r))
.

For ease of notation, we shall simply write fr for fKr and gr for fK
c

r , K being
implicit in all of the paper. Boundary densities have already appeared in set
estimation theory [6, 5, 8], where a set K is said to be standard whenever
fr > ε on K for some fixed ε > 0 and all small enough r. Here we shall
prefer to specify inner standard since we are also interested in cases where
the inequality gr > ε holds. In the latter case, K is said to be outer standard,
and if K is both inner and outer standard K will be said to be bi-standard.
The condition on K for (3) to hold is essentially bi-standardness, which is a
usual assumption in set estimation [8, Theorem 1].

The requirement for (1) to hold seems to be new in set estimation theory.
It consists in a positive lim inf as r → 0 of the quantity

1

Vol(∂Kr)

∫
Kc

fr =
1

Vol(∂Kr)

∫
K

gr,

where ∂Kr is the set of points within distance r from ∂K. See Assumption 2
and Proposition 2 for precise statements and equivalent assertions. The above
quantity measures the interpenetration of K and Kc along their common
boundary, since the greater it is, the more homogenously K and Kc are
distributed along ∂K. This lead us to name the condition of Assumption 2
the boundary permeability condition.

Study of densities on the boundary is also related with works in geometric
measure theory. Points for which lim fr(x) is 0 or 1 are considered resp. as
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the measure-theoretic exterior and interior ofK, while other points constitute
∂∗K the essential boundary of K. Federer [1, Th.3.61] proved that if K is
a measurable set with finite measure-theoretic perimeter then fr → 1/2 on
most of the essential boundary.

We address here the question of whether comparable results hold if ∂K is
an irregular set, with self-similar features. In general, such boundaries have a
Hausdorff dimension s > d−1 and don’t have finite perimeter. But, because
of self-similarity, the densities fr, gr should nevertheless have continuous and
somehow periodical fluctuations in r, and therefore a positive infimum. This
is confirmed by Theorem 1, which gives, for K with self-similar boundary, a
set of conditions under which fr > ε on the boundary uniformly in r > 0. It
is even proved that a ball with radius cr for some c > 0 can be rolled inside or
outside the boundary, staying within a distance r from the boundary, but not
touching it (otherwise self-similar boundaries would be excluded). Theorem
1 applies for instance to the Von Koch flake in dimension 2, which is therefore
well-behaved under Voronoi approximation and satisfies (1), (2) and (3).

Some sets with self-similar boundary do not fall under the scope of this
result, and we also give example of a self-similar set Kcantor with Cantor-like
self-similar boundary not satisfying the boundary permeability condition.
Simulations we ran suggest that this irregularity of Kcantor’s boundary in-
deed reflects on the behaviour of its Voronoi approximation and prevents
the variance of the estimator from satisfying an asymptotic power law like
in (10). This suggests that the boundary permeability condition is indeed
significant in set estimation and not merely a contingent constraint due to
the methods used to obtain (1).

Plan

The plan of the paper is as follows. In Section 1, we recall basic facts
and definitions about self-similar sets, especially regarding upper and lower
Minkowski contents. We then give conditions under which sets with self-
similar boundaries are standard. Voronoi approximation is formally intro-
duced in Section 2. We then derive the volume normal approximation for
sets with well-behaved boundaries, as well as Hausdorff distance results. We
also develop the counter example Kcantor that satisfies neither the hypotheses
of Theorem 1 nor the volume approximation variance asymptotics (10).
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1 Self-similar sets

1.1 Self-similar set theory

This subsection contains a review of some classic results of self-similar set
theory. A more precise treatment of the subject and most of the results
stated here can be found in [11]. Broadly speaking, a set is self-similar when
arbitrarily small copies of the set can be found in the neighbourhood of any
of its points. This suggests that a self-similar set should be associated with
a family of similitudes.

Let {φi, i ∈ I} be a finite set of contracting similitudes. Such a set is called
an iterated function system. Define the following set transformation

ψ : P(Rd) −→ P(Rd)

E 7−→
⋃
i

φi(E).

It is easily seen that ψ is contracting for the Hausdorff metric, which happens
to be complete on Kd, the class of non-empty compact sets of Rd. By a fixed
point theorem, there is an unique set E ∈ Kd satisfying ψ(E) = E, which is
by definition the self-similar set associated with the φi.

If there is a bounded open set U such as ψ(U) =
⋃
φi(U) ⊂ U with the

union disjoint, then necessarily E ⊂ cl(U) and the φi are said to satisfy the
open set condition. Schief proved in [22] that we can pick U so that U ∩ E
is not empty. This stronger assumption is referred to as the strong open set
condition in the literature.

The similarity dimension of E is the unique s satisfying∑
λsi = 1

where λi is the stretching factor of φi. When the open set condition holds,
this similarity dimension is also the Hausdorff dimension and the Minkowski
dimension of E. Furthermore, E’s upper and lower s-dimensional Minkowski
contents (see Subsection 1.2) are finite and positive. This is an easy and
probably known result, but since we have not found it explicitly stated and
separately proven in the literature, we will do so here in Proposition 1. We
will need the following classical lemmae, that we prove for completeness.
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Lemma 1. Let (Ui) be a collection of disjoint open sets in Rd such that each
Ui contains a ball of radius c1r and is contained in a ball of radius c2r. Then
any ball of radius r intersects at most (1 + 2c2)

dc−d1 of the sets cl(Ui).

Proof. Let B be a ball of center x and radius r. If some cl(Ui) intersects B
then cl(Ui) is contained in the ball B′ of center x and radius r(1 + 2c2). If q
different cl(Ui) intersect B then there are q disjoint balls of radius c1r inside
B′, and by comparing volumes q 6 (1 + 2c2)

dc−d1 .

Lemma 2. Suppose that E and the φi satisfy the open set condition with
U . Then for every r < 1 we can find a finite set A of similarities Φk with
ratios Λk such that

1. The Φk are composites of the φi.

2. The Φk(E) cover E.

3. The Φk(U) are disjoint.

4.
∑

Λs
k = 1 where s is the similarity dimension of E.

5. mini(λi)r 6 Λk < r for all k.

Proof. We give an algorithmic proof. Initialise at step 0 with A = {Id}.
At step n replace every Φ ∈ A with ratio greater than r by the similarities
Φ ◦ φi, i ∈ I. Stop when the process becomes stationary, which will happen
no later than step dln(r)/ ln(max(λi))e.

Obviously, point 1 is satisfied. We will prove the next three points by
induction. At step 0, all of E is covered by the Φk(E), the Φk(U) are disjoint,
and the Λs

k sum up to 1. The first property is preserved when Φ is replaced
by the Φ ◦ φi, since Φ(E) = Φ(ψ(E)) =

⋃
Φ ◦ φi(E). Likewise, the Φ ◦ φi(U)

are disjoint one from each other because Φ is one-to-one, and disjoint from
the other Φk(U) because

⋃
Φ ◦φi(U) = Φ(ψ(U)) ⊂ Φ(U), which yields point

3. For point 4 note that if Φ has ratio Λ, then the Φ ◦ φi have ratios Λλi
and Λs = Λs

∑
λsi =

∑
(Λλi)

s so the sum of the Λs
k remains unchanged by

the substitution. Finally, since r < 1, every final set of the process has an
ancestor with ratio greater than r. This gives the lower bound for point 5;
the upper bound comes from the fact that the process ends.
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Remark 1. The process in the proof of Lemma 2 is often resumed by the
formula

A = {φi1 ◦ φi2 . . . ◦ φin |
n∏
k=1

λik < r 6
n−1∏
k=1

λik}.

