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Abstract

In this paper, we study the inner and outer boundary densities of some sets with self-
similar boundary having Minkowski dimension s > d−1 in R

d. These quantities turn out to
be crucial in some problems of set estimation theory, as we show here for the Voronoi approx-
imation of the set with a random input constituted by n iid points in some larger bounded
domain. We prove that some classes of such sets have positive inner and outer boundary
density, and therefore satisfy Berry-Essen bounds in n−s/2d for Kolmogorov distance. The
Von Koch flake serves as an example, and a set with Cantor boundary as a counter-example.
We also give the almost sure rate of convergence of Hausdorff distance between the set and
its approximation.
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Notations In all the following, d(., .) designates the Euclidean distance between points or
subsets of Rd. The closure, the interior, the topological boundary and the diameter of a set
E ⊂ R

d are designated by cl(E), int(E), ∂K, diam(E) respectively. Vol is the d-dimensional
Lebesgue measure and κd is the volume of the Euclidean unit ball. B(x, r) is the open ball
with center x ∈ R

d and radius r > 0.

Background

Set estimation theory is a topic of nonparametric statistics where an unknown set K is
estimated, based on partial random information. The random input generally consists in a
finite sample χ of points, either IID variables [4, 14] or a Poisson point process [9, 10, 15].
Based on the information of which of those points belong or not to K, one can reconstruct
a random approximation Kχ of K and study the asymptotic quality of the approximation.
See the recent survey [11, Chap. 11] about related works in nonparametric statistics.

The results generally require the set to be smooth in some sense. In the literature,
the set under study is assumed to be convex [15, 18], r-convex [5, 16], to have volume
polynomial expansion [2], positive reach, or a (d−1)-rectifiable boundary [10]. Another class
of regularity assumptions usually needed is that of sliding ball or rolling ball conditions. The
most common form of this condition is that in every point x of the boundary, there must be
a ball touching x and contained either in K, in Kc, or both.

In those works, the random approximation model Kχ can be the union of balls centred
in the points of χ with well tuned radius going to 0, a level set of the sum of appropriately
scaled kernels centred on the random points, or else. Recently, a different model has been
used in stochastic geometry, based on the Voronoi tessellation associated with χ. One defines
Kχ as the union of all Voronoi cells which centers lie in K, assuming that points of χ fall
indifferently inside and outside K, as K is unknown. This is equivalent to defining Kχ as
the set of points that are closer to χ∩K than to χ∩Kc. An advantage of this model is that
Kχ will be less likely to contain holes inside the set K due to the possible sparsity of points
in that region, and the corresponding volume estimator has the remarkable property to be
unbiased with Poisson input, see [15]. We also have the handy property (Kc)χ = (Kχ)

c. A
more formal presentation of Voronoi approximation along with a summary of existing results
([3, 9, 10, 15, 18]) is given in Section 2.

Approach and main results

This work is motivated by the results of [12], in which it was proved that if ∂K has Minkowski
dimension s, then under sufficient assumptions regarding K’s boundary (precised in Section
2.1) the following variance asymptotics hold

0 < lim inf
n

Var(Vol(Kχn
))ns/d−2

6 lim sup
n

Var(Vol(Kχn
))ns/d−2 <∞, (1)
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where χn is a set of n IID variables uniformly distributed in a cube surrounding K. An
estimation of the Kolmogorov distance between the renormalized approximation volume and
the standard Gaussian law was also given. For ε > 0, there is Cε > 0 such that for n > 1

sup
t∈R

∣

∣

∣

∣

∣

P

(

Vol(Kχn
)− EVol(Kχn

)
√

Var(Vol(Kχn
))

> t

)

−P(N > t)

∣

∣

∣

∣

∣

6 Cεn
−s/2d+ε (2)

where N is a standard normal variable. In order to study the extent to which this result
applies to sets with a possible irregular boundary, we focus here on sets with a self-similar
boundary. Surprisingly, it turns out that second order results can still be obtained after
dropping all convexity and smoothness assumptions, allowing sets with a fractal boundary,
such as the Von Koch flake, and the rolling ball assumption has to replaced by a much weaker
assumption. We are able in this setting to obtain the power law decay of (2), as well as a.s.
convergence results in the Hausdorff distance.

The central condition imposed on K, presented here as Assumption 2, is concerned with
the density of K at radius r in x, defined by

fK
r (x) =

Vol(K ∩ B(x, r))

Vol(B(x, r))
.

Assumption 2 holds whenever fK
r > ε or fKc

r > ε on ∂K, for some fixed ε > 0 and
small enough r. This is not the general setting, but it gives the gist of what Assumption 2
imposes on K, and the inequality fK

r , f
Kc

r > ε has already appeared in set estimation ([4,
Theorem 1], [3]). Assumption 2 can be seen as a drastically weakened form of rolling ball
type conditions, in the sense that it requests B(x, r)∩K or B(x, r)∩Kc to contain a certain
volume, whereas rolling ball conditions require them to contain a certain rigid shape to touch
the boundary. When it exists, the density of K in x is the limit of fr(x) as r goes to 0. The
study of these densities on the boundary is also related with works in geometric measure
theory. Points with density 0 and 1 are considered resp. as the measure-theoretic exterior
and interior of K, while other points constitute ∂∗K the essential boundary of K. Federer
[1] proved that if K is a measurable set with finite measure-theoretic perimeter then most
of the essential boundary’s points have density 1/2, see [1, Th.3.60].

