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Revisiting extensions of regularly varying functions

Introduction

A positive and measurable function U defined on R + is a regularly varying (RV) function if

lim x→∞ U (t x) U (x) < ∞ (t > 0). (1) 
If this limit equals 1, U is a slowly varying (SW) function. Classes RV and SV of regularly and slowly varying functions were introduced by Karamata [START_REF] Karamata | Sur un mode de croissance régulière des fonctions[END_REF] in 1930. Since then theory of these functions has been developed in many directions. Systematic treatment of this theory can be found in e.g. [START_REF] Bingham | Regular Variation[END_REF] and [START_REF] Seneta | Regularly Varying Functions[END_REF].

Extensions of RV functions have been obtained by letting (1) to vary. An early extension of this type was given by Avakumović in 1936 [START_REF] Avakumovi Ć | On a O-inverse theorem (in Serbian)[END_REF]. He introduced the class O-RV of O-regularly varying (O-RV) functions U which satisfy the following condition instead of (1):

0 < U * (t ) := lim x→∞ U (t x) U (x) ≤ lim x→∞ U (t x) U (x) =: U * (t ) < ∞ (t ≥ 1). (2) 
Recently Cadena and Kratz [START_REF] Cadena | An extension of the class of regularly varying functions[END_REF] gave an extension of RV functions by also letting [START_REF] Cadena | O-regularly varying functions[END_REF] to vary, but they designed it in a different way to the previous one. They introduced the class M which consists in functions U satisfying the following condition instead of (1):

∃ρ ∈ R, ∀ǫ > 0, lim x→∞ U (x)
x ρ+ǫ = 0 and lim

x→∞ U (x) x ρ-ǫ = ∞. (3) 
We have clearly RV O-RV and, for instance using Theorem 1 (see Corollary 1), RV M . There arises the natural question of how O-RV and M are related between them. We undertake this study helping us of characterizations of these classes: recalling well-known characterizations of O-RV and giving proofs of three characterizations of M , two of them provided in [START_REF] Cadena | An extension of the class of regularly varying functions[END_REF] and a new one given in this note.

Cadena and Kratz also introduced the following natural extensions of M .

M ∞ := U : R + → R + : U is measurable and satisfies ∀ρ ∈ R, lim x→∞ U (x)

x ρ = 0 (4)

M -∞ := U : R + → R + : U is measurable and satisfies ∀ρ ∈ R,

lim x→∞ U (x) x ρ = ∞ . ( 5 
)
The new characterization given for M is extended to M ∞ and M -∞ . Relationships among M ∞ and M -∞ and O-RV are also investigated in this note.

This note is organized as follows. The main results are presented in the next section, introducing previously notations and definitions. First, the new characterizations of M , M ∞ , and M -∞ based on limits are given. Next, analyses of uniform convergence in these characterizations are presented and, finally, relationships among O-RV and M , M ∞ and M -∞ are shown.

All proofs are collected in Section 3. Conclusion is presented in the last section.

Main Results

For a positive function U with support R + its lower and upper orders are defined by (see e.g. [START_REF] Bingham | Regular Variation[END_REF])

µ(U ) := lim x→∞ log (U (x)) log(x) , ν(U ) := lim x→∞ log (U (x)) log(x) .
Throughout this note log(x) represents the natural logarithm of x.

We notice that the classes M , M ∞ , and M -∞ defined in (3), (4), and ( 5) are a bit weaker than the corresponding classes given in [START_REF] Cadena | An extension of the class of regularly varying functions[END_REF], and that each of them is disjoint from each other. Moreover, using straightforward computations, one can prove that ρ defined in (3) is unique, hence it will be denoted by ρ U , and one can show that ǫ > 0 in (3) can be taken sufficiently small. Additionally, one can prove that M is strictly larger than RV, for instance using Theorem 1 (see Corollary 1), and that M ∞ is related to the domain of attraction of Gumbel (see [START_REF] Cadena | An extension of the class of regularly varying functions[END_REF]).

The new characterizations of M , M ∞ , and M -∞ follow.

Theorem 1. Let U : R + → R + be a measurable function. Then

(i) U ∈ M with ρ U = -τ iff          ∀r < τ, ∃x a > 1, ∀x ≥ x a , lim t →∞ t r U (t x) U (x) = 0 ∀r > τ, ∃x b > 1, ∀x ≥ x b , lim t →∞ t r U (t x) U (x) = ∞. ( 6 
) (ii) U ∈ M ∞ iff ∀r ∈ R, ∃x 0 > 1, ∀x ≥ x 0 , lim t →∞ t r U (t x) U (x) = 0. ( 7 
) (iii) U ∈ M -∞ iff ∀r ∈ R, ∃x 0 > 1, ∀x ≥ x 0 , lim t →∞ t r U (t x) U (x) = ∞. ( 8 
)
Example 1.