1.2 Minkowski contents of self-similar sets

Recall that the s-dimensional lower Minkowski content of a non-empty bounded
set E ⊂ Rd can be defined as

lim inf
r>0

Vol(E +B(0, r))

rd−s
.

Similarly, the s-dimensional upper Minkowski content of E is

lim sup
r>0

Vol(E +B(0, r))

rd−s
.

In this paper, when both contents are finite and positive, we will simply say
that E has upper and lower Minkowski contents. This leaves no ambiguity
on the choice of s, since in that case s is necessarily the Minkowski dimension
of E, i.e

s = d− lim
r→0

ln(Vol(E +B(0, r)))

ln(r)
.

We show below that self-similar sets always have upper and lower Minkowski
contents. One can find an alternative proof for the lower content in [12,
Paragraph 2.4], it can also be considered a consequence of Hs(E) > 0, like
suggested in [18].

Proposition 1. Let E be a self-similar set satisfying the open set condition
with similarity dimension s. Then E has finite positive s-dimensional upper
and lower Minkowski contents.

Proof. As before, let φi be the generating similarities of E, λi their ratios,
ψ : A 7→

⋃
φi(A) the associated set transformation, and U the open set of

the open set condition. Choose any 0 < r < 1 and define the Φk,Λk as in
Lemma 2. Finally, write Ek = Φk(E), Uk = Φk(U).
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We approximate E + B(0, r) by the sets Ek + B(0, r), who are similar to
the E + Φ−1k (B(0, r)). By construction Φ−1k (B(0, r)) is a ball with a radius
belonging to [1, (mini λi)

−1], so that

Vol(B(0, 1)) 6 Vol(E + Φ−1k (B(0, r))) 6 Vol(B(0, diam(E) + (min
i
λi)
−1)),

because E is not empty. Applying Φk gives

cΛd
k 6 Vol(Ek +B(0, r)) 6 CΛd

k.

Since E + B(0, r) ⊂
⋃
k Ek + B(0, r) and

∑
Λs
k = 1 we immediately get

the upper bound

Vol(E +B(0, r)) 6
∑

Vol(Ek +B(0, r))

6
∑

CΛd
k

6 C
∑

Λs
kr
d−s

6 Crd−s.

For the lower bound we apply Lemma 1 to the disjoint Uk. Since U is
open we can put some ball of radius c1 in U , and conversely we can put U
in some ball of radius c2, since U is bounded. This means that each of the
Uk contains a ball of radius rmini(λi)c1 6 Λkc1 and is contained in a ball of
radius rc2 > Λkc2. So for any x ∈ E + B(0, r), B(x, r) intersects at most
q of the Ek (since Ek ⊂ cl(Uk)) with q a positive integer independent of r

and x. This can be rewritten 1E+B(0,r) >
1

q

∑
1Ek+B(0,r). Integrating we get

Vol(E +B(0, r)) >
1

q

∑
Vol(Ek +B(0, r)) so that

Vol(E +B(0, r)) >
1

q

∑
Vol(Ek +B(0, r))

>
c

q

∑
Λd
k

>
c

q
(min

i
λi)

d−s
∑

Λs
kr
d−s

> crd−s.
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1.3 Boundary regularity

In order to formulate our result, we introduce the notion of proper and im-
proper points. A point x ∈ Rd is proper to K if Vol(O ∩ K) > 0 for every
neighbourhood O of x, it is improper to K otherwise. In other words, the
set Kprop of proper points of K is the support of the measure Vol(K ∩ ·).
Further use of proper points will be made in Section 2.2. We can already
note that K must have no improper points if we want a positive lower bound
for the fr on K.

Our result holds for self-similar subsets E of ∂K satisfying the following
assumption:

Assumption 1. A self-similar subset E of ∂K satisfies the strong open set
condition with some set U such that U ∩ ∂K ⊂ E and U \ ∂K has finitely
many connected components.

This assumption can be justified heuristically: if E cuts its neighbourhood
into infinitely many connected components, then because of self-similarity it
also does so locally, and K and Kc are too disconnected to contain the
balls mentioned in Theorem 1. Example 2 will show that these concerns are
legitimate.

Theorem 1. Let K be a non-empty compact set with no improper points
and Vol(∂K) = 0. Let E be a self-similar subset of ∂K for which Assumption
1 holds. Then there are constants δ, ε > 0 such that, for all r < δ, x ∈ E,
both B(x, r) ∩Kc and B(x, r) ∩K contain a ball of radius εr.

Proof. Let φi be the generating similarities of E, λi their ratios, ψ : A 7→⋃
φi(A) the associated set transformation. Denote by Vj the connected com-

ponents of U \E. Since there are finitely many of them, we can suppose they
all contain a ball of radius τ > 0. Fix any 0 < r < 1 and x ∈ E.

Lemma 2 shows that there is a similarity Φ with ratio Λ such that min(λi)r 6
Λ < r and x ∈ Φ(E). It follows that Φ(U) ⊂ B(x, r). We also have
Φ(U) ∩ ∂K = Φ(U) ∩ E = Φ(U ∩ E). Indeed, for any point x′ of E outside
Φ(E) there is another similarity Φ′ of Lemma 2 such that x′ ∈ Φ′(E) and
Φ′(U) ∩ Φ(U) = ∅, which implies cl(Φ′(U)) ∩ Φ(U) = Φ′(cl(U)) ∩ Φ(U) =
Φ′(E) ∩ Φ(U) = ∅ so that x′ /∈ Φ(U).
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Consequently, for all j, Φ(Vj) has no intersection with ∂K. So Φ(Vj) ∩
int(K) and Φ(Vj) ∩Kc are two disjoint open set sets who cover Φ(Vj), and
we must have either Φ(Vj) ⊂ K or Φ(Vj) ⊂ Kc.

Since there is a point y in Φ(U)∩E and K has no improper points, we must
have Vol(K∩U),Vol(Kc∩U) > 0. Because Vol(E) = 0, this can only happen
if one of the Φ(Vj) is included in Kc and another in K. Hence B(x, r) ∩K,
B(x, r) ∩ Kc each contain a ball of radius Λτ . Since Λ > min(λi)r, the
conclusion of the theorem holds with ε = min(λi)τ .

Remark 2. The theorem implies that K,Kc have lower density bounds on
E. More precisely, for appropriate δ, ε > 0

∀x ∈ E, r < δ, fr(x), gr(x) > ε. (4)

This weaker statement is enough for our purposes regarding Voronoi approx-
imation.

