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Abstract

We study mixed-strategy Nash equilibria in multiplayer deterministic concurrent games played

on graphs, with terminal-reward payoffs (that is, absorbing states with a value for each player).

We show undecidability of the existence of a constrained Nash equilibrium (the constraint re-

quiring that one player should have maximal payoff), with only three players and 0/1-rewards

(i.e., reachability objectives). This has to be compared with the undecidability result by Um-

mels and Wojtczak for turn-based games which requires 14 players and general rewards. Our

proof has various interesting consequences: (i) the undecidability of the existence of a Nash

equilibrium with a constraint on the social welfare; (ii) the undecidability of the existence of an

(unconstrained) Nash equilibrium in concurrent games with terminal-reward payoffs.
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1 Introduction

Games (especially games played on graphs) have been intensively used in computer science as

a powerful way of modelling interactions between several computerised systems [11, 8]. Until

recently, more focus had been put on the study of purely antagonistic games (a.k.a. zero-

sum games, where the aim of one player is to prevent the other player from achieving her

objective), which conveniently model systems evolving in a (hostile) environment.

Over the last ten years, games with non-zero-sum objectives have come into the picture:

they allow for conveniently modelling complex infrastructures where each individual system

tries to fulfill its own objectives, while still being subject to actions of the surrounding

systems. As an example, consider (a simplified version of) the team formation problem [4],

an example of which is presented in Fig. 1: several agents are trying to achieve tasks; each

task requires some resources, which are shared by the players. Achieving a task thus requires

the formation of a team that have all required resources for that task: each player selects the

task she wants to achieve (and so proposes her resources for achieving that task), and if a

task receives enough resources, the associated team receives the corresponding payoff (to be

divided among the players in the team). In such a game, there is a need of cooperation

(to gather enough resources), and an incentive to selfishness (to maximise the payoff).

In that setting, focusing only on optimal strategies for one single agent is not relevant.

In game theory, several solution concepts have been defined, which more accurately rep-

resents rational behaviours of these multi-player systems; Nash equilibrium [9] is the most

prominent such concept: a Nash equilibrium is a strategy profile (that is, one strategy to each

player) where no player can improve her own payoff by unilaterally changing her strategy.

In other terms, in a Nash equilibrium, each individual player has a satisfactory strategy with

regards to the other players’ strategies. Notice that Nash equilibria need not exist or be
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1
2 , 1

2
1, 0

A1 → T1, A2 → T1

A1 → T2, A2 → T2

A1 → T1, A2 → T2

A1 → T2, A2 → T1

player A1 has resources {r1, r2, r3}

player A2 has resources {r2, r3}

task T1 requires resources {r1, r2}

task T2 requires resources {r1, r3}

Figure 1 An instance of the team-formation problem. For any deterministic choice of actions,

one of the players has an incentive to change her choice: there is no pure Nash equilibrium. However

there is one mixed Nash equilibrium, where each player plays T1 and T2 uniformly at random.

unique, and are not necessarily optimal: Nash equilibria where all players lose may coexist

with more interesting Nash equilibria. Therefore, looking for constrained Nash equilibria

(e.g. equilibria in which some players are required to win, or equilibria with maximal social

welfare) is an interesting and important problem to study, which has been suggested both

in the game-theory community [5] and in the computer-science community [12].

In this paper, we study (deterministic) concurrent games played on graphs. Such games

are indeed a general and relevant model for interactive systems, where the agents take their

decision simultaneously (which is the case for instance in distributed systems). Concurrent

games subsume turn-based games, where in each state, only one player has the decision for

the next move, and which have attracted more focus until now in the computer science com-

munity. Notice also that in game theory, models are almost exclusively based on concurrent

actions (e.g. games in normal form given as matrices indicating the payoff of each player

for each concurrent choice of actions, and extensions thereof, such as repeated games).

In this paper we are interested in randomized (a.k.a. mixed) strategies for the players.