1. Consider a measurable and positive function U with support R + such that, for x ≥ x 0 with some x 0 > 1, U (x) = x log(x).

Noting that, for t , x > 1, lim

t →∞ t r U (t x) U (x) = lim t →∞ t r -1 log(x) log(t x) = 0 if r > 1 ∞ if r < 1,
provides, taking τ = -1 and applying Theorem 1, (i), U ∈ M with ρ U = 1.

Let U be a function defined by U

(x) := x sin(x) , x > 0. Writing t r U (t x) U (x) = t r +sin(t x) x sin(t x)-sin(x)
gives, for r ∈ R,

lim t →∞ t r U (t x) U (x) = ∞ and lim t →∞ t r U (t x) U (x) = 0.
Hence the necessary condition of Theorem 1, (i), is not satisfied and consequently gives U ∈ M .

It follows a consequence of Theorem 1. This result was proved by Cadena and Kratz in [START_REF] Cadena | An extension of the class of regularly varying functions[END_REF] combining a result provided in [START_REF] Haan | On regular variation and its applications to the weak convergence of sample extremes[END_REF] and another characterization of M (see Theorem CK later).

Corollary 1. RV M .

Note that, from Corollary 1, RV ⊆ M O-RV .

There are not common elements between O-RV and M under their definitions given in ( 2) and (3) respectively, but observing the characterization of M given in Theorem 1 one identifies the quotient U (t x) U (x), which appears in (2). The next example exploits this link to show a first relationship between O-RV and M .

Example 2. M ⊆ O-RV.

Let U be a function defined by U (x) := exp (log x) α cos (log x) β , x > 0, where 0 < α, β < 1 such that α + β > 1.

Prof. Philippe Soulier gave recommendations to correct an error in an early version of this example.

On the one hand, noting that, for x, t > e, using the changes of variable y = log(x) and s = log(t ) and observing that s → ∞ as t → ∞,

lim t →∞ t r U (t x) U (x) = lim s→∞ exp r s + (s + y) α cos (s + y) β -y α cos y β = lim s→∞ exp s r + 1 s 1-α 1 + y s α cos (s + y) 1/3 - y α s cos y β = 0 if r > 0 ∞ if r < 0,
provides, taking τ = 0 and applying Theorem 1, U ∈ M with ρ U = 0.

On the other hand, writing, for x > e and t > 0, using the previous changes of variables, with x such that log t x β = π 2 + 2kπ, for a given t ,

U (t x) U (x) = exp -log x α cos (log x) β = exp -y α cos ((π 2 + 2kπ) 1/β -s) β = exp (π 2 + 2kπ) 1/β -s α sin ((π 2 + 2kπ) 1/β -s) β -(π 2 + 2kπ) . Since (π 2 + 2kπ) 1/β -s β -(π 2 + 2kπ) → 0 as k → ∞, we have lim k→∞ (π 2 + 2kπ) 1/β -s α sin ((π 2 + 2kπ) 1/β -s) β -(π 2 + 2kπ) = lim k→∞ ((π 2 + 2kπ) 1/β -s) β -(π 2 + 2kπ) (π 2 + 2kπ) 1/β -s -α
, which is an indetermination of type 0 0. Then, applying L'Hopital's rule we have

lim k→∞ ((π 2 + 2kπ) 1/β -s) β -(π 2 + 2kπ) (π 2 + 2kπ) 1/β -s -α = lim k→∞ (2π) α/β ((π 2 + 2kπ) 1/β -s) β -(π 2 + 2kπ) k -α/β = lim k→∞ - β α (2π) α/β+1 ((π 2 + 2kπ) 1/β -s) β-1 (π 2 + 2kπ) 1/β-1 -1 k -α/β-1 ,
which is an indetermination of type 0 0. Then, applying again L'Hopital's rule we have

lim k→∞ ((π 2 + 2kπ) 1/β -s) β -(π 2 + 2kπ) (π 2 + 2kπ) 1/β -s -α = lim k→∞ s β(1 -β) α(α + β) (2π) α/β+2 ((π 2 + 2kπ) 1/β -s) β-2 (π 2 + 2kπ) 1/β-2 k -α/β-2 = lim k→∞ s β(1 -β) α(α + β) (2π) (α+β-1)/β k (α+β-1)/β = ∞ if s>0 -∞ if s<0.
Then, we get, for t > 1,

U * (t ) = lim x→∞ U (t x) U (x) = ∞,
and, for t < 1,

U * (t ) = lim x→∞ U (t x) U (x) = 0, which contradict (2), so U ∈ O-RV. In particular, U ∈ SV.
Next, the uniform convergences in x of limits given in ( 6), [START_REF] Cadena | An extension of the class of regularly varying functions[END_REF], and ( 8) are analyzed. To this aim, we will use the next two results.

