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bUniversité Libre de Bruxelles, Brussels, Belgique

Abstract

Reachability checking is one of the most basic problems in verification. By solving this problem in a
game, one can synthesize a strategy that dictates the actions to be performed for ensuring that the
target location is reached. In this work, we are interested in synthesizing “robust” strategies for
ensuring reachability of a location in timed automata. By robust, we mean that it must still ensure
reachability even when the delays are perturbed by the environment. We model this perturbed
semantics as a game between the controller and its environment, and solve the parameterized robust
reachability problem: we show that the existence of an upper bound on the perturbations under
which there is a strategy reaching a target location is EXPTIME-complete. We also extend our
algorithm, with the same complexity, to turn-based timed games, where the successor state is entirely
determined by the environment in some locations.

1. Introduction

Timed automata [4] are a timed extension of finite-state automata. They come with an automata-
theoretic framework to design, model, verify and synthesize systems with timing constraints. One of
the most basic problems in timed automata is the reachability problem: given a timed automaton
and a target location, is there a path that leads to that location? This can be rephrased in the
context of control as follows: is there a strategy that dictates how to choose time delays and edges to
be taken so that a target location is reached? This problem has been solved long ago [4], generalized
to timed games [6], and efficient algorithms have then been developed and implemented [30, 38].

However, the abstract model of timed automata is an idealization of real timed systems. For
instance, we assume in timed automata that strategies can choose the delays with arbitrary precision.
In particular, the delays can be arbitrarily close to zero (the system is arbitrarily fast), and clock
constraints can enforce exact delays (time can be measured exactly). Although these assumptions
are natural in abstract models, they need to be justified after the design phase. Indeed the situation
is different in real-world systems: digital systems have response times that may not be negligible,
and control software cannot ensure timing constraints exactly, but only up to some error, caused by

✩Partly supported by the French ANR project ImpRo (ANR-10-BLAN-0317), by ERC Starting grants EQualIS
(FP7-308087) and inVEST (FP7-279499), and by European FET project Cassting (FP7-601148)

Email addresses: bouyer@lsv.ens-cachan.fr (Patricia Bouyer), markey@lsv.ens-cachan.fr (Nicolas Markey),
ocan.sankur@normalesup.org (Ocan Sankur)

Preprint submitted to Elsevier June 3, 2014



clock imprecisions, measurement errors, and communication delays. A good control software must
be robust, i.e., it must ensure good behavior in spite of small imprecisions [23, 28].

Consequently, there has been a recent effort to consider imprecisions inherent to real systems in
the theory of timed systems. In particular, there has been several attempts to define convenient
notions of robustness for timed automata. The approach initiated in [32, 18, 17] is the closest to our
framework. It consists in modeling imprecisions by enlarging all clock constraints of the automaton
by some parameter δ, that is transforming each constraint of the form x ∈ [a, b] into x ∈ [a− δ, b+ δ],
and in synthesizing δ > 0 such that all runs of the enlarged automaton satisfy a given property.
Several model-checking algorithms for timed automata were then re-visited and extended to this
setting in [9, 10, 11, 34] and symbolic algorithms were studied in [26, 16]. This notion of robustness
also corresponds to a concrete implementation semantics; in fact robustness implies implementability
in a simplied model of a micro-processor, see [18].

In all these works, the robustness condition is satisfied if there exists an enlargement parameter
for which all runs of the enlarged automaton satisfy a given property. In other terms, for any choice
of the delays and edges, and any possible perturbation, the given property must hold. Although
this is a convenient notion for e.g. safety properties, this does not capture the system’s ability to
adapt to perturbations that were observed earlier in a given run. In fact, if perturbations have
accumulated and deviated the system from its course, a smart control software should be able to
adapt its action to correct this. Thus, we believe a good notion of robustness can be defined by a
game played between two players: Controller with a reachability objective, and Perturbator with
the complementary objective.

Following this idea, we are interested in the synthesis of robust strategies in timed automata
and games for reachability objectives, taking into account response times and imprecisions. In our
semantics, which is parameterized by δP and δR with 0 < δP ≤ δR, Controller chooses to delay an
amount d ≥ δR after which the guard of a chosen edge is satisfied, and the system delays d′ and
takes the edge, where d′ is chosen by Perturbator satisfying |d− d′| ≤ δP . Observe that the guard
may not be satisfied after the delay d′, but the chosen edge is taken whatever the perturbations.
We say that a given location is robustly reachable if there exist parameters 0 < δP ≤ δR such that
Controller has a winning strategy ensuring that the location is reached against any strategy of
Perturbator. To simplify the presentation, but w.l.o.g., we assume in this paper that δ = δP = δR;
our algorithm can easily be adapted to the general case (see Section 4).

The main result of this paper is the following: We show that deciding the existence of δ > 0, and
of a strategy for the controller so as to ensure reachability of a given location in a turn-based timed
game (whatever the imprecision, up to δ), is EXPTIME-complete. Moreover, if there is a strategy,
we can compute a uniform one, which is parameterized by δ, using shrunk difference bound matrices
(shrunk DBMs) that we introduced in [36]. In this case, our algorithm provides a bound δ0 > 0 such
that the strategy is correct for all δ ∈ [0, δ0]. Our strategies also give quantitative information on
how perturbations accumulate or can compensate. Technically, our work extends shrunk DBMs by
constraints, and establishes non-trivial algebraic properties of this data structure (Section 3). The
main result is then obtained by transforming the infinite-state game into a finite abstraction, which
we prove can be used to symbolically compute a winning strategy, if any (Section 4).

A variant of our semantics was studied in [15] for timed games with fixed parameters. In
this variant, Controller can only suggest delays and edges whose guards are satisfied after any
perturbation; thus, this is a conservative variant of our semantics. When δ is fixed, the semantics
can be encoded by a usual timed game, and standard algorithms can be applied. Whether one
can synthesize δ > 0 for which the controller has a winning strategy was left as a challenging open
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problem. We solve this problem for reachability objectives in turn-based timed games. Parameterized
reachability and safety in the conservative semantics of [15] are studied in [37]. See also Section 2.3
for notes on related work.

2. Robust Reachability in Timed Automata

2.1. Timed Automata and Games, and Robust Reachability

Given a finite set of clocks C, we call valuations the elements of RC≥0, which are nonnegative real
vectors of dimension |C|. For a subset R ⊆ C and a valuation v, v[R← 0] is the valuation defined by
v[R← 0](x) = v(x) for x ∈ C \R and v[R← 0](x) = 0 for x ∈ R. Given d ∈ R≥0 and a valuation v,
the valuation v + d is defined by (v + d)(x) = v(x) + d for all x ∈ C. We extend these operations to
sets of valuations in the obvious way. We write ~0 for the valuation that assigns 0 to every clock.

An atomic clock constraint is a formula of the form k � x �′ l or k � x− y �′ l where x, y ∈ C,
k, l ∈ Z ∪ {−∞,∞} and �,�′ ∈ {<,≤}. A guard is a conjunction of atomic clock constraints.
A valuation v satisfies a guard g, denoted v |= g, if all constraints are satisfied when each x ∈ C is
replaced with v(x). We write ΦC for the set of guards built on C.

Definition 2.1. A (two-player) turn-based timed game A is a tuple (LC ∪ LP , C, ℓ0, E), where
L = LC ∪ LP is a finite set of locations satisfying LC ∩ LP = ∅, C is a finite set of clocks,
E ⊆ L× ΦC × 2C × L is a set of edges, and ℓ0 ∈ LC is the initial location. An edge e = (ℓ, g, R, ℓ′)

is also written as ℓ
g,R
−−→ ℓ′. A timed automaton is a turn-based timed game with LP = ∅.

Standard semantics of timed automata is usually given as a timed transition system [4]. To capture
robustness, we define the semantics as a game where perturbations in delays are uncontrollable. The
semantics extends naturally to turn-based timed games, where our game semantics simply gives
control over perturbations to one of the players.

Given a turn-based timed game A = (LC ∪ LP , C, ℓ0, E) and δ > 0, we define the perturbation
game of A w.r.t. δ as a two-player turn-based game Gδ(A) between players Controller and Perturbator.
Intuitively the semantics is the following: At locations LC , Controller first suggests a delay and an
edge at Perturbator perturbs the delay by some amount in the range [−δ, δ], and the designated
edge is taken with the perturbed delay; at locations LP , the edge and the delay are entirely
determined by Perturbator. Observe that the semantics is not symmetric; Perturbator has the
role of the environment. Formally, the state space of Gδ(A) is partitioned into VC ∪ VP where
VC = LC × RC≥0 belong to Controller, and VP = LP × RC≥0 ∪ LC × RC≥0 × R≥0 × E belong to

Perturbator. The initial state is (ℓ0,~0) and belongs to Controller. The transitions are defined
as follows: from any state (ℓ, v) ∈ VC , there is a transition to (ℓ, v, d, e) ∈ VP whenever d ≥ δ,
e = (ℓ, g, R, ℓ′) is an edge such that v + d |= g. Then, from any such state (ℓ, v, d, e) ∈ VP , there
is a transition to (ℓ′, (v + d + ǫ)[R ← 0]) ∈ VC , for any ǫ ∈ [−δ, δ]. Further, for any (ℓ, ν) ∈ VP ,
there is an edge from (ℓ, ν) to (ℓ′, (ν + d)[R← 0]) for any d ≥ 0 and edge e = (ℓ, g, R, ℓ′) such that
ν + d |= g.

We assume familiarity with basic notions in game theory, and quickly survey the main definitions.
A run in Gδ(A) is a finite or infinite sequence of consecutive states starting at (ℓ0,~0). It is said
maximal if it is infinite or cannot be extended. A strategy for Controller is a function that assigns to
every non-maximal run ending in some (ℓ, v) ∈ VC , a pair (d, e) where d ≥ δ and e is an edge enabled
at v + d, i.e., there is a transition from (ℓ, v) to (ℓ, v, d, e) ∈ VP . A strategy for Perturbator assigns
to all states (ℓ, v, d, e) ∈ VP a perturbation ǫ ∈ [−δ, δ], and to all states (ℓ, v) ∈ VP , a delay and an
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edge whose guard is satisfied at v. A run ρ is compatible with a strategy f if for every prefix ρ′

of ρ ending in VC , the next transition along ρ after ρ′ is given by f . Given a target location ℓ,
a strategy f is winning for the reachability objective defined by ℓ whenever all maximal runs that
are compatible with f visit ℓ.

Observe that we require at any state (ℓ, v), that Controller should choose a delay d ≥ δ and an
edge e that is enabled after the chosen delay d. The edge chosen by Controller is always taken but
there is no guarantee that the guard will be satisfied exactly when the transition takes place. In
fact, Perturbator can perturb the delay d chosen by Controller by any amount ǫ ∈ [−δ, δ], including
those that do not satisfy the guard. Notice that G0(A) corresponds to the standard (non-robust)
semantics of A. We are interested in the following problem.