A mixed strategy consists in choosing, at each step of the game, a probability distribution

over the set of available actions; the game then proceeds following the product distribution

of the strategies of all players. Strategies may depend on the history of the game, i.e.,

the sequence of visited states, but do not require to see the actions played by the other

agents. In previous works, the first two authors have focused on pure strategies, where at

each step, each player proposes exactly one action, and developed algorithms for deciding

the existence of constrained Nash equilibria in various settings [1]. In the present paper,

we focus on terminal-reward payoffs (where some designated states are absorbing, and each

player has a value—or reward—attached to each of these states): the payoff of a player

is then her expected reward. We will also consider the subclass of games with terminal-

reachability objectives, where the reward in each absorbing state is either 0 or 1 (hence the

expected reward for a player is the probability to reach her winning states). The game in

Fig. 1 has terminal-reward payoffs: they are given by the values labelling the two absorbing

states (1 for player A1 and 0 for player A2 in the right-most state). This game can be shown

to have no pure-strategy Nash equilibria, but it has a mixed-strategy one.

Our results. Our main result is the undecidability of the existence of a 0-optimal Nash

equilibrium in concurrent games with terminal-reachability payoff functions, with only three

players and strategies insensitive to actions. A 0-optimal Nash equilibrium is a Nash equi-

librium in which one designated player is required to have maximal payoff (that is, 1 in

the case of terminal-reachability payoffs). A corollary of our result is the undecidability of

the existence of unconstrained Nash equilibria in concurrent games with terminal payoffs.

We believe that these results are important, as they solve natural questions for basic ob-

jectives. Moreover, our constructions give new insight in the understanding of concurrent

games and their algorithmics, and contain several intermediary tools that can be interesting

on their own in different contexts.
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Several results already exist in related settings:

our result should first be compared with the undecidability of the existence of a 0-optimal

Nash equilibrium in turn-based games with terminal-reward payoffs[13], which requires

14 players and general rewards. It should be noticed that this result requires more than

0/1 rewards (contrary to our result), since the existence of a 0-optimal equilibrium can

be decided in polynomial time in turn-based games with terminal-reachability payoffs

(by combining the reduction to pure 0-optimal Nash equilibria of [12] and the algorithm

in [13] for computing such equilibria);

our result should also be compared with polynomial-time algorithm for deciding the

existence of a 0-optimal pure Nash equilibrium in concurrent terminal-reward games [15];

our result has several corollaries, that we develop at the end of the paper:

the existence of a (unconstrained) Nash equilibrium in terminal-reward games with

three players; on the opposite, stationary ǫ-Nash equilibria do always exist in concur-

rent games for terminal-reachability (and terminal-reward) games [3];

the existence of a Nash equilibrium that maximizes the social welfare in games with

terminal-reachability payoffs is undecidable with three players. This should be com-

pared with the NP-completeness of the existence of such equilibria for two-player

normal-form games [6];

the existence of a constrained finite-memory Nash equilibrium in terminal-reachability

games is undecidable with three players;

the existence of a constrained Nash equilibrium in safety games is undecidable with

three players. This can be compared to the result of [10], which states that there

always exists a Nash equilibrium (with little memory) in a safety game.

By lack of space, only some sketches of proofs could be included in this paper. We refer

the interested reader to [2] for full details.

2 Definitions

◮ Definition 1. A concurrent arena A is a tuple A = 〈States, Agt, Act, Tab, (Allowi)i∈Agt〉

where States is a finite set of states; Agt is a finite set of players; Act is a finite set of actions;

For all i ∈ Agt, Allowi : States −→ 2Act\{∅} is a function describing authorized actions in a

given state for Player i; Tab : States × ActAgt → States is the transition function.

A state s ∈ States is said terminal (or final) if Tab(s, ·) ≡ s. We write FA (or simply F

when the underlying arena is clear from the context) for the set of terminal states of A.

A history of such an arena A is a finite, non-empty word h ∈ States+. We denote

by first(h) and last(h) respectively the first and last states of the word h. During a play,

players in Agt choose their next moves concurrently and independently from each others,

according to the current history h and what they are allowed to do in the current state last(h).