The question we address here regarding this issue is whether this assumption still holds
if ∂K is irregular, focusing on sets with self-similar boundary. In general, such boundaries
have a Hausdorff dimension s > d− 1 and don’t have finite perimeter. But, because of self-
similarity, the densities fK

r , f
Kc

r should nevertheless have continuous and somehow periodical
fluctuations in r, and therefore a positive infimum. This is confirmed by Theorem 1, which
gives, for K with self-similar boundary, a set of conditions under which fK

r > ε on the
boundary uniformly in r > 0. It is even proved that a ball with radius cr for some c > 0 can
be rolled inside or outside the boundary, staying within a distance r from the boundary, but
not touching it (otherwise self-similar boundaries would be excluded). Theorem 1 applies
for instance to the Von Koch flake in dimension 2, which is therefore well-behaved under
Voronoi approximation and satisfies (2). Remark that if this assertion holds for K, it does
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not automatically hold for Kc, even though they share the same boundary. We actually give
conditions ensuring that both infr<1 f

K
r > 0 and infr<1 f

Kc

r > 0.
However, some sets with self-similar boundary do not fall under the scope of this result,

and we also give example of a self-similar set Kcantor with Cantor-like self-similar boundary
not satisfying the weak rolling ball condition ensuring (1) and (2). Simulations we ran
suggest that this irregularity of Kcantor’s boundary indeed reflects on the behaviour of its
Voronoi approximation and prevents it from satisfying (1).

It is remarkable that the densities fK
r and fKc

r are also crucial when one studies the
quality of the approximation with regard to the Hausdorff distance dH . This quantity seems
less stable than the volume of the approximation, where compensation mechanisms might
occur around the boundary of K. The problem of assessing the Hausdorff distance between
K and Kχ had been raised in [9], and a first result was obtained by Calka and Chenavier
[3]. We complete their findings by showing that, under positive inner and outer densities for
K, there are explicit constants cK , c

′
K > 0 such that almost surely

cK 6 lim inf
n→+∞

dH(K,Kχn
)

(n−1 ln(n))1/d
6 lim sup

n→+∞

dH(K,Kχn
)

(n−1 ln(n))1/d
6 c′K

where χn is a Poisson point process with intensity n ∈ N. The upper bound also holds for a
binomial point process.

Plan

The plan of the paper is as follows. In Section 1, we recall basic facts and definitions
about self-similar sets, especially regarding upper and lower Minkowski contents. We then
give conditions under which self-similar boundaries have positive inner and outer densities.
Voronoi approximation is formally introduced in Section 2. We then derive the volume
normal approximation for sets with well-behaved self-similar boundaries and more general
Hausdorff distance results. We also develop the counter example Kcantor that satisfies neither
the hypotheses of Theorem 1 nor the Volume approximation variance asymptotics (??).

1 Self-similar sets

1.1 Self-similar set theory

We start with some brief reminders of self-similar set theory. A precise treatment of the
subject can be found in [7]. We recall the definition of the Hausdorff distance between two
sets A,B ⊂ R

d,

dH(A,B) = inf{r > 0 : A ⊂ B +B(0, r), B ⊂ A+B(0, r)}.
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Let {φi, i ∈ I} be an iterated function system, i.e a finite set of contracting similitudes.
We define the following set transformation

ψ : P(Rd) −→ P(Rd)

E 7−→
⋃

i

φi(E).

ψ is easily seen to be a contracting transformation for the Hausdorff metric, which happens
to be complete on Kd, the class of non-empty compact sets of Rd. By a fixed point theorem,
there is an unique set E ∈ Kd satisfying ψ(E) = E, who is by definition the self-similar set
associated with the φi.

If there is a bounded open set U such as ψ(U) =
⋃

φi(U) ⊂ U with the union disjoint,
then necessarily E ⊂ cl(U) and the φi are said to satisfy the open set condition. Schief
proved in [17] that we can pick U so that U ∩ E is not empty. We will always do so here.

The similarity dimension of E is the unique s satisfying

∑

λsi = 1

where λi is the stretching factor of φi. When the open set condition holds, this similarity
dimension is also the Hausdorff dimension and the Minkowski dimension of E. Furthermore,
E’s upper and lower s-dimensional Minkowski contents are finite and positive. This is an easy
and probably known result, but since we have not found it explicitly stated and separately
proven in the literature, we will do so here in Proposition 1 (one can find an alternative
proof for the lower content in [8, Paragraph 2.4], it can also be considered a consequence
of Hs(E) > 0, like suggested in [13]). We will need the following classical lemmae, that we
prove for completeness.

Lemma 1. Let (Ui) be a collection of disjoint open sets in R
d such as each Ui contains a

ball of radius c1r and is contained in a ball of radius c2r. Then any ball of radius r intersects
at most (1 + 2c2)

dc−d
1 of the sets cl(Ui).

Proof. Let B be a ball of center x and radius r. If some cl(Ui) intersects B then cl(Ui)
is contained in the ball B′ of center x and radius r(1 + 2c2). If q different cl(Ui) intersect
B then there are q disjoint balls of radius c1r inside B′, and by comparing volumes q 6

(1 + 2c2)
dc−d

1 .

Lemma 2. Suppose E and the φi satisfy the open set condition with U . Then for every
r < 1 we can find a finite set A of similarities Φk with ratios Λk such as

1. The Φk are composites of the φi.

2. The Φk(E) cover E.
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3. The Φk(U) are disjoint.

4.
∑

Λs
k = 1 where s is the similarity dimension of E.

5. mini(λi)r 6 Λk < r for all k.

Proof. We give an algorithmic proof. Initialise at step 0 with A = {Id}. At step n replace
every Φ ∈ A with ratio greater than r by the similarities Φ◦φi, i ∈ I. Stop when the process
becomes stationary, which will happen no later than step ⌈ln(r)/ ln(max(λi))⌉.

Obviously, point 1 is satisfied. We will prove the next three points by induction. At step
0, all of E is covered by the Φk(E), the Φk(U) are disjoint, and the Λs

k sum up to 1. The first
property is preserved when Φ is replaced by the Φ◦φi, since Φ(E) = Φ(ψ(E)) =

⋃

Φ◦φi(E).
Likewise, the Φ◦φi(U) are disjoint one from each other because Φ is one-to-one, and disjoint
from the other Φk(U) because

⋃

Φ ◦ φi(U) = Φ(ψ(U)) ⊂ Φ(U), which yields point 3. For
point 4 note that if Φ has ratio Λ, then the Φ◦φi have ratios Λλi and Λs = Λs

∑

λsi =
∑

(Λλi)
s

so the sum of the Λs
k remains unchanged by the substitution. Finally, since r < 1, every final

set of the process has an ancestor with ratio greater than r. This gives the lower bound for
point 5; the upper bound comes from the fact that the process ends.