Problem 2.2 (Parameterized Robust Reachability). Given a turn-based timed game A and a target
location ℓ, decide whether there exists δ > 0 such that Controller has a winning strategy in Gδ(A)
for the reachability objective ℓ.

Our main result is the decidability of this problem. Moreover, if there is a solution, we compute
a strategy represented by parameterized difference-bound matrices where δ is the parameter;
the strategy is thus uniform with respect to δ. In fact, we provide a bound δ0 > 0 such that the
strategy is winning for Controller for any δ ∈ [0, δ0]. These strategies also provide a quantitative
information on how much the perturbation accumulates (See Fig. 3). The main result of this paper
is the following:

Theorem 2.3. Parameterized robust reachability is EXPTIME-complete both for timed automata
and turn-based timed games.

Notice that we are interested in the parameterized problem: δ is not fixed in advance. When δ
is fixed, the problem can be formulated and solved as a usual timed game (see [15] for such an
encoding). The parameterized version is important since one does not necessarily have a precise
estimation for perturbations at the design phase. It is also interesting to directly synthesize δ and a
uniform strategy, as described above, rather than finding one by trial-and-error.

Checking parameterized robust reachability is different from usual reachability checking mainly
for two reasons. First, in order to reach a given location, Controller has to choose the delays along a
run, in such a way that these perturbations do not accumulate and block the run. In particular,
it shouldn’t play too close to the borders of the guards (see Fig. 3). Second, due to these uncontrollable
perturbations, some regions that are not reachable in the absence of perturbation can become
reachable (see Fig. 5). So, Controller must also be able to win from these newly reachable
regions. The regions that become reachable in our semantics are those neighboring reachable
regions. The characterization of these neighboring regions is one of the main difficulties in this paper
(see Section 3.5).

The paper is organized as follows. In Section 3, we study shrunk DBMs, a data structure
used to represent the parameterized state space of timed automata under perturbations [36]. We
extend this data structure to include shrinking constraints, and study neighborhoods of shrunk
DBMs. For the sake of readability, we first present and prove the algorithm for timed automata, in
Section 4, then explain how to extend the algorithm to turn-based timed games in Section 5. The
EXPTIME-hardness result is given in Section 6.

2.2. Motivating example: robust real-time scheduling

An application of timed automata is the synthesis of schedulers in various contexts [1]. We show
that robust reachability can help providing a better schedulability analysis: we show that schedulers
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synthesized by standard reachability analysis may not be robust: even the slightest decrease in task
execution times can result in a large increase in the total time. This is a phenomenon known as
timing anomalies, first identified in [20].

Consider the scheduling problem described in Fig. 1, inspired by [33]. Assume that we look for a
greedy (i.e., work-conserving) scheduler, that will immediately start executing a task if a machine
is free for execution on an available task. What execution time can a greedy scheduling policy
guarantee on this instance? One can model this problem as a timed automaton, and prove, by
classical reachability analysis, that these tasks can be scheduled using a greedy policy within six
time units. However the scheduler obtained this way may not be robust, as illustrated in Fig. 1(b).
If the duration of task A unexpectedly drops by a small amount δ > 0, then any greedy scheduler
will schedule task B before task C, since the latter is not ready for execution at time 2− δ. This
yields a scheduling of tasks in 8− δ time units.

Our robust reachability algorithm is able to capture such phenomena, and can provide correct
and robust schedulers. In fact, it would answer that the tasks are not schedulable in six time units
(with a greedy policy), but only in eight time units. See Appendix A for a detailed model and
discussion of this example.

2.3. Related work: robustness in timed automata and games

Robustness in timed automata and hybrid automata models have been studied in the last two
decades. The objective is mainly twofold: First, robustness is a desired property of real-time systems,
so developing a formal framework for robustness analysis and robust synthesis is a natural goal.
Second, taking into consideration perturbations can yield a more realistic semantics, which does
not have the excessive expressive power of abstract timed automata. In fact, giving up on infinite
precision may render some undecidable problems decidable, such as checking safety in linear hybrid
automata under some conditions [19].

Several works focused particularly on defining a good notion of robustness in timed automata.
[31] surveys some of these. A first such attempt is [21], where a topological notion is introduced,
with the hope that the language inclusion problem could become decidable under this semantics,
but the undecidability was later shown to hold even in the robust setting [22]. This approach differs
from our work since we rather focus on a more concrete perturbation model with modelling and
synthesis purposes. Also, topological robustness consists in discarding isolated behaviours, whereas
our semantics adds behaviours.

0 1 2 3 4 5 6 7 8

M2

M1 A

C B

D E

(a) A has duration 2.

0 1 2 3 4 5 6 7 8

M2

M1 A

B C

D E

(b) A has duration 2− δ.

Figure 1: Consider tasks A,B,C of duration 2 and D,E of duration 1, to be scheduled on two machines. As usual,
we assume that a machine can execute a single task at a time. Dependences between tasks are as follows: A→ B and
C → D,E, meaning e.g. that A must be completed before B can start. Task A must be executed on machine M1

and tasks B,C on machine M2. Moreover, the release time of task C means that it cannot be scheduled before 2
time units. Fig. 1(a) shows the optimal greedy schedule for these tasks under these constraints, while Fig. 1(b) shows
the outcome of any greedy scheduler when the duration of task A is less than 2.
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The semantics under an unknown regular sampling of time was considered in [14, 2, 3]. Here,
the goal is to synthesize a sampling parameter under which a reachability or safety objective holds,
or the untimed language is preserved. [8] shows that one can “compile” any timed automaton
to an “approximate” one whose semantics is preserved under sampling. These approaches are
orthogonal to ours since they privilege discrete semantics rather than considering continous delays
and perturbations, and study loss of behaviour. We believe continous semantics provide more
precision in timed automaton models since perturbations and environment’s delays cannot always
be assumed to be discrete.

Let us state more precisely the relation of our semantics with that of [32, 18, 17]. Robust
model-checking, studied in these works, can be reformulated as follows: does there exists some δ > 0
such that whatever Controller and Perturbator do in Gδ(A), a given property is satisfied. This is
therefore the universal counterpart of our formulation of the parameterized robustness problem.
It has been shown that this universal parameterized robust model-checking is no more difficult (in
terms of complexity) than standard model-checking. This has to be compared with our result, where
complexity goes up from PSPACE to EXPTIME.

In [36], we studied robustness of timed automata to guard shrinkings, which is the dual notion
of the robustness against guard enlargement. We introduced shrunk DBMs, which we also use and
extend in this paper, in order to study the state space of timed automata with shrunk guards. We
also give in [36] a methodology to implement timed automata, while systematically avoiding the
effect of imprecisions, modelled by guard enlargement. As in robust model-checking, this approach
studies worst-case behaviour under a fixed (though parameterized) imprecision bound, and does not
take into account systems’ ability to react to actual perturbations.

As mentioned in the introduction, a similar but unparameterized notion of robustness for timed
games was studied in [15]. This unparameterized setting was also considered in the context of timed
interface theories in [29] but the parameter synthesis problem was not addressed. The semantics
of [15] is different since it requires Controller to suggest delays and edges whose guards are satisfied
after the perturbed delay, for any perturbation. It turns out that parameterized reachability and
safety are easier in this semantics; both are PSPACE-complete [37].

A related line of work is that of parameter synthesis in timed automata and games. The
parametric reachability problem is undecidable in general for timed automata [5]. Subclasses with
decidable reachability problems include the case of timed automata with a single parametric clock [5],
and the L/U timed automata [25]. The extension of this latter class to timed games were considered
recently in [27] where it is shown that the problem is decidable on L/U timed games. This latter
algorithm could be applied to a restriction of our problem with only nonnegative perturbations. In
fact, each edge could be redirected to a fresh state controlled by the second player, who is required
to choose a perturbation upto δ. However, the general case, or the case of negative perturbations
cannot be modelled this way.

The present paper is an extended version of [12] with full proofs, and the extension to turn-based
timed games.

3. Shrinking DBMs

3.1. Regions, zones and DBMs

In all timed automata and games we consider, we assume that all clocks are bounded above by a
constant. We do not lose generality with this hypothesis since reachability objectives are preserved
by choosing a constant large enough, and requiring that all clocks stay below it at any transition.
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Figure 2: Timed automaton A.

x

y
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Figure 3: Winning states in ℓ2 (left) and in ℓ1 (right).

We assume familiarity with the notions of regions and zones, and refer to [4, 7] for more background.
For two regions r and r′, we write r⋖ r′ if r′ is the immediate (strict) time-successor of r. A zone is
a set of clock valuations satisfying a guard.

We write C0 for the set C ∪ {0}. A difference-bound matrix (DBM) is a |C0| × |C0|-matrix over
(R×{<,≤})∪{(∞, <)}. We adopt the following notation: for any DBM M , we write M = (M,≺M ),
where M is the matrix made of the first components, with elements in R ∪ {∞}, while ≺M is the
matrix of the second components, with elements in {<,≤}. A DBM M naturally represents a zone
(which we abusively write M as well), defined as the set of valuations v such that, for all x, y ∈ C0,
it holds v(x)− v(y) ≺M

x,y Mx,y (where v(0) = 0). Conversely, any zone can be represented by a DBM.
We will write M ⊆M ′ to mean that the inclusion holds between the zones defined by the respective
DBMs.

We define a total order on (R× {<,≤}) ∪ {(∞, <)} as follows. We let

(a,≺) ≤ (b,≺′)⇔







a < b
or
a = b and either ≺ = ≺′ or ≺′ = ≤.

The addition is defined by (a,≺) + (b,≺′) = (a + b,≺′′), where ≺′′ = ≤ if ≺ = ≺′ = ≤, and <
otherwise. We also let (a,≺) + b = (a+ b,≺).

For any DBM M , let G(M) denote the graph over nodes C0, where there is an edge (x, y) ∈ C20 of
weight Mx,y if Mx,y < (∞, <). The normalization of M corresponds to assigning to each edge (x, y)
the weight of the shortest path in G(M) from x to y. We say that M is normalized when it is stable
under normalization [7].

3.2. Shrinking

Consider the automaton A of Fig. 2, where the goal is to reach ℓ3. If there is no perturbation or
lower bound on the delays between transitions (i.e., δ = 0), then the states from which Controller
can reach location ℓ3 can be computed backwards. One can reach ℓ3 from location ℓ2 and any
state in the zone X = (x ≤ 2) ∧ (y ≤ 1) ∧ (1 ≤ x− y), shown by (the union of the light and dark)
gray areas on Fig. 3 (left); this is the set of time-predecessors of the corresponding guard. The
set of winning states from location ℓ1 is the zone Y = (x ≤ 2), shown in Fig. 3 (right), which is
simply the set of predecessors of X at ℓ2. When δ > 0 however, the set of winning states at ℓ2 is a
“shrinking” of X, shown by the dark gray area. If the value of the clock x is too close to 2 upon
arrival in ℓ2, Controller will fail to satisfy the guard x = 2 due to the lower bound δ on the delays.
Thus, the winning states from ℓ2 are described by X ∧ (x ≤ 2− δ). Then, this shrinking is backward
propagated to ℓ1: the winning states are Y ∧ (x ≤ 2− 2δ), where we “shrink” Y by 2δ in order to
compensate for a possible perturbation.