◮ Definition 2. A strategy for Player i is a function σi : States+ → Dist(Act) with the

requirement that σi(h)−1(R>0) ⊆ Allowi(last(h)) for all history h.

Let α ∈ Act. We write σi(α | h) for the probability mass σi(h)(α) of action α in the

distribution σi(h). In the sequel, we sometimes write σi(h) = α when σi(α | h) = 1. When

σi(h) ∈ Act for all h, the strategy σi for player i is said to be pure. Otherwise it is said to

be mixed. We denote by Si (resp. Si) the set of pure (resp. mixed) strategies of Player i.

A strategy profile σ is a mapping assigning one strategy to each player. We write S for the

set of all strategy profiles, and for σ ∈ S, we will write σi in place of σ(i) for the strategy of

Player i.



4 Mixed Nash Equilibria in Concurrent Terminal-Reward Games

◮ Remark. While strategies are aware of the sequence of actions played in a turn-based game,

we can notice this is generally not the case in the concurrent setting depicted here, since

strategies only depend on the sequence of visited states. This is realistic when considering

multi-agent systems, where only the global effect of the actions of the players is assumed to

be observable. However this partial-information hypothesis makes the detection of strategy

deviations (and therefore the computation of Nash equilibria) harder.

Consider a strategy profile σ ∈ S and an initial state s0. For any history h ∈ States+ and

any player i ∈ Agt, we construct the random variable αi(h) ∈ Act with distribution σi(h)

such that (αi(h))i∈Agt,h∈States+ is a family of independent random variables.

We define the stochastic process (Xn)n∈N inductively by X0 = s0 and for every n,

Xn+1 = Xn · Tab (last(Xn), (αi(Xn))i). For each n, the random variable Xn takes value in

Statesn+1: (Xn)n is an increasing sequence of prefixes whose limit is an infinite random run

X∞ ∈ Statesω.

We now consider the standard Borel σ-algebra over Statesω from s0, and define the

probability measure Pσ as the probability distribution induced by X∞, that is, if B is a Borel

subset of Statesω, Pσ(B) = P(X∞ ∈ B). It coincides with the standard construction based

on cylinders. In the following, to make explicit the initial state, we may write Pσ(B | s0)

instead of simply Pσ(B). In the sequel, we sometimes also abusively write h for the cylinder

h · Statesω: then, when we write Pσ(h | s0), we mean Pσ(X|h| = h). If Pσ(h | s0) > 0,

we say that σ enables h from s0: in that case we can define the conditional probability

Pσ(B | h) = Pσ(B | X|h| = h).

Finally we say that a node n is activated by a strategy profile whenever it is visited with

positive probability under that profile.

◮ Definition 3. A terminal-reward game G = 〈A, s, (φi)i∈Agt〉 is given by an arena A,

an initial state s, and for every player i ∈ Agt, a real-valued function φi ranging over

terminal states of A. In the following, we extend φi to every r ∈ Statesω, by φi(r) = φi(s)

if r is an infinite path ending in a state s ∈ F, and φi(r) = 0 otherwise.

The game G will be said a terminal-reachability game whenever each function φi only

takes values 0 or 1.

◮ Remark. In the sequel, we represent terminal-reward games as graphs with circle states

representing non-terminal states, and rectangle states representing terminal states, decorated

with the associated rewards for all players. The self-loop on terminal states will be omitted.

The transition table of the underlying arena is encoded by decorating the transitions with the

move vectors that trigger it. Move vectors are written as words over Act, by identifying Agt

with the subset J0, |Agt|−1K. We will use · as a special symbol representing any action. Also,

for a set S of words in (Act∪{·})k, with k < |Agt|, and for a letter a ∈ Act∪{·}, we write aS

for the words {aw | w ∈ S}. See Fig. 2 (and the subsequent figures) for an example.

Consider a terminal-reward game G, a strategy profile σ, and an enabled history h.