Remark 1. The process in the proof of Lemma 2 is often resumed as follows

A = {φi1 ◦ φi2 ... ◦ φin |
n
∏

k=1

λik < r 6
n−1
∏

k=1

λik}.

1.2 Minkowski contents of self-similar sets

We recall that the s-dimensional lower Minkowski content of a non-empty bounded set
E ⊂ R

d can be defined as

lim inf
r>0

Vol(E +B(0, r))

rd−s

Similarly, the s-dimensional upper Minkowski content of E is

lim sup
r>0

Vol(E +B(0, r))

rd−s

In this paper, when both contents are finite and positive, we will simply say that E has
upper and lower Minkowski contents. That leaves no ambiguity on the choice of s, since in
that case s is necessarily the Minkowski dimension of E, i.e

s = d− lim
r→0

ln(Vol(E +B(0, r)))

ln(r)
.
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Proposition 1. Let E be a self-similar set satisfying the open set condition with similarity
dimension s. Then E has finite positive s-dimensional upper and lower Minkowski contents,
i.e

0 < lim inf
r>0

rd−sVol(E +B(0, r)) 6 lim sup
r>0

rd−sVol(E +B(0, r)) <∞.

Proof. As before, let φi be the generating similarities of E, λi their ratios, ψ : A 7→
⋃

φi(A)
the associated set transformation, and U the open set of the open set condition. Choose any
0 < r < 1 and define the Φk,Λk as in Lemma 2. Finally, write Ek = Φk(E), Uk = Φk(U).

We approximate E + B(0, r) by the sets Ek + B(0, r), who are similar to the E +
Φ−1

k (B(0, r)). By construction Φ−1
k (B(0, r)) is a ball with a radius belonging to [1, (mini λi)

−1],
so that

Vol(B(0, 1)) 6 Vol(E + Φ−1
k (B(0, r))) 6 Vol(B(0, diam(E) + (min

i
λi)

−1)),

because E is not empty. Applying Φk we get

c′Λd
k 6 Vol(Ek +B(0, r)) 6 CΛd

k

for some positive c′, C independent from r (the exact value of the constants doesn’t matter
here).

Since E +B(0, r) ⊂
⋃

k Ek +B(0, r) and
∑

Λs
k = 1 we immediately get the upper bound

Vol(E +B(0, r)) 6
∑

Vol(Ek +B(0, r))

6
∑

CΛd
k

6 C
∑

Λs
kr

d−s.

6 Crd−s.

For the lower bound we apply Lemma 1 to the disjoint Uk. Since U is open we can put
some ball of radius c1 in U , and conversely we can put U in some ball of radius c2, since U is
bounded. This means that each of the Uk contains a ball of radius rmini(λi)c1 6 Λkc1 and is
contained in a ball of radius rc2diam(U) > Λkc2. So for any x ∈ E+B(0, r), B(x, r) intersects
at most q of the Ek (since Ek ⊂ cl(Uk)) with q a positive integer independent of r and x.

This can be rewritten 1E+B(0,r) >
1

q

∑

1Ek+B(0,r). Integrating we get Vol(E + B(0, r)) >

1

q

∑

Vol(Ek +B(0, r)) so that
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Vol(E +B(0, r)) >
1

q

∑

Vol(Ek +B(0, r))

>
c′

q

∑

Λd
k

>
c′

q
(min

i
λi)

d−s
∑

Λs
kr

d−s

> crd−s.

1.3 Boundary regularity

In order to formulate our result, we introduce the set Kpropofproper points of K as the
support of Vol(K ∩ ·). Points of K \Kprop are said unproper to K. This notion must not to
be mistaken with the essential points mentioned in the introduction. Further use of proper
points will be made in Section 2.2. We can already note thatK must have no unproper points
if we want a positive lower bound for the fK

r on K. Our main result holds for self-similar
subsets E of ∂K satisfying the following assumption:

Assumption 1. E satisfies the open set condition with some set U(with U ∩ E 6= ∅) such
that U ∩ ∂K ⊂ E and U \ ∂K has finitely many connected components.

This assumption can be justified heuristically: if E cuts the space into infinitely many
connected components, then because of self-similarity it also does so locally, and K and Kc

are too disconnected for a ball to be rolled inside them. Example 2 will show that these
concerns are legitimate.

Theorem 1. Let K be a non-empty compact set with no unproper points and Vol(∂K) = 0.
Let E be a self-similar subset of ∂K for which Assumption 1 holds. Then K has a rolling
ball along E, i.e there are constants δ, ε > 0 such that, for all x ∈ E, r < δ, B(x, r)∩Kc and
B(x, r) ∩K both contain a ball of radius εr.

Proof. Let φi be the generating similarities of E, λi their ratios, ψ : A 7→
⋃

φi(A) the
associated set transformation. The Vj are the connected components of U \ E. Since there
are finitely many of them, we can suppose they all contain a ball of radius τ > 0. Suppose
diam(U) = diam(cl(U)) = 1, pick any 0 < r < 1 and x ∈ E.

