
HAL Id: hal-01105095
https://hal.science/hal-01105095v1

Submitted on 18 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complexity of splits reconstruction for low-degree trees
Serge Gaspers, Mathieu Liedloff, Maya Stein, Karol Suchan

To cite this version:
Serge Gaspers, Mathieu Liedloff, Maya Stein, Karol Suchan. Complexity of splits reconstruction for
low-degree trees. Discrete Applied Mathematics, 2015, 180, pp.89-100. �10.1016/j.dam.2014.08.005�.
�hal-01105095�

https://hal.science/hal-01105095v1
https://hal.archives-ouvertes.fr

Complexity of Splits Reconstruction

for Low-Degree Trees∗

Serge Gaspers†‡ Mathieu Liedloff§ Maya Stein¶ Karol Suchan‖∗∗

Abstract

Given a vertex-weighted tree T , the split of an edge e in T is the minimum over the weights of
the two trees obtained by removing e from T , where the weight of a tree is the sum of weights of its
vertices. Given a set of weighted vertices V and a multiset of integers S, we consider the problem of
constructing a tree on V whose splits correspond to S. The problem is known to be NP-complete,
even when all vertices have unit weight and the maximum vertex degree of T is required to be at
most 4. We show that

• the problem is strongly NP-complete when T is required to be a path,

• the problem is NP-complete when all vertices have unit weight and the maximum degree of T
is required to be at most 3, and

• it remains NP-complete when all vertices have unit weight and T is required to be a caterpillar
with unbounded hair length and maximum degree at most 3.

We also design polynomial time algorithms for

• the variant where T is required to be a path and the number of distinct vertex weights is
constant, and

• the variant where all vertices have unit weight and T has a constant number of leaves.

The latter algorithm is not only polynomial when the number of leaves, k, is a constant, but also is
a fixed-parameter algorithm for parameter k.

Finally, we shortly discuss the problem when the vertex weights are not given but can be freely
chosen by an algorithm.

The considered problem is related to building libraries of chemical compounds used for drug design
and discovery. In these inverse problems, the goal is to generate chemical compounds having desired
structural properties, as there is a strong relation between structural invariants of the particles, such
as the Wiener index and, less directly, the problem under consideration here, and physico-chemical
properties of the substance.

Keywords: reconstruction of trees; computational complexity; computational chemistry

1 Introduction

In this paper, we consider trees T = (V,E) where integer weights are associated to vertices by a function
ω : V → N, where N denotes the set of natural numbers excluding 0.

Definition 1. Let T be a tree and ω : V → N be a function. The split of an edge e in T is the
minimum of ω(T1) and ω(T2), where T1 and T2 are the two trees obtained by deleting e from T , and
ω(Ti) =

∑
v∈Ti

ω(v).
We use S(T) to denote the multiset of splits of T .

∗A preliminary version of this article appeared in the proceedings of WG 2011 [11].
†School of Computer Science and Engineering, UNSW Australia (The University of New South Wales), Sydney NSW

2052, Australia. E-mail: sergeg@cse.unsw.edu.au
‡Optimisation Research Group, NICTA (National ICT Australia), Sydney NSW 2052, Australia
§Université d’Orléans, INSA Centre Val de Loire, LIFO EA 4022, FR-45067 Orléans, France. E-mail:

mathieu.liedloff@univ-orleans.fr
¶CMM, Universidad de Chile, Santiago, Chile. E-mail: mstein@dim.uchile.cl
‖FIC, Universidad Adolfo Ibáñez, Santiago, Chile. E-mail: karol.suchan@uai.cl
∗∗WMS, AGH - University of Science and Technology, Krakow, Poland.

1

We consider the problem of reconstructing a tree with a given multiset of splits and a given set of weighted
vertices.

Weighted Splits Reconstruction (WSR): Given a set V of n vertices, a weight function
ω : V → N, and a multiset S of integers, is there a tree T on V whose multiset of splits is S
(that is, S(T) = S)?

The Weighted Splits Reconstruction for Trees of Maximum Degree k problem (WSRk) is
defined in the same way, except that we restrict the tree T to have maximum degree at most k. When we
require T to belong to a subclass of trees T , the problem is called Weighted Splits Reconstruction
for T .

When ω assigns unit weights to the vertices, the problem is simply called Splits Reconstruction
(SR). The Splits Reconstruction for Trees of Maximum Degree k problem (SRk) and the
Splits Reconstruction for T are the obvious unweighted counterparts of the weighted variants
defined above.

Related Work. In the field of Chemical Graph Theory [2, 3, 20], molecules are modeled by graphs
in order to study the physical properties of chemical compounds. A chemical graph is a graph, where
vertices represent atoms of a chemical compound and edges the chemical bonds between them. Within
the area of quantitative structure-activity relationship (QSAR), several structural measures of chemical
graphs were identified that quantitatively correlate with a well-defined process, such as biological activity
or chemical reactivity. Probably the most widely known example is the Wiener index (see [14]): the
sum of the distances in a graph between each pair of vertices, where the distance between two vertices
is the length (the number of edges) of a shortest path from one to the other. Wiener [23] found a strong
correlation between the boiling points of paraffins and the Wiener index. From then on, many other
topological (using the information of the chemical graph) and topographical (using the information of
the chemical graph and the location of its vertices in space) indices were introduced and their correlation
with various other properties was investigated.

In Combinatorial Chemistry, drug design is facilitated by building libraries of molecules that are
structurally related (via the Wiener index or any of the other numerous indices). We face inverse
problems where the goal is to design new compounds that have a prescribed structural information (see
also [6]).

Goldman et al. [13] study problems related to the design of combinatorial libraries for drug design
from an algorithmic and complexity-theoretic point of view, following the heuristic approaches of [19]
and [12]. Goldman et al. show that for every positive integer W , except 2 and 5, there exists a graph
with Wiener index W . For constructing a tree (of unbounded or bounded maximum degree) with a given
Wiener index, they devise pseudo-polynomial dynamic programming algorithms. Goldman et al. also
introduce the Splits Reconstruction problem and recall a result due to Wiener [23]: the Wiener index
of a tree T on n vertices with unit weights is

∑
s∈S(T) s · (n − s). They show that SR is NP-complete

and give an exponential-time algorithm without running time analysis. Independently, Wagner [21] and
Wang et al. [22] show that all but a finite number of integers are Wiener indices of trees.

As it is not reasonable to construct chemical trees with arbitrarily high vertex degrees, Li and Zhang
[17] studied SR4 and showed that it is also NP-complete. Their algorithm to construct a tree with
maximum degree at most 4 to solve SR4 runs in exponential time (no running time analysis is provided)
and creates weighted vertices in intermediate steps.

In order to reconstruct glycans or carbohydrate sugar chains, Aoki-Kinoshita et al. [1] study the re-
construction of a node-labeled supertree from a set of node-labeled subtrees. They give a 6-approximation
algorithm for this problem, which generalizes the smallest superstring problem.

We refer to [4] surveying results on the Wiener index for trees.

Our Results. By the result of Li and Zhang [17], SR4 is NP-complete, while SR2 is trivially in P.
We close this gap by showing that SR3 is NP-complete by a reduction from Numerical Matching
with Target Sums (defined below). It is also NP-complete for caterpillars with unbounded hair
length. Identifying small classes of trees for which the problem is NP-complete may be important for
future investigations in the spirit of the deconstruction of hardness proofs [16] which aim at identifying
parameters for which the problem becomes tractable when these parameters are small.