One can easily check that φi is a mesurable function under Pσ. The expected payoff of

Player i under σ after h is defined as

E
σ(φi | h) =

∑

x∈Img(φi)

x · Pσ
(

φ−1
i ({x}) | h

)

.

In case G is a terminal-reachability game, the expected payoff of Player i is the probability

of reaching terminal states with value 1 under φi.

Let G be a terminal-reward game. Let σ ∈ S be a (mixed) strategy profile in G, and h be

a history. A single-player deviation (simply called deviation hereafter, as we only consider
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deviations of a single player at a time) of σ for Player i after history h is another strategy

profile σ′ for which there exists σ′′
i ∈ Si satisfying

∀h′ ∈ States+.

{

h ⊑ h′ ⇒ σ′
i(h

′) = σ′′
i (h′)

∀j ∈ Agt. (h 6⊑ h′ ∨ j 6= i) ⇒ σ′
j(h′) = σj(h′)

where ⊑ is the prefix relation. We then write σ′ = σ[i/σ′′
i ]h. The deviation σ[i/σ′′

i ]h is said

deterministic if σ′′
i is.

◮ Definition 4. Let G be a terminal-reward game. A strategy profile σ forms a Nash

equilibrium after a history h when the following conditions are met:

h ∈ States+ is enabled by σ from first(h);

No player has a profitable deviation; in other terms, for all i ∈ Agt and for all σ′
i ∈ Si,

it holds Eσ[i/σ′

i
]h

(φi | h) ≤ Eσ(φi | h).

We then write that 〈σ, h〉 is a Nash equilibrium.

A Nash equilibrium 〈σ, h〉 is said 0-optimal whenever the expected payoff of Player 0 is

optimal, that is, Eσ(φi | h) = max(Img(φ0)). In case of a terminal-reachability game, it

amounts to saying that the payoff of Player 0 is 1.

The following result will be useful all along the paper:

◮ Lemma 5. Let G be a terminal-reward game, and 〈σ, h〉 be a Nash equilibrium. If 〈σ, h〉

enables h′, then 〈σ, h′〉 is a Nash equilibrium.

In general, several Nash equilibria may coexist. It is therefore very relevant to look for

constrained Nash equilibria, that is, Nash equilibria that satisfy a constraint on the expected

payoff. In this paper, we only consider 0-optimality as the constraint, and we prove that

the existence of a 0-optimal Nash equilibrium in a three-player terminal-reachability game

is undecidable. To prove this result, we will first show undecidability in the case of terminal-

reward games, and then extend the result to terminal-reachability games. Those results will

have interesting corollaries, like the undecidability of the existence of a Nash equilibrium

(with no constraint) in terminal-reward games, when the rewards are in {−1, 0, 1}, or the

existence of a Nash equilibrium with optimal social welfare.

3 Tools

In this section, we develop several intermediary results that will be useful for our reduction.

We first show that we can equivalently define Nash equilibria by considering only determ-

inistic deviations (for non-negative terminal-reward games). We then study a few simple

games and constructions which will be used in the encoding.

3.1 Deterministic deviations

We explain in this section that it is enough to consider deterministic deviations in the

characterization of a Nash equilibrium.

◮ Proposition 6. Let G be a terminal-reward game with non-negative rewards. Pick a history

h ∈ States+, and a strategy profile σ. Then 〈σ, h〉 is a Nash equilibrium if, and only if, for

all i ∈ Agt and all deterministic deviation σ′′
i ∈ Si, it holds Eσ[i/σ′′

i
]h

(φA | h) ≤ Eσ(φi | h).