Lemma 2 shows that there is a similarity Φ such that min(λi)r 6 diam(Φ(U)) < r and
x ∈ Φ(E). It follows that Φ(U) ⊂ B(x, r). We also have Φ(U)∩∂K = Φ(U)∩E = Φ(U∩E).
Indeed, for any point x′ of E outside Φ(E) there is another similarity Φ′ of Lemma 2 such
as x′ ∈ Φ′(E) and Φ′(U) ∩ Φ(U) = ∅, which implies cl(Φ′(U)) ∩ Φ(U) = Φ′(cl(U)) ∩ Φ(U) =
Φ′(E) ∩ Φ(U) = ∅ so that x′ /∈ Φ(U).
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Consequently, for all j, Φ(Vj) has no intersection with ∂K. So Φ(Vj)∩ int(K) and Φ(Vj)∩
Kc are two disjoint open set sets who cover Φ(Vj), and we must have either Φ(Vj) ⊂ K or
Φ(Vj) ⊂ Kc.

Since there is a point y in Φ(U) ∩ E and K has no unproper points, we must have
Vol(K ∩ U),Vol(Kc ∩ U) > 0. Because Vol(E) = 0, this can only happen if one of the
Φ(Vj) is included in Kc and another in K. Hence B(x, r) ∩ K, B(x, r) ∩ Kc each contain
a ball of radius diam(Φ(U))τ . Since Φ(U) > min(λi)r, the rolling ball condition holds with
ε = min(λi)τ .

Remark 2. As we pointed out in the introduction, this implies thatK,Kc have lower density
bounds on E. More precisely, for appropriate δ, ε > 0

∀x ∈ E, r < δ, fK
r (x), fKc

r (x) > ε. (3)

This weaker statement is enough for our purposes regarding Voronoi approximation.

We show below that the Von Koch flake satisfies the hypotheses of Theorem 1.

Example 1. Let E be the self-similar set associated with the direct similarities φi : R
2 → R

2

sending S = A0A4 to ai = Ai−1Ai, for i = 1, 2, 3, 4, in the configuration of Figure 1, who
satisfy the open set condition with U the interior of the triangle A0A2A4. Such sets E are
called Von Koch curves. Looking at the iterates ψ(n)(S) in Figure 2 gives an idea of the
general form of the Von Koch curve and of why it is said to be self-similar.

Figure 1: The generating similitudes of the Van Koch curve. Z2 is the center of the similarity
φ2.

Note that the ψ(n)(S) are curves, i.e the images of continuous mappings γn : [0, 1] → R
2.

The γn can be chosen to be a Cauchy sequence for the uniform distance between curves in
R

2. Then their limit γ is also a continuous mapping, γ([0, 1]) is compact and has distance
0 with E in the Hausdorff metric, so γ([0, 1]) = E. This proves that the Van Koch curve
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Figure 2: The sets ψ(1)(S), ψ(2)(S), ψ(3)(S).

is, indeed, a curve. It can also be shown to be a non-intersecting curve (the image of an
injective continuous mapping from [0, 1] into R

2).
With a similar reasoning, if we stick three Von Koch curves of same size as in Figure 3,

we get a closed non-intersecting curve C. Jordan’s curve theorem says R
2 \ C has exactly

two connected components who both have C as topological boundary. The closure K of the
bounded component is a compact set with no unproper points satisfying ∂K = C. K is
called a Von Koch flake.

Figure 3: The boundary of the Von Koch flake K.

Now, construct kites C1, C2, C3 on each of the Von Koch curves E1, E2, E3 making ∂K as
in Figure 4. It is easy to see that as long as the two equal angles of the lower triangle are
flat enough, Ci ∩ ∂K = Ci ∩ Ei. Furthermore, applying Jordan’s curve theorem to the Ei

and the two upper (resp. lower) edges of the corresponding Ci shows that the Ci \ Ei have
exactly two connected components.

Consequently, Theorem 1 can be applied three times to obtain a lower bound for fr on
∂K.
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Figure 4: Assumption 1 is satisfied with the kite C.

2 Voronoi approximation

In this paper, χ is a locally finite point process. If χ = χn = {X1, X2, ..Xn}, where the
Xi are iid random points uniformly distributed over [0, 1]d, we speak of binomial input; if
χ = χ′

n is a homogenous Poisson point process of intensity n we speak of Poisson input. We
also suppose from now on that K is a subset of [0, 1]d.

On the unit cube, define the Voronoi cell υχ(x) of nucleus x with respect to χ as the set
of points closer to x than to χ

υχ(x) = {y ∈ [0, 1]d : ∀x′ ∈ χ, d(x, y) 6 d(x′, y)}

The Voronoi approximation Kχ of K is the closed set of all points which are closer to
K ∩ χ than to Kc ∩ χ. Its name comes from the relation

Kχ =
⋃

x∈χ∩K

υχ(x).

Vol(Kχn
) can be given as a consistent estimator for Vol(K), it converges almost surely

for binomial input as proved by Penrose in [14] as n → ∞. The volume ϕ(χ) = Vol(Kχ)
first arised in Einmahl and Khmaladze [6] as a discriminating statistic in the two-sample
problem. These authors proved a strong law of large numbers in dimension 1 for the volume
approximation. Reitzner and Heveling [9] proved that if K is convex and compact in R

d

and χ = χλ is a homogeneous Poisson process with intensity λ, Eϕ(χ) = Vol(K), and
Var(ϕ(χ)) ≤ cλ−1−1/dS(K) where c is an explicit constant and S(K) is the surface area of
K. They also established that EϕPer(χ) = c′λ−1/dS(K)(1 + O(λ−1/d)) and Var(ϕPer(χ)) ≤
c′λ−1−1/dS(K), where ϕPer = Vol(K∆Kχ) aims at estimating the perimeter of the set. This
last statistic echoes the surface estimation problems arising in set estimation, or boundary
estimation, see for instance [11, Section 11.2.1]. Reitzner, Spodarev and Zaporozhets [15]
extended these results to sets with finite variational perimeter, and also gave upper bounds
for E|ϕ(χλ)

q−Vol(K)q| for q ≥ 1. Schulte [18] proved a similar lower bound for the variance,
i.e. CS(K)λ−1−1/d ≤ Var(ϕ(χ)) with K a convex body and C a universal constant, and the
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corresponding CLT

ϕ(χ)− Eϕ(χ)
√

Var(ϕ(χ))

(d)
→ N.

