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FOKKER-PLANCK EQUATION IN BOUNDED DOMAIN

by Laurent CHUPIN

ABSTRACT. We study the existence and the uniqueness of a solution ¢ to the linear Fokker-Planck
equation —Ap + div(¢ F) = f in a bounded domain of R? when F is a “confinement” vector field
acting for instance like the inverse of the distance to the boundary. An illustration of the obtained
results is given within the framework of fluid mechanics and polymer flows.

Equation de Fokker-Planck dans un domaine borné

RESUME. On étudie I'existence et 1'unicité de solution ¢ & 1’équation de Fokker-Planck linéaire
—Agp+ div(e F) = f sur un domaine borné de R? lorsque F est un champ de vecteurs “confinant”
par exemple comme l'inverse de la distance au bord. Une illustration des résultats obtenus est
donnée dans le cadre de la mécanique des fluides et des écoulements de polymeres.

1. Introduction

In this paper we are interested in the so called Fokker-Planck equation
(1.1) —Ap + div(eF) = f.

e In the simplest case (that is F = 0) this equation is known as the Laplace equation (when f = 0)
or as the Poisson equation (when f # 0). The solutions of these equations are important in many
fields of science, notably the fields of electromagnetism, astronomy and fluid dynamics, because they
describe the behavior of electric, gravitational and fluid potentials.

e More generally, the main reason of the physical interest of equation (1.1) comes from the fact that
it can be put in conservative form div(J) = f with J = —V¢ + ¢F. Thus it can be connected
to a generalization to the Fick’s law J = —V¢ connecting diffusion flux J and concentration ¢ in
inhomogeneous environments, see [9, 22].

e In the dynamical systems framework (see for instance [26]) the non-stationary Fokker-Planck
equation Oyp = eAp — div(p F) is usually introduced. In this case, the function ¢ represents the
smooth probability density of a population driven by F and subject to e-small diffusion in the
following sense. The term ¢ F' is a vector field representing the population ¢ moving with the flow
of F', and so the divergence of this vector field represents a thinning out of the population due to F,
which therefore contributes negatively to the local growth rate of the population, d;¢. This explains
the drive term. Meanwhile the term €A represents e-small diffusion, and contributes positively to
the growth rate. The study which is presented here concerns in particular the existence and the
uniqueness of a steady-state solution. We note that the theory is closely related to applications,
because the steady-state ¢ is an e-smoothing of the measure on the attractors of the flow of F
(see [26]) and therefore in numerical and physical experiments ¢ can be used to model the data
with e-error.

e According to the contexts, the vector field F can take various forms. In particular it may occur
that physically realistic assumptions do not make it possible to conclude only with the already
known results. We will give such a caricatural example in the last part.

Keywords: Fokker-Planck equation, Bounded domain, Stationary solution, Confinement, Fluid mechanics, Polymer
flows.
Math. classification: 35J25, 35Q35, 35R60, 76A05, 82D60.
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Besides the problems of the existence and the uniqueness, the question which interests us is to know
which boundary conditions are needed to ensure the existence and the uniqueness of a solution of
equation (1.1) in the bounded case.

We will see that this depends on F. When F is regular enough, i.e. does not diverge too quickly
at the boundary, data on ¢ at the boundary of the domain enable to ensure the uniqueness of the
solution. We remind of this result at the beginning (in particular because the proof resembles ours).
We also say that when the domain does not have boundary, for instance if we are interested in the
space R? or on a compact variety without boundary, uniqueness is ensured by imposing the average
of .

We prove that, in the bounded case, when F is not so regular, the ”good” condition to ensure
uniqueness is still to impose the average of p, and that in that case, the unique solution vanishes on
the boundary.

1.1. Some known results on equation (1.1)

Except for the case where F = 0, a particularly simple case corresponds to F = VV (V is assumed to
be regular and differentiable) and f = 0. In this case ¢ = exp(V) is a solution of (1.1) in the bounded
case as well as in the compact case or in the unbounded case. In the same way, we can easily prove
that the case F = VV + G admits the solution ¢ = exp(V) if and only if div(G)+ G-VV =0. Up
to a renormalization, the average of such a solution will be equal to 1, as soon as exp(V) € L*(Q).
The average value is consequently an essential ingredient to have uniqueness of the solution of
equation (1.1) and we could be interested in the following problem

—Ap+ div(pF) =0 in Q,
1.2
(1.2) with /cp: 1.
Q

In the compact case without boundary E.C. Zeeman [26] proves the existence and uniqueness of a
solution ¢ for an arbitrary smooth vector field F (and without term source f = 0) on a compact
manifold by the Perron-Frobenius method:

THEOREM 1.1. — Let Q be a compact manifold without boundary.
IfF € C*>(Q) then there exists a unique non negative solution of (1.2).

Without proof in the non-compact case (as writes E.C. Zeeman on p. 152, the extension of such
results to non-compact case is an open question), E.C. Zeeman gives some example with Q =
R?. These examples show that in the unbounded case uniqueness follows from some “boundary”
conditions on F, which are given by the behavior of F outside large sphere. Many other works
concern these equations of the Fokker-Planck type in R?. Most of these works describe specific
assumptions for the potential F' at infinity. Let us quote as an example the beautiful recent series
of works by Hérau, Nier and Helffer [13, 14] about the linear kinetic Fokker-Planck equation. See
also the article [20] by Noarov in wich the author gives some smallness conditions in some norm and
rapid decay at infinity for F to ensure the existence of a solution other than identical zero (in the
case f =0).

In this article, we are interested in a possible generalization in bounded domains. Usually, such a
problem is coupled with boundary conditions (Dirichlet, Neumann or mixted boundary conditions).
For instance, the natural weak formulation of the problem

—Ap + div(pF) = f in Q,
with ¢ =0 on 02
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is written

Find ¢ € Hj(Q) such that for all 1 € Hj ()
[ e-vu- [ oF-vo=it)
Q Q

where (f, 1)) corresponds to the duality product (H~1(2), H}(Q)). In order that all terms in (1.3)
be defined, the minimal hypotheses on data are: f € H~1(f) and, thanks to the classical Sobolev
injections, F € L% (Q) where d,, = d for d > 3 and d, €]2,+oc[ for d = 2. Within this framework,
we have (see [7]):

(1.3)

THEOREM 1.2. — Let Q be a bounded domain of R%, d > 2.
If f € H1(Q) and F € L% (Q) then there exists a unique solution of (1.3).

The proof of the generalization which we propose is primarily based on the proof of this theorem.
The main difficulty which appears for the study of problem (1.3) is the following: although the
operator A is coerciv, the operator —A + div(- F) is generally not coerciv. The reason for which the
result is still valid lies in the (conservative) form of the term div(p F). Let us note that an equivalent
theorem can be proved (see [7]) for equations of kind —Ap + G - Vo = f but that it is not possible
to obtain a similar general result for equations of the type —Ayp + div(¢F) + G - Vo = f. In fact,
the sum div(¢ F)+ G -V makes appear zeroth order terms and it is well known that the solutions
of —Ap+ Ap =0, A € R, with homogeneous Dirichlet boundary condition are not unique.
Moreover, J. Droniou proved that the same result is valid for other boundary conditions as non-
homogeneous Dirichlet, Fourier or mixed boundary conditions (using more regularity for the domain
Q, say with Lipschitz continuous boundary). Concerning the Neumann boundary conditions, J. Dro-
niou and J.-L. Vazquez recently showed that the same problem admits, for each fixed mean value,
a unique solution with the said mean value (see [8]).

An other question is debated in the present paper: Which necessary and sufficient conditions must
be placed on f, and what are the degrees of freedom on the solutions if F is not regular enough ?

1.2. An (partial) answer

We show in this article that if the normal component of the vector F(x) behaves (V) like m
in a neighborhood of the boundary 902 with a > 1 then there exists a unique solution ¢ to the
Fokker-Planck equation (1.1) as soon as the average of ¢ is given. Moreover, we can show that this
unique solution automatically vanishes at the boundary 9). More precisely we prove

THEOREM 1.3. — Let Q be a bounded domain of R%, d > 2.
Let f € Hy;' (this space will be precised later) and F = k +VV where k € L®(Q) and V € C®(Q)
satisfies V. = —oo on the boundary of ). Under assumptions (H1), (H2) and (Hs) (see more details
page 17) then there exists a unique solution of the Fokker-Planck equation (1.1) such that [, ¢ = 1.