◮ Remark. A similar result was proven in [15, Proposition 3.1] for turn-based games with

qualitative Borel objectives (the payoff is 1 if the run belongs to the designed objective, and

it is 0 otherwise).
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3.2 One-stage games

We analyse two-player two-action one-stage games (that is, games that end up in a terminal

state in one step), and obtain useful properties of their Nash equilibria. Such games can

be represented by a graph as shown in Fig. 2a. Alternatively, these games, also known

as one-shot games, can be represented as a matrix as in Table 2b (this is the standard

representation in the game-theory community).

s0

c0, b1 a0, a1 d0, d1 b0, c1

mn

mm

nm

nn

(a) A generic two-player two-action one-stage game

m

n

m n0
1

a0, a1 b0, c1

c0, b1 d0, d1

(b) Associated matrix repres-
entation

Figure 2 Representations of a one-shot game

◮ Lemma 7. Consider the two-player two-action one-shot concurrent game G of Fig. 2, and

pick some strategy profile σ. If 〈σ, s0〉 is a Nash equilibrium, then for every player i ∈ {0, 1},

it holds
{

σi(m | s0) < 1 ⇒ [(di − ci) + (ai − bi)] · σ1−i(m | s0) ≤ di − ci

σi(m | s0) > 0 ⇒ [(di − ci) + (ai − bi)] · σ1−i(m | s0) ≥ di − ci

3.3 k-action matching-pennies games

s0

a0, a1 b0, b1

6=k=k

Figure 3 Matching-pennies game

The classical matching-pennies games are a special

case of one-stage games, where ai = di and bi =

ci: basically, there are two outcomes, depending on

whether the players propose the same action or not.

This game can be generalized to k (≥ 2) actions, as

depicted on Fig. 3. In this figure (and in the sequel),

=k (resp. 6=k) is a shorthand for pairs of identical

(resp. different) actions taken from a set of k ac-

tions Σk = {c1, . . . , ck}. In other terms, =k represents the set of words {cici | 1 ≤ i ≤ k},

and 6=k is the complement in Σ2
k.

◮ Lemma 8. In the k-action matching-pennies game, playing uniformly at random for both

players defines a Nash equilibrium. Moreover, this is the unique Nash equilibrium of the

game if, and only if, either a0 < b0 and a1 > b1, or a0 > b0 and a1 < b1. The payoff of this

Nash equilibrium is
(

1
k · a0 +

(

1 − 1
k

)

· b0, 1
k · a1 +

(

1 − 1
k

)

· b1

)

.

3.4 Games without equilibrium

In this section, we show that there are games that admit no Nash equilibria. We then explain

how these games can be used to impose constraints on payoffs.

Consider the game hide-or-run, depicted in Fig. 4a. Player 0 can either hide (h) or run

home (r), while Player 1 can either shoot him (s), or wait (w). If Player 1 shoots while

Player 0 is hiding, she loses her bullet and loses the game. If Player 1 shoots when Player 0
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1, −1 −1, 1

hs, rw rs

hw

(a) H has no Nash equilibria

2, 0 0, 2

hs, rw rs

hw

(b) H′ does have a Nash
equilibrium

Figure 4 Hide-or-run games

s′
0 GH

continue s0
stop

Figure 5 A game that has a Nash equilibrium if, and only if, G has a 0-optimal Nash equilibrium

is running, she wins. This game has been shown to have no optimal almost-sure strategy [7],

and we adapt the proof to show that it has no Nash equilibria.

◮ Lemma 9. The game H has no Nash equilibria.

The payoff function of H takes negative value. In order to only have nonnegative payoffs,

we could shift the values by 1, which yields the game H′ depicted on Fig. 4b. But then one

easily sees that the strategies σ0(h | sn
0 ) = 1 and σ1(s | sn

0 ) = 1 form a Nash equilibrium,

contrary to a claim in [3, 13]. The difference is that when shifting the payoffs, we did not

modify the payoff of the run that never reaches a terminal state: while this run was a positive

deviation for Player 1 in H, this is not the case in H′ anymore.

We now explain how we use the game H to impose a 0-optimality constraint on the

payoff. In the sequel, we restrict1 to games where maxs∈F φ0(s) = 1. Then:

◮ Lemma 10. Let G be a terminal-reward game. Then we can build a terminal-reward

game G′ (see Fig. 5) such that G has a 0-optimal Nash equilibrium if, and only if, G′ has a

Nash equilibrium.