Proposition 1. Let U : R + → R + be a measurable function. Then (i) If U ∈ M with ρ U = -τ, then there exists x 0 > 1 such that, for x 0 ≤ c < d < ∞, there exist 0 < M c < M d satisfying, for x ∈ [c; d], M c ≤ U (x) ≤ M d . (ii) If U ∈ M ∞ , then there exists x 0 > 1 such that, for c ≥ x 0 , there exist M c > 0 satisfying, for x ∈ [c; ∞), U (x) ≤ M c . (iii) If U ∈ M -∞ , then there exists x 0 > 1 such that, for d ≥ x 0 , there exist M d > 0 satisfying, for x ∈ [d; ∞), U (x) ≥ M d .
Proposition 2 (Given in [START_REF] Aranelovi Ć | An inequality for the Lebesgue measure[END_REF]). Let µ be the Lebesgue measure on R, A a measurable set of positive measure, and x n n∈N a bounded sequence of real numbers. Then, µ(A) ≤ µ lim n→∞ (x n + A) .

Now the results on uniform convergences are presented. Their proofs are inspired by [START_REF] Petkovi Ć | An Inequality for the Lebesgue Measure and its Applications[END_REF].

Theorem 2 (Uniform Convergence Theorem (UCT)). Let U : R + → R + be a measurable function. Then

(i) If U ∈ M with ρ U = -τ and r < τ, then, for any x a ≤ c < d < ∞ for some x a > 1, lim t →∞ t r sup x∈[c;d ] U (t x) U (x) = 0. (ii) If U ∈ M with ρ U = -τ and r > τ, then, for any x b ≤ c < d < ∞ for some x b > 1, lim t →∞ t r inf x∈[c;d ] U (t x) U (x) = ∞. (iii) If U ∈ M ∞ satisfying, for s > 1, U (x) ≥ M s for x ∈ [1; s] and some M s > 0, then, for r ∈ R and any constants x 0 ≤ c < d < ∞ for some x 0 > 1, lim t →∞ t r sup x∈[c;d ] U (t x) U (x) = 0. (iv) If U ∈ M -∞ satisfying, for s > 1, U (x) ≤ M s for x ∈ [1; s] and some M s > 0, then, for r ∈ R and any constants x 0 ≤ c < d < ∞ for some x 0 , lim t →∞ t r inf x∈[c;d ] U (t x) U (x) = ∞.
Note that UCT cannot be extended to infinite intervals. For instance, from the function U given in Example 2 we have that computing the supremum of the quotient U (t x) U (x) in x on [x 0 ; ∞), for any x 0 > 1, gives always ∞, and hence one cannot deduce that ρ U = 0.

The next results on O-RV, M , M ∞ , and M -∞ will be used to give more relationships between these classes. On O-RV we need:

Proposition 3 (see e.g. [START_REF] Karamata | Bemerkung über die vorstehende Arbeit des Herrn Avakumović mit, näherer Betrachtung einer Klasse von Funktionen, welche bei den Inversionssätzen vorkommen[END_REF], [START_REF] Seneta | Regularly Varying Functions[END_REF], [START_REF] Cadena | O-regularly varying functions[END_REF], [START_REF] Haan | Regular variation, extensions and Tauberian theorems[END_REF], and [START_REF] Bingham | Regular Variation[END_REF]). Let U : R + → R + be a measurable function.

Then the following statements are equivalent:

(i) U ∈ O-RV. (ii) There exist α, β ∈ R and x 0 > 1, c > 0 such that, for all t ≥ 1 and x ≥ x 0 , c -1 t β ≤ U (t x) U (x) ≤ ct α .
(iii) There exist functions η(x) and φ(x) bounded on [x 0 ; ∞), for some x 0 ≥ 1, such that

U (x) = exp η(x) + x 1 φ(y) d y y , x ≥ 1.
On M we need the next two characterizations of M given by Cadena and Kratz in [START_REF] Cadena | An extension of the class of regularly varying functions[END_REF]. For the sake of completeness of this note, we give them as Theorem CK and indicate their proofs. Part of these proofs are copied from [START_REF] Cadena | An extension of the class of regularly varying functions[END_REF].