Obviously, the additive assumptions (Hi), (Hz2) and (Hg) enable to take into account the examples
where the normal part of F(x) behaves like m in a neighborhood of the boundary 02 with
a>1.

They are not satisfied when o < 1. Thus, there remain many cases without answers: for instance,
when the normal part of F behaves like m with o < 1, and when the normal part of F
behaves like m with a > 0 and § > 1.

The assumptions (Hi), (H2) and (H3) on the potential V are rather difficult to apprehend. The

(D We can verify that we have F ¢ Ld= (2), and that consequently the announced result is a generalization of the
Theorem 1.2.
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reason for which we have these assumptions is the following: they are used in this form in each steps
of the proof (primarily in the various lemmas). Thus if one of the steps of the proof can be shown in
another way that presented here, we can hope to be freed from certain corresponding assumptions.

1.3. Outline of the paper

The paper is organized as follows:

e In Section 2, we give mains tools adapted to the studied problem. First of all, some tools about
differential geometry to understand “explosive” boundary conditions. Next we give all the lemmas
which are used in the main proof.

e In Section 3 the precise statement of the main result is enunciated, see Theorem 3.3, page 17.

e The Section 4 is devoted to the proof of Theorem 3.3. It is composed of two parts: the existence
proof and the uniqueness proof.

e The last section (Section 5) gives an application to fluid mechanics and some numerical results.

2. Main implements

In [5], the author gives an existence and a uniqueness result for a Fokker-Planck equation for a
particular vector field F and in a particular domain §2 which is a ball. For more complex domains, we
must understand the effect of the geometry in the proof. We will present in this part some elements
of differential geometry adapted for our calculus. Next, we will precise the functional framework
adapted to the Fokker-Planck equation of this paper. Finally, we will give multiple fundamental
lemmas which are use for the proof of the Theorem 3.3.

2.1. Elementary differential geometry

The results of this part are largely inspired on Subsection 2.1 of the paper [2] and on the annexe C
of the book [3].

Let Q be a smooth (say C?) bounded domain in R?, d > 2. We denote by I its boundary and by v
the outward unitary normal to I. The distance between any x € R? and the boundary I is denoted

by or(x).
For any € > 0, we introduce the open subset of 2

O.={xeQ;dr(x) <e} and Q. ={xe€N;dr(x)> e}

It is classical that, for £ small enough, the two maps dr (called distance to I') and Pr (called
projection on I') exist and are regular on O.. This allow to use tangential and normal variable
near I', defining for any function f : O. — R the corresponding function f : [0,¢] x ' — R by (?)

V(r,0) € 0,e] xT', f(r,0) = f(6 —rv(8)).

Moreover, for any f € L'(O.) we have the followmg change of variables formula:

(2.1) /f dx_/ 0 7(r,0)|J(r,0)| drde,

(2) For non-ambiguous cases, }vand f will be together denote f.
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where dr and d@ corresponds to the Lebesgue measure on [0,¢] and T' respectively, and where J
is the jacobian determinant of the previous change of variables. Introduce kys = supgep sup, ki (0),
where k1(0),..., kq—1(0) are the principal curvatures of I at 8, we have for 0 < r < e and for 8 € T

(1 —€K]M)d_1 < J(’I“ 9) < 1

Using the change of variables (2.1) we deduce that for f € L'(O.) we have

(2.2) 1—5nMd1//fr0drd0 /f )dx < //fr@drde

Roughly speaking these relations show us that for thin tubular neighborhood of I' in Q the ja-
cobian J(r,0) is equivalent to 1 for small r, uniformly with respect to 6 € I'. Consequently, the
relations (2.2) give an approximation of [, f by [; IN f.

Notice too that it is possible to define ér as a regular function on Q. This extension will be also
noted dr.

2.2. Functional spaces

The Fokker-Planck equation (1.1) make appear a potential V', assume to be smooth on 2, via the
force F = k + VV. This potential is supposed to be confinant so that we assume that e" € L*(Q).
We can always define a maxwellian function M by

eV

Joe”

Notice that M € C>*(Q : R} ) with [, M = 1. Notice too that the interesting cases for the present
study correspond to a maxwelian M vanishing on the boundary I' = 9Q (that is V = —oo on T"). All
the maxwellians considered in this paper will satisfy M = 0 on I'. The Fokker-Planck equation (1.1)
is written

(2.3) div(pk — MV(%)) =7

From the peculiar form of this Fokker-Planck equation (2.3), the adapted functional spaces use

M =

Sobolev weight spaces on the domain © C R?. More precisely, we introduce
L3, := ML*(Mdz) and Hj, := MH'(Mdx),

endowed with their natural norms respectively given by

2 _
Iy, = |

2 v |? v 2
= J Mzl v Gl
Ity = [ M|g] + M|V (5
Note that a large literature on weighted Sobolev spaces exists, see for instance [23, 25], the references
given in the notes at the end of Chapter 1 of [12] or the classical book [24]. Among all the weights

which are generally considered in the literature, only some are vanished on R? as it is the case
of the weight M. We refer to [24] for references of spaces with weights which equal to a power of
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the distance to the boundary. Nevertheless, the spaces L?(Mdx) and H'(Mdz) being spaces with
"traditional” weights, the spaces L%, and Hj, are not it. For this reasons, the results shown in
the following section are not always ”traditional” corollaries (except some whose proof is a direct
consequence of the results in L?(Mdx) and H'(Mdx), see for example the proof of lemma 2.4).
Note first that the two spaces L2, and Hj, are Hilbert spaces (see [24, Th. 3.2.2a]). We introduce
the following normalized subspace

Hgmwett: [ o

In the sequel, the space H}, will by equipped too with the semi-norm defined by

91, = | M(5)

and we will see (Lemma 2.9 on page 13) that || - |51 is a norm on the space H}; - Finally, we

2

)

denote H]\_41 the topological dual of H11v1,07 that is the set of continuous linear forms on HMO. Each
application x € H;;' will be defined by x : ¢ € Hjyo = (X, ¢) € R. By its continuity, for each
X € H]\}l there exists C' € R such that

Vo€ Hio 106 < Clollay, -

As it is usual, the smallest of these constants C is denoted ||x||-1: it is the norm of x on H,'.
M

2.3. Properties of the functional spaces

The proof of the main theorem (Theorem 3.3) follows the ideas of J. Droniou [7]. Nevertheless, the
proof of J. Droniou, given in the case where F € L%+ (), does not use these “degenerated” spaces
and use traditional results concerning usual Sobolev spaces. The essential contributions which are
presented ties in the fact that these “classical” lemmas in the case where M does not vanished on Q
are still true (sometimes in a weaker form) when M is a maxwellian as previously introduced, and
in particular when M = 0 on I'. So, the goal of this subsection is to give some essential properties of
these functional spaces (Poincaré-type inequality, Sobolev injection, compacity result, Hardy-type
inequality...).

Notice that in the estimates, the symbol < means “up to a harmless multiplicative constant”, allowed
to depend on the domain 2 only.

The first result that we present is a result allowing to controlled %JLM in L2(2) as soon as p € H},.

This result can be seen as an inequality of Hardy-type ). We will prove this first lemma under the
following assumption

VRM 2 VRM —a
>
da <1 ( )+2VR( M)/ 52
(Ha) VrM(0) =0,
1
>0 VRM/QM<Z>.

3) Hardy inequality indicates that for a function f defined on a bounded domain Q of R? and vanishing on the
boundary I' of 2 we get |f/or|.2(q) S |V flL2(q) Where dr corresponds to the distance to the boundary I'.
(4) Recall that, as it is specified just before, in this article the function M is a Maxwellian function which vanished
on the boundary of the domain. The assumptions introduced here are consequently additional assumptions.
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These hypotheses will be only used in the neighbourhood of the boundary I' of €. In such neigh-
bourhood, the notation Vg corresponds to the radial derivative (that is to say the derivative in the
direction of the normal vector to the boundary).