This lemma will be useful for extending the undecidability result from the constrained

existence to the existence problem (Corollary 14).

◮ Remark. Note that in the above construction, game H can be replaced by any game with

no Nash equilibria, such that Player 0 can secure a payoff 1−ε for every ε > 0. For instance,

one could use a game with limit-average payoff and nonnegative rewards only [14].

4 Updating values

Our undecidability proof will be based on an encoding of a two-counter machine. In this

section and in the next one, we present games that will be building blocks for our proof.

Consider the game Gr
k depicted on Fig. 6: in this game, Player 0 has two available

actions a and b from s0, sk and sl, while the other two players can either continue (action c),

1 This is no loss of generality, since we can linearly rescale payoffs of each player without changing
profitable deviations.
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s0

sk

0, 4, 4

bS

0, 5 + k, 3 − k

aS

1, 4 + k, 4 − k

acc

acc

0, 5, 3

aS

0, 4, 4

bS

sl

1, 4 + l, 4 − l

acc

0, 5 + l, 3 − l

aS
0, 4, 4

bS

bcc

tk

bcc bcc

uk

0, 5, 3

0, 4, 4

·cs

·s·

·=k

·6=k

H

n : 1, 4 + x, 4 − x
·cc

Figure 6 The rescale game Gr
k for k ∈ {1, 2, 3} and l = k − 1

or unilateraly decide to stop the game (action s) and go to a terminal state (where Player 0

will have payoff 0). In node tk, only players 1 and 2 have a choice: they can either continue

to the game H (when both of them play c), or decide to stop and go to a k-action matching-

pennies game (when one of them plays s). In Fig. 6, we write S as a shorthand representing

any combination of moves of players 1 and 2 where at least one of them decides to stop

(action s). Node n is the initial node of a game H (which is unknown for the moment).

The interesting property of game Gr
k is that we can relate 0-optimal Nash equilibria

from s0 and those from n: (roughly) there is a Nash equilibrium from n of expected payoff

(1, 4 + x, 4 − x) if, and only if, there is a Nash equilibrium from s0 of expected payoff

(1, 4 + k · x, 4 − k · x).

This is because, from s0 and sk, there is a threat for Player 0 that one of the players 1

and 2 stops the game immediately, leading to a state with payoff 0 for her. Hence, Player 0

is forced to “collaborate” with players 1 and 2 and help them be satisfied with their payoffs,

either by joining one of the interesting terminal states of Gr
k, or in the next game H after n.

Some technical calculations show that Player 0 has to play a with probability k ·x at s0, and

with probability x/(x + 1) at sk and sl. The gadget to the right of tk is just for ensuring

that 0 ≤ k · x ≤ 1 (this condition is required for having the above-mentioned equivalence

between Nash equilibria from s0 and Nash equilibria from n).

5 Comparing values

5.1 Testing game

We present in this section the construction of a game for comparing the expected payoffs

in different nodes. This will be useful in our reduction to encode the zero-tests of our

two-counter machine.

Consider the game Gt depicted on Fig. 7. This game has the very interesting property

that if we assume there are 0-optimal Nash equilibria from n1 and n2 of respective payoffs

(1, 4 + x, 4 − x) and (1, 4 − y, 4 + y), then there is a 0-optimal Nash equilibrium from s0 if,

and only if, x = y, and the payoff is then (1, 4+x/2, 4−x/2). Indeed, unless x = 0 or y = 0,
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s0

sa
1

sb
1

0, 4, 4

sa
2

sb
2

H2 H1

n2 : 1, 4 − y, 4 + y n1 : 1, 4 + x, 4 − x

·ab

·ba

·S

·S

·cc

·cc

·6=2

·6=2

·=2

·=2

·=2

Figure 7 The testing game Gt

it should be the case that a 0-optimal Nash equilibrium activates all states sα
j in the game,

and then, as players 1 and 2 have zero-sum objectives, the best way is to play uniformly at

random in all states where this makes sense (when actions a and b are available), and to

play deterministically action c in all states where c is available.