Recall that a problem is strongly NP-complete if it remains so even when all of its numerical param-
eters are bounded by a polynomial in the length of the input. Our main result proves that WSR2 is

2

strongly NP-complete by a reduction from a variant of Numerical Matching with Target Sums in
which all integers of the input are distinct. For the case where the weights of the vertices are chosen from
a small set of values, our dynamic-programming algorithm solves WSR2 in time O(nk+3 · k), where k is
the number of distinct vertex weights. Although this running time is polynomial for every constant k,
the degree of the polynomial depends on k. Thus, the running time becomes impractical, even for small
values of k.

Multivariate complexity theory [5, 7, 9, 18] – also known as parameterized complexity – is a theoretical
framework that allows to distinguish between running times of the form f(k)ng(k) where the degree
of the polynomial depends on the parameter k and running times of the form f(k)nO(1) where the
exponential explosion of the running time is restricted to the parameter only. The fundamental hierarchy
of parameterized complexity classes is

FPT ⊆W[1] ⊆W[2] · · · ⊆ XP,

where a parameterized problem is in FPT (fixed-parameter tractable) if there is a function f such that
the problem can be solved in time f(k)nO(1), a problem is in XP if there are functions f, g such that
the problem can be solved in time f(k)ng(k), and W[t], t ≥ 1, are parameterized intractability classes
giving strong evidence that a parameterized problem that is hard for any of these classes is not in FPT.
Our algorithm for WSR2 parameterized by the number of distinct vertex weights places this problem
in XP. A generalization of this problem is W[1]-hard [8], but it remains open whether this problem
is fixed-parameter tractable. As a relevant parameter for SR we identified the number k of leaves in
the reconstructed tree. This parameterization of SR can be solved in time O(8k log k · n), and is thus
fixed-parameter tractable.

Definitions. A caterpillar is a tree consisting of a path, called its backbone, and paths attached with
one end to the backbone. Its hair length is the maximum distance (in terms of the number of edges)
from a leaf to the closest vertex of the backbone. A star K1,k is a tree with k leaves and one internal
vertex, called the center. In our hardness proofs, we reduce from the following problem (problem [SP17]
in [10]).

Numerical Matching with Target Sums (NMTS): Given three disjoint multisets A,B,
and S = {s1, . . . , sm}, each containing m elements from N, can A ∪B be partitioned into m
disjoint sets C1, C2, . . . , Cm, each containing exactly one element from each of A and B, such
that, for 1 ≤ i ≤ m,

∑
c∈Ci

c = si?

Organization. The remainder of this paper is organized as follows. Section 2 shows that WSR2 and
SR3 are NP-complete. On the positive side, we show in Section 3 that WSR2 can be solved in polynomial
time when the number of distinct vertex weights is bounded by a constant. Section 4 gives an FPT-
algorithm for SR parameterized by the number of leaves of the reconstructed tree. The variant where
the vertex weights are freely choosable is discussed in Section 5 and we conclude with some directions
for future research in Section 6.

2 WSR2 is strongly NP-complete

In this section, we show that WSR2 is strongly NP-complete. First we introduce a new problem that is
polynomial-time-reducible to WSR2, and then show that this new problem is strongly NP-hard.

Scheduling with Common Deadlines (SCD): Given n jobs with positive integer lengths
j1, . . . , jn and n deadlines d1 ≤ . . . ≤ dn, can the jobs be scheduled on two processors P1 and
P2 such that at each deadline there is a processor that finishes a job exactly at this time, and
processors are never idle between the execution of two jobs?

To reinforce the intuition on this problem one may imagine that we want to satisfy delivery deadlines
and avoid using any warehouse space to store a product between its fabrication and the delivery date.
There is no restriction as to which product should be delivered at a given time. (Another possibility is
imagining computer scientists scheduling paper production to fit conference deadlines.)

Given an instance (j1, . . . , jn, d1, . . . , dn) for SCD, we construct an instance for WSR2 as follows.
We may assume that

∑n
i=1 ji = dn−1 + dn, otherwise we trivially face a No-instance. For each job ji,

3

1 ≤ i ≤ n, create a vertex vi with weight ω(vi) = ji. For each deadline di, 1 ≤ i ≤ n − 1, create a split
di. Note that we obtain n− 1 splits, all smaller than 1

2

∑n
i=1 ji.

Suppose we obtained a Yes-instance of WSR2 and the path P = (vπ(1), vπ(2), . . . , vπ(n)) is a solution.
Let us simplify descriptions, wherever appropriate, by assuming that a path is drawn horizontally, with
indices ordered from left to right, and that whatever is to the left appears ”before” whatever is to the right.
Say {vπ(`), vπ(`+1)} is the edge associated to the split dn−1. Then the original instance of SCD also was
a Yes-instance. Indeed, we can construct a solution for SCD by assigning the jobs jπ(1), jπ(2), . . . , jπ(`)
to processor P1, and the jobs jπ(n), jπ(n−1), . . . , jπ(`+2), jπ(`+1) to processor P2, in this order.

Note that all deadlines except for dn are represented by splits in our instance of WSR2. Since splits
are smaller than 1

2

∑n
i=1 ji, the ones that appear before {vπ(`), vπ(`+1)} in P correspond to the sums

of weights of vertices placed to the left of the corresponding edge, and the ones that appear after it
correspond to the sums of vertices placed to the right of the corresponding edge. Thus the jobs assigned
to P1 and P2 satisfy precisely the corresponding deadlines d1, . . . , dn−1. Finally, one of the jobs jπ(`),
jπ(`+1) ends at dn−1, and the other at −dn−1 +

∑n
i=1 ji = dn, which is as desired.

In the other direction, if we have a Yes-instance of SCD, then we obtain a Yes-instance of WSR2 as
well, because the previous construction is easily inverted. Visually, the list of jobs of P2 is reversed and
appended to the list of jobs of P1. Job lengths correspond to vertex weights and deadlines correspond to
splits (the last deadline where a job from P1 finishes is merged with the last deadline where a job from
P2 finishes, the minimum value is maintained as a split). Thus, SCD is polynomial-time-reducible to
WSR2.

Lemma 2. SCD ≤p WSR2.

Notice that the restriction on the reconstructed tree to be a path is fundamental in the proof. If we
remove this restriction, it is not difficult to create examples where the many-one reduction does not work,
that is, where No-instances of SCD get transformed into Yes-instances of unrestricted WSR with the
reconstructed tree not being a path. So the decision problem of SCD cannot be easily reduced to the
decision problem of WSR. Nevertheless, maybe SCD could be Cook-reduced to the search version of the
WSR problem, transforming Yes-instances of SCD to Yes-instances of WSR where the reconstruction
tree is a path. Such a reduction could be based on the following conjecture.

Conjecture 3. If an instance of the search version of WSR has a solution that is a path, then all
solutions to this instance are paths.

However, in this article we focus on the complexity of decision problems. In the remainder of this
section, we show that dNMTS is polynomial-time-reducible to SCD. The dNMTS problem is like the
NMTS problem, except that all integers in A∪B ∪S are pairwise distinct. This variant has been shown
to be strongly NP-hard by Hulett et al. [15]. As the proof becomes somewhat simpler, we use dNMTS
instead of NMTS for our reduction.