Theorem CK. Let U : R + → R + be a measurable function. Then the following statements are equivalent:

(i) U ∈ M with ρ U = τ. (ii) lim x→∞ log (U (x)) log(x) = τ.
(iii) There exist b > 1 and measurable functions α, β, and δ satisfying, as x → ∞,

α(x) log(x) → 0, β(x) → τ, δ(x) → 1, such that U (x) = exp α(x) + δ(x) x b β(s) d s s , x ≥ x 1 for some x 1 ≥ b. Remark 1.
If F is the tail of a distribution F associated to a random variable (rv) X , some authors (see e.g. [START_REF] Nakagawa | Application of Tauberian Theorem to the Exponential Decay of the Tail Probability of a Random Variable[END_REF] and [START_REF] Nakagawa | On the Singularity of Laplace-Stieljes Transform of a Heavy-Tailed Random Variable[END_REF]) say that X is heavy-tailed if the limit

η := lim x→∞ log F (x) log(x)
exists and takes a negative value.

We notice that this characterization does not cover rvs with heavy tails satisfying η = 0 or with heavy tails for which such limit does not exist. Indeed, on the one side, from Theorem CK one has that η = 0 implies that F ∈ M with ρ F = 0, being a particular case of these functions the SV functions, which are considered heavy-tailed. On the other side, Cadena and Kratz presented in [START_REF] Cadena | An extension of the class of regularly varying functions[END_REF] families of tails F for which the limit lim

x→∞ log F (x) log(x)
does not exist, for instance the next tail defined by (see [START_REF] Cadena | An extension of the class of regularly varying functions[END_REF])

Let α > 0, β < -1, x a > 1, and define the series x n = x (1+α) n a , n ≥ 1, which satisfies x n → ∞ as n → ∞. It is not hard to prove that the tail F associated to a rv X and defined by

F (x) := 1 x ∈ [0; x 1 ) x α(1+β) n x ∈ [x n ; x n+1 ), ∀n ≥ 1 satisfies lim x→∞ log F (x) log(x) = - α(1 + β) 1 + α < -α(1 + β) = lim x→∞ log F (x) log(x) . Note that if -α(1 + β) (1 + α) < 1,
then the expected value of X is ∞, which means that X can be considered as a heavy-tailed rv.

We notice from the representations of U via O-RV and M given in Proposition 3, (iii), and Theorem CK, (iii), respectively, that a key difference between those representations is the presence of a bounded function under the integral symbol. Motivated by this observation, we built the next function belonging to O-RV but not to M . This aim is reached by building a bounded function φ such that the limit lim 

             n-1 k=0 (-1) k e -k if n is odd n-1 k=1 (-1) k+1 e -k if n is even,
and one then gets

lim n→∞ log(U (x n )) log(x n ) =          1 1 + e -1 if n is odd e -1
1 + e -1 if n is even, which implies ν(U )-µ(U ) ≥ (1-e -1 ) (1+e -1 ) > 0, hence the limit lim The relationships of M ∞ and M -∞ with O-RV are simpler.

Proposition 5. For λ ∈ ∞, -∞ , M λ O-RV = .

Proofs

Proof of Theorem 1.

• Proof of the necessary condition of (i)

Assume U ∈ M with ρ U = -τ. Let r ∈ R such that r = 0.
-If r < τ Let 0 < ǫ < τ-r and δ > 0. By hypothesis, there exists a constant x 0 > 1 such that, for x ≥ x 0 , U (x) ≤ δx -τ+ǫ , and there exists x 1 > 1 such that, for x ≥ x 1 , U (x) ≥ x -τ-ǫ δ.

Hence, setting x a := max(x 0 , x 1 ), for x ≥ x a and t > 1,

t r U (t x) U (x) ≤ δ 2 t r (t x) -τ+ǫ x τ+ǫ = δ 2 t -τ+r +ǫ x 2ǫ ,
and the assertion then follows as t → ∞ since -τ + r + ǫ < 0.

-If r > τ Let 0 < ǫ < r -τ and δ > 0. By hypothesis, there exists a constant x 0 > 1 such that, for x ≥ x 0 , U (x) ≤ δx -τ+ǫ , and there exists

x 1 > 1 such that, for x ≥ x 1 , U (x) ≥ x -τ-ǫ δ.
Hence, setting x a := max(x 0 , x 1 ), for x ≥ x a and t > 1,

t r U (t x) U (x) ≥ 1 δ 2 t r (t x) -τ-ǫ x τ-ǫ = 1 δ 2 t r -τ-ǫ x -2ǫ ,
and the assertion then follows as t → ∞ since rτǫ > 0.

• Proof of the sufficient condition of (i)

Let δ > 0 and η > 0.