An important observation here is that the sets X ∧ (x ≤ 2−δ) and (x ≤ 2−2δ) precisely describe
the winning states at respective locations for any δ ≥ 0. Thus, we have a uniform description of
the winning states parameterized by δ. In general, we will be able to uniformly describe such sets
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of winning states “for small enough δ > 0”. For instance, if the winning states are described by
x ≤ 2− 2δ ∧ x ≤ 1 then the set is non-empty for all δ ∈ [0, 1]. However, we will simplify this set as
x ≤ 1, which is equivalent to the above formula for all δ ∈ [0, 1

2 ]. Thus, we give up on computing the
winning states for all values of δ, and concentrate on an infinitesimal analysis. These simplifications
allow us to compute the state space by a simpler representation, and still provide safe bounds on δ.

We now define shrunk DBMs, a data structure we introduced in [36], in order to manipulate
“shrinkings” of zones.

3.3. Shrunk DBMs

For any interval [a, b], we define the shrinking operator as shrink[a,b](Z) = {v | v + [a, b] ⊆ Z}
for any zone Z. We only use operators shrink[0,δ] and shrink[−δ,δ] in the sequel. For a zone Z
represented as a DBM, shrink[0,δ](Z) is the DBM Z − δ · 1C×{0} and shrink[−δ,δ](Z) is the DBM
Z − δ · 1C×{0}∪{0}×C , for any δ > 0.

Our aim is to handle these DBMs symbolically. For this, we define shrinking matrices (SM),
which are nonnegative integer square matrices with zeroes on their diagonals. A shrunk DBM is then
a pair (M,P ) where M is a DBM, P is a shrinking matrix [36]. The meaning of this pair is that we
consider DBMs M − δP where δ ∈ [0, δ0] for some δ0 > 0. In the rest of this paper, we abusively say
“for all small enough δ > 0” meaning “there exists δ0 > 0 such that for all δ ∈ [0, δ0]”. We also adopt
the following notation: when we write a statement involving shrunk DBMs (M,P ), we mean that
the statement holds for (M − δP ) for all small enough δ > 0. For instance, (M,P ) = Pretime ((N,Q))
means that M − δP = Pretime (N − δQ) for all small enough δ > 0. In the same vein, shrunk
DBMs can be re-shrunk, and we write shrink((M,P )) (resp. shrink+((M,P )) for the shrunk DBM
(N,Q) such that N − δQ = shrink[−δ,δ](M − δP ) (resp. N − δQ = shrink[0,δ](M − δP )) for all small
enough δ > 0.

As usual DBMs, shrunk DBMs also have normal forms. Similarly, the normalization of shrunk
DBMs can be defined using finite shortest paths in the graph G(M) of a given DBM M , computed
by the Floyd-Warshall algorithm. In order to adapt this algorithm to our data structure, we
need to define the basic operations of summation and minimization on shrunk DBMs. We define,
((α,≺), k) + ((β,≺′), l) = ((α+ β,≺′′), k + l), where ≺′′ = ≤ if ≺ = ≺′ = ≤ and < otherwise. The
comparison of elements is defined as follows.

((α,≺), k) � ((β,≺′), l) ⇔







α < β or
α = β and k > l, or
α = β and k = l and ≺′ = < ⇒ ≺ = <.

(1)

Intuitively, the smaller constraint is the most restrictive. Note that if ((α,≺), k) � ((β,≺′), l), then
one can compute δ0 such that α− kδ ≤ β − lδ for all δ ∈ [0, δ0]. The minimum is then defined as
follows.

min (((α,≺), k), ((β,≺′), l)) =

{
((α,≺), k) if ((α,≺), k) � ((β,≺′), l),
((β,≺′), l) otherwise.

(2)

Now, a shrunk DBM (M,P ) is normalized if for all x, y, z ∈ C0, (Mx,y, Px,y) ≤ (Mx,z, Px,z) +
(Mz,y, Pz,y). As one might expect, a shrunk DBM means that the DBMs M − δP are normalized
for small enough δ > 0 as shown in the next lemma.

Lemma 3.1. For any shrunk DBM (M,P ) that is normalized, there exists δ0 > 0 such that M − δP
is a normalized DBM for all δ ∈ [0, δ0].
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Proof. This follows from the fact that there is a finite number of inequalities to satisfy for the
normalization of (M,P ), so one can choose δ small enough to satisfy all of them. It follows that for
such δ > 0, for all x, y, z ∈ C0, Mx,y − δPx,y ≺

M
x,y Mx,z − δPx,z +Mz,y − δPz,y, which means that the

DBM M − δP is normalized.

Any shrunk DBM can be made normalized by the Floyd-Warshall shortest paths algorithm
applied with the operations defined on shrunk DBMs. Algorithm 1 recalls this procedure, and the
next lemma shows it correctness. Let us define norm((M,P )) the normalized shrunk DBM obtained
by this procedure.

Data: Shrunk DBM (M,P )
for x ∈ C0 do

for y ∈ C0 do
for z ∈ C0 do

(M,P )x,y := min((M,P )x,y, (M,P )x,z + (M,P )z,y);
end

end

end
Algorithm 1: Normalization algorithm for shrunk DBMs.

Lemma 3.2. For any shrunk DBM (M,P ), let (M ′, P ′) denote the result of the computation of
Algorithm 1. Then, (M ′, P ′) is normalized, and there exists δ0 > 0 such that for all δ ∈ [0, δ0],
M − δP describes the same set as M ′ − δP ′.

Proof. The fact that (M ′, P ′) is normalized as a shrunk DBM follows by the correctness of the
shortest paths algorithm. Furthermore, since the algorithm performs a finite number of operations, all
minima computed during the procedure hold for all small enough δ > 0. Therefore, for all δ ∈ [0, δ0],
where δ0 can be computed by updating it at each iteration, M ′−δP ′ and M−δP are equivalent.

We will now consider shrunk DBMs (M,P ) where M is already normalized as a DBM. In this
case, the normalization of the shrunk DBM can be described considering the shortest paths in the
constraint graph. We consider paths π = π1 . . . πn of G(M) weighted by a given DBM or any matrix,
as follows. For a matrix P , the P -weight of π, written P (π), (or the weight of π in P ) is the sum
of the weights Pπj ,πj+1

for 1 ≤ j ≤ n− 1. Recall that M denotes the matrix of the constants of a
DBM M (without the inequalities).

Definition 3.3. Let M be a normalized DBM. For any x, y ∈ C0, we define Πx,y(G(M)) as the set
of paths with least and finite M-weight from x to y in G(M).

Notice that the shortest paths are defined with respect to weights in M and not M . The M -sign
of a path π, written signM (π) is < if ≺M

πi,πi+1
= < for some i, and ≤ otherwise. Finite-weighted

shortest paths can be used to characterize the non-emptiness and the normalization of shrunk DBMs.

Lemma 3.4. Let M be a normalized non-empty DBM and P be a shrinking matrix. Then, (M,P )
is non-empty if, and only if, for all x ∈ C0, there is no path in Πx,x(G(M)) with positive P -weight.
Moreover, if (M,P ) is not empty, then, define (M ′, P ′) by letting P ′x,y be the largest P -weight of the

paths in Πx,y(G(M)), and define M ′x,y = (Mx,y,≺
M ′

x,y) where ≺
M ′

x,y= < if some path of Πx,y(G(M))
of P -weight P ′x,y has M -sign <, and ≤ otherwise. Then (M ′, P ′) = norm((M,P )).
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Proof. Observe that (M ′, P ′) satisfies the following, for all x, y, z ∈ C0,

M′x,y = M′x,z +M′z,y ⇒ (M′x,y, P
′
x,y) ≺

M ′

x,y (M′x,z, P
′
x,z) + (M′z,y, P

′
z,y). (3)

In fact, the left hand side condition means that (x, z, y) ∈ Πx,y(G(M)), so, by definition of P ′,

P ′x,y ≥ P ′x,z + P ′z,y, where in case of equality, signM ′(x, z, y) =< implies ≺M ′

x,y=< by construction. It
follows that (M ′, P ′) is normalized.

Now, a normalized DBM is non-empty if, and only if all its diagonal entries are (0,≤). Therefore,
(M,P ) is empty whenever Πx,x(G(M)) has a path with positive P -weight, for some x ∈ C0. If
any such path has P -weight equal to 0, then ≺M

x,y=≤ since M is non-empty. The first statement
follows.

Remark 3.5. Consider a normalized DBM M and any SM P . If (M ′, P ′) = norm((M,P )), then
M′ = M, M ⊆ M ′ and P ≤ P ′. This follows from the definition of normalization. In fact,
normalization does not change the values M, and if ≺M ′

x,y= <, then Πx,y(G(M)) has a path with

sign <, so ≺M
x,y= <. That P ≤ P ′ follows from the fact that for all x, y, P ′x,y is the greatest P -weight

of the shortest paths from x to y, so it is at least Px,y.

Here is an example where the signs of the inequalities change due to normalization: Consider
x ≤ 1 ∧ 1 ≤ y ∧ x − y < 1, which is normalized (seen as a DBM over two clocks). However the
shrinking x ≤ 1− δ ∧ 1 ≤ y ∧ x− y < 1, yields, after normalization x ≤ 1− δ ∧ 1 ≤ y ∧ x− y ≤ 1− δ,
where the last inequality becomes non-strict.

It was shown in [36] that when usual operations are applied on shrunk DBMs, one always obtains
shrunk DBMs, whose shrinking matrices can be computed. The proof was only given for shrunk
DBMs with non-strict inequalities. We recall the constructions, and extend it to shrunk DBMs with
both strict and non-strict inequalities.

Lemma 3.6 ([36]). Let M,M ′, N be normalized non-empty DBMs.

1. If N = Pretime (M), then for all SMs P , there exists a shrunk DBM (N ′, Q) such that N = N′,
N ⊆ N ′ and (N ′, Q) = Pretime ((M,P )). Moreover, Q is obtained from P , by setting Q0,x = 0
for all x ∈ C and applying normalization.

2. If N = M ∩ O, then for all SMs P and P ′, there exists a shrunk DBM (N ′, Q) such that
N′ = N, N ⊆ N ′ and (N ′, Q) = (M,P ) ∩ (O,P ′). Moreover, (N ′, Q) is given by setting
(N ′x,y, Qx,y) = min((Mx,y, Px,y), (Ox,y, P

′
x,y)) and applying normalization.