Let us first give a high level description of the main ideas of the reduction. For a dNMTS instance
(A,B, S), the elements of A ∪ B will be encoded as jobs, and the elements of S will be encoded as
deadlines. There also will be some auxiliary jobs introduced. By a careful construction of job-lengths we
ensure that the solutions of Yes-instances of SCD created must have a very particular structure.

A convenient way to represent an element s ∈ S is by introducing a time segment which is delimited
to the left and the right by double deadlines, and whose length is equivalent to s. These double deadlines
enforce that there is no proper overlapping between a segment and the jobs. Indeed, by the double
deadline at the beginning of the segment, both processors must be assigned jobs that end precisely at
this moment. The same holds for the end of a segment. Moreover, the elements of A∪B ∪S are inflated
by well-chosen additive factors that preserve solutions in order to assure that the length of each segment
can only be met by the sum of lengths of exactly two jobs corresponding to elements of A∪B, one of A
and one of B.

Our reduction will create an instance whose solutions assign, in each segment, one x-job (a job
corresponding to an A-element) and one y-job (a job corresponding to a B-element) to one of the
processors (the same one), such that these two jobs are the only jobs executed on this processor in this
segment, thus providing a solution to dNMTS.

Without loss of generality, the x-jobs are scheduled first. As we must not introduce any restriction as
to which x-jobs can be assigned to which segments, inside each segment we introduce a deadline for each
length of an x-job (the starting time of the segment plus the job-length); these are the real deadlines.

4

The job lengths are inflated in a way that in each segment, exactly one processor starts with an x-job,
and in each segment, exactly one processor ends by executing a y-job (there is no other way of organizing
them).

We refer to the x- and y-jobs as green jobs. We do not want the green jobs to overlap. This is ensured
by modifying all deadlines created so far and the corresponding job lengths by a multiplicative factor of
2, and introducing a fake deadline at the odd position just one unit before each real deadline. If an x-job
and a y-job overlapped, one on processor P1 the other on P2, there would be no job ending at the fake
deadline preceding the real deadline at which the x-job ends. Indeed, all green jobs have even length and
all real deadlines and double deadlines are even.

Blue, red, and black jobs are auxiliary jobs created to make it possible to meet all deadlines that are
not served by executing greed jobs. Inflating of the elements of A∪B ∪S ensures that the auxiliary jobs
cannot equate in length the green jobs (except for the black jobs whose lengths might equal the lengths
of green y-jobs, but, without loss of generality, one can assign them to the end parts of segments on
processors where no green job is being executed).

Moreover, we set that the sum of lengths of all green jobs equals the sum of lengths of the segments.
Since the green jobs cannot overlap, this yields that if all deadlines are met, then no auxiliary job (blue,
red or black) is scheduled between two green jobs. Therefore, the placement of green jobs in a satisfying
scheduling can be easily translated to a solution of the original dNMTS instance.

This summarizes the reduction and gives the reasons for the different elements of the construction.
Let us now turn to the formal reduction.

Let (A,B, S) be an instance for dNMTS. We suppose, without loss of generality, that
∑m
i=1 si =∑

x∈A∪B x, otherwise (A,B, S) is trivially a No-instance for dNMTS. Let A = {a1, . . . , am} and B =
{b1, . . . , bm}. We also assume, without loss of generality, that the elements are listed in increasing orders:
ai < ai+1, bi < bi+1, si < si+1, for all i ∈ {1, . . . ,m− 1}; and for the biggest elements we have: am < bm
(otherwise we switch the sets A and B) and sm ≤ am + bm (otherwise sm could not be reached as a sum
of elements from A and B and we would have a trivial No-instance).

First, we construct an equivalent instance (X,Y, Z) for dNMTS. Each of X := {x1, . . . , xn}, Y :=
{y1, . . . , yn}, and Z := {z1, . . . , zn} has n := m+ 1 elements:

for i ∈ {1, . . . , n− 1},
xi := 2 · (ai + (bm + 2)), xn := 2 · (am + 1 + (bm + 2)),

yi := 2 · (bi + 3 · (bm + 2)), yn := 2 · (bm + 1 + 3 · (bm + 2)),

zi := 2 · (si + 4 · (bm + 2)), and zn := 2 · (am + bm + 2 + 4 · (bm + 2)).

The elements of X, Y , and Z have the following properties.

Property 1. Each element of X ∪ Y ∪ Z is an even positive integer.

Property 2. For every i ∈ {1, . . . , n− 1}, we have that xi < xi+1, that yi < yi+1, and that zi < zi+1.

Property 3. For every i ∈ {1, . . . , n}, we have

2 · bm + 4 ≤ xi ≤ 4 · bm + 4,

6 · bm + 12 ≤ yi ≤ 8 · bm + 14, and

8 · bm + 16 ≤ zi ≤ 12 · bm + 18.

In particular, Property 3 implies that y1 > xn, z1 > yn, and that 2 · xn < z1, 2 · y1 > zn. Properties 1–3
easily follow by construction of X,Y , and Z.

Property 4. If k and ` are integers such that xk + y` = zn, then k = ` = n.

Property 4 holds because xn and yn are the only elements of X and Y , respectively, that are large enough
to sum to zn.

Property 5. Let p, q ∈ X ∪ Y , p ≤ q, and z ∈ Z. If p+ q = z, then p ∈ X and q ∈ Y .

By Property 3, the sum of any two X-elements is smaller and the sum of any two Y -elements is larger
than any element of Z.

For our SCD instance, we create the following deadlines:

5

r1,j−1 r2,j−1 rπ1(j)−1,j−1 rπ1(j),j−1 rπ1(j)+1,j−1 rn,j−1

f1,j−1 f2,j−1 fπ1(j),j−1 fπ1(j)+1,j−1

ds1,j−1

ds2,j−1

ds1,j

ds2,j

xπ1(j) yπ2(j)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

P1

P2

Figure 1: How jobs are assigned to processors in the SCD instance in segment j < n.

• real deadlines: ri,j := xi +
∑j
k=1 zk, for each j ∈ {0, . . . , n− 1} and each i ∈ {1, . . . , n},

• fake deadlines: fi,j := ri,j − 1, for each j ∈ {0, . . . , n− 1} and each i ∈ {1, . . . , n}, and

• sum deadlines: two deadlines ds1,j := ds2,j :=
∑j
k=1 zk, for each j ∈ {1, . . . , n}.

The sum deadlines we just defined partition the interval [0, ds1,n] into n segments Ij := [ds1,j−1, ds1,j],
j = 1, . . . n, where for convenience, we let ds1,0 = 0. We create jobs with the following lengths, where
x0 = 0 :

• green x-jobs: xi, for each i ∈ {1, . . . , n},

• green y-jobs: yi, for each i ∈ {1, . . . , n},

• blue jobs: n · (n− 1) times a job of length 1,

• red fill jobs: n− 1 times a job of length xi − 1− xi−1, for each i ∈ {1, . . . , n},

• red overlap jobs: xi − xi−1, for each i ∈ {1, . . . , n},

• black fill jobs: zi − xn for i ∈ {1, . . . , n− 1}, and

• a black overlap job: zn − xn + 1.