We show below that the Von Koch flake provides a concrete example of an
irregular set satisfying the hypotheses of Theorem 1.

Example 1. Let E be the self-similar set associated with the direct simi-
larities φi : R2 → R2 sending S = A0A4 to ai = Ai−1Ai, for i = 1, 2, 3, 4,
in the configuration of Figure 1.1. Such sets E are called Von Koch curves.
Looking at the iterates ψ(n)(S) in Figure 1.2 gives an idea of the general form
of the Von Koch curve and of why it is said to be self-similar.

Note that the ψ(n)(S) are curves, i.e the images of continuous mappings γn :
[0, 1]→ R2. The γn can be chosen to be a Cauchy sequence for the uniform
distance between curves in R2. Hence their limit γ is also a continuous
mapping, γ([0, 1]) is compact and has distance 0 with E in the Hausdorff
metric, so γ([0, 1]) = E which proves that the Van Koch curve is, indeed, a
curve. It can also be shown to be a non-intersecting curve (the image of an
injective continuous mapping from [0, 1] into R2).

With a similar reasoning, if we stick three Von Koch curves of same size
as in Figure 1.3, we get a closed non-intersecting curve C. Jordan’s curve
theorem says R2 \ C has exactly two connected components who both have
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Figure 1.1: The generating similitudes of the Von Koch curve. Z2 is the
center of the similarity φ2.

Figure 1.2: The sets ψ(1)(S), ψ(2)(S), ψ(3)(S).

C as topological boundary. The closure K of the bounded component is a
compact set with no improper points satisfying ∂K = C. K is called a Von
Koch flake.

Figure 1.3: The boundary of the Von Koch flake K.
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Now, construct kites C1, C2, C3 on each of the Von Koch curves E1, E2, E3

making ∂K as in Figure 1.4. It is easy to see that as long as the two equal
angles of the lower triangle are flat enough, Ci ∩ ∂K = Ci ∩ Ei. Further-
more, applying Jordan’s curve theorem to the Ei and the two upper (resp.
lower) edges of the corresponding Ci shows that the Ci \Ei have exactly two
connected components. The strong open set condition is also satisfied, so
Theorem 1 can be applied three times to obtain lower bounds for fr and gr
on ∂K.

Figure 1.4: Assumption 1 is satisfied with the kite C.

Theorem 1 is only concerned with the behaviour of fr and gr on ∂K,
whereas standardness assumption require lower bounds on all of K and Kc

respectively. The following lemma takes care of this issue.

Lemma 3. If for all r < δ we have fr > ε on ∂K, then for all r < δ we have
fr > 2−dε on K. The same result holds if fr is replaced by gr and K by Kc.

Proof. If x is in ∂Kr/2 then B(x, r) contains a ball of radius r/2 centered on
x′ ∈ ∂K, so fr(x) = Vol(K ∩B(x, r))κ−1d r−d > Vol(K ∩B(x′, r/2))κ−1d r−d >
ε2−d. If x is in K \ ∂Kr/2 then the ball B(x, r/2) is contained in K so that
fr(x) > 2−d > ε2−d. So in all cases, if x ∈ K then fr(x) > ε2−d. Replacing
K by Kc gives the result regarding gr.

2 Voronoi approximation

In this section, χ is a locally finite point process , and n > 1. If χ = χn =
{X1, X2, . . . , Xn}, where the Xi are iid random points uniformly distributed
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over [0, 1]d, we speak of binomial input; if χ = χ′λ is a homogenous Poisson
point process of intensity λ > 0 we speak of Poisson input.

Define the Voronoi cell υχ(x) of nucleus x with respect to χ as the closed
set of points closer to x than to χ

υχ(x) = {y ∈ Rd : ∀x′ ∈ χ, d(x, y) 6 d(x′, y)}.

The Voronoi approximation Kχ of K is the closed set of all points which
are closer to K ∩ χ than to Kc ∩ χ. Its name comes from the relation

Kχ =
⋃

x∈χ∩K

υχ(x).

The volume ϕ(χ) = Vol(Kχ) first arised in [16] as discriminating statistics
in the two-sample problem. These authors proved a strong law of large
numbers in dimension 1 for the volume approximation. Explicit rates of
convergence in higher dimensions were obtained by Reitzner and Heveling
[13], who proved that if K is convex and compact and χ = χ′λ then

Eϕ(χ) = Vol(K),

Var(ϕ(χ)) 6 Cλ−1−1/dS(K),

where S(K) is the surface area of K, all constants can be made explicit and
depend only on d. They also studied the quantity ϕPer(χ) = Vol(K∆Kχ) to
estimate the perimeter, after suitable renormalisation. Reitzner, Spodarev
and Zaporozhets [20] extended these results to sets with finite variational
perimeter, and also gave upper bounds for E|ϕ(χ′λ)

q − Vol(K)q| for q ≥ 1.
Schulte [23] obtained a matching lower bound for the variance with convex
K, i.e. cS(K)λ−1−1/d ≤ Var(ϕ(χ)), and derived the corresponding CLT

ϕ(χ)− Eϕ(χ)√
Var(ϕ(χ))

(d)−→ N.

Very recently, Yukich [26] gave quantitative Berry-Esseen bounds for this
CLT similar to the ones that are stated here for binomial input.

When dealing with binomial input, which has been less studied than
Poisson input, it is necessary to assume that K ⊂ (0, 1)d and redefine Kχ as

Kχ =
⋃

x∈χ∩K

υχ(x) ∩ [0, 1]d,
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in order to avoid trivial complications due to possibly infinite cells. Penrose
[19] proved the remarkable fact that for χ = χn

Eϕ(χ)→ Vol(K),

E(ϕPer(χ))→ 0,

almost surely, with no need for assumptions on K’s shape.

To further assess the quality of the approximation with binomial input,
we must quantify the previous convergence. The unbiasedness of the Poisson
case does not occur with binomial input, mainly because of edge effects.
Nevertheless those effects seem to decrease exponentially with the distance,
like is customary for Voronoi cells. The following result shows that the bias of
the estimator ϕ(χn) decreases geometrically with n, therefore it is negligible
with respect to the standard deviation, as shown in the following sections.
Also, it still holds when (0, 1)d is replaced by an arbitrary set U containing
K in its interior.

Theorem 2. Assume that K is a compact set with positive volume and let
U be an open set containing K. Let χn = {Xi, 1 6 i 6 n} be iid uniform
variables on U . Then there is a constant 0 < c < 1 depending only on K
and d such that for n > 1,

|EVol(Kχn)− Vol(K)| 6 cn.