One the one hand, since τδ 2 < τ, by hypothesis, there exists a constant x a > 1 such that, for x ≥ x a , lim

t →∞ t τ-δ/2 U (xt ) U (x) = 0. Hence, given x ≥ x a , there exists t a = t a (x) > 1 such that, for t ≥ t a , t τ-δ/2 U (t x) ≤ ηU (x), or U (t x) (t x) -τ+δ ≤ η x τ-δ U (x) t δ/2 . ( 9 
)
One the other hand, since τ + δ 2 > τ, by hypothesis, there exists a constant x b > 1 such that, for x ≥ x b , lim

t →∞ t τ+δ/2 U (xt ) U (x) = ∞.
Hence, given x ≥ max(x a , x b ), there exists t b = t b (x) > 1 such that, for t ≥ t b , t τ+δ/2 U (t x) ≥ ηU (x), or

U (t x) (t x) -τ-δ ≥ ηx τ+δ U (x)t δ/2 . ( 10 
)
Combining ( 9) and ( 10), given x ≥ max(x a , x b ) and for t ≥ max(t a , t b ), and using the change of variable y = t x with y → ∞ as t → ∞, provide, for δ > 0, lim y →∞

U (y)

y -τ+δ = 0 and lim

y →∞ U (y) y -τ-δ = ∞, which implies that U ∈ M with ρ U = -τ.
• Proof of the necessary condition of (ii)

Let r ∈ R and η > 0. Set r ′ < -r . Since U ∈ M ∞ there exists a constant x 0 > 1 such that,

for x ≥ x 0 , U (x) ≤ ηx r ′ . Hence, for t > 1, t r U (t x) U (x) ≤ η t r +r ′ x r ′ U (x) ,
and the assertion then follows as t → ∞ since r + r ′ < 0.

• Proof of the sufficient condition of (ii)

Let r ∈ R. Taking r ′ < -r , by hypothesis, there exists a constant x 0 > 1 such that, for

x ≥ x 0 , lim t →∞ t r ′ U (xt ) U (x) = 0.
Hence, for η > 0, there exists a constant t 0 > 1 such that, for

t ≥ t 0 , t r ′ U (t x) ≤ ηU (x), or U (t x) (t x) r ≤ η U (x)
x r t r +r ′ .

Using the change of variable y = t x and noting that y → ∞ as t → ∞ give, for r ∈ R, being

r + r ′ > 0, lim y →∞ U (y) y r = 0, which means that U ∈ M ∞ .
• Proof of the necessary condition of (iii)

Let r ∈ R and η > 0. Set r ′ > -r . Since U ∈ M -∞ there exists a constant x 0 > 1 such that,

for x ≥ x 0 , U (x) ≥ ηx r ′ . Hence, for t > 1, t r U (t x) U (x) ≥ η x r ′ U (x) t r +r ′ ,
and the assertion then follows as t → ∞ since r + r ′ > 0.

• Proof of the sufficient condition of (iii)

Let r ∈ R. Taking r ′ < -r , by hypothesis, there exists a constant x 0 > 1 such that, for

x ≥ x 0 , lim t →∞ t r ′ U (xt ) U (x) = ∞.
Hence, for η > 0, there exists a constant t 0 > 1 such that, for

t ≥ t 0 , t r ′ U (t x) ≥ ηU (x), or U (t x) (t x) r ≥ η U (x) x r t -r -r ′ .
Using the change of variable y = t x and noting that y → ∞ as t → ∞ give, for r ∈ R, being

-r -r ′ > 0, lim y →∞ U (y) y r = 0, which means that U ∈ M ∞ .

Proof of Corollary 1.

Let U ∈ RV with tail index ρ. Then, for t > 1,

lim x→∞ t r U (t x) U (x) = t r +ρ ,
which implies that, for ǫ > 0, there exists a constant x 0 > 1 such that, for x ≥ x 0 ,

t r +ρ -ǫ ≤ t r U (t x) U (x) ≤ t r +ρ + ǫ.
Hence, setting τ = -ρ, gives, on the one hand, for r < τ,

-ǫ ≤ lim t →∞ t r U (t x) U (x) ≤ ǫ, which implies lim t →∞ t r U (t x) U (x)
= 0 taking ǫ arbitrary, and, on the other hand, for r > τ,

lim t →∞ t r U (t x) U (x) = ∞.
Therefore one has, applying Theorem 1, that U ∈ M with ρ U = ρ.

Finally, a function belonging to M but not to RV is for instance the function given in Example 2.

Proof of Proposition 1.

• Proof of (i)

Let ǫ > 0. By definition of U ∈ M with ρ U = -τ, there exist constants x a , x b > 1 such that, for x ≥ x a , U (x) ≤ x -τ+ǫ , and, for x ≥ x b , U (x) ≥ x -τ-ǫ .