To illustrate these definitions, we start by showing that if we have a Yes-instance (X,Y, Z) for dN-
MTS, then we have an SCD Yes-instance as well. Let C1, C2, . . . , Cn be n couples such that Cj =
{xπ1(j), yπ2(j)} and xπ1(j) + yπ2(j) = zj , j ∈ {1, . . . , n}, for two permutations π1 and π2 of the set
{1, . . . , n}. We construct a solution for SCD. Let us construct the schedules for P1 and P2. For each
j ∈ {1, . . . , n− 1},

• assign the green x-job xπ1(j) to the interval [ds1,j−1, rπ1(j),j−1] of P1,

• assign the green y-job yπ2(j) to the interval [rπ1(j),j−1, ds1,j] of P1,

• assign a red fill job of length x1 − 1 to the interval [ds1,j−1, f1,j−1] of P2,

• for every i ∈ {1, . . . , n − 1} \ π1(j), assign a red fill job of length xi+1 − 1 − xi to the interval
[ri,j−1, fi+1,j−1] of P2,

• for every i ∈ {1, . . . , n} \ π1(j), assign a blue job to the interval [fi,j−1, ri,j−1] of P2,

• assign a red overlap job of length xπ1(j)+1 − xπ1(j) to the interval [fπ1(j),j−1, fπ1(j)+1,j−1] of P2,
and

• assign a black fill job of length zj − xn to the interval [rn,j−1, ds1,j] of P2.

6

It only remains to assign jobs to the last segment. The last segment of P1 contains the green x-job xn
and the green y-job yn, in this order. The last segment of P2 contains a red fill job of length x1 − 1, a
blue job, a red fill job of length x2 − 1 − x1, a blue job, . . ., a red fill job of length xn − 1 − xn−1, and
the black overlap job, in this order. See Fig. 1 for an illustration.

Now suppose the SCD instance is a Yes-instance. We will show some structural properties of any
valid assignment of jobs to the processors, which will help to extract a solution for our original dNMTS
instance. We will show that in each segment Ij , any valid solution for the SCD instance has exactly one
green x-job xk and exactly one green y-job y`, and that xk and y` sum up to zj .

It is not difficult to check that among different categories of jobs, there are few possible overlaps. A
red fill job could have length equal to a blue job (length 1), or a black fill job could have length equal
to a green y-job, other classes being disjoint. Moreover, black fill jobs and green y-jobs are all distinct
inside their respective classes. So we could have at most 2 jobs longer than 1 of equal lengths, one black
fill and one green y-job.

Consider a valid assignment of the jobs to the processors P1 and P2. As two jobs with the same length
are interchangeable (switching them maintains the same deadlines met), if we find a green y-job in a
place where we expect a black fill job, it means that the above mentioned situation occurs and, without
loss of generality, we can exchange them. Indeed, according to the construction described below, such a
job is needed at most at two places (once as a black fill and once as a green y-job).

Claim 1. A black fill job is assigned to each interval [rn,j , ds1,j+1] with j ∈ {0, . . . , n− 2}.

Proof. Let j ∈ {0, . . . , n− 2}. Two jobs must finish at the double deadline ds1,j+1, ds2,j+1. One of these

must start at rn,j (there are no deadlines in between) and thus has length ds1,j+1 − rn,j =
∑j+1
k=1 zk −

xn −
∑j
k=1 zk = zj+1 − xn. So this job is, without loss of generality, a black fill job.

This uses up all black fill jobs.

Claim 2. The green y-job yn is assigned to the interval [rn,n−1, ds1,n].

Proof. As in the previous proof, one job must be assigned to this interval, whose length is
∑n
k=1 zk −

xn−
∑n−1
k=1 zk = zn−xn, which is yn by Property 4 (notice there is no black fill job of this length). Thus,

the green y-job yn is assigned to the interval [rn,n−1, ds1,n].

Claim 3. The black overlap job is assigned to the interval [fn,n−1, ds1,n].

Proof. As rn,n−1 is the only deadline between fn,n−1 and ds1,n, and one processor already satisfies it by
Claim2, the other processor needs to process a job finishing at ds1,n and starting before rn,n−1. This has
to be the black overlap job, since no other job is long enough. It is assigned to the interval [fn,n−1, ds1,n]
of length ds1,n − fn,n−1 = zn − xn + 1.

This uses up all black jobs. Now, the only jobs left whose length is between 6bm + 12 and 8bm + 14 are
the green y-jobs y1, . . . , yn−1.

Claim 4. For each ` ∈ {1, . . . , n−1}, the green y-job y` is assigned to an interval [ri,j−1, ds1,j] for some
i ∈ {1, . . . , n− 1} and j ∈ {1, . . . , n− 1}.

Proof. Each job is assigned to an interval inside some segment, as the double deadlines prevent jobs to
span more than one segment. Suppose the green y-job y` is assigned to segment p. As ds1,p−1 + y` >
ds1,p−1 + xn, by Properties 2 and 3, and the deadline following rn,p−1 = ds1,p−1 + xn is ds1,p, so it must
be that the green y-job y` finishes at ds1,p. Moreover, ds1,p − y` is equal to a real deadline as ds1,p − y`
is even.

Each of the 2n jobs that have been assigned so far finishes at a double deadline ds1,j , ds2,j . Thus, no
other jobs may end at a double deadline.

Claim 5. A red fill job of length x1 − 1 is assigned to each interval [ds1,j , f1,j] with 0 ≤ j ≤ n− 1.

Proof. Since both processors finish a job at deadline ds1,j (respectively, are initialized at time ds1,0 = 0)
and one of them finishes a job at the following deadline, which is f1,j , we need to assign a job of length
f1,j − ds1,j = x1 − 1 to the interval [ds1,j , f1,j]. This is one of the red fill jobs of length x1 − 1.

7

This uses up all red fill jobs of length x1 − 1.

Claim 6. For each ` ∈ {1, . . . , n}, the green x-job x` is assigned to an interval [ds1,j , ri,j] for some
i ∈ {1, . . . , n} and j ∈ {0, . . . , n− 1}.

Proof. Suppose the green x-job x` is assigned to segment p. Notice that x` > rn,p−1 − f1,p−1. Indeed
rn,p−1− f1,p−1 = xn−x1 + 1 and, by construction, xn−x1 + 1 ≤ 2bm, whereas x` ≥ 2bm + 4. Moreover,
rn,p−1 is the latest deadline strictly inside the segment p. So the green x-job x` has to start at ds1,p−1.
Notice that ds1,p−1 + x` < ds1,p and that ds1,p−1 + x` corresponds to a real deadline as ds1,p−1 + x` is
even, but all fake deadlines are odd.

By Claims 2, 4, and 6, and since we have the same amount of segments as green x-jobs, respectively
green y-jobs, we obtain that each segment Ij , 1 ≤ j ≤ n,, contains exactly one green x-job and exactly
one green y-job.

Claim 7. For j ∈ {1, . . . , n}, the green x-job and the green y-job in the segment Ij do not overlap.

Proof. Suppose otherwise, that is, suppose there is a j ∈ {1, . . . , n} such that Ij contains a green x-job,
say x`, and a green y-job, say yk, that overlap (that is, the intervals they are assigned to overlap). Since
x` ends at a real deadline by Claim 6 and yk starts at a real deadline by Claim 4, no job ends at the fake
deadline situated at ds1,j−1 + x` − 1, which contradicts the validity of the SCD solution.

By Claims 1, 2, 3, 4, 5, 6 there is exactly one green x-job and one y-job assign to each segment. By
Claim 7, these jobs do not overlap. Since the sum of lengths of green jobs is equal the sum of lengths of
segments, this implies that in each segment Ij , 1 ≤ j ≤ n, there is a green x-job x`j and a green y-job
ykj which together have the same size as the segment. Hence the couples Cj = {a`j , bkj}, 1 ≤ j ≤ n,
form the desired solution of dNMTS. Thus, we have the following lemma.