Proof. Let χk = {Xi, i 6 k}. By homogeneity of the problem we can suppose
Vol(U) = 1. The Voronoi approximation Kχn of K satisfies

E(Vol(Kχn)) =
n∑
i=1

E(1Xi∈KVol(vχn(Xi) ∩ U))

= nE(1Xn∈KVol(vχn−1(Xn) ∩ U))

= n

∫
K

EVol(vχn−1(x) ∩ U)dx. (5)
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Take 0 < r < 1
2
d(K,U c). We have for all x ∈ K

E(Vol(vχn−1(x) ∩ U)) = E(

∫
U

1y∈vχn−1 (x)
)dy

= E(

∫
U

1B(y,‖y−x‖)∩χn−1=∅)dy

=

∫
U

P(B(y, ‖y − x‖) ∩ χn−1 = ∅)dy

=

∫
U

(1− Vol(B(y, ‖y − x‖) ∩ U))n−1dy

=

∫
B(x,r)

(1− κd‖y − x‖d)n−1dy + cn

where

cn =

∫
U\B(x,r)

(1− Vol(B(y, ‖y − x‖) ∩ U))n−1dy.

For y ∈ U \B(x, r), let By be the ball interiorly tangent to B(y, ‖y−x‖) with
center on [x, y] and radius r. We have By ⊂ B(y, ‖y − x‖) by construction
and By ⊂ U because By ⊂ B(x, 2r). It follows that

cn 6
∫
U\B(x,r)

(1− Vol(By))
n−1dy =

∫
U\B(x,r)

(1− κdrd)n−1dy 6 cn0

for some 0 < c0 < 1, noticing that κdr
d < Vol(U) 6 1 because B(x, r) ⊂ U .

From there, a polar change of coordinates yields

E(Vol(vχn−1(x) ∩ U)) =

∫ r

0

dκdt
d−1(1− κdtd)n−1dt+ cn (because a d-sphere has surface dκd)

=

[
−(1− κdtd)n

n

]r
0

+ cn

=
1

n
+O(cn)

for some c ∈ (0, 1). Reporting in (5) yields the result.

Recalling that the estimator is unbiased if the underlying sample is Pois-
son in Rd, this pleads in favor of Voronoi approximation against other estima-
tors [10, 21] where the bias is not known and does not seem to be negligeable.
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2.1 Asymptotic normality

This subsection is concerned with the results of [17], where it is shown that
with binomial input, the volume approximation Kχ is asymptotically normal
when the number of points tends to ∞. Variance asymptotics and upper
bounds on the speed of convergence for the Kolmogorov distance are also
given.

We begin by stating the boundary regularity condition necessary for these
results to hold, which is related to the boundary densities studied in the pre-
vious section. As explained in the introduction, it can be seen as a weakened
form of the standardness assumption. Define, for all r > 0, the boundary
neighbourhoods

∂Kr = ∂K +B(0, r),

∂K−r = ∂Kr ∩K,
∂K+

r = ∂Kr ∩Kc.

Assumption 2 (Boundary permeability condition). A set K with no im-
proper points satisfies the boundary permeability condition whenever

lim inf
r>0

1

Vol(∂Kr)

(∫
∂K+

r

f 2
r (x) dx+

∫
∂K−r

g2r(x) dx

)
> 0. (6)

The following proposition gives a more meaningful equivalent for Assump-
tion 2.

Proposition 2. Assumption 2 holds if and only if

lim inf
r>0

1

Vol(∂Kr)κdrd

∫
K×Kc

1||x−y||6r dx dy > 0. (7)

Proof. Let us begin by establishing the relation between the expression of
(7) and K’s boundary densities. By Fubini’s theorem∫

K×Kc

1||x−y||6r
κdrd

dx dy =

∫
K

Vol(B(x, r) ∩Kc)

Vol(B(x, r))
dx

=

∫
Kc

Vol(B(x, r) ∩K)

Vol(B(x, r))
dx,
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which rewrites simply as∫
Kc

fr =
1

κdrd

∫
K×Kc

1||x−y||6r dx dy =

∫
K

gr, (8)

by definition of boundary densities.

Consider the function hr = 1Kgr + 1Kcfr. We have 0 6 hr 6 1 and hr = 0
outside of ∂Kr. Applying the Cauchy-Schwarz inequality gives∫

h2r 6
∫
hr 6

√
Vol(∂Kr)

√∫
h2r

which rewrites as

1

Vol(∂Kr)

∫
∂K+

r

f 2
r +

∫
∂K−r

g2r 6
1

Vol(∂Kr)

(
2

κdrd

∫
K×Kc

1||x−y||6r dx dy

)
6

√
1

Vol(∂Kr)

(∫
∂K+

r

f 2
r +

∫
∂K−r

g2r

)
,

so that clearly (6) and (7) are equivalent.

Remark 1. IfK is bi-standard with constant ε then (6) holds as well with the
left hand being greater than ε2. Hence bi-standarness implies the boundary
permeability condition.

Remark 2. Note that

Vol(∂K+
r ) >

1

κdrd

∫
K×Kc

1||x−y||6r dx dy,

so that Vol(∂K+
r ) � Vol(∂Kr) prevents (7) from being satisfied. Of course,

the same reasoning holds with ∂K−r instead. In other words, it is necessary
for the boundary permeability condition to be fulfilled that both sides of the
boundary have comparable volumes.

We reproduce below the result derived in [17, Th. 6.1] for Voronoi ap-
proximation, modified to measure the distance to the normal of the variable
Vol(Kχn) − Vol(K), instead of Vol(Kχn) − EVol(Kχn) like in the original
result. This subtlety is important for dealing with practical applications
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and obtaining confidence intervals for Vol(K). We deal with Kolmogorov
distance, also adapted to confidence intervals, and defined by

dK(U, V ) := sup
t∈R
|P(U 6 t)−P(V 6 t)| ,

for any random variables U, V .

Theorem 3. Let K be a compact subset of (0, 1)d. Assume that for some
s < d

0 < lim inf
r>0

rs−dVol(∂Kr) 6 lim sup
r>0

rs−dVol(∂Kr) <∞, (9)

and that K satisfies the boundary permeability condition (Assumption 2).
Then

0 < lim inf
r>0

Var(Vol(Kχn))

n−2+s/d
6 lim sup

r>0

Var(Vol(Kχn))

n−2+s/d
<∞, (10)

and for all ε > 0 there is Cε > 0 such that for all n > 1

dK

(
Vol(Kχn)− Vol(K)√

Var (Vol(Kχn))
, N

)
6 Cεn

−s/2d log(n)4−s/d+ε, (11)

where N is a standard Gaussian variable.

Proof. This result is almost exactly [17, Th. 6.1], except that there it is
proved that

dK

(
Vol(Kχn)− EVol(Kχn)√

Var (Vol(Kχn))
, N

)
6 Cεn

−s/2d log(n)4−s/d+ε. (12)

To have a similar bound involving Vol(K) instead of Eϕ(Vol(Kχn)), let us
first remark that for δ ∈ R, a random variable U , and V = U + δ,

dK(V,N) 6 dK(V,N + δ) + dK(N + δ,N) 6 dK(U,N) + (2π)−1/2|δ|,
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since dK(V,N + δ) = dK(U,N). It follows that

dK

(
Vol(Kχn)− Vol(K)√

Var (Vol(Kχn))
, N

)
6 dK

(
Vol(Kχn)− EVol(Kχn)√

Var (Vol(Kχn))
, N

)

+ (2π)−1/2

∣∣∣∣∣EVol(Kχn)− Vol(K)√
Var(Vol(Kχn))

∣∣∣∣∣
6 dK

(
Vol(Kχn)− EVol(Kχn)√

Var (Vol(Kχn))
, N

)
+

O(cn)

n−1+s/2d

for some c ∈ (0, 1) by Theorem 2. Reporting the bounds of (12) yields (11).