So, for x ≥ x 0 := max(x a , x b ), x -τ-ǫ ≤ U (x) ≤ x -τ+ǫ . Hence, for any

x 0 ≤ c < d < ∞, one has, setting M c := min(c -τ-ǫ , d -τ+ǫ ) and M d := max(c -τ-ǫ , d -τ+ǫ ), that U satisfies M c ≤ U (x) ≤ M d for any x ∈ [c; d].
• Proof of (ii)

Let ǫ > 0. By definition of U ∈ M ∞ , there exists a constant x 0 > 1 such that, for x ≥ x 0 , U (x) ≤ x ǫ . Hence, for any c ≥ x 0 , one has, setting

M c := c ǫ , that U satisfies U (x) ≤ M c for any x ∈ [c; ∞).
• Proof of (iii)

Let ǫ > 0. By definition of U ∈ M -∞ , there exists a constant x 0 > 1 such that, for x ≥ x 0 , U (x) ≥ x ǫ . Hence, for any d ≥ x 0 , one has, setting

M d := d ǫ , that U satisfies U (x) ≥ M d for any x ∈ [d; ∞).

Proof of Theorem 2.

Let µ be the Lebesgue measure on R.

• Proof of (i)

Let U ∈ M with ρ U = -τ and let r < τ. Applying Theorem 1, (i), there exists x a > 1 such that, for x ≥ x a , lim

t →∞ t r U (t x) U (x) = 0. Let x a ≤ c < d < ∞.
Then using Egoroff's theorem (see e.g. [START_REF] Billingsley | Probability and Measure[END_REF]), there exists a measurable

A ⊆ [c; d] of a positive measure such that lim t →∞ sup x∈A t r U (t x) U (x) = 0.
Let us prove by contradiction that the previous limit holds on [c; d]. Then suppose that there exist ǫ > 0, x n n∈N ⊆ [c; d], and t n n∈N ⊆ R + such that t n → ∞ and

lim n→∞ t r n U (t n x n ) U (x n ) > ǫ. ( 11 
)
By Proposition 2 one has, denoting log(A) = log(x) : x ∈ A and noting that log(A) has a positive measure,

µ lim n→∞ (log(A) -log(x n )) ≥ µ log A > 0,
which implies that there exist a constant log(u) ∈ R and a subsequence x n i i∈N ⊆ x n n∈N such that log(x n i ) + log(u) ∈ log(A), i.e. u x n i ∈ A. Note that u > 0.

By Proposition 1, (i), there exist 0

< M c ≤ M d < ∞ such that M c ≤ U (x) ≤ M d , x ∈ (c; d).
Hence, one then has

t r n i U (t n i x n i ) U (x n i ) = t n i u r U t n i u ux n i U (ux n i ) u r U (ux n i ) U (x n i ) ≤ t n i u r U t n i u ux n i U (ux n i ) u r M d M c .
Noting that [START_REF] Karamata | Bemerkung über die vorstehende Arbeit des Herrn Avakumović mit, näherer Betrachtung einer Klasse von Funktionen, welche bei den Inversionssätzen vorkommen[END_REF].

t n i u r U ((t n i u) ux n i ) U (ux n i ) → 0 since u x n i ∈ A and t n i u → ∞ as n i → ∞ provide t r n i U (t n i x n i ) U (x n i ) → 0 as n i → ∞, which contradicts
• Proof of (ii)

Let U ∈ M with ρ U = -τ and let r < τ. Applying Theorem 1, (i), there exists

x b > 1 such that, for x ≥ x b , lim t →∞ t r U (t x) U (x) = ∞. Let x b ≤ c < d < ∞
and let ǫ m m∈N be a strictly increasing sequence of positive numbers such that ǫ m → ∞ as m → ∞. Then using Egoroff's theorem, there exists a measurable

A m ⊆ [c; d], m ∈ N, of a positive measure such that lim t →∞ inf x∈A m t r U (t x) U (x) ≥ ǫ m .
Let us prove lim

t →∞ inf x∈[c;d ] t r U (t x) U (x) = ∞
by contradiction. Then suppose that there exist δ > 0, x n n∈N ⊆ [c; d], and t n n∈N ⊆ R + such that t n → ∞ and

lim n→∞ t r n U (t n x n ) U (x n ) < δ. ( 12 
)
By Proposition 2 one has, denoting log(A m ) = log(x) : x ∈ A m , m ∈ N, and noting that log(A m ) has a positive measure,

µ lim n→∞ (log(A m ) -log(x n )) ≥ µ log A m > 0,
which implies, for m ∈ N, that there exist a constant log(u m ) ∈ R and a subsequence

x n m,i i∈N ⊆ x n n∈N such that log(x n m,i ) + log(u m ) ∈ log(A m ), i.e. u m x n m,i ∈ A m . Note that u m > 0 and c d ≤ u m ≤ d c, m ∈ N.
By Proposition 1, (i), there exist 0