Lemma 4. dNMTS ≤p SCD.

We have assembled enough information to prove our main theorem.

Theorem 5. WSR2 is strongly NP-complete.

Proof. The theorem follows from the strong NP-hardness of dNMTS, Lemmas 2 and 4, and the member-
ship of WSR2 in NP, which is easily verified as the certificate is a path and an assignment of the splits
to its edges, all of which can be encoded in polynomial space.

With this result, we can show that Splits Reconstruction with unit weights is NP-complete for
trees with maximum degree 3.

Theorem 6. SR3 is NP-complete.

Proof. It is clear that this problem is in NP. To show that it is hard for NP, we reduce from WSR2.
Let I ′P = (ω′1, . . . , ω

′
n−2, s

′
1, . . . , s

′
n−3) be an instance of WSR2, where ω′i, 1 ≤ i ≤ n − 2, are the vertex

weights and s′j , 1 ≤ j ≤ n − 3, are the splits. We assume that all vertex weights and splits are upper
bounded by a polynomial in n; as WSR2 is strongly NP-hard, it is still NP-hard with this restriction.
Define Ω := 1 + 2 ·max{ω′i : 1 ≤ i ≤ n − 2}. To simplify the argument, consider an auxiliary instance
IP = (ω1, . . . , ωn, s1, . . . , sn−1) of WSR2 obtained from I ′P by:

• augmenting the values of s′j , 1 ≤ j ≤ n− 3, by Ω,

• adding ωn−1 = ωn = Ω to the multiset of weights,

• adding sn−2 = sn−1 = Ω to the multiset of splits,

• and finally, multiplying each value in IP by Ωn (so, for 1 ≤ i ≤ n − 3, ωi = ω′iΩn, and si =
(s′i + Ω)Ωn).

It is not difficult to see that IP and I ′P are equivalent. Indeed, the two additional vertices of weight
nΩ2 are the heaviest vertices in the new instance and the two additional splits of the same value are the
smallest splits. Therefore, any solution has to put these two as the end vertices of the path. Given this
“border condition”, the rest of the instance is clearly equivalent to the original one, just with all values
multiplied by a constant.

Now let us create an instance IC of SR3 in the following way.

8

• replace each weight ωi, 1 ≤ i ≤ n, by ωi copies of weight 1,

• for each ωi, 1 ≤ i ≤ n, add auxiliary splits sf,i = f , 1 ≤ f ≤ ωi − 1,

• keep the original splits (s1, . . . , sn−1).

Notice that in IC there are
∑n
i=1 ωi vertices and (

∑n
i=1 ωi)− 1 splits (that is, edges) in total.

If IP is a Yes-instance then IC is a Yes-instance. Indeed, let P = (v1, v2, . . . , vn) be a solution to
IP , with weights and splits assigned accordingly. We create a solution to IC by keeping the path P with
the splits associated to its edges as the backbone, and applying the following transformation. For each
vertex vi on the backbone, create a path of ω(vi)−1 copies of vi and attach it as a hair to the original vi.
To each vertex assign a weight 1. To each edge e on a hair, assign a split of value equal to the number
of vertices on the path obtained by removing e (disconnected from the caterpillar). Keep the splits on
the backbone. It is not difficult to check that the graph we obtain is a solution to IC .

Now suppose IC is a Yes-instance with a solution C. To analyze the structure of C, organize the
splits in IC in ascending order and observe to which edges they are associated.

By construction of IC , there are n splits of value 1, and each of them has to be associated to an edge
incident to a leaf, an end vertex of a hair of C. Notice that there are no other leaves in C. Contract
each of these edges and assign the resulting vertex the weight 2. It is a special case of assigning the
new vertex the sum of weights of the original vertices. This operation preserves the correctness of splits
association, only that we get to work with a weighted graph again. Let us denote it by C ′.

Now proceed to splits of value 2, there is also n of them. They have to be assigned to edges incident
to leaves in C ′. Like in the first step, contract these edges and assign the new vertices the sum of weights
of the original ones. We proceed in this way with all edges that are assigned splits of value strictly
smaller than Ω2n. Let C ′′ denote the graph that we obtain in the end. It is not difficult to check that
C ′′ has 2n vertices, n leaves and 2n − 1 edges. The splits assigned to them are the ones obtained from
original splits: si = (s′i + Ω)Ωn, for 1 ≤ i ≤ n− 3, two added ones of value Ω2n, the auxiliary ones that
correspond to original vertices: ω′iΩn− 1, for 1 ≤ i ≤ n− 2, and the two auxiliary ones of value Ω2n− 1
that correspond to the added vertices. Notice that the auxiliary splits are assigned to the edges incident
to the leaves of C ′′.

Let us pick e, one of the edges assigned a split value of Ω2n, remove it from C ′′ and analyze the
structure of the connected component D of total weight smaller than Ω2n. Let v denote the vertex of
D that is incident to e in C ′′. Let us analyze the edges of D incident to v. Since C ′′ is of maximum
degree 3, there are at most 2 of them. In fact, let us show that it is only one, and thus its assigned split
is Ω2n− 1. On the contrary, suppose there were two different edges f, g incident to v in D. Then there
would be s(f) + s(g) = Ω2n− 1, with s(f) = ω′kΩn− 1 and s(g) = ω′lΩn− 1, for some 1 ≤ k, l ≤ n− 2.
But it is impossible, since Ω := 1 + 2 ·max{ω′i : 1 ≤ i ≤ n − 2}. Notice that it means that D is just a
path of length 1, and the same has to be true about the other edge assigned a split of value Ω2n.

Consider the other edges that are assigned auxiliary splits. Since C ′′ is connected and its maximum
degree is at most 3, there cannot be three of them incident to the same vertex. In fact, each of them
has to be incident to a unique non-leaf vertex. Indeed, suppose we had two such edges a, b incident to
the vertex w. Let c be the third edge incident to w, it has to be assigned a split created from an original
one (of kind s(c) = (s′i + Ω)Ωn, for some 1 ≤ i ≤ n− 3). By correctness of splits assignment, there has
to be s(a) + s(b) + 1 = s(c). But it is not difficult to check that it is not possible, by construction of IC .

To sum up, we have shown that each of the n leaves of C ′′ is adjacent to a unique non-leaf vertex.
Therefore, given that C ′′ is a tree of maximum degree 3 on 2n vertices, the only possible topology of C ′′

is that of a caterpillar with n leaves and n vertices on the backbone B. It is not difficult to see that the
splits assigned to the edges on the backbone give us a solution to IC .

Notice that the solution C to IC constructed in the proof above has to be a caterpillar of maximum
degree 3 with hair of unbounded length. Therefore, we have also shown the following corollary.

Corollary 7. Splits Reconstruction for Caterpillars of Unbounded Hair-Length and
Maximum Degree 3 is NP-complete.

9

3 Algorithm for WSR2 with few distinct vertex weights

Let k = |{ω(v) : v ∈ V }| denote the number of distinct vertex weights in an instance (V, ω,S) for WSR2.
In this section, we exhibit a dynamic programming algorithm for WSR2 that works in polynomial time
when k is a constant. Moreover, standard backtracking can be used to actually construct a solution, if
one exists.