Remark 3. The fact that [0, 1]d is the support of the random sampling
variables does not seem to have a great importance. Uniformity over [0, 1]d

eases certain estimates in the proof of [17, Th. 6.1] related to stationarity,
but is not essential. If the variables are only assumed to have a positive
continuous density κ(x) > 0 on an open neighborhood of ∂K, it should be
enough for similar results to hold. See Theorem 2, or [19], for rigourous
results in this direction.

Remark 4. If K satisfies all the hypotheses of Theorem 3 except the bound-
ary permeability condition, then we have

sup
t∈R

∣∣∣∣∣P
(

Vol(Kχn)− EVol(Kχn)√
Var (Vol(Kχn))

6 t

)
−P(N 6 t)

∣∣∣∣∣
6 Cεn

ε(σ−2n−2+s/2d + σ−3n−3+s/d + σ−4n−4+s/d)
(13)

where σ2 is the variance of Vol(Kχn). See [17, Th. 6.2] for more details.

Remark 5. Set-estimation literature is also concerned with perimeter ap-
proximation [15, Sec. 11.2.1]. In the context of Voronoi approximation, the
study of the functional Vol(Kχn∆K) has been initiated in [13, 20]. Although
the result is not formally stated, a bound of the form (13) for this functional
is available using the exact same method. One has to work separately to
obtain a variance lower bound. Such a result with Poisson input has been
derived very recently in the paper of Yukich [26].
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Results regarding the volume of the symmetric difference between the set
and its approximation can be used to compare Voronoi approximation with
another estimator. Indeed, the bound in n−1/d given in [13] for EVol(Kχn∆K)
is better than the bound in (nrdn)−1/2 of [4], who use the Devroye-Wise esti-
mator with a smoothing parameter rn � n−1/(d+1).

The consequences of Theorems 1 and 3 for sets K with self-similar bound-
ary are immediate, condition (9) automatically holds by Proposition 1.

Corollary 1. Let K be a compact set such that ∂K is a finite union of
self-similar sets satisfying Assumption 1. Then (10) and (11) hold.

This corollary applies to the Von Koch flake with s = ln(4)/ ln(3) (Ex-
ample 1). The conclusions of Theorem 3 also apply for instance to the Von
Koch anti flake, where three Von Koch curves are sticked together like for
building the flake, but here the curves are pointing inwards, and not out-
wards (Figure 2.1). Assumption 1 is not satisfied on the whole boundary,
but it is within an open ball of Rd intersecting one and only one of the three
curves, and having (4) on a self-similar E with same Minkowski dimension
as ∂K is actually enough for the boundary permeability condition to hold.

Figure 2.1: The Von Koch antiflake

In Section 2.3 we exhibit an example of a setK such that ∂K is self-similar
and K does not satisfy Assumption 1. We run simulations suggesting that
(10) is also false. Our theorem gives a set of sufficient conditions, but other
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versions should be valid. For instance, the question of whether a compact
set K ⊂ R2 whose boundary is a locally self-similar Jordan curve satisfies
the conclusions of the theorem above seems to be of interest.

2.2 Convergence for the Hausdorff distance

In this subsection we will make use of r-coverings and r-packings. Consider
a collection B of balls having radius r and centers belonging to some set
E ⊂ Rd. B is said to be an r-packing of E if the balls are disjoint. It is an
r-covering if the balls cover E.

The size of minimal coverings and maximal packings is closely related to
the Minkowski dimension of E. A necessary and sufficient condition for E
to have upper and lower Minkowski contents is that, for all small enough r,
we can find an r-covering of E with less than Cr−s balls, and an r-packing
of the same set with more than cr−s balls. More related results can be found
in [18].

To estimate with precision r the shape of a set E by a point process χ it
is often necessary to request that every point of E is at distance less than r
of χ. In the context of Voronoi approximation, this is made precise by the
following lemma. Note that we only require χ to be dense enough near ∂A.
This is, as suggested in the introduction, because Voronoi approximation fills
in the interior regions of K where points of χ are scarce.

Lemma 4. Let χ ⊂ Rd be a locally finite non-empty set.

1. If every point x of cl(∂K+
r ) satisfies d(x, χ) < r then Kχ ⊂ K+B(0, r).

2. If every point x of cl(∂K+
r ) satisfies d(x, χ) < r and every point x of

cl(∂K−r ) satisfies d(x, χ ∩K) < r then dH(K,Kχ) 6 r.

3. If every point x of cl(∂K+
r ) satisfies d(x, χ ∩Kc) < r and every point

x of cl(∂K−r ) satisfies d(x, χ ∩K) < r then dH(∂K, ∂Kχ) 6 r.

4. If some point x ∈ ∂K satisfies d(x, χ ∩K) > 3r and d(x, χ ∩Kc) 6 r
then dH(K,Kχ) > r and dH(∂K, ∂Kχ) > r .

Proof. We begin with the first point. Suppose x ∈ Kχ satisfies d(x,K) > r.
Then there is a point cx ∈ χ ∩ K such that x ∈ υχ(cx). The segment

22



joining cx and x contains points from ∂K so we can consider x0 the point of
cl(∂K+

r ) closest to x on that segment. We have d(x0, ∂K) = r and x0 ∈ Kc

since otherwise there would be another point of cl(∂K+
r ) closer to x. As a

consequence d(x0, cx) > r. But then by assumption there is a point y of χ
such that d(x0, y) < r and cx isn’t the point of χ closest to x, which is a
contradiction. Hence x ∈ Kχ implies d(x,K) < r and Kχ ⊂ K +B(0, r).

Note that in the setting of points 2 and 3 we can apply the previous
argument to Kc instead of K, the compacity of K not playing any role in
the proof. Along with (Kχ)c = (Kc)χ this yields Kc

χ ⊂ Kc + B(0, r), which
reformulates as K \ cl(∂K−r ) ⊂ Kχ by taking complements. Hence in both
cases we have the inclusions

Kχ ⊂ K +B(0, r), Kc
χ ⊂ Kc +B(0, r),

and their reformulations

K \ cl(∂K−r ) ⊂ Kχ, K
c \ cl(∂K+

r ) ⊂ Kc
χ.

To prove the second point it is enough to show that K ⊂ Kχ + B(0, r).
Let x be a point of K. If x ∈ K \ cl(∂K−r ) then x belongs to Kχ. And if x
is in cl(∂K−r ) then there is a point y of χ ∩K such that d(x, y) < r. In all
cases x ∈ Kχ +B(0, r).