< M c ≤ M d < ∞ such that M c ≤ U (x) ≤ M d for x ∈ (c; d).
Hence, one then has [START_REF] Nakagawa | Application of Tauberian Theorem to the Exponential Decay of the Tail Probability of a Random Variable[END_REF].

t r n m,i U (t n m,i x n m,i ) U (x n m,i ) = t n m,i u m r U t n m,i u m u m x n m,i U (u m x n m,i ) u r m U (u m x n m,i ) U (x n m,i ) ≥ ǫ m c d r M c M d , implying t r n m,i U (t n m,i x n m,i ) U (x n m,i ) → ∞ as m → ∞, which contradicts
• Proof of (iii)

Let U ∈ M ∞ and let r ∈ R. Applying Theorem 1, (ii), there exists x 0 > 1 such that, for

x ≥ x 0 , lim t →∞ t r U (t x) U (x) = 0. Let x 0 ≤ c < d < ∞.
On the one hand, by hypothesis, there exists a constant M d > 0 such that, for x ∈ 

U (t x) U (x) = 0.
• Proof of (iv)

Let U ∈ M -∞ and let r ∈ R. Applying Theorem 1, (iii), there exists x 0 > 1 such that, for

x ≥ x 0 , lim t →∞ t r U (t x) U (x) = ∞. Let x 0 ≤ c < d < ∞.
On the one hand, by hypothesis, there exists a constant M d > 0 such that, for x ∈ 

U (t x) U (x) = ∞.

Proof of Theorem CK.

Let U : R + → R + be a measurable function.

• Proof of (i) ⇒ (ii)

Let ǫ > 0 and U ∈ M with ρ U = τ. One has, by definition, that lim x→∞ U (x)

x ρ+ǫ = 0 and lim

x→∞ U (x) x ρ-ǫ = ∞.
Hence, there exists x 0 ≥ 1 such that, for x ≥ x 0 ,

U (x) ≤ ǫx τ+ǫ and U (x) ≥ 1 ǫ x τ-ǫ .
Applying the logarithm function to these inequalities and dividing them by log(x) (with 

x
  γ(x) + x b log(U (s)) log(s) d s s log(x)   = lim x→∞ log(U (x)) log(x) = τ First, suppose τ = 0, then lim x→∞ log(U (x)) γ(x) log(x) + x b log(U (s)) log(s) d s s = 1,
and there exists x 0 > 1 such that, for x ≥ x 0 ,

δ U (x) := log(U (x)) γ(x) log(x) + x b log(U (s)) d s s ≥ 1 -ǫ > 0.
Setting x 1 := max(b, x 0 ) and defining the functions, for x ≥ x 1 , α U (x) := γ(x)δ U (x) log(x) and β U (x) := log(U (x)) log(x), the assertion follows. Now, suppose τ = 0. Define the function V (x) := xU (x), x > 0, which clearly satisfies lim x→∞ log(V (x)) log(x) = 1 = 0. Hence, applying to V the previous proof for U when τ = 0 gives that there exist x 1,V ≥ b V > 1 and measurable functions α V , β V , and δ V satisfying, as

x → ∞, α V (x) log(x) → 0, β V (x) → 1, δ V (x) → 1, such that, for x ≥ x 1,V , V (x) = exp α V (x) + δ V (x) x b V β V (s) d s s .
Defining, when τ = 0, the constant x 1,U := x 1,V and the functions α

U (x) := α V (x) + log(x) δ V (x) -1 , β U (x) := β V (x) - 1 
, and δ U (x) := δ V (x), the assertion follows.

• Proof of (iii) ⇒ (i)

Suppose there exist b > 1 and measurable functions α, β, and δ satisfying, as x → ∞,

α(x) log(x) → 0, β(x) → τ, δ(x) → 1, such that U (x) = exp α(x) + δ(x) x b β(s) d s s , x ≥ x 1 for some x 1 ≥ b.
Let ǫ > 0 sufficiently small such that 2ǫ τ+ǫ 4 ≤ 1 and 2ǫ τ-ǫ 4 ≥ -1. Then there exist x a > 1 such that, for x ≥ x a , α(x) log(x) ≤ ǫ 4, x b > 1 such that, for x ≥ x b , β(x) -τ ≤ ǫ 4, and x c > 1 such that, for x ≥ x c , δ(x) -1 ≤ ǫ 2 /4.