3. If N = UnresetR(M) for some R ⊆ C, then for all SMs P , there exists a shrunk DBM (N ′, Q)
such that N′ = N, N ⊆ N ′ and (N ′, Q) = UnresetR((M,P )). To obtain (N ′, Q), first compute
(N ′′, Q′) such that (N ′′, Q′) = (M,P ) ∩ (R = 0) by previous case, then set all components
(x, y) with x ∈ R or y ∈ R, to (N ′′, Q′)x,y = ((∞, <), 0) and apply normalization.

4. If N = Posttime(M), then for all SMs P , there exists a shrunk DBM (N,Q) such that
(N,Q) = Posttime((M,P )). Q can be obtained from P by setting Qx,0 = 0 for all x ∈ C.

5. If (N,Q) = shrink((M,P )), then N = M and Q is obtained from P by incrementing all Px,0

and P0,x for x ∈ C. For shrink+, one only increments Px,0, for all x ∈ C.
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Proof. The proofs for shrunk DBMs with only non-strict inequalities were given in [36], except for
the Posttime operator which we prove below.

Let us recall here the idea and explain the extension to strict inequalities.
Assume (M,P ) is normalized. All operations are defined following corresponding ones for usual

DBMs. For instance, to compute Pretime ((M,P )), one sets the first row to ((0,≤), 0), then applies
normalization. In fact, for small enough δ > 0, this is precisely the computation of Pretime (M − δP ),
seen as a classical DBM. Note that the bound on δ and the types of the inequalities can (only)
change during normalization. The rest of the statement follows from Remark 3.5.

However (M,P ) cannot always be assumed to be normalized since P is chosen arbitrarily. If
N = f(M) denotes one of the equations in this lemma, because all operations are non-decreasing, if
(M ′, P ′) = norm((M,P )), then N ′′ = f(M ′) satisfies N ⊆ N ′′, and moreover N = N′′. The latter
equality follows from N ⊆ N ′′ and the fact that any shortest path of N is also a shortest path
of N ′′, though possibly with a different sign. Thus, by Remark 3.5, the lemma yields a shrunk DBM
(N ′, Q) = f((M ′, P )) = f((M,P )) with N ⊆ N ′ and N = N′, as desired.

We now prove the case of Posttime. The Posttime operation on DBMs simply sets the first column
to (∞, <). The resulting DBM is already normalized. Accordingly, we define Q′x,y = Px,y for
all (x, y) ∈ C0 × C and Q′x,0 = 0 for x ∈ C0, and let (N ′, Q) = norm((N,Q′)). In fact, for small
enough δ > 0, this corresponds to setting the first column of N − δQ to ((∞, <), 0) and applying
normalization.

Corollary 3.7. Let M = f(N1, . . . , Nk) be an equation between normalized DBMs M,N1, . . . , Nk,
using the operators Pretime, Posttime, UnresetR, ∩, shrink and shrink+ and let P1, . . . , Pk be SMs. Then,
there exists a shrunk DBM (M ′, Q) with M′ = M, M ⊆ M ′ and (M ′, Q) =
f
(
(N1, P1), . . . , (Nk, Pk)

)
. The shrunk DBM (M ′, Q) and a corresponding upper bound on δ can be

computed in polynomial time.

Corollary 3.7 shows that shrinking matrices are propagated when usual operations are applied
on DBMs. Using this, one can also compute an upper bound on δ, under which a given equation
between shrunk DBMs hold. Figure 4 illustrates some of these operations. Notice also that the
lemma always gives normalized shrunk DBMs (M ′, Q).

= Pretime













(a) (M,Q) = Pretime ((N1, P ))

= ∩

(b) (M,Q) = (N1, P1) ∩ (N2, P2)

= shrink+













(c) (M,Q) = shrink+((M,P ))

= shrink













(d) (M,Q) = shrink((M,P ))

Figure 4: On the right of Fig. 4(a), the gray area represents a zone N1, while the dark gray area is some shrinking
(N1, Q). On the left, the dark area is the shrunk zone (M,P ) where M = Pretime (N1). Similarly, Fig. 4(b) to 4(d)
illustrate the intersection of two shrunk zones and the shrinking of zones.
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It is easily observed that shrink[0,δ](Pretime (M)) is the set of states that can reach M after a
delay of length at least δ: shrink[0,δ](Pretime (M)) = {v | ∃d ≥ δ, v + d ∈ M}. This observation is
used in the construction of the abstract game in Section 4.

Let us extend the computation of upper bounds on δ in Lemma 3.6 for an inclusion relation,
which will be useful later in the proofs (proof of Lemma 3.17).

Lemma 3.8. Assume the equation (M,P ) ∩N ⊆ (N,Q) between normalized shrunk DBMs (M,P )
and (N,Q). One can compute δ0 > 0, in polynomial time, such that (M − δP ) ∩N ⊆ N − δQ for
all δ ∈ [0, δ0].

Proof. Let N ′ = M ∩N . Let Q′ be the SM given by Lemma 3.6 such that (N ′, Q′) = (M,P )∩N and
δ′0 > 0 the corresponding bound on δ. Then, the inclusion is equivalent to (N ′, Q′) ⊆ (N,Q). Since
both shrunk DBMs are normalized, holds if for all x, y ∈ C0, either N

′
x,y = Nx,y and Q′x,y ≥ Qx,y,

or N ′x,y < Nx,y. In the former case, N ′x,y − δQ′x,y ≤ Nx,y − δQx,y holds for all δ > 0. In the latter

case, it holds for all δ <
∣
∣
∣
Nx,y−N

′
x,y

Qx,y−Q′
x,y

∣
∣
∣. Thus, we choose

δ0 = min
(
δ′0,min

∣
∣
∣
∣

Nx,y −N ′x,y
Qx,y −Q′x,y

∣
∣
∣
∣

)
,

where the inner min is over all pairs x, y ∈ C0 for which N ′x,y < Nx,y and Qx,y 6= Q′x,y.

3.4. Shrinking constraints

We now apply the previous developments to our controller synthesis problem. We will explain
the different steps of the computations on the example of Fig. 5. Here, a timed automaton with a
single transition is given. From state x = y = 0, Controller has no choice but to suggest a delay of 1.
Thus, from region r0, the game can reach regions r1, r2, r3, depending on the move of Perturbator.
Assuming ℓ and ℓ′ are not the target state, in order to win, Controller needs a winning strategy at ℓ′

from all three regions. The idea of our algorithm is to run a forward exploration in order to identify
these successor regions r1, r2, r3 from which winning strategies need to be found. We will prove that
given winning strategies from these successors, one can construct a winning strategy for ℓ as well.

ℓ ℓ′
x=y=1

y:=0

r1 r3r0

r′0

r2

Figure 5: Perturbing one transition.

However, winning strategies generally require shrinking, as demonstrated in Fig. 3. It is easy to
see that not all shrinkings of these regions provide a winning strategy from r0; in fact, r1 (resp. r3)
should not shrink from the right (resp. left) side: their union should include the shaded area, thus
points that are arbitrarily close to r2. The goal of this section is to study shrinking constraints in
order to express this kind of requirements on the shape of the shrinkings of regions. In the next
section, we will show how these constraints can be computed by a forward exploration of the regions
of a timed automaton, and in Section 3.6, we will show how a winning strategy can be derived once
we have these required constraints.
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A shrinking constraint is a matrix that specifies which facet of a given zone can be shrunk by a
positive parameter, and which ones cannot be shrunk at all. We now give the formal definition.

Definition 3.9. Let M be a DBM. A shrinking constraint for M is a |C0|× |C0| matrix over {0,∞}.
A shrinking matrix P is said to respect a shrinking constraint S if P ≤ S, where the comparison is
component-wise. A pair 〈M,S〉 of a DBM and a shrinking constraint is called a constrained DBM.

Shrinking constraints specify which facets of a given zone one is (or is not) allowed to shrink
(see Fig. 6). More precisely, these specify if a component of considered shrinking matrices must be 0
or it can also be positive.





0 x y

0 (0,≤), 0 (0, <),∞ (0, <), 0
x (3, <),∞ (0,≤), 0 (2, <), 0
y (3, <),∞ (0, <),∞ (0,≤), 0





(a) A constrained DBM 〈M,S〉 and its representation (b) A shrinking of 〈M,S〉

Figure 6: Consider a zone defined by 0 < x < 3, 0 < y < 3, and 0 < x− y < 2. Let the shrinking constraint S be
defined by S0,y = 0, Sx,y = 0, and Sz,z′ =∞ for other components. The resulting 〈M,S〉 is depicted on the left, as a
matrix (where, for convenience, we merged both matrices into a single one) and as a constrained zone (where a thick
segment is drawn for any boundary that is not “shrinkable”, i.e., with Sz,z′ = 0). On the right, the dark gray area
represents a shrinking of M that satisfies S.

We will focus our attention to well shrinking constraints defined below, show that shrinking
constraints have a normal form (Subsection 3.4.1), and then show how shrinking constraints can be
propagated in order to deduce new shrinking constraints as in the example of Fig. 5 (Subsection 3.4.2).

3.4.1. Normalization and Well-Shrinking Constraints.

A shrinking constraint S for a DBM M is said to be well if for any SM P ≤ S, (M,P ) is
non-empty. A well constrained DBM is a constrained DBM given with a well shrinking constraint.
We say that a shrinking constraint S for a DBM M is normalized if it is the minimum among all
equivalent shrinking constraints: for any shrinking constraint S′ if for all SMs P , P ≤ S ⇔ P ≤ S′,
then S ≤ S′. Similarly to the normalization of DBMs or SMs, normalized shrinking constraints
contain the tightest constraints implied by the original shrinking constraint. They can be normalized
by a procedure that is slightly different from the one used for the normalization of DBMs. This is
defined formally in the following lemma.

Lemma 3.10. Let M be a normalized DBM. For any shrinking constraint S for M , there exists
a minimum shrinking constraint S′ for M such that S′ ≤ S, and for any normalized non-empty
shrunk zone (M,P ), P ≤ S if, and only if, P ≤ S′.

Moreover, S′ can be obtained as follows. Start with S′ = S. For every pair x, y ∈ C0, if Sx,y = 0,
then set S′z,z′ to 0 for all edges (z, z′) of all paths in Πx,y(G(M)). Also assign S′x,y = 0 whenever
Mx,y =∞. If S = S′, then S is said to be normalized.

Proof. Consider S′ obtained from S by the above procedure. Obviously, S′ ≤ S, so that for any
SM P ≤ S′, we have also P ≤ S. Conversely, consider any normalized non-empty shrunk DBM
(M,P ) with P 6≤ S′, for instance Px,y ≥ 1 for some x, y where S′x,y = 0. If Sx,y = 0, then clearly,
Px,y 6≤ Sx,y. Otherwise, Sx,y = ∞ and S′x,y = 0 indicate that there exists z1, z2 ∈ C0 such that
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Sz1,z2 = 0 and there is a path in Πz1,z2(G(M)) that goes through edge (x, y). Let us denote this
path with π. Then since P is normalized, Pz1,z2 ≥ w(π), and since π contains the edge (x, y), we
have Pz1,z2 ≥ Px,y ≥ 1, therefore P 6≤ S.