We move on to point 3. The two inclusions Kc \ cl(∂Kr) ⊂ Kc
χ and

K \ cl(∂Kr) ⊂ Kχ also show that if x satisfies d(x, ∂K) > r, x is interior to
either Kχ or Kc

χ. Hence ∂Kχ ⊂ ∂K+cl(B(0, r)). Conversely, for every point
x of ∂K there are points of both χ∩K and χ∩Kc inside B(x, r), so B(x, r)
contains a point of ∂Kχ. Hence ∂K ⊂ ∂Kχ +B(0, r) and dH(∂K, ∂Kχ) 6 r.

Lastly, suppose the requirements of point 4 are met. Let y be a point of
χ∩B(x, r)∩Kc. Then all of the points in B(x, r) are closer to y than to the
points outside ofB(x, 3r). Consequently all points B(x, r) must lie in Voronoi
cells centered in Kc, and x /∈ Kχ +B(0, r) so that dH(K,Kχ) > r. The fact
that B(x, r) ⊂ Kc

χ also implies d(x, ∂Kχ) > r and dH(∂K, ∂Kχ) > r.
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Now we apply this lemma to show almost sure convergence of Kχ in the
sense of the Hausdorff distance. To formulate such a result, the concept
of proper points (beginning of Section 1.3) proves to be useful. Improper
points are invisible to the Voronoi approximation Kχ of K. Though this has
no incidence when measuring volumes, it becomes a nuisance when measuring
Hausdorff distances.

The set Kprop of points proper to K can be thought of as the complement
of the biggest open set O such that Vol(O ∩ K) = 0, from which it follows
that Kprop is compact and that Kχ = Kprop

χ a.s.

Proposition 3. Kχn −→
n→+∞

Kprop and ∂Kχn −→
n→+∞

∂Kprop almost surely in

the sense of the Hausdorff metric for both Poisson and binomial input.

Proof. Since Kχ = (Kprop)χ almost surely and Kprop has no improper points,
this is equivalent to the fact that Kχn → K and ∂Kχn → ∂K almost surely
when K has no improper points. By the Borel-Cantelli lemma it is enough
to show that both series∑

n>1

P(dH(Kχn , K) > r),
∑
n>1

P(dH(∂Kχn , ∂K) > r)

are convergent for any positive r.
Consider r/2-coverings B+,B− of cl(∂K+

r ), cl(∂K−r ) respectively. Since
both sets are compact, these coverings can be made with finitely many balls.
Set B = B+ ∪ B− and

V = min

(
min
B∈B−

Vol(B ∩K), min
B∈B+

Vol(B ∩Kc)

)
.

Because K and Kc have no improper points, V > 0. If every ball of B+

contains a point of χ ∩Kc and every ball of B− a point of χ ∩K, then the
requirements of points 2 and 3 in Lemma 4 are met. The probability of this
not happening is bounded by |B|(1−V )n for binomial input and |B|e−nV for
Poisson input. In all cases the series associated with P(dH(Kχn , K) > r) and
P(dH(∂Kχn , ∂K) > r) converge, as required.

A refinement of the method above gives an order of magnitude for dH(K,Kχ)
with Poisson input, under assumptions on ∂K, fr and gr resembling those of
Theorem 3. This requires better estimations of the probability of the points
of Lemma 5 being met, which is the purpose of the following lemma.
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Lemma 5. Let A,χ be non-empty sets, and B a collection of balls centered
on A with radii r. Write Bτ for the collection of balls having same centers
as those of B but radius τr, and choose τ1, τ2 > 0 such that τ1 + τ2 = 1. If
Bτ1 is a τ1r-covering of A and every ball of Bτ2 contains a point of χ, then
A ⊂ χ+B(0, r).

Proof. Let x be a point of A. By hypothesis, there is a ball of B with center
c such that d(x, c) < τ1r, and also a point y of χ such that d(y, c) < τ2r.
Hence d(x, y) < r(τ1 + τ2) and d(x, χ) < r. So indeed every point of A is at
distance less than r of χ.

This handy lemma is meant to give probability estimations of events of
the type A ⊂ χ + B(0, r), which are useful outside the context of Voronoi
approximation. Typically, χ is chosen to be a random point process, and the
covering Bτ1 is chosen deterministically with as few balls as possible, often
Cτ−d1 r−d. Bounding the probability that a ball of Bτ2 does not intersect χ
then gives an upper bound of the form

P(A * χ+B(0, r)) 6 |B| max
B∈Bτ2

P(B ∩ χ = ∅).

The estimations obtained in such applications are less sensible to the number
of balls in B than to their size. Hence optimal results are obtained when τ1
is small.

For example, the reader may use Lemma 5 to derive [9, Th. 1] and
its counterpart for Poisson input, which are concerned with the order of
magnitude of dH(K,K ∩ χ) with χ an homogenous point process. Note
that use of Minkowski contents and boundary densities give slighlty better
bounds, which turn out to be optimal, see Remark 10.

Theorem 4. Suppose that ∂K has Minkowski dimension s > 0 with upper
and lower contents, and that for all r small enough,

fr > ε on K,

gr > ε on Kc.

Then we have

P

(
α 6

dH(K,Kχ′λ
)

(λ−1 ln(λ))1/d
6 β

)
−→
λ→∞

1

P

(
α 6

dH(∂K, ∂Kχ′λ
)

(λ−1 ln(λ))1/d
6 β

)
−→
λ→∞

1
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where χ′λ is a Poisson point process of intensity λ and α, β satisfy α < αK , β >
βK with

αK =
1

3

(
s

dκd(1− ε)

)1/d

,

βK =

(
s

dκdε

)1/d

.

Proof. The approach of the proof is to tune r in Lemma 4 in order to have
the events of points 3 happen with high probability. We shall only show the
assertions regarding dH(∂K, ∂Kχ), since the exact same arguments hold with
dH(K,Kχ) as well.

We start with the upper bound. For all λ let Ωλ be the event where
all the requirements from point 3 of Lemma 4 are met with χ = χ′λ, r =
rλ = β(λ−1 ln(λ))1/d. Hence {dH(∂K, ∂Kχ) > r} ⊂ Ωc

λ. We shall show that
P(Ωc

λ)→ 0.
Choose τ1, τ2 < 1 so that τ1+τ2 = 1 and τ2β > βK . Let B+ be a collection

of balls with radius r and centers on cl(∂K+
r ). As in Lemma 5, call B+

τ the
collection of balls with same centers as those of B+, but radius τr. Define
B−,B−τ similarily and set B = B+∪B−. Note that B depends on λ, but τ1, τ2
do not.

We can and do choose B+,B− so that B+
τ1
,B−τ1 are coverings of cl(∂K+

r )

and cl(∂K−r ) respectively, and |B| has less than Cτ−d1 r−s = Cτ−d1 (λ/ lnλ)−s/d

balls. Indeed, consider τ1r/2-packings of ∂K+
r and ∂K−r , both optimal in the

sense that no ball can be added without losing the packing property. Because
of volume issues, the packings have less than Cτ−d1 r−s balls, and because of
the optimality assumption doubling the radii of the balls gives the desired
τ1r-coverings.