Suppose |V | = n and the multiset of splits, S, contains the splits s1 ≤ s2 . . . ≤ sn−1. Let w1 <
w2 . . . < wk denote the distinct vertex weights and m1,m2, . . . ,mk denote their respective multiplicities,
that is mi = |{v ∈ V : ω(v) = wi}| for all i ∈ {1, 2, . . . , k}.

Our dynamic programming algorithm computes the entries of a boolean table A. The table A has an
entry A[p,WL,WR, n1, n2, . . . , nk] for each integer p with 1 ≤ p ≤ n− 1, each two integers WL,WR ∈ S,
and each vi ∈ {0, 1, . . . ,mi}, where i ∈ {1, 2, . . . , k}. The entry A[p,WL,WR, n1, n2, . . . , nk] is set to
true if and only if there is an assignment of the first p splits s1, s2, . . . , sp to the ` leftmost edges and
the r rightmost edges of the path Pn on n vertices, such that

• p = `+ r;

• v1 weights w1, v2 weights w2, . . . , and vk weights wk are assigned to the ` leftmost and the
r rightmost vertices of Pn, such that each split assigned to the left (respectively to the right)
part of the path corresponds to the sum of the vertex weights assigned to the vertices to the left
(respectively to the right) of this split; and

• WL is equal to the value of the `th split from the left and WR is equal to the rth split from the
right.

Intuitively, our algorithm assigns splits and weights by starting from both endpoints of the path and
trying to join these two sub-solutions. Notice that given a partial solution for the first p splits that
corresponds to a postive entry A[p,WL,WR, n1, n2, . . . , nk], the knowledge of exact values of ` and r,
and the precise assignment of weights to vertices on the left and the right side of Pn is not necessary in
order to know if this partial solution can be extended to a complete one. The information conveyed in
the values of indices of the table is sufficient. Actually, there even is some redundancy, given that the
value of p can be computed based on the values of ni, 1 ≤ i ≤ k.

For the base case, set A[0,WL,WR, v1, v2, . . . , vk] to true if WL = WR = v1 = v2 = . . . = vk = 0 and
to false otherwise. We compute the remaining entries of A by increasing values of p using the following
recurrence.

A[p,WL,WR, v1, v2, . . . , vk] =

k∨
i=1

A[p− 1,WL − wi,WR, v1, v2, . . . , vi−1,

vi − 1, vi+1, vi+2, . . . , vk]

∨A[p− 1,WL,WR − wi, v1, v2, . . . , vi−1,
vi − 1, vi+1, vi+2, . . . , vk]

In the previous recurrence, the formulas that refer to table entries that are undefined have the value
false.

The final result of the algorithm is computed by evaluating the expression∨
WL,WR∈S
i∈{1,2,...,k}

(WL≤wi+WR) ∧ (WR≤wi+WL)

A[|S|,WL,WR,m1,m2, . . . ,mi−1,mi − 1,mi+1,mi+2, . . . ,mk].

Theorem 8. WSR2 can be solved in time O(nk+3 · k), where k is the number of distinct vertex weights
of any input instance (V, ω,S) and n is the number of vertices.

Proof. The correctness of the base case is clear.
For the correctness of the recurrence, observe that A[p,WL,WR, n1, n2, . . . , nk] is assign true if and

only if the first p− 1 splits can be assigned to the edges of Pn in a way that can be extended to a partial
solution satisfying the conditions described by the indices. More specifically, it means that there is a
weight ωi available (notice the increase of the number ni of weights ωi used indicated in the formulas),
for some 1 ≤ i ≤ k, that can be assigned to a vertex that extends the left (first part of the internal

10

alternative) or the right part, respectively, of a previously checked partial solution and so the new split,
that is the frontier between the assigned and unassigned part of the path, is equal WL = (WL−ωi) +ωi
or WR = ωi + (WR − ωi) , respectively. Clearly, this is the only way possible of obtaining a partial
solution for the first p splits with the corresponding multi-set of weights used.

Finally, a complete assignment is found if there exists a weight ωi and splits WL and WR, such that
there exists a partial solution using all weights but one instance of ωi, the left part ends with the split
WL, the right part ends with WR, and these values satisfy the condition on the split assigned to an edge
` to be the smaller of the weights of the components obtained by removing ` from the graph.

The table has |S|3 ·Πk
i=1(mi + 1) ≤ nk+3 entries, each entry can be computed in time O(k), and the

final evaluation takes time O(n · k).

4 Algorithm for SR with few leaves

Recall that an instance of the SR problem is given by a set S of splits. The number of vertices in the tree
that we are looking for is equal to |S| + 1 (with the multiplicities taken into account). We will assume
that |S| > 1. In this section we design an algorithm for SR parameterized by the number k of splits that
are equal to one, that is k = |{s = 1 : s ∈ S}|. As such splits are exactly the ones that correspond to an
edge incident to a leaf in the reconstructed tree, the algorithm reconstructs trees with k leaves.

Before we go into details, let us first make some observations.

Observation 9. Let T be a tree with a valid assignment of splits. There can be no split of value x at
most b assigned to an interior edge e on a path connecting two edges f, g assigned splits of value at least
b.

Indeed, suppose there are such edges e, f, g. The split x assigned to the edge e means that T1, one
of the two components obtained by removing e from T , has total weight x. Without loss of generality,
suppose that T1 contains the edge f . Then, the total weight of the component obtained by removing
f from T that does not contain e is strictly smaller than b. But this contradicts the fact that the split
assigned to f is larger than b.

Observation 10. Let T be a tree with a valid assignment of splits. Then there exists a vertex r in T
such that, for any leaf f , the splits along the path from r to f are strictly decreasing.

In order to see this fact, consider the edges assigned the maximum split. If there are at least two such
edges, they all must share one unique vertex r (as by Observation 9 any two such edges are adjacent). In
this situation, for any leaf f of T the split assigned to an edge e on the path from r to f is the weight of
the component obtained by removing e from T that contains f . Since the weights of these components
strictly decrease as we get closer to f , the observation follows. Now, if there is only one edge of maximum
split value, it is not difficult to check that the same statement is true for at least one of the incident
vertices.

Our algorithm is based on the existence of such a vertex r, as described in Observation 10. Such a
vertex is considered the root of T . We start with a very rough approximation of T that consists just of
the root r0 and k leaves, organized as a star. The leaves are assigned unit weight, the incident edges have
unit splits. The root is assigned the weight ω(r0) = n− k. The leaves will stay unchanged until the end
of the algorithm execution, but the paths from the root will get progressively improved to finally reach
the form they have in the tree T that we are looking for. In each step of the algorithm we will improve
upon the paths that have the lowest value of the split incident to the root.

So, initially we have the star T0. To update the information on available (not yet assigned) splits, we
define S0 to be S minus the unit splits already assigned to the star. Notice that this way there are no
splits of value 1 in S0.

At each step i of the algorithm, we construct a new tree Ti by applying a particular kind of transfor-
mation to Ti−1 and choosing a new root ri. Throughout the algorithm, ri is the only vertex allowed to
have a non-unit weight. Initially, Ti−1 is a tree with the splits from S \ Si−1 assigned to its edges. The
root ri−1 is adjacent to the vertices in its neighborhood Ni−1 := N(ri−1).

The goal is to find a tree Ri with the root ri and the set of leaves Li, that can be considered a kind
of subdivision of ri−1, and construct a new tree Ti by replacing ri−1 in Ti−1 with Ri. The total weight
of Ri has to be equal to ω(ri−1) and distributed between ω(ri) and unit weights of other vertices of Ri.