For any pair x, y ∈ C0 with S′x,y =∞ let P be the matrix with 0’s on all components except for
Px,y = 1. Let P ′ be the SM such that (M,P ′) = norm((M,P )). The normalization procedure can
only increase the components so P ′x,y ≥ 1. We have P ′ ≤ S′, since for any z1, z2 such that S′z1,z2 = 0,
(x, y) is not on a path of Πz1,z2(G(M)). So, for any shrinking constraint S′′ such that S′′x,y < Sx,y

for some x, y, there exists a SM P with P ≤ S′ and P 6≤ S′′. Therefore, S′ is minimal.

Clearly, the normalization of a shrinking constraint depends on the DBM M , since Πx,y(G(M))
depends on G(M); this is also the case for SMs (Lemma 3.4). In the sequel, unless otherwise stated,
all shrinking constraints are assumed to be normalized.

The following property of normalized shrinking constraints is easy to prove, using the previous
lemma. Given a shrinking constraint S and a SM P , it will allow us to consider that S is normalized,
instead of requiring that P is.

Lemma 3.11. Let M be a normalized DBM and S a normalized shrinking constraint. Let P be any
SM such that (M,P ) is non-empty, and let (M ′, P ′) = norm((M,P )). Then, P ≤ S if, and only if,
P ′ ≤ S.

Proof. Since the normalization procedure for computing P ′ increases the components, the reverse
implication holds. Conversely, assume that P ≤ S, and pick x, y ∈ C0 such that Sx,y = 0 (for the
other entries, there is nothing to be checked on P ′). Then Px,y = 0. From Lemma 3.10, Sz,z′ = 0 for
all edges of all paths in Πx,y(G(M)), so that also Pz,z′ = 0 for these edges. Applying the definition
of P ′x,y from Lemma 3.4, we get P ′x,y = 0.

3.4.2. Propagating Shrinking Constraints.

Let us come back to Fig. 5. Here, starting from the region r0 given with its well-shrinking
constraint, we deduced the shrinking constraints to be satisfied at r1, r2, r3 by manually inspecting
the figure. Similarly, in order to find a winning strategy, say, from location ℓ′, and region r1 satisfying
the corresponding shrinking constraint, one would need to inspect the edges from ℓ′, and derive
shrinking constraints for those successor regions.

In this subsection, we show a systematic way of deriving the shrinking constraints along elementary
operations on DBMs. Lemma 3.12 studies each elementary operation on DBM; each item is illustrated
in Fig. 7.

Lemma 3.12. Let M,N,O be normalized non-empty DBMs.

1. Assume that M = Pretime (N). For any normalized well shrinking constraint S for M ,
there exists a normalized well shrinking constraint S′ for N such that for any shrunk DBM
(N ′, Q) with N′ = N, the following holds: Q ≤ S′ if, and only if, the SM P s.t. (M ′, P ) =
Pretime ((N

′, Q)) satisfies P ≤ S.

2. Assume that M = N ∩O 6= ∅.

(a) For any normalized well shrinking constraint S for M , there exists a normalized well
shrinking constraint S′ for N such that for any shrunk DBM (N ′, Q) with N′ = N and
N ′∩O 6= ∅, the following holds: Q ≤ S′ if, and only if the SM P s.t. (M ′, P ) = (N ′, Q)∩O
satisfies P ≤ S.
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(b) For any normalized well shrinking constraint S for N , there exists a normalized well
shrinking constraint S′ for M such that for any shrunk DBM (M ′, Q) with M = M′ and
M ⊆M ′, the following holds: Q ≤ S′ if, and only if there exists an SM P ≤ S such that
(N,P ) ∩O ⊆ (M ′, Q). Moreover, if (N,P ) ∩O 6= ∅ for all SMs P ≤ S, then S′ is a well
shrinking constraint.

3. Assume that M = UnresetR(N). For any normalized well shrinking constraint S for M , there
exists a normalized well shrinking constraint S′ for N such that for any SM Q, the following
holds: Q ≤ S′ if, and only if the SM P s.t. (M ′, P ) = UnresetR((N,Q)) satisfies P ≤ S.

All shrinking constraints S′ can be computed in polynomial time.

Proof. ◮ Pretime. Observe that M is obtained from N by first setting the first row of N
to (0,≤) (write N ′ for this intermediary DBM) and then applying normalization. Since N is
normalized, and we only consider valuations with non-negative values, we have N0,y ≤ 0 for all
y ∈ C. Consider (x, y) ∈ C × C0, and a path in Πx,y(N). If that path does not visit the state 0,
then it has the same weight in N ′ as in N . Otherwise, its weight in N ′ is larger than in N , thus
it is larger than N ′x,y. In both cases, N ′x,y will not change during the normalization phase. So the
normalization of N can only change the first row.

Let S′x,y = Sx,y for (x, y) ∈ C × C0, S
′
0,y =∞ for y ∈ C, and S′0,0 = 0. We show that S′ satisfies

the desired property. Consider a shrunk DBM (N ′, Q) with Q ≤ S′ and N = N′, and let P be the
shrinking matrix such that (M ′, P ) = Pretime ((N

′, Q)). Let us write M ′′ = Pretime (N
′). The shrunk

DBM (M ′, P ) is obtained by normalizing the shrunk DBM (M ′′, Q′) where Q′ is derived from Q by
setting the first row to 0 (Lemma 3.6).

We show that P ≤ S. Observe that M = M′ = M′′ so the graphs these DBMs define are the
same. First suppose that Sx,y = 0 for some x, y ∈ C × C0. For such x, y, we have Nx,y = Mx,y, and
since N ′ ⊆M ′′, we have Πx,y(G(M)) ⊆ Πx,y(G(N)). Now, we have Px,y > 0 if, and only if there is
a path in the former set with positive weight in Q′ (Lemma 3.4). But this would imply that the
same path has positive weight in Q since Q′ ≤ Q, and moreover this path belongs to Πx,y(G(N)).
This would in turn imply that Qx,y > 0, but we have Sx,y = S′x,y = 0, which contradicts Q ≤ S′. It
follows that Px,y ≤ Sx,y.

Now suppose that S0,y = 0 for some y ∈ C. Since S is assumed to be normalized, along all paths
of Π0,y(G(M)), all edges (z, z′) satisfy Sz,z′ = 0 (Lemma 3.10). Since Q′0,z = 0 for all z, and that
Q′z,z′ = Qz,z′ = 0 for all z, z′ 6= 0, we get P0,y = 0 (Lemma 3.4). Hence P ≤ S.

We now show that for any SMs P and Q s.t. Q 6≤ S′ and (M ′, P ) = Pretime ((N
′, Q)), it holds

P 6≤ S. Consider any SM Q 6≤ S′ such that (w.l.o.g.) (N ′, Q) is normalized. Then S′x,y = 0 and
Qx,y ≥ 1 for some x, y. By construction of S′, we have x 6= 0, and Sx,y = 0. Moreover, since x 6= 0,
we have Mx,y = Nx,y, and Nx,y <∞ since Qx,y ≥ 1 and (N ′, Q) is normalized. Let P denote the
normalized SM such that (M ′, P ) = Pretime ((N

′′, Q)). P is obtained by letting the first row of Q
to zero and applying normalization. We get Px,y ≥ Qx,y ≥ 1, therefore P 6≤ S.

To show that S′ is a well shrinking constraint, assume that for some Q ≤ S′, (N ′, Q) is empty.
By definition of S′, there exists P ≤ S such that (M ′, P ) = Pretime ((N

′, Q)), so (M ′, P ) is also
empty, which contradicts the fact that S is a well shrinking constraint for M .
◮ Intersection (a). For any SMs P,Q, we have (M,P ) = (N,Q) ∩O if, and only if (M ′, P ) =
(N,Q) ∩M for some M′ = M. So it suffices to consider the equation M = N ∩M with M ⊆ N .
Moreover, notice that ∅ 6= M = M ∩N ′ for any N ⊆ N ′.
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We let S′x,y = Sx,y for any x, y ∈ C0 such that Mx,y = Nx,y and S′x,y =∞ otherwise, and make
S′ normalized. Observe that the weight of any path is smaller or equal in G(M) than in G(N),
since M ⊆ N and both DBMs are normalized. Consider any shrunk DBM (N ′, Q) with N = N′,
N ⊆ N ′ and Q ≤ S′ and let P such that (M ′, P ) = (N ′, Q) ∩M . Let us write M ′′ = N ′ ∩M .
Again, G(M) = G(M ′) = G(M ′′). Here, P is obtained from Q by first defining Q′ as Q′x,y = 0 if
Mx,y < Nx,y and Q′x,y = Qx,y otherwise. Then P is the normalization of Q′. We show, by induction
on n ≥ 2, that for any pair x, y ∈ C0 with Sx,y = 0, any path of Πx,y(G(M)) visiting at most n
states have weight 0 in Q′. This entails that Px,y = 0 whenever Sx,y = 0.

• When n = 2, if Mx,y = Nx,y, then S′x,y = 0 by definition of S′, so Qx,y = 0, and Q′x,y = 0. If
Mx,y < Nx,y, we have Q′x,y = 0 by the definition of Q′.

• Consider n ≥ 3. Let π = x1x2 . . . xn be a path in Πx,y(G(M)). Since Sx,y = Sx1,xn
= 0, we

also have Sx1,x2
= 0 and Sx2,xn

= 0 By induction, Q′x1,x2
= 0 and all paths of Πx2,xn

(G(M))
of length at most n− 1 have weight 0 in Q′. Hence, π has weight 0 in Q′.

Assume now Q 6≤ S′, i.e., Qx,y ≥ 1 and S′x,y = 0 for some x, y ∈ C0. Then we must have
Mx,y = Nx,y and Sx,y = 0. Let (M ′, P ) = (N ′, Q) ∩M . We know that P is the normalization of Q′,
and that Q′x,y = Qx,y ≥ 1. So Px,y ≥ Q′x,y ≥ 1. Hence Px,y 6≤ Sx,y.

We have that S′ is a well shrinking constraint for N , since otherwise this would imply that S is
not a well shrinking constraint for M , as in the previous case.
◮ Intersection (b). Using the same argument as in the previous case, we can assume that
O = M ⊆ N . Since M and N are normalized and non-empty, we have Mx,y ≤ Nx,y for all x, y ∈ C0.
We define S′1 by S′1x,y = Sx,y if Mx,y = Nx,y and S′1x,y = 0 otherwise. Let S′ be defined as
S′x,y = maxπ∈Πx,y(G(M)) S

′
1(π).

Consider any shrunk DBM (M ′, Q) with M′ = M, (M ′, Q) ⊆M , and Q ≤ S′. Let us show that
there is (N,P ) with P ≤ S with the desired property. Let us first define Q′ as follows:

Q′x,y =







0 if Mx,y < Nx,y or Sx,y = 0

max
z,z′:(x,y)∈Πz,z′ (G(M))

Qz,z′ if Mx,y = Nx,y and Sx,y =∞.