The various assumptions introduced in this part will be discussed in Section 3. Nevertheless, it is
important to notice that the three assumptions formulated in (#;) are independent. For example,
in the radial case the function M defined by M (r) = \/r satisfy the last point of (H;) but does not
satisfy the second point. Reciprocally, M (r) = r/In(r) satisfy the second point but does not satisfy
the last point.

LEMMA 2.1 (Hardy-type inequality). — If M satisfies (H1) then for any ¢ € H}, we have

1 © |2

_ I < 2
In fact, as can be seen from the proof, we shall not need entire norm of ¢ in H}, since we will only
use the radial part of the gradient.

Proof. — For any ¢ small enough (more precisly, ¢ < eq, see Part 2.1) we have Q = Q. U O, and

[M|efo [ Mep, [ ey
02 1| = o 51l T o, 5 Il

Since 1/dr is bounded in Q. we easily deduce that

M ‘ %) ‘2 / %) 2
S| o[ s [ M| <l
/QE 62 1M 0. |IM Ly

and the main difficulty to prove the Lemma 2.1 is concentrated in the control of the integral

e[, sl
0= = | .
o. 0 M

For similar reasons, we can suppose that

(2.4) ¢

In fact, introduce a regular function 7. (only depending on Q and ¢) wich vanished outside the
e-neighborhood O of I' and is equal to 1 in the §-neighborhood. The estimate in Lemma 2.1 clearly
holds for (1 — 7:)¢ and the proof therefore has to by conducted only for ~.p, which for sake of
simplicity will be denote ¢ in the following.

=0.

Q.n0O.

QN0
r

Ye =1

Ye=0

The value of € being able to be chosen as small as desired, we shall use copiously the change of
variables (2.1) as well as approximation (2.2).

For each 0 € T let introduce the function
o(r,0)
VvV M(r,8)

he : 1 €]0,¢] —

Note that the relation (2.4) implies that hg(e) = 0.
To simplify the notations, when there are no ambiguities, we do not note the dependence with
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respect to the variable 6 in hg and in M. The integral Iy writes using the approximation (2.2)

= [ [

The goal is to control Iy with [|¢[| g . We will proceed in two steps:
(1) We prove that h(r)M'(r)/M(r) =0 on r = 0;
(2) We control Iy with [|¢]| g1 .

dr dé

e Step (1): We use the following change of variable adapted to the maxwellian M:
®: (r,0) €]0,e] xT' —(s,0) € [0, +00[xT,

/ c dt

where s = — .

r M(t,0)

Notice that the jacobian determinant of ®(r,0) egals —1/ M (r,6) and therefore, M being positive
on €, it does not cancel on |0, ] x I'. Moreover, for all @ € T" we have lim,_,q ®(r,0) = (+00, 8) since

using the assumption on M we get fos dr/ M (r,0) = +00. Consequently ® is a local diffeomorphism
from ]0,e] x T to ®(]0,¢] x T') = [0, +-o00[xT.

For any function f:]O,s[xI‘ — R we will define the function, noted f 110, +o0[xT, by f: fo .
Using the change of variables introduce in Subsection 2.1, for any function f : O. — R we have
define the functions f:]O,s[xI‘ — R and f:]O, +0o[xT such that, with the previous notations for
the name of variables:

~ o~

fx) = f(r,0) = f(s,0).
In the nonambiguous cases, we will note f, all the functions f, f or f.

As announced before the proof, we only need the radial part of the gradient in the desired estimate.
In term of new coordinates, the radial part of the gradient of a function f defined on §2. corresponds

to the derivative with respect to the variable r in the new coordinates: Vg f(x) = 0, f(r,0).

For any 0 € T let gg be the function defined on ]0, +o0[ by
sls) o £00 o)
NG~ VG,

Derivating with respect to the variable s, we obtain (as previously the variable 8 will be understood
as a parameter and we do not note its dependence):

vn (AZ@)) 2

dx = —|g'(s)?|J (r,0)| dO ds.
We deduce that (using the approximation J ~ 1 valid for ¢ small enough)

i ool () ([ wra)

Since ¢ € H}, the integral I; is finite. Consequently, for almost every 6 € I we have

+oo
/ lg'(s)|? ds < +oo0.
0

M(x)

We deduce that .
Vao>0 s, >0 / lg'(s)]? ds < a?.

S o

Next, using the Cauchy-Schwarz inequality we obtain, for any s €]0, +o00],

9(Sa) + avs —sq  if 8§ > 54,

S
9(s) = g(sa) +/ g'(t)dt < sup ¢ if 0 < s < sa-
Sa [0,54]
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We deduce that for almost every 8 € I', for all @ > 0 there exists a constant Cg o, > 0 such that,
for any s €10, +o0[ we have g(s) < av/s + Co,o. Using the r variable, this result is written: for any
r €10,¢]

M'(r) ° o dt

h(r)? < aQM’(r)/ — + M'(r)C3 ,,

M(r) r M(t) ’
that enables, see assumption (H;), to obtain for almost every 8 € T' the relation
M'(r)
M(r)

(2.5) h(r)?|  =0.

r=0

e Step (2): Now, we prove the lemma. Since p € H},, we know that

I ::/QM(X)'VR(RZ((X))

2
2
- )‘ dx < |lpl3n < +oo.

We express I; making appear the h function and using the change of variables x — (r, 0) together
the usual approximation for the jacobian determinant of this change of variable (see the Part 2.1
and the relations (2.2)). We obtain

I = // M(r ‘(% (;?)))Zdrdezz/rll(a)de,

where, for 6 € T', the quantity I;(0) is defined by

11(0):/05M(r)< ! h’(r)—]\/[/(r)mh(r))er

M(r) 2M(r)\/ M
_ Tz M) M'(r)?, o
= [ (w02 = SEE WO + k) dr.

Moreover, an integration by part gives
TM'(r),, _ 1 M)\ LM (r), 9]¢
=), gy k) dr = 5/0 (M(r)) Ar)”dr - §[M(r) hr) }0'

We deduce that ) /
0@ = [ (17 a0 7Y g - L[ 00

472 0
, M'(r) M'(r)\
w30 = ((5re7) +2(3m5) )
it A=\ Gay) 2w )
The assumption (Hi1) on M is written A > —a > —1. Moreover using the equation (2.5) and the
relation (2.4) the braket term is vanished. We obtain

L(6) > /0 (n(ry? - ahf)2) dr.

2

r
Moreover, thanks to the Hardy inequality (holds since h vanishes at 0, this is a direct consequence
of equation (2.5)), we deduce

(2.6) L) > (1-a) /0 W) dr

Since a < 1, this control allows us to estimate f(f h'(r)%dr. From the Hardy inequality again, we
obtain the following estimate

15 2 £ 4
/0 h(? dr < 4/0 W (r)?dr < =1 (6).

r

Integrate with respect to the variable 8, we obtain

>4
= [
rJo

4

—a

I;.
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The function ¢ being in Hj,, right hand side termes are bounded by [¢||%,: . Up to the change of
M

M| p |2
1 < 2

which implies the announced result. O

variables we deduce

The additional hypothesis

(H2) >0 |VM|<

Q| =
=

implies from Lemma 2.1 that if p € H}, then %\/LM € L?(Q2). It is in this form that the Lemma 2.1

will be generally used in this article.

Note that in term of x variable, the inequality (2.6) show us that Vg(_&) belongs to L?(Q)). This

propertie is completed by the next lemma:
LeMMA 2.2 (Inclusion). — If M satisfies (H1) and (Hz) then we have the following inclusions
L3, C L*(Q) and Hj, C HY (D).
More precisely, if ¢ € L3, then /M € L*(Q) and if ¢ € H), then /v'M € H'(Q).

Proof. — Inclusion L3, C L?(f2) is obvious since on the one hand, by definition of L3,, we have
¢ € L3, if and only if ¢/vVM € L?(€2), and on the other hand VM € L>=(Q).
To prove the inclusion Hi, C HJ(£2) we use the Lemma 2.1 with additional assumption (Hz): if
¢ € H}, then we have

v(ﬁl):v(QJM)=¢Mv(f)+lzy¥ffeL%m.
VM M M M VM
n L2(Q) 2 L2(Q) -

Consequently ¢/vM € H (). Hence this function ¢/v/ M has a trace on the boundary I'. Since
M is a regular function on 2 vanishing on I', we deduce that ¢ = \/LM\/M € HL (D). O

This next lemma is interesting in themselves for understanding the space Hi, better. Moreover, it
will be used in the proof of the Lemma 2.7.