On the one hand, writing, for x ≥ x 0 := max(b, x a , x b , x c ),

U (x) x τ+ǫ = exp -(τ + ǫ) log(x) + α(x) + δ(x) x b β(s) d s s = exp log(x) α(x) log(x) - ǫ 2 + δ(x) x b β(s) d s s -τ + ǫ 2 log(x) ≤ exp - ǫ 4 log(x) + δ(x) x 0 b β(s) d s s + δ(x) τ + ǫ 4 log(x) -log(x 0 ) -τ + ǫ 2 log(x)
and noting that

δ(x) τ + ǫ 4 -τ + ǫ 2 = δ(x) -1 τ + ǫ 4 - ǫ 4 ≤ - ǫ 8 give lim x→∞ U (x) x τ+ǫ = 0. ( 13 
)
On the one hand, writing, for x ≥ x 0 := max(b, x a , x b , x c ), 

U (x) x τ-ǫ = exp -(τ -ǫ) log(x) + α(x) + δ(x)
Combining ( 13) and ( 14) provides U ∈ M with ρ U = τ.

Proof of Proposition 4.

Let U : R + → R + be a measurable function.

Assume U ∈ O-RV and the limit lim Proof of Proposition 5. We will prove the proposition for λ = ∞. The proof for λ = -∞ is similar.

Let us prove it by contradiction. Assume there exists U ∈ M ∞ O-RV .

By assumption U ∈ M , we have, for ρ ∈ R and δ > 0, there exists x 0 > 1 such that, for x ≥ x 0 , U (x) ≤ cx ρ . Applying the logarithm function to this inequality, dividing it by log(x), x > 1, and taking the limit c > 0 such that, for all t ≥ 1 and x ≥ x 1 ,

c -1 t β ≤ U (t x) U (x) ≤ ct α .
Hence applying to these inequalities the logarithm function, dividing them by log(t ), t > 0, and taking the limit t → ∞ give lim t →∞ log(U (t )) log(t ) ≤ max |α|, |β| < ∞, which contradicts (15). The proposition is proved.

Conclusion

A new characterization of the class M introduced in [START_REF] Cadena | An extension of the class of regularly varying functions[END_REF], a strict larger class than the class of regularly varying functions (RV), was proved, and it was extended to the classes M ∞ and M -∞ . This characterization together with other two given by Cadena and Kratz in [START_REF] Cadena | An extension of the class of regularly varying functions[END_REF] allowed the study of relationships between M and the well-known class O-RV, another extension of RV. It was found that these classes satisfy M ⊆ O-RV and O-RV ⊆ M , and necessary conditions to have inclusions were provided. Relationships among O-RV and M ∞ and M -∞ were provided.

Note that any result obtained here can be applied to positive and measurable functions with finite support by using the change of variable y = 1 (x * U -x) for x < x * U where x * U is the endpoint of U defined by x * U := sup x : U (x) > 0 .

1 φ

 1 does not exist. Note that if this limit exists, then, applying Theorem CK, (iii), U ∈ M . Example 3. O-RV ⊆ M . Let U : R + → R + be a measurable function satisfying, for x ≥ 1, U (x) = exp x function φ has support [1; ∞) and is defined by φ(x) = 0 if x ∈ [1; e) or x ∈ I n with n odd 1 if x ∈ I n with n even, where I n = [e e n ; e e n+1 ), n ∈ N. On the one hand, applying Proposition 3, one has U ∈ O-RV. On the other hand, writing, for x > 1, using the change of variable y = log(s) log(x), log(x) d y gives, taking x n = e e n , n = 2, 3, . . ., log(U (x n )) log(x n ) = n-1 k=1 e k+1 /e n e k /e n φ e y e n d y =

Proposition 4 .

 4 and thus, applying Theorem CK, U ∈ M . Now we give another relationship between O-RV and M . Let U : R + → R + be a measurable function. If U ∈ O-RV and the limit lim x→∞ log(U (x)) log(x) exists, then U ∈ M .

[ 1 ;

 1 d], U (x) ≥ M d . On the other hand, by Proposition 1, (ii), there exists a constant M c > 0 such that, for x ∈ [c; ∞), U (x) ≤ M c . Combining these inequalities gives, for x ∈ [c; d], M d ≤ U (x) ≤ M c . Hence a proof similar to the one given to prove (i) can be done to conclude that lim x→∞ t r sup x∈[c;d ]

[ 1 ;

 1 d], U (x) ≤ M d . On the other hand, by Proposition 1, (iii), there exists a constant M c > 0 such that, for x ∈ [c; (x) ≥ M c . Combining these inequalities gives, for x ∈ [c; d], M c ≤ U (x) ≤ M d . Hence a proof similar to the one given to prove (ii) can be done to conclude that lim x→∞ t r inf x∈[c;d ]

  x τ-ǫ = ∞.

  Theorem CK gives U ∈ M with ρ U = lim x→∞ log(U (x)) log(x) .

  assumption U ∈ O-RV , applying Proposition 3, (i) ⇒ (ii), there exist α, β ∈ R and x 1 > 1,
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