11

The tree Ri may have some other vertices besides the root and the leaves. In the construction, ri−1 is
removed and each node of Li is made adjacent to one or more vertices in Ni−1, while each vertex of Ni−1
is made adjacent to exactly one node of Li, and the tree Ti is obtained. The splits assigned to the new
edges have to be some values chosen from Si−1, the other ones being put in Si.

If there exists such a transformation where ri is subdivided into a tree with unit weights on all
vertices, we say that Ti has a valid extension. Let us also extend the standard notion of parent-child
relation between nodes in a rooted tree to analogous relation between edges. Say that edge e is the
parent of f if they share a vertex v and the path from r to v contains e.

Using this term and based on Observation 10 we can say that our algorithm will iteratively choose a
set of edges F incident to the root r, with the corresponding set N of vertices adjacent to r; “subdivide”
r by creating its “clone” r′ that is incident to the edges in F , whereas r keeps the incidence to other
edges; and a new edge rr′ is created, parent to all edges in F and assigned a split of value equal to the
sum of splits assigned to edges in F . It is easy to check that by inverting this process, starting from a
solution T and iteratively contracting edges incident to the root and not to a leaf, we eventually get T0.
Let us now get into the details.

The tree Ti−1 that we have at the beginning of step i uniquely defines a partition (A,C,U) of the
splits S such that

• A represents the multiset of available splits that have not been assigned to Ti−1 (stored as Si−1),

• C represents the multiset of current splits assigned to edges incident to ri−1, and

• U represents the multiset of used splits assigned to edges of Ti−1 that are not incident to ri−1.

Let b denote the value of the smallest split in C. Our tree Ti−1 will grow out of ri−1 as follows.

• If ω(ri−1) = 1, then return True. Indeed, since all vertices are now assigned unit weights, there
are |S|+ 1 vertices and |S| splits assigned to edges in Ti. Thus we have a solution.

• If A contains a split whose value is at most b, then by Observation 9, we know that T has no valid
extension and the algorithm backtracks.

• If a := |{s ∈ A : s = b + 1}| > c := |{s ∈ C : s = b}|, that is, A contains strictly more splits with
value b + 1 than C contains splits with value b, then T has no valid extension and the algorithm
backtracks. Indeed, by Observation 9, there can be no split of value b + 1 assigned to an edge on
a path connecting two edges of split value b + 1. So all a splits in A with value b + 1 would have
to be assigned to new edges which are parents of edges in C of split value b. Which is impossible,
since a > c.

• If |{s ∈ A : s = b+1}| = |{s ∈ C : s = b}|, then all valid extensions of Ti−1 are also valid extensions
of the tree obtained from Ti−1 by subdividing each edge with split b that is incident to ri−1. That
is, for each edge ri−1v with a split of value b, add a new vertex zv, remove the edge ri−1v, and
add edges ri−1zv and zvv with splits assigned accordingly. To finally obtain Ti, replace ri−1 with
ri, with assigned weight ω(ri−1)− |{s ∈ C : s = b}|. Define Si as Si−1 \ {s ∈ A : s = b + 1}. The
algorithm proceeds recursively on Ti.
Note that by Observation 9, and an argument similar to the one in the previous case, any valid
extension of Ti−1 is also a valid extension of Ti.

• Otherwise, that is if |{s ∈ A : s = b+ 1}| < |{s ∈ C : s = b}|, we need to create a branch where an
edge assigned split b receives a parent edge with split value more than b+ 1. Go over all choices for
selecting a subset U of N(ri−1) of size at least 2 containing a vertex v such that ri−1v is associated
with a split with value b.

If A contains no split that equals 1 +
∑
u∈U s(ri−1u), then discard this choice. Otherwise, create a

new vertex zU , remove the edges {ri−1u : u ∈ U} from Ti−1, add the edges {zUu : u ∈ U ∪{ri−1}},
and replace ri−1 with ri of weight equal ω(ri−1)−1 to obtain TUi . Assign the splits correspondingly
and set SUi = Si−1 \ {1 +

∑
u∈U s(ri−1u)}.

The algorithm recursively solves each of the resulting subproblems. The tree Ti−1 has a valid
extension if and only if one of the trees TUi has a valid extension.

12

Theorem 11. SR can be solved in time O(8k log k · n), where k = |{s = 1 : s ∈ S}| and n is the number
of vertices.

Proof. The arguments for correctness have been given in the description of the algorithm. For the running
time analysis, we observe that ω(r) decreases in each recursive call, no recursive call increases |C|, and
the time spent in each recursion step is linear. Let T (c) denote the maximum number of atomic instances
solved for an instance with |C| ≤ c, where an instance is atomic if the algorithm makes no recursive call
for solving the instance. In the only case making more than one recursive call, we have

T (c) ≤
c∑
i=2

(
c

i

)
T (c− i+ 1),

as the set U in the neighborhood of N(r) is replaced by one vertex zU . As T (c) is non-decreasing, and(
c
i

)
≤ ci, we have that

T (c) ≤ (c− 1) · max
i=2..c

{
ci · T (c− (i− 1))

}
≤ max
i=2..c

{
ci+1 · T (c− (i− 1))

}
≤ max
i=2..c

{
O
(
c(i+1) c

i−1

)}
.

The last inequality holds, since the recurrence T (n) = a · T (n− b), with a, b ∈ O(1) and T (d) = O(1) for
d = O(1), solves to T (n) = O(an/b). This maximum is attained for i = 2, and the theorem now follows
since c ≤ k.

5 Freely choosable weights

We remark that the following modification of WSR makes any set of splits realizable in some tree.
Suppose the weight function ω is not given, but freely choosable, that is, we ask whether, given a
multiset S of integers, there exists a tree T = (V,E) and a weight function ω : V → N, such that S is
the multiset of splits of T . We call this problem ChWSR.

Theorem 12. ChWSR always admits a solution.

Proof. We show that the answer to ChWSR is always yes: Decompose S into κ chains sj1 < sj2 < . . . sjm(j),

j = 1, . . . , κ, where κ is the maximal multiplicity in S. Let T be obtained from the star K1,κ by
subdividing ej , the jth edge of K1,κ, m(j) − 1 times (for j = 1, . . . , κ), and root T at the center r of

K1,κ. Map sji to the edges of the subdivided ej , 1 ≤ i ≤ m(j), keeping their order, so that the edge

corresponding to sj1 is incident to a leaf of T . Finally, choose the weight ω(r) for the root to be equal
to the maximum value in S. For each leaf v of T , set the weight ω(v) equal to the split assigned to the
edge {v, u}, where u is the parent of v. Any other vertex v is given a weight equal to the difference of
splits assigned to the edges incident to v. This choice of T and ω clearly satisfies the requirements.

Remark. Due to the construction provided by the proof of Theorem 12, we note that we are not only
always able to construct a tree T as required, but the structure of this tree is also rather simple. In
particular, the realization of the split sequence is a path if each split in S repeats at most twice.