The intersection of K with a ball B ∈ B−τ2 of center x has volume exactly
κd(τ2r)

dfτ2r(x). Because fr > ε for large enough λ and τ2β > βK it follows
that

P(B ∩ χ ∩K = ∅) 6 exp(−λτ d2 εκdrd) = λ−s/d−δ

for some δ > 0. The same bound is valid for P(B ∩ χ ∩Kc = ∅), B ∈ B+
τ2

.
Applying Lemma 5 twice with A = ∂K+

r , ∂K
−
r successively gives

P(Ωc
λ) 6 |B|λ−s/d−δ 6 Cτ−d1 ln(λ)s/dλ−δ

so that, since τ1 is fixed, P(Ωc
λ)→ 0 as desired.
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The proof for the lower bound is quite similar. Fix δ > 0, and redefine Ωλ

to be the event where the requirements described in point 4 of Lemma 4 are
met for χ = χ′λ, r = rλ = α(ln(λ)λ−1)1/d with α < αK . Again, we shall show
P(Ωc

λ)→ 0. Let B = Bλ be a 3r-packing of ∂K. We can assume |B| > cr−s.
The probability of there being no points of K ∩ χλ in a ball B(x, 3r) of

B and at least one point of Kc ∩ χ in B(x, r) for a point x in the boundary
is exactly

exp(−λκd(1− g3r(x))3drd)
(
1− exp(−λκdgr(x)rd)

)
because B(x, 3rλ)∩Kc and B(x, r)∩K are disjoint. So we have the following
upper bound, for λ big enough

P(Ωc
λ) 6 (1− e−λκd(1−ε)3drd(1− e−λκdrdε))|B|.

We would like the right hand to go to 0 with λ. Taking logarithms this is
equivalent to

|B| exp(−λκd(1− ε)3drd)(1− exp(−λκdrdε)) −→
λ→+∞

+∞.

Because exp(−λκd(1 − ε)3drd) = λδ−s/d with δ > 0, exp(−λκdrdε) → 0 and
|B| > c(λ/ ln(λ))s/d, it is indeed the case.

The proof and the result call for some comments. Most of them are minor
variants on the result which were not included in the proof for clarity’s sake.

Remark 6. It is possible to dispose of the hypothesis that ∂K has Minkowski
upper and lower contents, by using instead the so-called upper and lower
Minkowski dimension, which always exist, see [18]. In particular, we can
always do the coverings in the proof with Cr−d balls, so the upper bound
still holds after replacing s by d in the expression of βK . This compares
with the result given by Calka and Chenavier in [5, Corollary 2]. One can
also show, using the fact that K is bounded and has positive volume, that
Hd−1(∂K) > 0 so that s can be replaced by d − 1 in the expression of αK .
Hence a lower bound also holds with no assumption on ∂K’s geometry when
d > 2.

For the results concerned with dH(∂K, ∂Kχ), this is a remarkable feature
that to our knowledge no other estimators possess. For instance, in [9] a
so-called expandability condition is required to obtain similar rates with the
Devroye-Wise estimator.

27



Remark 7. If s = 0 and ∂K has Minkowski contents then actually d = 1,
∂K has a finite number of points, and dH(K,Kχ) has order λ−1 in the sense
that for λ large enough

P(dH(K,Kχ′λ
)λ > t) 6 2|∂K| exp(−2εt),

which is enough to guarantee the existence of moments of all orders for
dH(K,Kχ)λ. This is not true of other shape estimators, and is due to the
fact that Voronoi approximation only requires χ to be dense near ∂K and
not on all of K. If we don’t have Minkowski contents the situation might be
more delicate.

Remark 8. Better estimations of the P(Ωc
λ) in the proof along with an

application of the Borel-Cantelli lemma yield the almost sure convergence
rates advertised in the introduction. Explicitly

αK 6 lim inf
n→+∞

dH(K,Kχ′n)

(n−1 ln(n))1/d
6 lim sup

n→+∞

dH(K,Kχ′n)

(n−1 ln(n))1/d
6 β′K

and similarily for dH(∂K, ∂Kχ), with αK , βK as in Theorem 4 and β′K =
(βdK + (1/κdε))

1/d.

Remark 9. For binomial input, some minor changes in the proof give the
same upper bound. It can’t be done for the lower bound since we use the
fact that χ ∩ A,χ ∩ B are independent when A and B are disjoint and χ is
a Poisson point process.

Remark 10. Using similar techniques as in the proof above it is possible to
show that

dH(K,K ∩ χ′λ)
(λ−1 ln(λ))1/d

P−→
(

2(d− 1)

dκd

)1/d

if K has no improper points and ∂K is a C2 manifold. Theorem 4 shows
that, under the same assumptions, the above limit can be used as an upper
bound for dH(K,Kχλ)(λ/ ln(λ))−1/d. Hence, as a shape estimator, Kχ is not
worse than χ ∩ K. It would be interesting to know if it is better in some
sense, a question related to the optimality of the bounds in Theorem 4.

Remark 11. Applying point 2 of Lemma 4 instead of point 3 in the proof
of the theorem yields a better result for dH(K,Kχ). Specifically if fr > εf
on K then

P

(
dH(K,Kχ′λ

)

(λ−1 ln(λ))1/d
6 β

)
−→
λ→∞

1
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whenever

β >

(
s

dκdεf

)1/d

.

Together with Remark 6 this shows that inner standardness is a sufficient
assumption to have convergence rates for dH(K,Kχ).

2.3 A counter-example

Here we construct a set Kcantor with self-similar boundary not satisfying
the boundary permeability condition. This example shows that Theorem 1
cannot be generalised by dropping Assumption 1, even if the conclusion is
weakened.

The example K below is uni-dimensional, but a counter-example in di-
mension 2 can be obtained by considering K × [0, 1].

Example 2. Let E ⊂ R the self-similar set generated by the similarities
φ1 : x 7→ x/3, φ2 : x 7→ (2 + x)/3 who satisfy the open set condition with
U = (0, 1). E is in fact the Cantor set, and can be characterized as the set
of points having a ternary expansion with no ones.

Kcantor will be defined as the closure of open intervals of [0, 1] \ E. The
trick is to choose few intervals with quickly decreasing length, so that fr
is small on most of Kcantor’s boundary, but to distribute them well so that
∂Kcantor = E.

To every positive integer n associate the sequence s′n of its digits in base 2
in reverse order and double the terms to get sn. For example, since 6 is 110
in base 2, s6 = (0, 2, 2). This defines a bijection between N and the set of
finite sequences of zeroes and twos ending in 2, with the additional property
that sn always has length ln 6 n. Now for all n define

an =
1

3n+1
+
∑
k>1

snk
3k

bn =
2

3n+1
+
∑
k>1

snk
3k

An = (an, bn)
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We have the following ternary expansions

an = 0.sn1s
n
2 ...s

n
ln000...01

= 0.sn1s
n
2 ...s

n
ln000...0022222...

bn = 0.sn1s
n
2 ...s

n
ln000...02

Now, set K = cl(
⋃
An). We claim that K has no improper points, ∂K = E

and that K does not satisfy the regularity condition of Theorem 3.