Let us write (N ′, P ) = norm((N,Q′)). If Sx,y = 0 for some x, y ∈ C0, then along all edges
(z, z′) ∈ Πx,y(G(N)), we have Sz,z′ = 0, therefore Q′z,z′ = 0. Thus, Px,y = 0 (from Lemma 3.4) and
we get P ≤ S.

Let (M ′′, Q′′) denote the shrunk DBM defined by (M ′′, Q′′) = (N ′, P ) ∩ M with M′′ = M

(Lemma 3.6). Let us show that Q ≤ Q′′, which implies, together with M ′′ ⊆ M ⊆ M ′ that
(M ′′, Q′′) ⊆ (M ′, Q) as desired. Q′′ is the normalization of the SM P ′ defined as follows: P ′x,y = Px,y

if Mx,y = Nx,y and P ′x,y = 0 otherwise. Let x, y ∈ C0.

• Assume that Mx,y = Nx,y. If S
′
x,y = 0, then Qx,y = 0 so clearly Q′′x,y ≥ Qx,y. Otherwise, there

exists a path π ∈ Πx,y(G(M)) such that for some edge (z, z′) ∈ π, Mz,z′ = Nz,z′ and Sz,z′ =∞.
By definition of Q′, we have Q′z,z′ ≥ Qx,y. Moreover P ′z,z′ = Pz,z′ ≥ Qz,z′ . The normalization
of P ′ then yields Q′′x,y ≥ P ′z,z′ = Pz,z′ ≥ Qz,z′ ≥ Qx,y.

• Otherwise, Mx,y < Nx,y. If S
′
x,y = 0, the result is clear. If S′x,y =∞, then there must be a path

in Πx,y(G(M)) with an edge (z, z′) with Mz,z′ = Nz,z′ and Sz,z′ =∞. Then, Q′z,z′ ≥ Qx,y. So
the normalization of P ′ yields Q′′x,y ≥ P ′z,z′ = Pz,z′ ≥ Q′z,z′ ≥ Qx,y.
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We now show the converse direction. Consider any x, y ∈ C0 such that S′x,y = 0. Let us show that
for any (N,P ) with P ≤ S, if (M ′, Q′′) denotes the shrunk DBM such that (M ′, Q′′) = M ∩ (N,P ),
then Q′′x,y = 0. This proves that if Qx,y ≥ 1 for some SM Q, then there is no matching P ≤ S that
satisfies the property.

We show, by induction on n ≥ 2, that if S′x,y = 0, then all paths of Πx,y(G(M)) of length at
most n have weight zero in P ′.

• Let n = 2. If Mx,y = Nx,y, then P ′x,y = Px,y. But we have Sx,y = 0, so Px,y = 0. If
Mx,y < Nx,y, then P ′x,y = 0 by definition.

• If n ≥ 3, consider any path π = x1x2 . . . xn in Πx,y(G(M)). Suppose that Mxj ,xj+1
= Nxj ,xj+1

for all 1 ≤ j ≤ n − 1. Then π is also a shortest path in G(N), hence Mx,y = Nx,y, and
Sxj ,xj+1

= 0 for all 1 ≤ j ≤ n− 1, as S is normalized. It follows that Pxj ,xj+1
= 0, hence also

P ′xj ,xj+1
= 0.

Suppose now that for some 1 ≤ j ≤ n− 1, Mxj ,xj+1
< Nxj ,xj+1

. We have P ′xj ,xj+1
= 0. On the

other hand, S′x1,xj
= S′xj+1,xn

= 0 since otherwise we would get S′x,y =∞. By induction, all
paths of length at most n− 1 in Πx1,xj

(G(M)) and Πxj+1,xn
(G(M)) have weight 0 in P ′. So π

has weight 0 in P ′.

We now show that S′ is a well shrinking constraint forM , given the hypothesis that (N,P )∩M 6= ∅
for all SMs P ≤ S. But this immediately implies that S′ is a well shrinking constraint, since for any
Q ≤ S′ there exists P ≤ S with ∅ ( (N,P ) ∩M ⊆ (M,Q).
◮ Unreset. Let NR denote the DBM that defines the (largest) zone satisfying ∧x∈Rx = 0. Since
we have M = UnresetR(N ∩NR), by the previous case, we may assume that N ⊆ NR. The DBM M
is obtained from N by replacing each component (x, y) with x ∈ R by ∞. For any y ∈ C0, we
define S′′x,y = Sx,y if x ∈ C \ R, and S′′0,y = 0, and S′′x,y = ∞ if x ∈ R. Then S′ is obtained by
normalizing S′′.

Let Q be any normalized SM with Q ≤ S′, and P be the (normalized) SM such that (M ′, P ) =
UnresetR((N,Q)). Let Q′ denote the SM obtained from Q by setting each component (x, y), with
x ∈ R, to zero. Then, P is the normalization of Q′. Let us show that P ≤ S. Consider any x, y ∈ C0
with Sx,y = 0.

• If x ∈ C \R then S′x,y = Sx,y = 0 and Qx,y = 0. So, along all paths Πx,y(G(N)), S′ is zero, and
so are the weights in Q, and also the weights in Q′. Now, clearly, Πx,y(G(M)) ⊆ Πx,y(G(N)).
So after normalization of Q′, we have Px,y = 0.

• If x = 0, then S′x,y = 0 and Qx,y = 0. The argument is then similar.

• If x ∈ R, then Mx,y =∞. Thus Πx,y(G(M)) = ∅, so the normalization of Q′ yields Px,y = 0.

Consider a normalized SM Q with Q 6≤ S′. We must have Qx,y ≥ 1 and S′′x,y = 0 for some
x, y ∈ C0, by Lemma 3.10. The latter condition entails that x /∈ R. Let Q′ denote the DBM obtained
from Q by replacing all components (x, y) where x ∈ R with 0. Then the normalization of Q′ yields
the SM P such that (M ′, P ) = UnresetR((N,Q)). Since x ∈ C0 \ R, then Sx,y = S′x,y = 0 and
Q′x,y = Qx,y ≥ 1. The normalization of Q′ can only increase its components, so Px,y ≥ 1, hence
P 6≤ S.

We show that S′ is a well shrinking constraint for N as in the previous cases.
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= Pretime
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(a) (M ′, P ) = Pretime ((N,Q))

= ∩

(b) (M ′, P ) = (N,Q) ∩N ′

∩ ⊆

(c) (N,P ) ∩N ′ ⊆ (M,Q)

= UnresetR













(d) (M ′, P ) = UnresetR((N,Q))

Figure 7: Each of the figures illustrates one item in Lemma 3.12. In each case, DBMs M , N and N ′ are fixed and
satisfy the “unshrunk” equation (that is, when P = Q = 0). The thick plain segments represent the fixed shrinking
constraint S. The thick dashed segments represent the shrinking constraint S′ that is constructed. In each case, if a
SM Q is chosen, it holds that Q ≤ S′ iff there is an SM P ≤ S that satisfies the equation. For instance, if Qx,0 ≥ 1 in
(a), then the DBM describing the time predecessors of (N,Q) shrinks the diagonal component (x, y), which violates S.

We now extend the previous lemma to the operator shrink+. In this case, the existence of a
shrinking constraint depends on the given constrained DBM. The lemma is illustrated in Fig. 8.

Lemma 3.13. Let M be a normalized non-empty DBM and S be a normalized shrinking constraint.

• If Mx,0 <∞ and Sx,0 = 0 for some x ∈ C, then for all SMs Q, the shrunk DBM (M ′, P ) =
shrink+((M,Q)) does not satisfy P ≤ S.

• Otherwise, for all SMs Q, the following holds: Q ≤ S if, and only if, the shrunk DBM
(M ′, P ) = shrink+((M,Q)) satisfies P ≤ S.

Proof. If Sx,0 = 0 and Mx,0 <∞ for some x ∈ C, since shrink+ increases each (but one) component
of the first column of the SM by one, and since the normalization can only increase components for
which Mx,0 <∞, there is no P ≤ S such that (M ′, P ) = shrink+((M,Q)).

Assume that Sx,0 =∞ for all x ∈ C with Mx,0 <∞. Consider any Q 6≤ S. The operator shrink+

increments all components (x, 0) of the SM by one, and applies normalization. So if Qx,y > Sx,y = 0
for some x, y ∈ C, we know that if P denotes the SM such that (M ′, P ) = shrink+((M,Q)), then
Px,y ≥ Qx,y > 0, since shrink+ only increases the components of the SM. Thus, for SMs Q 6≤ S,
there is no corresponding P ≤ S with the desired property. Consider now any Q ≤ S, and P such
that (M ′, P ) = shrink+((M,Q)). Assume that Px,y ≥ 1 for some Sx,y = 0. We have Mx,y <∞ since
(M ′, P ) is normalized. Since Qx,y = 0, there exists a path in Πx,y(G(M)) that contains an edge
(z, 0) such that Qz,0 = 0, and Pz,0 ≥ 1. But then Sz,0 = 0, which contradicts our assumption.

Let us comment on Fig. 7, the figure about Pretime, and how it can be used for our purpose.
Assume there is an edge guarded by N (the whole gray area in the right) without resets. In the
non-robust setting, this guard can be reached from any point of M (the whole gray area in the left).
If we have a shrinking constraint S on M , and we want to synthesize a winning strategy from a
shrinking of M satisfying S, then Lemma 3.12 gives the shrinking constraint S′ for N , with the
following property: given any shrinking (N,Q), we can find P ≤ S with (M,P ) = Pretime ((N,Q))
(hence, we can delay into (N,Q)), if, and only if Q satisfies Q ≤ S′. The problem is now “reduced” to
finding a winning strategy from 〈N,S′〉. However, forward-propagating these shrinking constraints
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(a) (M ′, P ) = shrink+((M,Q)) but P 6≤ S

= shrink+
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
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(b) (M ′, P ) = shrink+((M,Q)) with P ≤ S.

Figure 8: Examples for both cases of Lemma 3.13

is not always that easy. We also need to deal with resets, with the fact that Controller has to choose
a delay greater than δ > 0, and also with the case where there are several edges leaving a location.
This is the aim of the following developments.

3.5. Neighborhoods

We studied in the previous section the propagation of shrinking constraints along DBM operations.
The last step before we can fully treat the propagation of these constraints along a transition is
to take into account the perturbations. For instance, in Fig. 5, given Controller’s move to the
point x = y = 1, we need a systematic way of deriving the neighboring regions spanned by the
perturbations. This will allow us to compute the set of all successor regions reachable under a
transition.

We consider constrained regions, which are constrained DBMs in which the DBM represents a
region. We define the set of neighboring regions of a constrained region 〈r, S〉 as,

Nr,S =
{

s
∣
∣
∣ s⋖∗ r or r ⋖+ s, and ∀Q ≤ S. s ∩ enlarge((r,Q)) 6= ∅

}

where enlarge((r,Q)) is the shrunk DBM (M,P ) such that v+[−δ, δ] ⊆M −δP for every v ∈ r−δQ.
This is the set of regions that have “distance” at most δ to any shrinking of the constrained
region (r, S). We write neighbor〈r, S〉 =

⋃

s∈Nr,S
s.