Observe that if we consider ChWSR with unit weights, we are back at the problem SR. It is not difficult
to see that in SR, any given set of splits can be realized in the same way as explained in the proof of
Theorem 12 for ChWSR, the only difference being that each time a non-unit weight w is assigned to
some vertex v in ChWSR, in SR we have to add w − 1 leaves of unit weight adjacent to v. Thus, if
S contains a sufficient number of splits 1, then S can be realized by a tree. More precisely, setting the
boundary values sj0 := 0 for all j, and letting κ denote the maximum multiplicity over all elements in S
except 1, we have that if κ ≥ 2 and S contains at least

κ+

κ∑
j=1

m(j)∑
i=1

(sji − s
j
i−1 − 1) + max

0, 2 · max
1≤i≤κ

{sim(i)} − 1−
κ∑
j=1

sjm(j)

13

times the split 1, then S can be realized by a tree T : κ of them are needed to be assigned to edges

incident to leaves of the star,
∑m(j)
i=1 (sji − s

j
i−1 − 1) of them are added, with pending vertices, to vertices

introduced by subdividing the edge ej , and max
(

0, 2 ·maxκi=1{sim(i)} − 1−
∑κ
j=1 s

j
m(j)

)
of them are

added, with pending vertices, to the root. The latter term ensures that whenever an edge corresponding
to a split sjm(j) is removed the weight of the connected component corresponding to the subdivision of

ej is at least the weight of the other connected component. (Note that it does not matter if there are
more splits 1 than needed in our construction, since we may always add leaves adjacent to the root of
T .) The previous condition is, of course, sufficient, but not necessary. Moreover, the tree T that realizes
S is a subdivided star to which some leaves have been added. In particular, if each split in S repeats
at most twice, then we can realize S in a caterpillar with hair-length one. We note that the conditions
κ = 2 and the lower bound on the number of splits with value 1 are also necessary for caterpillars with
hair length one.

6 Conclusion

In Section 3, we have shown that WSR2 is in XP when parameterized by the number of distinct vertex
weights. It remains open whether this problem is fixed parameter tractable (a generalization of the
problem is W[1]-hard [8]). For practical purposes, it would further be important to identify other quan-
tities that are small in practice (e.g. the diameter of the tree or topological indices), and investigate the
multivariate complexity of the considered problems parameterized by combinations of these quantities.

There is a large contrast between the complexities of WSR, where we are given n vertex weights,
and ChWSR, where we can freely choose the vertex weights, or, alternatively, we can choose the vertex
weights from an infinite multiset containing n times each element of N. It would be interesting to know
some restrictions on the multiset of vertex weights such that the problem becomes polynomial time
solvable, or fixed-parameter tractable with respect to interesting parameterizations, when we can chose
the weights from this multiset. Ideally, these restrictions should be consistent with the applications in
drug design and discovery.

Acknowledgments

We thank Ming-Yang Kao for communicating this problem.
All authors acknowledge the support of Conicyt Chile via projects Fondecyt 11090390 (Mathieu

Liedloff, Karol Suchan), Fondecyt 11090141 (Maya Stein), and Basal-CMM (Serge Gaspers, Maya Stein,
Karol Suchan). Serge Gaspers is the recipient of an Australian Research Council Discovery Early Career
Researcher Award (project number DE120101761). NICTA is funded by the Australian Government
as represented by the Department of Broadband, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Excellence program. Mathieu Liedloff and
Karol Suchan acknowledge the support of the French Agence Nationale de la Recherche (ANR AGAPE
ANR-09-BLAN-0159-03).

References

[1] Kiyoko F. Aoki-Kinoshita, Minoru Kanehisa, Ming-Yang Kao, Xiang-Yang Li, and Weizhao Wang.
A 6-approximation algorithm for computing smallest common AoN-supertree with application to the
reconstruction of glycan trees. In Proceedings of the 17th International Symposium on Algorithms
and Computation (ISAAC 2006), volume 4288 of Lecture Notes in Computer Science, pages 100–110.
Springer, 2006.

[2] Alexandru T. Balaban. Chemical Applications of Graph Theory. Academic Press, Inc., 1976.

[3] Danail Bonchev and Dennis H. Rouvray. Chemical Graph Theory: Introduction and Fundamentals.
Taylor & Francis, 1991.

[4] Andrey A. Dobrynin, Roger Entringer, and Ivan Gutman. Wiener index of trees: Theory and
applications. Acta Applicandae Mathematicae, 66(3):211–249, 2001.

14

[5] Rodney G. Downey and Michael R. Fellows. Parameterized complexity. Springer-Verlag, 1999.

[6] Jean-Loup Faulon and Andreas Bender. Handbook of Chemoinformatics Algorithms. Chapman and
Hall/CRC, 2010.

[7] Michael R. Fellows, Serge Gaspers, and Frances Rosamond. Multivariate complexity theory. In
Edward K. Blum and Alfred V. Aho, editors, Computer Science: The Hardware, Software and
Heart of It, chapter 13, pages 269–293. Springer, 2011.

[8] Michael R. Fellows, Serge Gaspers, and Frances A. Rosamond. Parameterizing by the number of
numbers. Theory of Computing Systems, 50(4):675–693, 2012.

[9] Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts in Theoretical
Computer Science. An EATCS Series. Springer, Berlin, 2006.

[10] Michael R. Garey and David S. Johnson. Computers and Intractability, A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, New York, 1979.

[11] Serge Gaspers, Mathieu Liedloff, Maya Stein, and Karol Suchan. Complexity of splits reconstruction
for low-degree trees. In Petr Kolman and Jan Kratochv́ıl, editors, Graph-Theoretic Concepts in
Computer Science, volume 6986 of Lecture Notes in Computer Science, pages 167–178. Springer
Berlin Heidelberg, 2011.

[12] Valerie J. Gillet, Peter Willett, John Bradshaw, and Darren V. S. Green. Selecting combinato-
rial libraries to optimize diversity and physical properties. Journal of Chemical Information and
Computer Sciences, 39(1):169177, 1999.

[13] Deborah Goldman, Sorin Istrail, Giuseppe Lancia, Antonio Piccolboni, and Brian Walenz. Algorith-
mic strategies in combinatorial chemistry. In Proceedings of the 11th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2000), pages 275–284, 2000.

[14] Peter L. Hammer, editor. Special issue on the 50th anniversary of the Wiener index, Discrete Applied
Mathematics, volume 80. Elsevier, 1997.

[15] Heather Hulett, Todd G. Will, and Gerhard J. Woeginger. Multigraph realizations of degree se-
quences: Maximization is easy, minimization is hard. Operations Research Letters, 36(5):594–596,
2008.

[16] Christian Komusiewicz, Rolf Niedermeier, and Johannes Uhlmann. Deconstructing intractability -
a multivariate complexity analysis of interval constrained coloring. Journal of Discrete Algorithms,
9(1):137–151, 2011.

[17] Xueliang Li and Xiaoyan Zhang. The edge split reconstruction problem for chemical trees is NP-
complete. MATCH Communications in Mathematical and in Computer Chemistry, 51:205–210,
2004.

[18] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics
and Its Applications. Oxford University Press, Oxford, 2006.

[19] Robert P. Sheridan and Simon K. Kearsley. Using a genetic algorithm to suggest combinatorial
libraries. Journal of Chemical Information and Computer Sciences, 35(2):310320, 1995.

[20] Nenad Trinajstić. Chemical Graph Theory, Second Edition. CRC Press, 1992.

[21] Stephan G. Wagner. A class of trees and its Wiener index. Acta Applicandae Mathematica,
91(2):119–132, 2006.

[22] Hua Wang and Guang Yu. All but 49 numbers are Wiener indices of trees. Acta Applicandae
Mathematica, 92(1):15–20, 2006.

[23] Harry Wiener. Structural determination of paraffin boiling points. Journal of the American Chemical
Society, 69(1):17–20, 1947.

15