This gadget allows, by plugging in n2 a game with known payoffs (the games on the next

subsection), to check that the payoff at s0 has some particular value (which depends on that

after n1).

5.2 Counting modules

We now present games that generate a family of Nash equilibria with a particular expected

payoffs. These modules will later be plugged at node n2 of game Gt, and will ensure that

the payoff of an Nash equilibrium in Gt will have a predefined form.

◮ Lemma 11. Consider the games of Fig. 8. For n ∈ N ∪ {+∞}, define

rk(n) =

(

1, 4 −
1

kn
, 4 +

1

kn

)

s(n) =

(

1, 4 −
1

n + 1
, 4 +

1

n + 1

)

Then the set of 0-optimal Nash equilibrium values is {s(n) | n ∈ N ∪ {∞}} in D, and

{rk(n) | n ∈ N ∪ {∞}} in Ck for all k ≥ 2.

s0

s21, 3, 5 1, 4, 4

s1

·aa ·ba

·ab

·bb
·6=k

·=k

game Ck: s0

s2 0, 3, 51, 3, 5 1, 4, 4

s1

·aa ·ba

·ab

·bb acc, bS
aS

bcc

game D:

Figure 8 The modules Ck (for k ≥ 2) and D. Notice that state s2 should be considered terminal,

as it only carries a self-loop. We could replace it by a two-state loop. We could also see it as a

terminal state with reward (0, 0, 0), but for the proof of Corollary 16, we want the terminal rewards

of players 1 and 2 to always sum to 8, which we could not achieve easily in this case.
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in

q0

0, 5, 3
·S

·cc

(a) Input gadget G init
M

q s·6=

δ1

δ2 δ3

δ4

·δ1δ1

·δ2δ2

·δ4δ4

·δ3δ3

(b) Game Gq
M

(where {δ1, ..., δn} is the set
∆q of transitions leaving q)

δ

q′

1, 4, 4
·6=k+1

·=k+1

(c) Game Gδ
M when

δ = (q, dec(k), q′)

δ

Gr
k+1

q′

s0

n

(d) Game Gδ
M when

δ = (q, inc(k), q′)

δ

Gr
2

s0

n

Gt

s0

n1 n2

q′ C4−k

(e) Game Gδ
M when δ =

(q, zero(k), q′)

δ

Gr
2

s0

n

Gt

s0

n1 n2

q′ D

1, 4, 4

·=k+1

·6=k+1

(f) Game Gδ
M when δ =

(q, !zero(k), q′)

Figure 9 Description of the subgames Gq
M

and Gδ
M

6 Undecidability proof

We now turn to the global undecidability proof of the constrained-existence problem in

three-player games. The proof is a reduction from the recurring problem of a two-counter

machine. We encode the behaviour of a two-counter machine M as a concurrent game GM,

which connects the various subgames depicted on Figures 9 (one initial gadget, one per state

q, one per transition δ). Roughly, this game will encode a configuration (q, c1, c2) of M using

a Nash equilibrium σ ∈ S from q such that Eσ(φ | s) =
(

1, 4 + 1
2c1 3c2

, 4 − 1
2c1 3c2

)

(property

P (q, c1, c2)). Using the various constructions we have made previously, we can show that

if P (q, c1, c2) is satisfied, then there is a transition (q, c1, c2) →δ (q′, c′
1, c′

2) in M such that

P (q′, c′
1, c′

2) is satisfied as well, which allows to progress ‘along’ a Nash equilibrium while

building a computation in M.

The correspondence between M and GM is made precise as follows:

◮ Proposition 12. The two-counter machine M has an infinite valid computation if, and

only if, there is a 0-optimal Nash equilibrium from state in in game GM.

This immediately entails:

◮ Theorem 13. We cannot decide whether there exists a 0-optimal Nash equilibrium in

three-player games with non-negative terminal-reward payoffs.