LEMMA 2.3 (Density). — If M satisfies (H1) and (Hz) then we have the following equality
g
ce'M = Hl,.

Proof. — Let ¢ € H}, and define, for n € N*, the function ¢,, by

1 ifo<t<l,
1 .
Son:SOX<n7M) where X(t): 2—1 1f1§t<2,
0 ift>2

We successively prove that

(1) the functions ¢, are in Hi,,
(2) we can approach these functions ¢,, with C§° functions,
(3) the sequence {(n }nen+ converges to ¢ in Hi, sense.

These three points clearly implicate the lemma.

2

¢ (1) By definition of x, we have for all n € N* the relation |¢,| < [¢| hence [, M ’< Jo M| &

Pn
M
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which is bounded since p € H}, C L3,. To control the gradient part of the H};-norm of ¢, n € N*,

v (50| =¥ Gl Gaar) + 379 ()
<[V G+ v ()

By definition of the trucature function y, the last term is not egal to 0 if and only if Qi <M<
In this case it write ‘

we write

3=

’ and can be controlled by 2’ i M ’ We have
Pn %2 VM 2
VD < VG

Since ¢ € Hi, and using the Lemma 2.1 together with the assumption (H2), we deduce that
Jo M|V (£2) |2 is bounded. Consequently, ¢, € H},.

MM2

e (2) For each n € N* the function ¢,, € Hi; C H'! is egal to 0 in a neighborhood of the boundary
I'. Approaching ¢,, by a sequence {pn m}men (Which is egal to 0 on a neighborhood of I') in H}
allows to approach ,, by the same sequence {©y, m tmen in Hi,.

e (3) Note that ©(x) — ¢n(x) egals to 0 if M(x) > L. In the other case, that is for all x € Q such
that M(x) < 1, we get |, (x) — @(x)| < |¢(x)| since 0 < x < 1. Hence

On — |2 p |2
e < [ UiviE
/Q M x€Q; M(x)<1 M

Since ¢ € H},; C L3, and since the measure of the set {x € Q; M(x) < %} tends to 0 when n tends
to 400, we have

Yn— P12 notoo
2.7 M‘ ’ 0.
(27) IR
Concerning the gradient part, we write

v(2572) =9 (57) (o) ~1) + 279 () - 0)

The first term is non zero if M < ﬁ and i 1s bounded by ‘V( )| in this case. The last term is non
zero if % <M< 5 and is bounded by 2|¥M ’ Hence we have

[ofeEt)te [ (G T

Since ¢ € H},, the first term is bounded, and using the result of the Lemma 2.1 again, we know

N

that the last term is bounded too. More precisely, as previously, using the fact that the measure of
the set {x € Q; M(x) < } tends to 0 when n tends to 400, we have

Yn = P\|? notoo
2.8 M| ( )| 0.
(2. /| -
The relations (2.7) and (2.8) ensure that the sequence {®, }nen+ converges to ¢ in Hi,. O

Now we introduce a compacity result for the spaces L2, and H}, which is comparable to the classical
compact injection Hg(Q) — L?(12).

LEMMA 2.4 (Compacity). — The injection Hi, — L3, is compact.

Proof. — To prove this lemma, we use the following result due to G. Metivier [19, Proposition 3.1
p. 221] affirming that the weight Sobolev space injection H'(Mdx) C L?(Mdx) as soon as we
have M >0on Q, M =0 on I' and VM # 0 out of I'. Notice that this last point is a consequence
of the two first points M > 0 on 2 and M = 0 on I', at least in a neighborooh of the boundary T,
what is sufficient for our results. For sake of simplicity, we will nevertheless work with 2.
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Consider a sequence {¢,}nen bounded in H1, and show that a convergent sub-sequence can be
extracted. By definition of H},, for all n € N, there exists g, € H'(Mdzx) such that ¢,, = Mg,. The
sequence {n }nen being bounded in H},, the sequence {g,}nen is bounded in L%,. We use here
the result of G. Métivier. We can extract from the sequence {g,}nen a sub-sequence, still noted
{gn }nen and such that

gn — g in H'(Mdx) and gn — g in L*(Mdz).
By definition of the spaces H}, and L3, we conclude that
on — Mg in Hj, and pon — Mg inL?w,

which proves that the injection H}, < L3, is compact. O

In the same way, we present the next lemma which proves that functions in H}, are in certain Ly,
p > 2, where the weighted-space L%, is defined by

Ly = {so € Lip() ; (/ M

Q

)" < e

and endowed with its usual norm.

This kind of result is essential for the proof of the main theorem (Theorem 3.3); it is proved under
the assumptions (H;) and (Hz). We will note that assumption (Hz) is used in the following weak
formulation (obtained by integration):

(Hy) = 3C">0 M>C's/°
More exactly, we have

LEMMA 2.5 (Sobolev-type injection). — If M satisfies (H1) and (Hz) then there exists p > 2
such that the injection H}, — L%, is continuous.

ﬁ € LP(Q) where the spaces LP(2)

are the classical Sobolev spaces on the set 2. Let » € H},. In the next three steps we will prove
that there exists p > 2 such that € LP(Q).

Proof. — First, let us note that ¢ € L, if and only if

14
Ml—l/p
e Since p € H}, we clearly have ¢ € L3, and so ¢/vVM € L2 Moreover, using assumptions
Lemma 2.1 with assumption (Hz) we obtain

® Vo VM o 2
\V/ = + e L*(Q).
<\/M> VM M M @)
N N——
L2(Q) L2(Q)

Consequently, ¢/v M € H'(Q) and using the classical Sobolev injections, we deduce that /v M €
L) for all ¢ < 2d/(d —2) (and for ¢ < 400 in the 2-dimensional case).
e Using the assumption (H2) and the Hardy inequality (Lemma 2.1) we obtain

® 1 ¢ or 2
= — X c L*(Q).
vV MDMe or vM Me @)
L2(Q) L>=(Q)

e From the two previous steps, we can write that for any § € R such that 0 < 8 < ¢ we obtain

\/M@Mﬁ = (¢M¢Mc)ﬁ/0 x (\/%)1—;3/0 € L"(Q)

L2¢/B(Q) Lac/(c=B8)(Q)
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. _ 2 1 _ 1 . . . .
with r = W?Zfﬁ)' Let us note p the real such that 1 — 5= B+ 5. The previous result is written:

for any p € R such that 2 < p <

P
M1-1/p

_2 i
T=5. We obtain

. 4epg
eL” with r = .
qp — 2q+4cp —2p+ 4

€ LP as soon as 7 > p. The inequality 7 > p holds if and only if
¥
M1-1/p
Remark 2.6. — According to the previous proof, we obtain the inclusion H}, C L%, for all
p<2+ ﬁ. For instance, in the two dimensional case (d = 2) the inclusion H}, C L%, holds
for all p < 2+ 4ec.

) P
In particular, we have M1-1/p
4c(g—2)

P24 755 It is thus possible to find p > 2 such that e LP. O

To build functions in Hll\/[,O we use the following lemma which will be important to obtain a lot of
test functions in the weak formulation later. The hypothesis (H;) allows to use the Lemma 2.3.

LEMMA 2.7. — Assume (H1), (Hs) hold. Let ¢ € Hi; and £ : R — R be a continuous application,
piecewise-C! such that &' is bounded on R. Then we have

e ()0 [ (i)

with V(£) = ¢/ (15)9 () and el , < 1€mllvln;

M,0°

Proof. — The proof of this lemma uses the Stampacchia lemma which affirms that if g € H'(w),
w being an open subset of R, and ¢ : R — R is continuous, piecewise-C', such that & is bounded
on R then we have £(g) € H'(w) and V&(g) = €'(9)Vg.

The Stampacchia lemma is a local result, hence applied to g = ¢/M which is in H} () it shows

that the formula V{(%) = f’(%)V(%) holds in D'(Q2). From this formula, it is obvious that
¢ € Hy,. The fact that ¢ is null average is then immediate since [, M = 1. O

One more important ingredient in our study is the following linear operator

Lo = —div(MV(%))

on the space L%, and with domain, see [18, Remark 3.8, p. 9] given by
1 2
D(L) = {y € HY ; /QM’div<MV(%))’ < +o0}.
We also find in [18, Proposition 3.6, p. 8] the following result and its proof which will be used to
introduce the Galerkin approximation method later.