Lemma 3.14 (Neighborhood). Let 〈r, S〉 be a well constrained region. Then neighbor〈r, S〉 is a
zone. If N is the corresponding normalized DBM, there exists a well shrinking constraint S′ such
that for every SM Q, Q ≤ S′ iff the SM P defined by (r′, P ) = r ∩ shrink((N,Q)), satisfies P ≤ S.
The pair 〈N,S′〉 is the constrained neighborhood of 〈r, S〉, and it can be computed in polynomial
time. Moreover, the constraint S′ is such that S′x,y = Sx,y for every x, y ∈ C, and S′x,0 = S′0,x =∞
for every x ∈ C.

Constrained neighborhoods are illustrated in Fig. 9.

neighbor
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


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= neighbor
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=

Figure 9: Constrained neighborhood of two constrained regions. Notice that inside any shrinking of the constrained
region, there is always a valuation such that a perturbation of [−δ, δ] moves the valuation to any region of the
neighborhood.
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To prove Lemma 3.14 which states the properties of the neighborhoods of constrained regions,
we first need to introduce some notations and simple facts about constrained regions.

Let 〈r, S〉 be a constrained region. There exists a unique partition X1, . . . , Xn of the clocks
such that for all valuations ν ∈ r, frac(ν(x)) = frac(ν(y)) for all x, y ∈ Xi, for any 1 ≤ i ≤ n, and
frac(ν(x)) < frac(ν(y)) if x ∈ Xi and y ∈ Xj for any 1 ≤ i < j ≤ n. We assume that frac(ν(x)) = 0
for all x ∈ X1. So X1 may be empty, but other Xi’s are non-empty. In the sequel, when we consider
a region, the above partition is called partition of clocks according to their fractional values.

Lemma 3.15. Let 〈r, S〉 be a constrained region and consider the partition X1, . . . , Xn of clocks
according to their fractional values. Then, for all x, y ∈ Xi for any 1 ≤ i ≤ n, we have Sx,y = 0,
and for all x ∈ X1, we have Sx,0 = S0,x = 0. Moreover,

• There exists 2 ≤ i0 ≤ n + 1 such that for any x ∈ Xi with i0 ≤ i ≤ n, Sx,0 = 0, for any
y ∈ Xi′ with i ≤ i′ ≤ n, Sx,y = 0, and for any x ∈ Xi with 1 ≤ i < i0, Sx,0 =∞.

• There exists 1 ≤ j0 ≤ n such that for any x ∈ Xj with 1 ≤ j ≤ j0, S0,x = 0, for any y ∈ Xj′

with 1 ≤ j′ < j, Sy,x = 0, and for any x ∈ Xj with j0 + 1 ≤ j ≤ n, S0,x =∞.

Proof. This follows from the normalization of S. In fact, suppose Sx,0 = 0 for some x ∈ Xi with
i ≥ 2, and consider y ∈ Xj for any i < j ≤ n. Then (x, y, 0) is a shortest path in G(r). Therefore,
we must have Sx,y = Sy,0 = 0. One can then choose i0 as minimal to satisfy this statement, and j0
maximal.

Let us make some remarks about the graphs of regions and their shrinking constraints. Consider a
region r. For any x ∈ Xi, y ∈ Xj and z ∈ Xk with i < j < k, (x, y, z) and (z, x, y) are shortest paths
in G(r). In fact, rx,z = rx,y + ry,z since rx,y = rx,0 − ry,0, ry,z = ry,0 − rz,0, and rx,z = rx,0 − rz,0.
Similarly, rz,x = rz,0 − rx,0 + 1 and rz,y = rz,0 − ry,0 + 1 yield rz,y = rz,x + rx,y. A shrinking
constraint S with Sx,y = 0 means that a shrinking of r satisfying S, contains valuations ν with
frac(ν(y)) − frac(ν(x)) ≤ ǫ for any ǫ > 0. If Sy,x = 0, this means that some valuations ν satisfy
frac(ν(y))− frac(ν(x)) ≥ 1− ǫ.

Proof of Lemma 3.14. Let us prove that the neighborhood is a zone, and show how to compute it.
We characterize the successor regions of r that belong to the neighborhood of 〈r, S〉. The predecessor
regions can be charaterized similarly. Consider the partition of clocks in r ordered according to their
fractional parts:

0 = frac(X1) < frac(X2) < . . . < frac(Xm) < 1,

where Xi’s are subsets of clocks having the same fractional part, and X1 is possibly empty.

• First, assume that Sx,0 = ∞ for x ∈ Xm. Consider the case X1 = ∅. Consider any SM
Q ≤ S such that Qx,0 ≥ 2 for all clocks x ∈ X2 ∪ . . . Xm. Then for all ν ∈ (r − δQ), we have
frac(ν(x)) ≤ 1 − 2δ for all clocks x. We have, for any t ∈ [0, δ], frac(ν(x) + t) < 1. So no
region s with r ⋖ s is included in the neighborhood. If Sx,0 = ∞ for x ∈ Xm but X1 6= ∅,
then necessarily Sx,0 = S0,x = 0 for x ∈ X1 since S is a well shrinking constraint. Then, the
neighborhood contains the region s with r ⋖ s but no successor of s, which is shown as above.

• Assume that Sx,0 = 0 for x ∈ Xm. Let i ∈ {1, . . . ,m} be minimum such that Xi is non-
empty and Sx,0 = 0 for all x ∈ Xj and i ≤ j ≤ m. 1 Then, for any 1 ≤ j ≤ i − 1

1Here, the non-emptiness hypothesis in only significant for i = 1.
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and x ∈ Xj Sx,0 = ∞ by Lemma 3.15. Let s be the unique region that satisfies r ⋖+ s,
sx,0 = rx,0 + 1 and ≺s

x,0=< for all x ∈ Xi, and sx,0 = rx,0 for all x ∈ Xi−1. We show
that the neighborhood of 〈r, S〉 contains all regions t such that r ⋖∗ t ⋖∗ s, but no region t
such that s ⋖+ t. Let (r,Q, δ0) be a well-shrinking and consider any δ ∈ [0, δ0]. For any
x ∈ Xj for max(2, i) ≤ j ≤ m, we have rx,0 − δQx,0 = rx,0, and −r0,x + δQ0,x < rx,0 (in
fact ≺r

x,0=< for these clocks). Let ǫ < min(δ/2, rx,0 − (−r0,x + δQ0,x)) for all x ∈ Xj and
max(2, i) ≤ j ≤ m, so that −r0,x + δQ0,x < rx,0− ǫ < rx,0. By a folklore result [24, Lemma 4],
there exists a valuation ν ∈ (r− δQ) such that rx,0− ǫ < ν(x) < rx,0 for x ∈ Xmax(2,i). Define
dj = 1 − frac(ν(x)) for x ∈ Xj for all i ≤ j ≤ m. We know by the fractional ordering that

0 < dm < dm−1 < . . . < di < δ/2. Define also d′j =
dj+dj−1

2 for all i + 1 ≤ j ≤ m, and

dm+1 = dm

2 . If i = 1, then we have

reg(ν) ⋖ reg(ν+dm+1) ⋖ reg(ν+dm) ⋖ reg(ν+d′m) ⋖ reg(ν+dm−1) ⋖ . . . ⋖ reg(ν+di),

and for ǫ′ > 0 small enough, reg(ν+di)⋖ reg(ν+di+ǫ′) = s. If i > 1, we remove reg(ν+dm+1)
since this is equal to reg(ν). Let us show now that the time-successor of s is not included in the
neighborhood. In fact, if i = 1, then, the immediate time successor of s is the unique region
r ⋖+ t such that −t0,x = tx,0 = rx,0 + 1 and ≺t

x,0=≤ for x ∈ X1. But for all ν ∈ (r − δQ), we
have ν(x) = rx,0, so ν(x) + δ < tx,0. If i = 2 and X1 = ∅, then the immediate time successor t
of s satisfies −t0,x = tx,0 = rx,0 + 1 for x ∈ Xm. But since for any ν ∈ r, ν(x) + δ < tx,0,
t is not in the neighborhood. If i ≥ 2 and Xi−1 6= ∅, then the proof is similar since the
immediate time successor of s is the region where clocks in Xi−1 become integer. The case of
the time-predecessors of r is treated similarly.

From the proof above we can directly define the DBM N that represents the neighborhood of
r, as follows. N has the same diagonal constraints as r, so Nx,y = rx,y for all x, y ∈ C. For all
x ∈ X1, we let Nx,0 = rx,0 + 1 and ≺N

x,0=<, and if r0,x < 0, we let N0,x = r0,x + 1 and ≺N
0,x=<,

otherwise N0,x = r0,x = 0 and ≺N
0,x=≤. If Sx,0 =∞ for all x ∈ X2 ∪ . . . ∪Xm, then rx,0 = Nx,0 for

all x. Otherwise, let i ∈ {2, . . . ,m} minimum such that Sx,0 = 0 for all x ∈ Xj for all i ≤ j ≤ m.
We let Nx,0 = rx,0 + 1 and ≺N

x,0=< for all x ∈ Xi ∪Xi+1 ∪ . . .∪Xm, and Nx,0 = rx,0, ≺
N
x,0=≺

r
x,0 for

all x ∈ X2 ∪ . . . ∪Xi−1. Symmetrically, if S0,x = ∞ for all x ∈ X2 ∪ . . . ∪Xm, we let N0,x = r0,x
and ≺r

0,x=≺
N
0,x. Otherwise, let i′ ∈ {2 . . . ,m} be maximum such that S0,x = 0 for all x ∈ Xj for

all 2 ≤ j ≤ i′. For all x ∈ Xj and 1 ≤ j ≤ i′, if r0,x < 0, we let N0,x = r0,x + 1 and ≺N
0,x=<, and

otherwise N0,x = 0 and ≺N
0,x=≤. We let N0,x = r0,x, ≺

N
0,x=≺

r
0,x for all x ∈ Xi′+1 ∪ . . . ∪Xm.