For Binomial input, Penrose proved the remarkable fact that for χn consisting in n iid
variables with density κ(x) > 0 on [0, 1]d,

Eϕ(χn) → Vol(K),

independently of any assumption on K’s boundary.
In this Section, we give an upper bound on Kolmogorov distance between the renor-

malized approximation volume and the normal law, and an a.s. convergence result for the
Hausdorff distance between Kχ and K, which also holds for Poisson input.

2.1 Asymptotic normality

We recall below the results of [12], conditions on K that ensure that with binomial input, the
volume approximation is asymptotically normal when the number of points tends to ∞. We
furthermore give the variance magnitude and an upper bound on the speed of convergence
for the Kolmogorov distance. The regularity of the boundary is essential to have a matching
lower bound on the variance and a good rate of convergence, but it is still possible to have
a bound in the case where the set does not satisfy the conditions below. For all r > 0 define

∂Kr = ∂K +B(0, r) = {x ∈ R
d : d(x,K) 6 r},

∂K+
r = ∂Kr ∩K

c,

∂K−
r = ∂Kr ∩K.

We now explicitly state the boundary regularity assumption made on K. As explained
in the introduction, it can be seen as a weakened form of the rolling ball condition.

Assumption 2 (Weak rolling ball condition). A set K with no unproper points satisfies the
weak rolling ball condition whenever

lim inf
r>0

1

Vol(∂Kr)

(
∫

∂K+
r

(fK
r (x))2dx) +

∫

∂K−

r

(fKc

r (x))2dx)dx

)

> 0. (4)

If ∂K has upper and lower Minkowski contents, this last assertion is equivalent to the
apparently weaker one

lim inf
r>0

1

Vol(∂Kr)

(
∫

∂K+
r

(fK
Cr(x))

2dx)dx) +

∫

∂K−

r

(fKc

Cr (x))
2dx)dx

)

> 0 for some positive C.

(5)
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Proof. The first condition obviously implies the second. Now suppose the second condition
is satisfied for some C > 0. If C < 1 then the inequality fK

r > fK
CrC

−d and its counterpart
for fKc

r show that (4) holds. If C > 1 we can replace ∂Kr by ∂KCr in the domains of the
integral, then divide by Vol(∂KCr) instead of Vol(∂Kr) and put r′ = Cr. We’re back to (4)
and the lim inf is still be positive, since the first operation only made the integrals bigger,

and ∂K’s Minkowski contents put a lower bound on
Vol(∂Kr)

Vol(∂KCr)
.

If the lower density bounds of (3) hold, then (4) holds as well with the left hand being
greater than ε2. We can now reproduce below the result derived in [12, Th. 6.1] for Voronoi
approximation.

Theorem 2. Let K be a subset of [0, 1]d. Assume that for some s ≥ 0

0 < lim inf
r>0

rs−dVol(∂Kr) 6 lim sup
r>0

rs−dVol(∂Kr) <∞, (6)

and that K satisfies the weak rolling ball condition (Assumption 2), then

0 < lim inf
r>0

Var(Vol(Kχn
))

n−2+s/d
6 lim sup

r>0

Var(Vol(Kχn
))

n−2+s/d
<∞, (7)

and for all ε > 0 there is Cε > 0 such that for all n > 1

sup
t∈R

∣

∣

∣

∣

P

(

Vol(Kχn
)− EVol(Kχn

)

Var (Vol(Kχn
))

6 t

)

−P(N 6 t)

∣

∣

∣

∣

6 Cεn
−s/2d+ε. (8)

The consequences of Theorems 1 and 2 for sets K with self-similar boundary are imme-
diate, condition (6) automatically holds by Proposition 1.

Remark 1. If K satisfies all the hypotheses of Theorem 2 except the weak rolling ball
condition, then we have

sup
t∈R

∣

∣

∣

∣

P

(

Vol(Kχn
)− EVol(Kχn

)

Var (Vol(Kχn
))

6 t

)

−P(N 6 t)

∣

∣

∣

∣

6 Cεn
ε(σ−2n−2+s/2d + σ−3n−3+s/d + σ−4n−4+s/d) (9)

where σ2 is the variance of Vol(Kχn
). See [12, Th. 6.2] for more details.

Remark 2. Set-estimation literature is also concerned with perimeter approximation [11,
Sec. 11.2.1]. In the context of Voronoi approximation, the functional ϕ(χn) = Vol(Kχn

∆K)
is studied in [9, 15]. Although the result is not formally stated, a bound of the form (9) for
that functional is available using the exact same method. One has to work separately to
obtain a variance lower bound.

Corollary 1. Let K be a compact set such that ∂K is a finite union of self-similar sets
satisfying Assumption 1. Then (7) and (8) hold.
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This corollary applies to the Von Koch flake with s = ln(4)/ ln(3) (Example 1). The
conclusions of Theorem 2 also apply for instance to the Von Koch anti flake, where three
Von Koch curves are sticked together like for building the flake, but here the curves are
pointing inwards, and not outwards (Figure 5). Assumption 1 is not satisfied on the whole
boundary, but it is within an open ball of Rd intersecting one and only one of the three
curves, and having (3) on a self-similar E with same Minkowski dimension as ∂K is actually
enough for the weak rolling ball condition to hold.

Figure 5: The Von Koch antiflake

In Section 2.3 we exhibit an example of a set K such that ∂K is self-similar and K does
not satisfy Assumption 1. We also run simulations suggesting that (7) is also false. Our
theorem gives a set of sufficient conditions, but other versions should be valid. For instance,
the question of whether a compact set K ⊂ R

2 whose boundary is a locally self-similar
Jordan curve satisfies the conclusions of the theorem above seems to be of interest.

2.2 Convergence for the Hausdorff distance

In this section we will make use of r-coverings and r-packings. Let B be a collection of balls
having radius r and centers belonging to some set E. B is said to be an r-packing of E if
the balls are disjoint. It is an r-covering if the balls cover E.