Proof. The first assertion is easy to prove. Being segments, the An have no
improper points to themselves, so

⋃
An ⊂ Kprop and K ⊂ Kprop by taking

closures.

For the second assertion we need to show that ∂K = K\
⋃
An = cl(

⋃
{an, bn}).

We already have the obvious ∂K ⊂ K \
⋃
An. Define

a′n =
1

3n+1
− 2

3ln
+
∑
k>1

snk
3k

b′n =
2

3n+1
− 2

3ln
+
∑
k>1

snk
3k

A′n = (a′n, b
′
n)

Since for all n, snln = 2, the corresponding ternary expansions are

a′n = 0.sn1s
n
2 ...s

n
ln−1000...01

= 0.sn1s
n
2 ...s

n
ln−1000...0022222...

b′n = 0.sn1s
n
2 ...s

n
ln−1000...02

If x ∈ Ai∩A′j then every ternary expansion of x has the same digits as the fi-
nite ternary expansions of ai, a

′
j up to the first 1, which is impossible. So

⋃
A′n

is an open set disjoint from
⋃
An and hence from K. Furthermore,

⋃
A′n is

dense near the an, because for all k,N ∈ N∗, we can find an a′k′ whose ternary
expansion has the same N first digits as the non-terminating expansion of
ak, so that d(ak, a

′
k′) 6 1/3N . A similar argument works for the bn, so that

the an, bn belong to ∂K and, since the latter is closed, cl(
⋃
{an, bn}) ⊂ ∂K.
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Finally, consider a point x ∈ K \
⋃
An. For all r > 0, B(x, r) contains a

point from an Ak, and since x /∈ Ak, one of the two points ak, bk must also
be in B(x, r). Consequently, x is also an accumulation point of

⋃
{an, bn}.

We just proved that K \
⋃
An ⊂ cl(

⋃
{an, bn}). Putting this together with

the previous two inclusions we get the desired equality.
Since for all x ∈ E,N ∈ N∗ we can find an ak with the same first N digits

as x in base 3, the an are dense in E and E ⊂ ∂K. Conversely, ∂K ⊂ E,
since the an, bn belong to E, who is closed.

For the last assertion, pick any r > 0 and set N = 2d− log3(r)e. Let X
be the union of the balls of radius r centered on the endpoints of the N first
An. X has area at most −4r log3(r) and for any x ∈ ∂Kr \X, B(x, r) does
not intersect the Ak, k 6 N . Since Vol(∂K) = 0

Vol(K \ (A1 ∪ A2 . . . ∪ AN)) = Vol(
⋃
n>N

An) =
1

2.3N+1
6 r2.

But Vol(∂Kr) has order r1−ln(2)/ ln(3) and

Vol(∂K−r ) 6 Vol(X) + Vol(K \ (A1 ∪ A2 . . . ∪ AN)) 6 −4r log3(r) + r2

so that Vol(∂K−r ) � Vol(∂Kr). According to Remark 2, this prevents (7)
from holding.

Simulations were made for the quality of the Voronoi volume approxi-
mation with this set K. The magnitude order of the empirical variance of
Vol(Kχn) seems to be nτ with τ ≈ −1.8, as shown in Figure 2.2. Look-
ing at Theorem 3, the approximation behaves as if the set had a “nice”
fractal boundary of dimension ≈ 0.2, whereas its real fractal dimension is
1− ln(2)/ ln(3) ≈ 0.37.

Simulations also suggest that a central limit theorem still holds. Such
a fact indicates that though the results of Lachieze-Rey and Peccati [17]
seem to be generalisable, the variance of Vol(Kχn) is indeed related to the
behaviour of fr and gr near ∂K.

Example 3. It is possible to construct other sets not satisfying the regularity
condition of Assumption 2. If we don’t require ∂K to be a self-similar set, a
much simpler example is given by

K = cl(
⋃
n∈N∗

(
1

n
− 1

3n
,

1

n

)
).
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Figure 2.2: In blue ln(Var(Kχn)) as a function of ln(n), in red the asso-
ciated linear regression. For each n, the variance was estimated with 1000
realisations of Vol(Kχn).

Intentionally, ∂K looks like the set {n−1, n ∈ N∗}, who is often given as an
example of a countable set with positive Minkowski dimension. K has no
improper points, its boundary has Minkowski dimension 1/2 with upper and
lower contents, but K does not satisfy (6) or (7). This can be proved using
the same methods as in Example 2. Again, simulations tend to show that
the variance of Vol(Kχn) is about nτ with τ ≈ −1, 8 and that a central limit
theorem still holds.

References

[1] L. Ambrosio, N. Fusco, and D. Pallara. Functions of Bounded Variation
and Free Discontinuity Problems. Oxford Science Publications, 2000.

[2] J. R. Berrendero, A. Cholaquidis, A. Cuevas, and R. Fraiman. A geomet-
rically motivated parametric model in manifold estimation. Statistics,
48(5):983–1004, 2014.

32



[3] G. Biau, B. Cadre, D.M. Mason, and B. Pelletier. Asymptotic nor-
mality in density support estimation. Electronic Journal of Probability,
14:2617–2635, 2009.

[4] G. Biau, B. Cadre, and B. Pelletier. Exact rates in density support
estimation. J. Mult. Anal., 99:2185–2207, 2008.

[5] P. Calka and N. Chenavier. Extreme values for characteristic radii of a
Poisson-Voronoi tessellation. Extremes, 17(3):359–385, 2014.

[6] A. Cuevas. On pattern analysis in the non-convex case. Kybernetes,
19:26–33, 1990.

[7] A. Cuevas, R. Fraiman, and B. Pateiro-Lopez. On statistical properties
of sets fulfilling rolling-type conditions. Adv. Appl. Prob., 44(2):311–329,
2012.

[8] A. Cuevas, R. Fraiman, and A. Rodriguez-Casal. A nonparametric ap-
proach to the estimation of lengths and surface areas. The Annals of
Statistics, 35(3):1031–1051, 2007.

[9] A. Cuevas and A. Rodriguez-Casal. On boundary estimation. Adv. Appl.
Prob., 36:340–354, 2004.

[10] L. Devroye and G. Wise. Detection of abnormal behaviour via non-
parametric estimation of the support. SIAM J. Appl. Math., 3:480–488,
1980.

[11] K. J. Falconer. The Geometry of Fractal Sets. Cambridge University
Press, 1985.

[12] D. Gatzouras. Lacunarity of self-similar and stochastically self-similar
sets. Trans. AMS, 352(5):1953–1983, 2000.

[13] M. Heveling and M. Reitzner. Poisson-Voronoi approximation. The
Annals of Applied Probability, 19(2):719–736, 2009.

[14] R. Jimenez and J. E. Yukich. Nonparametric estimation of surface in-
tegrals. The Annals of Statistics, 39(1):232–260, 2011.

[15] W. S. Kendall and I. Molchanov. New perspectives in stochastic geome-
try. Oxford University Press, 2010.

33



[16] E. Khmaladze and N. Toronjadze. On the almost sure coverage property
of Voronoi tesselation. Advances in Applied Probability, 33(4):756–764,
2001.
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