LEMMA 2.8. — The operator L is self-adjoint and positive. Moreover, it has a discrete spectrum
formed by a sequence (¢,,),en such that £, tends to +o00 when n tends to +oc.

Concerning the uniqueness results for a linear operator, it is known that the eigenvalue 0, that is
the kernel of the operator L, is particularly important.

LEMMA 2.9. — The kernel of the operator L is the set {\M, X € R}.

Proof. — This lemma is an immediate consequence of the following formulation of the operator L:

4 (2
2.9 L, = [ M V( ) : V( )
(2.9) (LY, )2, /Q i i
where (-,-) 2 corresponds to the scalar product subordinated to the norm |[| - [z on L3,. In fact,

let 1 be a function such that £y = 0. We obtain (L1, 1/’>L§W = 0 and the formulation (2.9) yields
V(¢/M) = 0. Thus, thanks to the connexity of 2, we deduce that ) = AM with X € R. O
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The last lemma is a generalized Poincaré inequality adapted to the weighted spaces introduced
before. To obtain such a lemma, we use the fact that the potential V' = In(M) is concave. More
precisely we will suppose that

(Hs) Iy >0 v(%) < - Id.

LEMMA 2.10 (Poincaré-type inequality). — If M satisfies (H3) then for all ¢ € Hi, we get the
following Poincaré-type inequality

Lo (o) s

For the free-average functions (that is for ¢ € Hjlw,o) this Lemma 2.10 show that the two norms
Il m1, and Il w1, , on this space are equivalents. This equivalence will be usually useful in the
remainder of the paper.

Proof. — Let ¢ € H}, and introduce the non-stationary problem
ue(t,x) + Lu(t,x) =0 for (£,x) € R x Q,
u(0,%x) = p(x) for x € Q.

The following time-dependant functions

D(t):/QM‘%r and H(t)z/gM‘V(%)‘Q

D'(t):2/{2%~ut:—2/§2%-£u:—2/ﬂM‘V(%)‘2:—2H(t).

Moreover we have u Lu
- -2 [ aro(2) 9(22).

For clearify the following computations, let us introduce the duality operator £* such that
VM

e — g — Av—
LM = Mle(MVv)— Av Y V.

satisfy

We have Lu = Mﬁ*(ﬁ) and
w2 [ we() (e ()
Since V(L*v) = L*(Vv) — V(YE) - Vv we deduce that
w0 =2 [ w(5) -2 (v(57))
w2 [ v (5p) [V (57) ()]
The first term of the right hand side is written —2 fQ M|V2(%) ’2 and is non-positive. Using the

assumption (Hs), the last term of the right hand side is controled by —2v [, M |V( =) 2, that is by
—2vH (t). We obtain

H'(t) < =2y H(1).
Hence H(t) < H(0)e 2. Integrate in time, we obtain:
+oo
1

(2.10) D(0) — D(+00) =2 H(t) dt < ;H(O).
0

To evaluate D(+00), we consider a stationary solution u.,. We note that due to the spectral prop-
erties of the operator £ (see Lemma 2.8), for any initial data, u tends to a stationary solution wu., as
t — +o00. By definition it is in the kernel of £ and following the Lemma 2.9 there exists a constant A
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such that u., = AM. But the evolution equation on u implies that the mean value fQ u is conserved:
Jo tos = [, ¢, that allows to obtain the constant A = [, ¢. We deduce that

prei= [ - ([

Consequently, the inequality (2.10) corresponds to the following one

© |2 2 1 0\ |2
mlsl = (L) < [ e ()]
/Q M Q Y Ja M
which exactly is the inequality announced by the Lemma 2.10. O

Notice that it is possible to obtain a proof of this Poincaré-type inequality by contradiction, see
for instance [18, p.7], or peraphs using the hole-space case (for example for = R9) proved in
H.J. Brascamp [4] (see also Proposition 2.1 in [6]).

3. Statement of the main theorem
3.1. Definition of weak solution
When we consider the Fokker-Planck equation (1.1) with vector field F decomposed as the sum

F = k + VV where k € L>®(Q2) and eV € L'(Q), we can introduce the maxwellian function M
by M =

e‘;v and rewrite (1.1) as div(pk — MV(£)) = f. If we look for a solution with given
Q
average, that is for instance a solution such that fQ ¢ =1, then we can reduce to the case where ¢

is free-average exchanging ¢ into ¢ — M and f into f — div(M k). We obtain the following problem
div(ok — MV(%)) —f

with / @ =0.
Q

Using the adapted spaces introduce in the previous part, the weak formulation of this equation is
written: find ¢ € Hy,  such that for all ¢ € Hy,

(3.1) /QMV (%) -V <;Z> - /Qwa-v (;Z) ={f,¥)

where (-,-) denote the duality brackets between H,," and Hy; o

3.2. Assumptions on the potential

In this article we are interested in the case where the vector fields F' quickly explodes near to the
boundary. The fact that F is decomposed as a sum of two terms makes it possible to describe all
the “explosive” behavior in the part VV. In addition to the fact that V equals —oo on I to ensure
the explosion, the assumptions given on V' (or on M, which is equivalent) can be checked only in
a neigborhood of the boundary I'. More precisly in order to use the lemmas proved we will use the
following assumptions

VM2 VeM\ _ —a
>
Sa<t (F1=) +2Va(— )/51%,
(Hl) VRM(O) = 07
1
3> 0 VRM/QM<I>,
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1M
(H2) >0 VM| - —,
C5p
VM
) il R
(Hs) 3y >0 V(M)\ ~1d,

where we recall that V  corresponds to the normal derivative and where dr represents the distance
to I'.

Notice that we can rewrite these assumptions in term of the potential V' (wich is given with respect
to the maxwellian M by V = In M), see for instance Theorem 3.3, page 17. It is important to note
that these assumptions are satisfied for the radial functions M (i.e. functions depending only on the
distance to the boundary) on the following form near to the boundary

M(r) =r* with a > 1.

In other words, the result is shown for vector fields F whose the normal component explodes like %
with o > 1.

Remark 3.1. — As it was announced as introduction, an interesting case corresponds to the
following Fokker-Planck equation

—eAp + div(¢F) = f,
making appear a small parameter €. We can come back to the previous case using F = %f‘ We note
that if we define a Maxwellian M such that F = VM /M then the Maxwellian M adapted to f,
i.e. such that F = VM/M, satisfies M = C M'/¢. The assumptions on M can thus be interpreted
on M and we show that they are less constraining in the following sense: they are checked when the
normal component of F behave like % for all a > e.

Concerning the assumption on the “interior” part k of F = k + VV/, that is about k € L (Q),
we can note that this assumption is stronger than that announced by J. Droniou in [7]. In fact, we
will see during the proof that the regularity required on x comes from a product lemma. Roughly
speaking, if the product of a function H'(Q) by a function LP(f2) is a function L?(f2) then the
theorem is true as soon as k belongs to LP(Q2). In the classical case the usual Sobolev injections
H'(Q) c L?%/(@=2) imply that p = d, is sufficient. In our case the injections of “Sobolev” type (see
the Lemma 2.5) are not also “generous” and a product Hj, x LP(Q2) will not belong to L?*(Q) for
as many values of p. We can possibly improve the result of the theorem by taking x € LP(Q) with
p=d+1/c.

3.3. Main theorem

We prove in Part 4 the following theorem.

THEOREM 3.2. — Let § be a bounded domain of R%, d > 2. We denote by I its boundary which
is assumed to be of class C2. Let f € H;;' and F = k + VV where k € L®(Q) and V € C®(Q)
satisfies V. = —oco on .