Coverings and packings are closely related to the Minkowski dimension of E. In par-
ticular, if E has upper and lower Minkowski contents, then for r small enough we can find
r-coverings of E and E +B(0, r) with less than Cr−s balls, and r-packings of the same sets
with more than cr−s balls, where c and C are positive constants not depending on r. More
precise results can be found in [13]. The following geometrical lemma shows a connection
between coverings, packings, and the Hausdorff distance with the Voronoi approximation.

Lemma 3. Let K be a non-empty compact set and ∂K its topological boundary.

14



1. Consider a r/2-covering B of ∂Kr containing an r/2-covering of ∂K−
r . If the interior

of every ball from B contains a point from χ, and every ball from B centered on K
contains a point from χ ∩K, then dH(K,Kχ) 6 r.

2. Consider a 3r-packing B of ∂K. If for some ball B(x, 3r) of B centered on x ∈ ∂K we
have χ ∩ B(x, 3r) ∩K = ∅ and χ ∩ B(x, r) ∩Kc 6= ∅, then dH(K,Kχ) > r.

Proof. We begin with the first point. Let us prove that for all x ∈ K \ ∂Kr we have x ∈ Kχ.
Indeed, if this were not the case, there would be a point cx ∈ χ ∩Kc such that x ∈ υχ(cx).
The segment joining cx and x must contain a point from ∂K. Let x0 be the point of ∂Kr

closest to x on that segment. We must have d(x0, ∂K) = r and x0 ∈ K since otherwise there
would be another point of ∂Kr closer to x. As a consequence d(x0, cx) > r. But then by
hypothesis there is a ball of B who contains x0 along with a point of χ. So cx isn’t the point
of χ closest to x, and we have a contradiction. Similarly, using (Kχ)

c = (Kc)χ, we can show
that Kc \ ∂Kr ⊂ Kc

χ, which reformulates as Kχ ⊂ K +B(0, r).
To have dH(K,Kχ) 6 r it is enough to show that K ⊂ Kχ +B(0, r). Let x be a point of

K. We just showed that if x /∈ ∂Kr then x ∈ Kχ. And if x ∈ ∂Kr then by hypothesis there
is a ball of B centered on ∂K−

r ⊂ K with a point of K ∩ χ inside that contains x.
In all cases x ∈ Kχ +B(0, r).

Now we prove the second point. Let y be a point of χ ∩ B(x, r) ∩ Kc. Then all of the
points in B(x, r) are closer to y than to the points outside of B(x, 3r). Consequently all
points B(x, r) must lie in Voronoi cells centered in Kc, and x /∈ Kχ + r′ for all r′ 6 r, so
that dH(K,Kχ) > r.

To formulate results regarding the Hausdorff distance between K and Kχ, the concept of
proper points (beginning of Section 1.3) proves to be useful. Unproper points are ’forgotten’
by the Voronoi approximation Kχ of K. Though that has no incidence when measuring
volumes, it becomes a nuisance when measuring Hausdorff distances.

Let us call proper part of K the set Kprop of points proper to K. Kprop can be thought
of as the support of Vol(K ∩ ·), or as the complement of the biggest open set O such as
Vol(O ∩K) = 0, from which it follows that Kprop is compact and that Kχ = Kprop

χ a.s.

Proposition 2. Kχn
−→

n→+∞
Kprop almost surely in the sense of the Hausdorff metric for both

Poisson and binomial input.

Proof. Since Kχ = (Kprop)χ almost surely and Kprop has no unproper points, this is equiv-
alent to the fact that Kχn

→ K almost surely when K has no unproper points. By the

Borel-Cantelli lemma it is enough to show the series
∑

n>1

P(dH(Kχn
, K) > r) is convergent

for any positive r.
Cover ∂Kr as in point 1 of the previous lemma. Since K is bounded, this can be done

with finitely many balls. Let V be the minimum of Vol(K ∩B) over the B ∈ B centered on
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K. Because K has no unproper points, V > 0. The probability of having dH(Kχn
, K) > r

is at most that of the requirements of point 1 not being satisfied. The latter is bounded
by |B|(1 − V )n for binomial input and |B|e−nV for Poisson input. In all cases the series
associated with P(dH(Kχn

, K) > r) converges, as required.

A refinement of the method above gives an order of magnitude for dH(K,Kχ) with Poisson
input, under assumptions on ∂K, fK

r and fKc

r resembling those of Theorem 2. Before we
state such a result we need a lemma linking the behaviour of fK

r on ∂K to its behaviour on
all of K.

For ease of notation, we put fr = fK
r and gr = fKc

r .

Lemma 4. If for all r < δ we have fr > ε on ∂K, then for all r < δ we have fr >
ε
2d

on K.

Proof. If x is in ∂Kr/2 then B(x, r) contains a ball of radius r/2 centered on x′ ∈ ∂K, so
fr(x) = Vol(K ∩ B(x, r))κ−1

d r−d > Vol(K ∩ B(x′, r/2))κ−1
d r−d > ε2−d. If not then the ball

B(x, r/2) is contained in K so that fr > 2−d > ε2−d.

Theorem 3. Suppose that ∂K has Minkowski dimension s > 0 with upper and lower con-
tents, and that for all r small enough and x ∈ ∂K,

fr(x) > εf ,

gr(x) > εg,

then

α 6 lim inf
λ→+∞

dH(K,Kχλ
)

(λ−1 ln(λ))1/d
6 lim sup

λ→+∞

dH(K,Kχλ
)

(λ−1 ln(λ))1/d
6 β

where the χλ, λ ∈ N are Poisson point processes of intensity λ and

α =
1

3

(

s

dκd(1− εg)

)1/d

β = 4

(

s+ d

dκdεf

)1/d

.