We now consider several extensions of this result. We first state two straightforward

corollaries. First, applying Lemma 10, we can enforce the 0-optimality constraint in the

game by inserting an initial module. It follows:
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s (x, y, 8 − y) s vx,y

x, 1, 0

x, 0, 1

My

My

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

=M3 =M4 =M5

Figure 10 Transformation of a terminal node (x, y, 8 − y) with an intermediate node vx,y. The

table on the right gives the value of My for some values of y (notice that My ⊆ My′ when y ≤ y′).

◮ Corollary 14. We cannot decide whether there exists a Nash equilibrium in three-player

games with (possibly negative) terminal-reward payoffs.

Now we realize that in this reduction, there is a 0-optimal Nash equilibrium from in

if, and only if, there is a Nash equilibrium with social welfare larger than or equal to 9,

where the social welfare is defined as the sum of the expected payoffs of all players. As an

immediate corollary, we get:

◮ Corollary 15. We cannot decide whether there exists a Nash equilibrium with some lower

bound on the social welfare (or with optimal social welfare) in three-player terminal-reward

games with non-negative payoffs.

We now explain briefly how the main theorem can be extended to terminal-reachability

payoffs. We indeed realize that the payoffs of players 1 and 2 always sum up to 8 in the

reduction (the game between those two players is zero-sum). The idea is then to replace

each terminal state with a simple gadget in which the payoffs of players 1 and 2 are (8, 0)

or (0, 8), and to use an adequate set of actions which decomposes runs into two sets with

proportions mimicking the normal rewards of the terminal state. For instance, for a reward

(x, y, 8 − y), the set of actions My = {·ij | ∃0 ≤ r < y. i − j = r mod 8} will lead to (x, 8, 0)

and its complement to (x, 0, 8), as illustrated on Fig. 10. In the game from vx,y, there is

a unique Nash equilibrium which consists in playing uniformly at random for both players,

yielding a payoff of (x, y, 8 − y). It remains to normalize and replace each (x, 8, 0) (resp.

(x, 0, 8)) by (x, 1, 0) (resp. (x, 0, 1)).

◮ Corollary 16. We cannot decide whether there exists a 0-optimal Nash equilibrium in

three-player games with terminal-reachability payoffs.

Finally, (roughly) by dualizing reachability and safety conditions, we can prove that the

constrained existence of Nash equilibrium in safety games cannot be decided. This is to be

compared with the fact that there always exists a Nash equilibrium in safety games [10].

◮ Corollary 17. We cannot decide whether there exists a Nash equilibrium in three-player

safety games with payoff 0 assigned to Player 0.

7 Conclusion and future work

In this paper we have shown the undecidability of the existence of a constrained Nash equi-

librium in a three-player concurrent game with terminal-reachability objectives. We believe

this result is surprising, since it applies to very simple payoff functions, and with very

few players. This result has to be compared with the undecidability result of [13], which
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on one hand, applies to turn-based games, but requires 14 players and the full power of

terminal-reward payoffs. Furthermore, in turn-based games with terminal-reachability pay-

offs, constrained Nash equilibria can be computed (in polynomial time) through a reduction

to pure Nash equilibria [12] and algorithms for computing pure Nash equilibria [13]. We

have also mentioned a couple of interesting corollaries that we do not repeat here.

This work lets open the decidability status of the constrained-existence problem in two-

player games with terminal-reward and terminal-reachability payoffs. In fact, even the

existence of Nash equilibria in such games is an open problem: it was believed until recently

that there are two-player games with nonnegative terminal rewards having no Nash equilib-

rium [3, 13], but the proposed example was actually wrong (as we explained in Section 3.4).

If one can find such a game with no Nash equilibrium, then our Corollary 14 extends to non-

negative terminal-reward games, and possibly to terminal-reachability games. Notice that

two-player games have been studied quite a lot in the literature, and we know for instance

that (uniform) ǫ-Nash equilibria always exist in terminal-reward games [16, 17].
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