If the assumptions (H1), (Hs) and (Hs) hold then the problem (3.1) admits a unique solution
Y E Hjlw,(r

We can deduce - see the link between a free-average solution and a solution with given average on
Subsection 3.1 - the following theorem where we recall all the assumptions

THEOREM 3.3. — Let Q be a bounded domain of R%, d > 2. We denote by I its boundary which
is assumed to be of class C2. Let f € H;;' and F = k + VV where k € L®(Q) and V € C®(Q)
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satisfies V = —oo on I
If we assume that, in a neigborhood of the boundary I', we have

2 —a
Ja<1 (vRv) +2VEV > 2
51“
(H1) VrV e =0 onT,
3b>0 VRVeV/e_V<b,
Q
(Ha) Je>0 VYV < =,
or
(Hs) Iy>0 VIV < —yId,

where Vg corresponds to the normal derivative and where dr represents the distance to I', then
there exists a unique (weak) solution of the Fokker-Planck equation

—Ap+ div(pF)=f inQ,
such that [, ¢ =1.

4. Proof of the Theorem 3.2
4.1. Existence proof in Theorem 3.2

Principle for the existence proof of Theorem 3.2 - The maxwellian M satisfying the assump-
tions (H1), (H2) and (Hs3), we use the different lemmas proved in Part 2. For instance, using the
equivalence between the norms ||-[|g1 and |[-[| g2 ~on the space Hjy o, see Lemma 2.10, the operator

— diV(M V(ﬁ)) is coerciv on Hzl\/f,o thus we can (see for instance the Lax-Milgram theorem) prove
that there exists a weak solution (that is belonging to Hjlw,o) to equations like

a(av(3)) =

as soon as the source term f belongs in H,,'. Moreover in this case we have Il ez, Sl g1
M

Because of the non-coercivity of the operator — div (M V(M)) + div(- k), we start by studying an ap-
proach problem. For each n € N, let us consider the application T, : 7 € R +— max(min(r,n), —n) €
R and let us denote by F, the following application: F,, : ¢ € Ly — ¢ € Hy o C Ly, where 1) is
the weak solution of

(4.1) —div(MV(%)) —f- div(MTn<%)n>.

For ¢ € L%, we have MT,(¢)/M) € L2, and since ® xk € L*(Q) we get div(MTn(%)ﬁ) € H;,'.
The function F,, is then well defined.

Let us prove that F, is a compact application by showing that its image F,(L3%,) is bounded

in Hj,. Consider ¢ = F,,(¢) € F,(L3%,). Taking ¢ as a test function in the weak formulation of the
equation (4.1) we obtain

[e GO = o [ m ()9 (3p)

(5) Here the assumption on k is essential. Following the proof of J. Droniou [7] it is possible to improve this assumption
using the Sobolev injection 2.5 more finely. See discussion concerning the assumptions on x page 16.
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In other words, by using the duality definition and the Cauchy-Schwarz inequality, we have

1612, S Iy, , + ||m|LocmM IR

Using the fact successively that for all 7 € R we have |T,(r)| < n and that [, M = 1 we deduce
that

n () [l

N7, , S 19l
M,0

M,0

el e 6,
Consequently we have

1F ()|, = 9] s

Thus, the image of L3, by the application F,, is contained in the ball of H}, of radius 1+n|[&| 1)
(up to a multiplicative constant depending on €, which appears in the symbol <). Moreover, the

S 1+ nllg| pe@)-

M,0

injection Hi, — L3, is compact (see Lemma 2.4) and the application F, is clearly continuous.
Applying the Schauder fixed point theorem, we conclude that the application F,, admits a fixed
point, denoted by t,,, in L3,. This fixed point is consequently a solution of

02 [e(5)5(5) - [am (e w(5) =t

for all test functions p € Hy; .
The continuation of the proof consists of obtaining estimates on these functions 1, in order to be
able to pass to the limit when n tends to +oc.

Estimate of M In(1 + |¢,,/M]|) in H}V[’O-norm - Let £ be the application from R to R defined
by £(r) = for ufﬁ. This application is continuous, piecewise-C! and with a bounded derivative.
According to Lemma 2.7 we can choose ¢ = M1, /M) — M [, ME&(tp, /M) as a test function in
formulation (4.2).

e The first of the three terms obtained is treated in the following way

ot wte) - [
‘wn

2
1)l

(4.3)

- HMln (1+

e For the second term we obtain
L \vd
4 [ (%) V(%)
MT( ) v (e ’
IR R A s
M’V(ln(lJr‘%

gﬁmﬂ/‘@ )‘

Using the fact that for all € R, we have |T},(r)| < |r|, we deduce that(®

(44 JRECHERICCHIES EICES )] g

(6) We also use the Cauchy-Schwarz inequality to show that

e
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e For the last term, using f € H]T/[l, we deduce

[(Fo)l S lellay, , = \// Mgf w” %)
(4.5)
Tlln
/M’V( HMI <1+‘wn>‘ .
Q (1 + wn 1\/I 0
The three estimates (4.3), (4.4) and (4.5) enable us to obtain for all n € N
Un

(4.6) | (14|22 )HHL,O <1

Estimate of p({Q € Q ; |Y,(Q)| > kM (Q)}) - In this paragraph, we control the size of
the set where ,, has a large value, that is the set & = {Q € Q; |V, (Q)| = kM (Q)} for k € N.
The natural measure in the present context is the measure du = M(Q)dQ (dQ being the classical
Lebesgue measure on Q C R9), which enables to take into account the weight of the Maxwellian M.

Writing & = {Q € Q; (In(1 + |¢,(Q)/M(Q)]))? = (In(1 + k))?} we obtain
)

/QM(IH(H‘% ))2=/ng(1n(1+‘7’]f; ))2+/§2\EkM<ln(1+’1'JZ(;

We easily deduce the following estimate

/QM(ln(1+ ‘% ))2 > /ng(ln(l—&— ‘%

Introducing the measure dp = M (Q)dQ this inequality is also rewritten
EETa: 51,
(In(1+k))? M1/ L2
Taking into account the estimate (4.6), the previous equation is written

1
4.7 Q5 |vn > kM S —.
(47) HIQE Qs u(@) > kM(Q)) £ e

Estimate of M Si (¢, /M) in H}V[’O-norm - Recall that for k € N the application T} is given
by Tk : r € R — max(min(r, k), —k) € R. We now define the application Sj such that T} + Sy = id.
To obtain an estimate on 1, we successively obtain an estimate on M Sk(t,/M) and then on
MTy (/M) for a sufficiently large k € N.

Let k € N. Taking ¢ = MSi(¢n /M) — M [, MSk(1n /M) as a test function test in (4.2). According
to Lemma 2.7, this choice is possible and we obtain

[ () (s 55)) - o (e S (5(5) - 0

A B c

e Since Sy + T, = id and for all » € R we have S, (r) = 0 or T} (r) = 0 we deduce that the first
term A is written

Un Un
s a= [ (sG] = s (5,
(4. v (s (% s (2
e Using the fact that for all » € R we have |T,,(r)| < |r| and using the Cauchy-Schwarz inequality,
we estimate the second term B in the following way

Bl < ||n|Loo<m\//Q |1/;\’}|2\//QM‘V<S,€($))‘2.

) > [ M+ k)
Ex

W& < HMln (1 +

1
Hl\l 0
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However |1, /M| = |Ti(¢n/M)+Sk(tn/M)| < k+|Sk(vn/M)| thus |¢, / VM| < kvV/M+VM|S), (¢ /M)

and using the triangular inequality we obtain

L < Lanar s [t (B = fprsi(22)],

Since Si(r) = 0 for |r| < k, we can estimate this last term as follows:

s Gy, = [ s GL = [ mls (Sl

M

where we recall that & = {Q € Q ; [¥,(Q)| = kM (Q)}. According to the Holder inequality, for
all p > 1, denoting by ¢ the conjugate of p (i.e. such that % + % = 1) and using the estimate (4.7),

we obtain 5 . NN
n q 0\ 2P\ 1/P
s ()L, < (L 20) ([ mlsi(55)[)

M
< e L MsGa)[) ™

We thus control the L3,-norm of M S (¢,/M) using his Li’;-norm . But this Lﬁg-norms can itself
be controlled, for an adapted value of p by the H}-norm. In fact, using the weighted Sobolev
embedding (see Lemma 2.5) there exists p > 1 for which we have the inequality

(f MG < s (51
+Jors (S5,

< oS, + s (5

We deduce a control on the L2,-norm of M Sy (¢,,/M) using his Hj; g-norm:

5 "
M

2
LM

5 "
LAI

1 wn 2 1 ¢n
(1- (L 1 k))2/Q>HMSk(M>‘ 2, S (ln(l k) MS]“(M)‘ )
that is a control of the form HMSk (1/1n/M) ||L2 < HMSk (?/Jn/M) H 1 where A(k) tends to 0
M,0

when k tends to +o00. Hence, we obtain the followmg estimate for the term B of the left hand side

H} ) ’Msk (%) HH}WO

M,0

of equation (4.1):

(4.9) 1Bl < &= (o) (k+“4 HMSkCﬁ)‘

e The last term of the equation (4.1) is controlled as follow

€l = 1K S e, = [ M]9 ()]

<\ Lo (s ()] = s (%)

The previous estimates (4.8), (4.9) and (4.10) enable the deduction, from equation (4.1), for all
k € N, of the following inequality

284 (57, & et i+ A 153 (55)

(4.10)

1
HM,O

)+

M HY

Since A(k) tends to 0 when k tends to 4oo, it possible to obtain for a sufficiently large k, the
inequality

<1

1
M,0

o s (5
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Estimate of M Ty (¢,/M) in H}W,O-norm - Choose now ¢ = M Ty (¢, /M) —MfQ MTy (/M)
as a test function in equation (4.2) (according to Lemma 2.7 we have ¢ € Hy,,). As for the
estimate of M Sk (¢, /M), we study each of three terms, named A, B and C as previously, present
in equation (4.2).

e The first is written

a= [l (n (G = v (7)1
e For the second term, we proceed as follow:
Bl < el [ MTL(5) 19 (0 (7))

<l [ a9 (70 (%))l

But for |1, /M| > k we have V(T (1,,/M)) = 0 whereas for |1, /M| < k we clearly have |¢,,| < kM
and consequently, according to the Cauchy-Schwarz inequality we obtain

Bl < Iele~o [ kM| (1))
< et [y [ o (aa(42)

< K&l Lo (o) HMTk (%)

1
H]\l 0

HH;J)O

e The last term is treated like those of the previous estimates:

=150 < || prm (52)]

L
Hy o

These three estimates give (note that this estimate depends on k, but that k& has been fixed)

<1

~

i s (35)

1
HZ\/I,O

Estimate of v, in H}VI’O - Since for all £k € N we have Sy, + T}, = id we obtain

= s (57) + 33 (55,

< HMSk (ﬁ) HH}M + HMTk (Mn) HH}V[O

Using the estimates (4.11) and (4.12) we deduce that for all n € N we have

[¥nl a2

M,0

(4.13) HwnHHl

]VION

Convergence of the sequence {¢,}nen - According to the estimate (4.13) the sequence
{¥n }nen is bounded in H11\4,0~ According to the Lemma 2.4 a subsequence of the sequence {¢,, }nen
(always denoted by {¢p, }nen) admits a limit ¢, weak in H le,o and strong in L3,. In order to perform
the limit in equation (4.2), it is sufficient to prove that the sequence { M T, (¢,,/M)}nen tends to ¢

in L%,. We obtain
[ (57) -

v (35) -

, < (5) - (7)1,
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However the application 7' : R — R is 1-lipschitz and we have

v (57) -2 (), = om0 () -7 (Gl
< [ M- 2 = — vy,

which proves that | MT, (5 /M) — MT,(¢/M)]| 2 tends to 0 when n tends to +o00. As regards the
other term, the Lebesgue convergence dominated theorem directly affirms that ||MT, (/M) —1| 12,
also tends to 0 when n tends to +oo. Finally, it was shown that the sequence {MT,,(¥/M)}nen
converges to 1 in L3, and consequently that 1) is a solution of

/QMV(%) /«pn —(f.¢) Vo€ Hiy

4.2. Uniqueness proof in Theorem 3.2

Main steps for the uniqueness proof - To prove uniqueness, we proceed as follows: We start
by introducing the dual problem. It is shown that this dual problem admits a solution by using the
Schauder topological degree method. Then, by using the existence both problem and its dual, we
deduce uniqueness from these two problems.

Introduction of the dual problem - For g € H;; ! Jet us consider the elliptic partial differential
equation

(4.14) —diV(MV(%)) - MH~V(%) =g on{l

and we look for a solution ¢ € Hy;  to this equation.

A compact application for the dual problem - For ¢ € H}, A0 We have Mk - V(d)/ )y€e L3, C
Hysince Mk - V(@/M)] 13, < 8]zl 8], - Since the operator ¢ — — div(M (/1)) is

coerciv in Hy; o, there exists thus a unique solution ¢ = G((Z) € Hjy; o such that for all ¢ € Hy,

(4.15) [a9(2)-9(£) - [on-9(5) =001

This defines an application G : H%/[,o — Hjlvf,o- It is quite easy to see that G is continuous; indeed,
if ¢,, tends to ¢ in Hj; o then M#k-V (¢, /M) tends to Mk-V(¢/M) in Hy;' (more precisely in L2,).
Thus div(MV(¢,/M)) tends to div(MV(¢/M)) which implies that ¢, = G(¢,) tends to ¢ = G(¢)
in H 11\/1 0

We will now prove that G is a compact operator. Suppose that the sequence {¢n}neN is bounded
in Hy; o; then {Mk - V(¢n/M)}nen is bounded in H;;' so that, using ¢ = G(dn) = ¢y as a test
function in the equation satisfied by ¢,,, we get using the Lemma 2.10

onll, < (1 395, N1l

which implies that the sequence {¢,}nen is bounded in HM,O' Using the Lemma 2.4, up to a
subsequence, we can thus suppose that {¢,},en converges a.e. on Q and is bounded in L2%,. Let
(n,m) € N?; subtract the equation satisfied by ¢,, to the equation satisfied by ¢, and use ¢ =
On — Om as a test function, this gives using the Lemma 2.10 again

o~ omlly, < | [ 60— gmin 9 (P 22)| 5 16— dmlis,
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From the strong convergence of {¢y, }nen to ¢ in L3, we deduce that the sequence {¢,}tnen is a
Cauchy sequence in H 11\/[,0 and converges in this space. We deduce that the application G is compact.

Existence result for the dual problem using the Leray-Schauder topological degree -
According to the Leray-Schauder topological theory (see the founder article of J. Leray and J.
Schauder [16]) since the operator G introduced with equation (4.15) is a compact operator, to prove
that it has a fixed point, we just have to find R > 0 such that for all s € [0,1] there exists no
solution of ¢ — sG(¢) = 0 satisfying ”¢HH}M,0 =R

Let s € [0,1] and suppose that ¢ € Hy,  satisfies ¢ = sG(¢). We have for all ¢ € Hy,

(4.16) LMV(%) V(%) —s/ﬂwn~V(%) = (s9,¥).

Using the “non-dual” problem (see the existence proof of Theorem 3.2 where we obtain an existence
solution of equation (4.2)), we know that for all f € H;,' there exists at least one solution ¢ € H}V[}O
such that for all ¢ € Hy,

(4.17) QMV(%) -v(%) —s/gm-v(%) = (f, ).

Moreover, according to estimate (4.13) there exists C; € R* such that for all f € H, with
||f||H;41 < 1 and for all s € [0, 1] we have Hw”H}u,o < C4. We can verify that this constant C; depends
only on || f|| H and can be selected independently on the function f when || f|| B S 1. In addition
according to the estimates obtained in the existence proof of Theorem 3.2 this constant C; depends
on [|sk|z(q) < ||K[|L=(0) and consequently the constant C; can also be selected independently
of s.

By taking ¢ = ¢ in the equation (4.17) satisfied by ¢ and ¢ = 1 in the equation (4.16) satisfied
by ¢, we obtain

(£.6) = {59.) < sllgll 1 C1 < llgly=1Ca = Co.

Since this inequality is satisfied for all f € H;," such that || f|| ;-1 < 1, we deduce that b7 , S Ca.
M s

Now take R = C5 + 1. We have just proven that, for any s € [0, 1], any solution of ¢ — sG(¢) = 0
satisfies || @] Hi,, < R; thus by the Leray-Schauder topological degree theory, the application G has

a fixed point, that is to say a solution of (4.15).