Proof. We start with the upper bound. Fix δ > 0 and for all λ let Aλ be the event where
all the requirements from point 1 of Lemma 3 are met with χ = χλ, r = rλ = (β +
δ)(λ−1 ln(λ))1/d, B = Bλ a deterministic covering having Nλ = O(r−s

λ ) balls of radius rλ/2.
We show below that lim

λ→+∞
P(Ac

λ) ≪ λ−1−δ′ for some δ′ > 0. Since Aλ ⊂ {dH(K,Kχ) 6

rλ}, it follows from the Borel-Cantelli lemma that

P(lim sup
dH(K,Kχλ

)

(λ−1 ln(λ))1/d
6 β + δ) = 1.

The desired conclusion comes from the arbitrariness of δ and the equality

P(lim sup
dH(K,Kχλ

)

(λ−1 ln(λ))1/d
6 β) = lim

n→+∞
P(lim sup

dH(K,Kχλ
)

(λ−1 ln(λ))1/d
6 β + n−1).
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The intersection of K with a ball B ∈ Bλ of center x has volume κd(rλ/2)
d(frλ/2(x)). If

x belongs to K, it follows from Lemma 4 that for λ large enough the probability of B not
having a point from χλ ∩K is at most

exp(−λεfκd4
−drdλ) = λ−s/d−1−δ′ .

for some δ′ > 0.
This bound also works for the probability that a ball of Bλ does not contain a point from

χλ, no matter the location of its center, so we have

P(Ac
λ) 6 Nλλ

−s/d−1−δ′ .

with δ′ > 0 The right hand term has order ln(λ)−s/dλ−1−δ′ as desired.

The proof for the lower bound is quite similar. Fix δ > 0, and redefine Aλ to be the event
where the requirements described in point 2 of Lemma 3 are met for χ = χλ, r = rλ =
(α− δ)(ln(λ)λ−1)1/d and B = Bλ a collection of Nλ > cr−s

λ balls having radius 3rλ.
We have Aλ ⊂ {dH(K,Kχ) > rλ}. Now we show that P(Ac

λ) ≪ λ−2 (in fact P(Ac
λ) has

exponential decay). This gives the desired conclusion by applying again the Borel-Cantelli
lemma and letting δ go to 0.

The probability of there being no points of K ∩ χλ in a ball B(x, 3rλ) ∈ Bλ and at least
one point of Kc ∩ χλ in B(x, rλ) for a point x in the boundary is exactly

exp(−λκd(1− g3rλ(x))3
drdλ)(1− exp(−λrdλκdgrλ(x)))

because B(x, 3rλ)∩K
c and B(x, r)∩K are disjoint. So we have the following upper bound,

for λ big enough
P(Ac

λ) 6 (1− e−λκd(1−εg)3drdλ(1− e−λκdr
d
λ
εg))Nλ .

We would like the right hand times λ2 to go to 0 with λ. Taking logarithms this is equivalent
to

−2 ln(λ) +Nλ exp(−λκd(1− εg)3
drdλ)(1− exp(−λκdr

d
λεg)) −→

λ→+∞
+∞

Because exp(−λκd(1− εg)3
drdλ) = λδ

′−s/d with δ′ > 0, it is indeed the case.

The proof and the result call for some comments.

Remark 3. The Minkowski dimension of ∂K has no impact on the order of magnitude of
dH(K,Kχ). In fact, if ∂K doesn’t have a Minkowski dimension, we can do the coverings
with O(r−d) balls, so the upper bound still holds after replacing s by d in the expression of
β. This compares with the result given by Calka and Chenavier in [3, Corollary 2]. If ∂K’s
so-called lower Minkowski dimension is positive, given any ǫ > 0, we can do the packing
with r−s+ǫ balls for λ big enough, and also get a lower bound. This is automatically the case
when d > 2 and K has positive volume.
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Remark 4. If s = 0 and ∂K has Minkowski contents then actually ∂K has a finite number
of points and dH(K,Kχλ

) has order λ−1/d in the sense that

P(dH(K,Kχλ
)λ1/d > t) 6 card(∂K)C exp(−εf (t/4)

d),

for some C > 0 depending only on d, which is enough to guarantee the existence of moments
of all orders for dH(K,Kχλ

)λ1/d. If we don’t have Minkowski contents the situation might
be more delicate.

Remark 5. For binomial input, some minor changes in the proof give the same upper bound.
It can’t be done for the lower bound since we use the fact that χ∩A, χ∩B are independent
when A and B are disjoint and χ is a Poisson point process.

Remark 6. The order of magnitude λ−1/d ln(λ)1/d also appears in [4], for a different kind
of set estimation. Specifically, they approximate the length of ∂K by considering points
at distance rλ or less from K ∩ χ and Kc ∩ χ, and their estimator becomes consistent for
1 ≫ rλ ≫ λ−1/d ln(λ)1/d. Seemingly, λ−1/d ln(λ)1/d is a threshold scale under which geometric
features of ∂K can no longer be correctly assessed with a random point process of intensity
λ.

Remark 7. Bounds for dH(K,Kχ)(λ ln(λ))
−1/d can be expressed very simply from s, εf and

εg. For example, the following holds

P

(

α′
6 dκd

dH(K,Kχλ
)d

λ−1 ln(λ)
6 β′

)

−→
λ→+∞

1

for α′ < s(1− εg)3
−d, β′ > sεf4

d. If those bounds are optimal, it would be evidence that the
quantities studied in this work, Minkowski contents and boundary densities, affect directly
the asymptotic behaviour of dH(K,Kχ).

2.3 A counter-example

Here we construct a set Kcantor with self-similar boundary not satisfying the weak rolling
ball condition. This example shows that Theorem 1 cannot be generalised by dropping
Assumption 1, even if the conclusion is weakened.

The example K below is uni-dimensional, but a counter-example in dimension 2 can be
obtained by considering K × [0, 1].