Uniqueness - Since the equation (3.1) is linear, it is sufficient to prove that the only solution
of (3.1) without source term, i.e. taking f = 0, is the null function. Let ¢ be a solution of (3.1)
with f = 0 and let ¢ be a solution of (4.14) with g = sign(y)) € H;;'. By putting ¢ = ¢ as a test
function in the equation (3.1) satisfied by 1 and ¢ = v as a test function in the weak formulation
of the equation (4.14) satisfied by ¢, we respectively get

[ 5(5) - [oms() 0 o
[5(8) () [ om () -
We deduce that (sign(1), ) = 0, that is to say [, [1)| = 0 and then ¢ = 0.

Remark 4.1. — A similar reasoning gives the uniqueness of the solution of the dual prob-
lem (4.15).
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5. Application to fluid mechanics
5.1. The FENE model for dilute polymers

A natural framework where vectors fields strongly explode at the boundaries of a domain is the
framework of the modeling of the spring whose extension is finite (that is physically realist). In fluid
mechanics, such an approach is used to develop polymer models in solution. It is this point of view
which we have chooses to present in order to illustrate the preceding theoretical study.

The simplest micro-mechanical approach to model the polymer molecules in a dilute solution is the
dumbbell model in which the polymers are represented by two beads connected by a spring. The
configuration vector Q describes the orientation and the elongation of such a dumbbell [15, 17]. The
force of the spring is governed by some law that should be derived from physical arguments. We
choose here the popular FENE model, in which the maximum extensibility of the dumbbell is fixed
at some value determined by the dimensionless parameter ¢ and the spring force takes the simple

S

The configuration vector Q depends on time ¢ and macroscopic position of the dumbbell x in the
flow. Moreover, it satisfies the following stochastic differential equation (see [21] for details):

(5.1) dQ = ((Vu)" - Q- ﬁE(Q)) dt + \/2—1136 dW,

where the 2-tensor (Vu)7 is the transposed velocity gradient, De is a dimensionless number called

form

the Deborah number (linked to the relaxation time of the fluid) and W is the Wiener random process
that accounts for the Brownian forces acting on each bead. Equation (5.1) should be understood as
the It6 ordinary stochastic differential equations along the particle paths since the dumbbells’centers
of mass are supposed on average to follow the particules of the solvent fluid.

As is well known (see Section 3.3 of [21]), every It ordinary stochastic differential equation can be
associated with a partial differential equation for the probability density function ¢(t,x, Q) of the
random process Q(t, x). In particular, equation (5.1) implies the following, also called Fokker-Planck,
equation for ¢(t,x,Q):

Oy B
(5.2) a0 +u-Vyxp=

L

ZDGAQap — divg (cp((Vu)T -Q - LE))

2De

In certain modes the dominating terms correspond to the terms of the right-hand side member of
equation (5.2). It is the case, for instance, when the flow is supposed to be thin, see [5]. In these
configurations, the distribution ¢ can be seen like depending only on Q (to be rigorous, ¢ also
depends on time ¢ and on the macroscopic position x, via the presence of the gradient Vu(t,x) but
these dependences can be seen as parameters) and the equation (5.2) is approached by the following
Fokker-Planck equation on ¢(Q):

(5.3) —Ap+ div(eF) =0 in B(0,7),

with F = 2De (Vu)? - Q — E. Tt exactly corresponds to those studied in the first part of this paper
(see equation (1.1)) in the case Q = B(0,¢) and without source term: f = 0.

Although it is wished that the solution ¢(Q) cancels for values Q such that |Q| = ¢ (i.e. we
wishe that the maximum length of the springs is ¢ and that there is no spring of this length), the
classical framework of the Theorem 1.2 does not correspond to this equation provided with the
homogeneous Dirichlet boundary conditions. In fact, the force F is not sufficiently regular: we have
F ¢ L4(B(0,¢)). Roughly speaking, the FENE model takes into account the finite extensibility of
the polymer chain, through an important explosive force when |Q| tends to £.
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=

Figure 5.1. On the left, we have drawn the physical domain of a real flow for a diluted polymers
solution. From the microscopic point of view, the polymer chains are identified to independent
mass-springs systems (called dumbbells). The orientation and the length of each dumbbell
is governed by a quantity (denoted by ¢ in this paper) distributed in a ball whose radius
corresponds to the maximum extension of the spring. On the right, the colors correspond to the
various probabilities that dumbbell be in the given position. For instance, the drawn dumbbell
is the dumbell which has the most chance to be present (with its “symmetrical” compared to
the center of the ball).

On the other hand, this force F perfectly corresponds to the principal result shown in this article
(see Theorem 3.3). More precisely, the vector field Q € B(0,¢) — 2De (Vu)T - Q is clearly bounded
and we can write the “explosive” term E as follow:

E=-VV with V(Q)—€21n< —@).

T2 IZ
To make appear the maxwellian function M as it is used in this paper, we write
5 10 22
V@ (1-1Qr/e)
(5.4) M(Q) = :

- 22
/ e’ 4R (1 - |R|2/€2) dR
Q B(0,0)

From Theorem 3.3 we deduce that if £ > /2 then for any p € R there exists a unique (weak) solution
of the Fokker-Planck equation (5.3) such that fB(o,e) ¢ = p. According to H.C. Ottinger [21], the
number ¢ roughly measures the number of monomer units represented by a bead and it is generally
larger than 10. The assumption ¢ > /2 is not constraining from the physical point of view. In
fact, according to H.C. Ottinger [21], the number ¢ roughly measures the number of monomer units
represented by a bead and it is generally larger than 10.
Moreover, impose the quantity |’ B0,0) P physically corresponds to given the density of the polymer
chains. Hence this condition is relevant for the studied problem.

Remark 5.1. — If the tensor (Vxu)” is replaced by its anti-symmetric part 3(Vxu — (Vxu)T)
in the force term F then we get the so-called co-rotational FENE model. This case corresponds to
a particular cases presented page 2: ¢ = M is a trivial solution of equation (5.3) (see [5, 18]).

5.2. Numerical results

In this subsection, we present numerical result for the Fokker-Planck equation (1.1) for a confinement
vector field F coupled with the normalization condition fQ @ = p, p € R, and then we apply the
algorithm in the framework of fluid mechanics. The main difficulty to obtain a numerical scheme for
the Fokker-Planck equation within the normalized condition is to treat this normalized condition
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since the equation is not numerically difficult itself. Precisly, this condition is implemented by
penalization. For simulation, we use the FreeFem-++ program(” which is based on weak formulation
of the problem and finite elements method.

In the fluid mechanics context, we want to observe the distribution of the orientation dumbells in
a dilute polymer under shear (for instance with a given stationary velocity flow given of the form
u(z1,z2) = (Y 22,0), ¥ € R, in the 2-dimensional case). For simplicity, we make the presentation with
the 2-dimensional model. According to the previous subsection, the searched distribution satisfies
the following Fokker-Planck equation

(5.5) —Ap+ div(pF) =0 on B(0,¢),

where the vector field F is given by

(@1 . (@2 1 Q1
F.<Q2>€B(O,€) 21)67(0) 1_|Q|2/€2<Q2).

Moreover, the solution must be satisfy the relation | B(0,) P = P Notice that if we have a solution
such that fB(o,@) @ = 1 then, by linearity, the function @ = pyp is a solution such that fB(O,Z) ©=p.
In the numerical test, we always take p = 1. The only two parameters which are interest are the
product De~ and the coefficient ¢ which corresponds to the maximal elongation of the dumbells.
Without shear (that is for 4 = 0), a trivial solution of the Fokker-Planck equation (5.5) exists:
it is the maxwellian M (see its expression (5.4)). For three characteristic maximal lenghts of the
dumbells (£ =2, £ =5 and ¢ = 10), we have been represented this maxwellian on the figure 5.2.

Figure 5.2. Solution without shear for different maximal lengths of dumbells: £ =2, ¢ =5 and
¢ =10.

To observe the influence of the shear on the distribution, taking De = 10, £ = 5 and different values
of the shear coefficient 4 € {0.1;0.2;0.5; 1}. The for results are descibe on figure 5.3.

Figure 5.3. Shear influence on the distribution of the length of dumbells. The more the shear
is raised, the more the dumbbells tend to lengthen in the direction of the flow. The four figures
above correspond (from left to right) to the values 4 = 0.1, ¥ = 0.2, ¥ = 0.5 and § = 1.

() see http://www.freefem.org/ff++
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