Example 2. Let E ⊂ R the self-similar set generated by the similarities φ1 : x 7→ x/3,
φ2 : x 7→ (2 + x)/3 who satisfy the open set condition with U = (0, 1). E is in fact the
Cantor set, and can be characterized as the set of points having a ternary expansion with
no ones.

Kcantor will be defined as the closure of open intervals of [0, 1] \ E. The trick is to choose
few intervals with quickly decreasing length, so that most of points of Kcantor’s boundary
have density 0, but to distribute them well so that ∂Kcantor = E.
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To every positive integer n associate the sequence s′n of its digits in base 2 in reverse order
and double the terms to get sn. For example, since 6 is 110 in base 2, s6 = (0, 2, 2). This
defines a bijection between N and the set of finite sequences of zeroes and twos ending in 2,
with the additional property that sn always has length ln 6 n. Now for all n define

an =
1

3n+1
+
∑

k>1

snk
3k

bn =
2

3n+1
+
∑

k>1

snk
3k

An = (an, bn)

We have the following ternary expansions

an = 0.sn1s
n
2 ...s

n
ln000...01

= 0.sn1s
n
2 ...s

n
ln000...0022222...

bn = 0.sn1s
n
2 ...s

n
ln000...02

Now, set K = cl(
⋃

An). We claim that K has no unproper points, ∂K = E and that K
does not satisfy the regularity condition of Theorem 2.

Proof. The first assertion is easy to prove. Being segments, the An have no unproper points
to themselves, so

⋃

An ⊂ Kprop and K ⊂ Kprop by taking closures.

For the second assertion we need to show that ∂K = K \
⋃

An = cl(
⋃

{an, bn}). We
already have the obvious ∂K ⊂ K \

⋃

An. Define

a′n =
1

3n+1
−

2

3ln
+
∑

k>1

snk
3k

b′n =
2

3n+1
−

2

3ln
+
∑

k>1

snk
3k

A′
n = (a′n, b

′
n)

Since for all n, snln = 2, the corresponding ternary expansions are

a′n = 0.sn1s
n
2 ...s

n
ln−1000...01

= 0.sn1s
n
2 ...s

n
ln−1000...0022222...

b′n = 0.sn1s
n
2 ...s

n
ln−1000...02

If x ∈ Ai ∩ A′
j then every ternary expansion of x has the same digits as the finite ternary

expansions of ai, a
′
j up to the first 1, which is impossible. So

⋃

A′
n is an open set disjoint
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from
⋃

An and hence from K. Furthermore,
⋃

A′
n is dense near the an, because for all

k,N ∈ N
∗, we can find an a′k′ whose ternary expansion has the same N first digits as the

non-terminating expansion of ak, so that d(ak, a
′
k′) 6 1/3N . A similar argument works for

the bn, so that the an, bn belong to ∂K and, since the latter is closed, cl(
⋃

{an, bn}) ⊂ ∂K.
Finally, consider a point x ∈ K \

⋃

An. For all r > 0, B(x, r) contains a point from an
Ak, and since x /∈ Ak, one of the two points ak, bk must also be in B(x, r). Consequently, x
is also an accumulation point of

⋃

{an, bn}. We just proved that K \
⋃

An ⊂ cl(
⋃

{an, bn}).
Putting this together with the previous two inclusions we get the desired equality.

Since for all x ∈ E,N ∈ N
∗ we can find an ak with the same first N digits as x in base

3, the an are dense in E and E ⊂ ∂K. Conversely, ∂K ⊂ E, since the an, bn belong to E,
who is closed.

For the last assertion, pick any r > 0 and set N = 2⌈− log3(r)⌉. Let X be the union of the
balls of radius r centered on the endpoints of the N first An. X has area at most −4r log3(r)
and for any x ∈ ∂Kr \X, B(x, r) does not intersect the Ak, k 6 N . Since Vol(∂K) = 0

Vol(K \ (A1 ∪ A2..AN)) = Vol(
⋃

n>N

An) =
1

2.3N+1
6 r2.

As a consequence fr 6 r on ∂Kr \X, so that

∫

X

max(f 2
r , g

2
r) 6 −4r log3(r)

∫

∂K+
r \X

f 2
r (x)dx 6 Vol(∂Kr)r

2

∫

∂K−

r \X

g2r(x)dx 6 r2.

After dividing by Vol(∂Kr), who has order r1−ln(2)/ ln(3), the sum of the left terms is bigger
than the expression inside the limit of (4), and the sum of the right terms goes to 0 with
r.

Simulations were made for the quality of the Voronoi volume approximation with this
set K. The magnitude order of the empirical variance of Vol(Kχn

) seems to be nτ with
τ ≈ −1.8, as shown in Figure 6. Looking at Theorem 2, the approximation behaves as if the
set had a “nice” fractal boundary of dimension ≈ 0.2, whereas its real fractal dimension is
1− ln(2)/ ln(3) ≈ 0.37.

Simulations also suggest that a central limit theorem still holds. Such a fact indicates that
though the results of Lachieze-Rey and Peccati [12] seem to be generalisable, the variance
of Vol(Kχn

) is indeed related to the behaviour of fr and gr near ∂K.
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Figure 6: In blue ln(Var(Kχn
)) as a function of ln(n), in red the associated linear regression.

For each n, the variance was estimated with 1000 realisations of Vol(Kχn
).

Example 3. It is possible to construct other sets not satisfying the regularity condition of
Assumption 2. If we don’t require ∂K to be a self-similar set, a much simpler example is
given by

K = cl(
⋃

n∈N∗

(

1

n
−

1

3n
,
1

n

)

).

Intentionally, ∂K looks like the set {n−1, n ∈ N
∗}, who is often given as an example of a

countable set with positive Minkowski dimension. K has Minkowski dimension 1/2 with
upper and lower contents, no unproper points, and does not satisfy (4) or (5). This can be
proved using the same methods as in Example 2. Again, simulations tend to show that the
variance of Vol(Kχn

) is about nτ with τ ≈ −1, 8 and that a central limit theorem still holds.
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