Let S′ be the shrinking constraint given by Lemma 3.12, for which for all SMs Q, Q ≤ S′

if, and only if there exists P ≤ S with (r′, P ) = r ∩ (N,Q) with r′ = r. From the proof of this
lemma, S′ is the normalization of the following shrinking constraint: we let S′x,y = Sx,y for all
x, y ∈ C, since rx,y = Nx,y. For all x ∈ C, S′x,0 = Sx,0 if rx,0 = Nx,0 and S′x,0 = ∞ otherwise. But
by construction of N , rx,0 = Nx,0 only if S′x,0 = ∞ so we get S′x,0 = ∞ for all clocks. Similarly,
we get S′0,x =∞ for all x ∈ C. We are going to show that S′ is already normalized. Consider any
x ∈ C. To get a contradiction, suppose that there exists z, z′ ∈ C with S′z,z′ = Sz,z′ = 0 and a
path x1 . . . xn in Πz,z′(G(N)) that contains the edge (x, 0) – which would imply that S′x,0 becomes
0. Since rz,z′ = Nz,z′ , we have Πz,z′(G(N)) ⊆ Πz,z′(G(r)). Then, Sx,0 = 0 since S is normalized.
But this means Nx,0 = rx,0 + 1 by definition of N , and this path cannot be a shortest path in

G(N) (in fact, Nz,z′ = rz,z′ =
∑n−1

k=1 rxi,xi+1
). Consider now x, y ∈ C such that Sx,y = ∞ and let

us show that S′x,y = ∞ after normalization. Suppose there exists a path π ∈ Πz,z′(G(N)) where
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z, z′ 6= 0, Sz,z′ = S′z,z′ = 0 and the edge (x, y) belongs to π. If 0 does not appear in π, then
this path also belongs to Πz,z′(G(r)), since rz,z′ = Nz,z′ and all edges have the same weight in
both graphs, so we would have Sx,y = 0. So, assume that some edges (w, 0) and (0, w′) belong to
π. If Sw,0 = S0,w = ∞, then rw,0 = Nw,0 and r0,w = N0,w by definition of N , so π is a shortest
path in G(r), which contradicts Sx,y = ∞. But, if Sw,0 = 0 or S0,w = 0 then Nw,0 = rw,0 + 1 or
N0,w = r0,w + 1, and in this case π is not a shortest path in G(N) since Nz,z′ = rz,z′ . Hence, there is
no such path π, and we get S′x,y =∞ after normalization.

Now, let Q′ be such that (N ′, Q′) = shrink((N,Q)). If Q′′ denotes the SM obtained from Q′ by
incrementing by one each component of the first row and the first column (except cell (0, 0)), then
(N ′, Q′) = norm((N,Q′′)). Moreover, because S′x,0 = S′0,x =∞ for all x ∈ C, we have Q′, Q′′ ≤ S′′.
Then, by definition of S′, there exists P ≤ S such that (r′, P ) = r ∩ (N,Q′). Conversely, if Q 6≤ S′,
then Q′ 6≤ S′. So, if there exists P such that (r′, P ) = r ∩ (N,Q′), then P 6≤ S, by definition of S′.

The fact that S′ is a well shrinking constraint for N follows from the fact that S is a well shrinking
constraint for r. In fact, for any Q ≤ S′, there exists P ≤ S such that (r′, P ) = r ∩ shrink((N,Q))
and (r′, P ) is non-empty by hypothesis, so (N,Q) cannot be empty.

3.6. Controllable Predecessors

Now that we have the notions required to reason with shrinking constraints and neighborhoods,
we will show how one can compute controllable predecessors given one transition. For instance, in
Fig. 5, given winning states at location ℓ′ inside regions r1, r2, r3 given as shrunk DBMs satisfying
the corresponding shrinking constraints, we will show how to combine these to derive a winning
state inside r0 at location ℓ.

The following lemma characterizes, given a constrained region 〈r, S〉, the set of constrained
regions 〈s, Ss〉 such that any shrunk region satisying 〈s, Ss〉 can be reached by delaying from some
shrunk region satisfying 〈r, S〉. These are the sets whose reachability can be ensured by Controller
by a delay.

Lemma 3.16. Let 〈r, S〉 be a well constrained region, and s be a region such that r ⋖∗ s. Then the
following properties are equivalent:

1. there exists a well shrinking constraint S′ (which can be computed in polynomial time) such
that for every SM Q, Q ≤ S′ iff the SM P such that (r′, P ) = r ∩ shrink+(Pretime ((s,Q))) for
some r′ = r satisfies P ≤ S;

2. neighbor〈r, S〉 ⊆ Pretime (s);

3. define N = Pretime (s), and SN such that for all SM Q, Q ≤ SN iff the SM P defined by
(r′, P ) = r ∩ (N,Q) with r′ = r satisfies P ≤ S. Then (SN )x,0 =∞ for all x ∈ C.

Proof. ◮ 3⇒ 1. Let S′ be such that for all SMs Q, Q ≤ S′ if, and only if there is Q′ ≤ SN

with (N ′, Q′) = Pretime ((s,Q)) and N′ = N. We will show that S′ satisfies the required condition.
We first assume that Q ≤ S′. By Lemma 3.13, there exists Q′′ ≤ SN such that (N ′′, Q′′) =
shrink+((N ′, Q′)) = shrink+(Pretime ((s,Q))) for N′′ = N. And by definition of SN , there exists
P ≤ S such that (r′, P ) = r ∩ (N ′′, Q′′) for some r′ = r.

Conversely, if Q 6≤ S′, then if Q′ denotes the SM such that (N ′, Q′) = Pretime ((s,Q)), then
Q′ 6≤ SN . By Lemma 3.13, if Q′′ denotes the SM such that (N ′′, Q′′) = shrink+((N ′, Q′)), then
Q′′ 6≤ SN . Therefore, there is no SM P such that (r′, P ) = r ∩ shrink+(Pretime ((s,Q))).
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◮ not 2⇒ not 1. Let 〈V, S′〉 = neighbor〈r, S〉. We assume that V 6⊆ N = Pretime (s). Then,
if t denotes the region s ⋖ t, we have s, t ⊆ V . By definition of the neighborhood, for any SM
P ≤ Sr, when δ is small enough, there exists a valuation v ∈ r − δP such that v + d′ ∈ t for
some 0 ≤ d′ ≤ δ. But since s ⋖ t, v + d′ ∈ s for some d′ ≥ 0 implies that 0 ≤ d′ < δ (and there
exists 0 ≤ d′ < δ with v + d′ ∈ r′). Therefore, for any SM Q, if P denotes the SM such that
(r′, P ) = r ∩ shrink+(Pretime ((s,Q))) with r′ = r, then P 6≤ S: indeed, if P ≤ S, then for small
enough δ > 0, v + [0, δ] ⊆ Pretime (s− δQ) and in particular v + δ ∈ Pretime (s− δQ), which implies
that there is d′′ ≥ 0 such that v + δ + d′′ ∈ s− δQ ⊆ s, contradicting the above remark.
◮ 2⇒ 3. Let (V, S′) = neighbor〈r, S〉. We have r ⊆ V ⊆ N . Let (N ′, Q) be a normalized shrunk
DBM with N = N′, obtained by setting Qx,0 = 1 for all x ∈ C and 0 all other components. Let Q′

be the SM such that (V ′, Q′) = V ∩ (N ′, Q), for some V′ = V.

• We show that Q′ ≤ S′. Define (Q1)x,y = Qx,y if Vx,y = Nx,y and (Q1)x,y = 0 otherwise. Q′

is the normalization of Q1. We have S′x,0 = S′0,x = ∞ by Lemma 3.14, so Q′x,0 ≤ S′x,0 and
Q′0,x ≤ S′0,x. For any x, y ∈ C, we assume S′x,y = 0. It implies Sx,y = 0. To get a contradiction,
assume that there is a path in Πx,y(G(V )) with an edge (z, z′) such that Vz,z′ = Nz,z′ and
Qz,z′ ≥ 1. Since Qz,z′ ≥ 1, there must be a path in Πz,z′(G(N)) that contains an edge (α, 0).
But since Πz,z′(G(N)) ⊆ Πz,z′(G(V )), there is a path in Πx,y(G(V )) that contains the edge
(α, 0). This contradicts S′x,y = 0 since we know, by Lemma 3.14 that S′α,0 =∞.

• We now show that Q ≤ SN , which implies the desired result. By Lemma 3.14, there exists
P ≤ S such that (r′, P ) = r ∩ shrink((V ′, Q′)), for some r′ = r. But, if P ′ denotes the SM such
that (r′′, P ′) = r∩ (V ′, Q′), then P ′ ≤ P ≤ S because shrink can only increase the components
of the SM. Therefore, (r′′, P ′) = r ∩ V ∩ (N,Q) = r ∩ (N,Q). Thus, by Lemma 3.12, we must
have Q ≤ SN , which implies (SN )x,0 =∞ for all x ∈ C.

We now assume that the above conditions hold, and prove that S′ (of item 1) has the same
diagonal constraints as S. By Lemma 3.12, SN is computed as the normalization of S′, which is
defined for every x, y ∈ C0 as S′x,y = Sx,y if Nx,y = rx,y and ∞ otherwise. Since N and r have the
same diagonal constraints, Sx,y = 0 for x, y ∈ C implies (SN )x,y = 0. If Sx,y = ∞, suppose that
(SN )x,y = 0. There exist z, z′ such that (x, y) belongs to a path in Πz,z′(G(N)), and S′z,z′ = 0. But
this implies that rz,z′ = Nz,z′ and Sz,z′ = 0. We have then Πz,z′(G(N)) ⊆ Πz,z′(G(r)) since r ⊆ N ,
and this contradicts that Sx,y =∞. We now show that S′ has the same diagonal components as SN .
In fact, S′ is the normalization of S′N defined by (S′N )0,x =∞ for all x ∈ C and (S′N )x,y = (SN )x,y
for other x, y ∈ C0. Clearly, (SN )x,y = 0 for any x, y ∈ C implies S′x,y = 0. Assume that S′x,y = 0
with x, y ∈ C. Then (x, y) belongs to a path π ∈ Πz,z′(G(s)) with (S′N )z,z′ = 0, so necessarily z 6= 0
and sz,z′ = Nz,z′ . If π does not contain the node 0, then π ∈ Πz,z′(G(N)) since all other weights
are the same in G(s) and G(N). If it contains node 0, then π still must be in Πz,z′(G(N)). In fact,
(S′N )z,z′ = 0 means that Nz,z′ <∞ and since all weights are the same in G(s) and G(N) except for
the edges (0, z) which can only decrease in s, π is a shortest path in both graphs. In both cases, we
get (SN )x,y = 0.

That S′ is a well shrinking constraint for s follows from the hypothesis that S is a well shrinking
constraint for r. In fact, if for some Q ≤ S′, (s,Q) is empty, then the corresponding (r, P ) (defined
in item 1) is empty, which is a contradiction.

Note that this lemma may not hold for all s with r ⋖ s. Consider the constrained region 〈r, S〉
on the right of Fig. 9, and let s be the first triangle region above r: any valuation arbitrarily close
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to the thick segments will be in r − δP for any P ≤ S, but it can only reach s by delaying less than
δ time units.

The following lemma describes sets of states from where Controller can ensure reaching a given
set, through an action. Intuitively, given a constrained region and its constrained neighborhood, we
show how to compute the shrinking constraints on the successor regions (through a given edge),
such that Controller can make sure that given shrunk DBMs of the successor regions are reached.

Lemma 3.17. Let 〈r, S〉 be a well constrained region, and let R ⊆ C. Let N = {s1, . . . , sm} be the
set of neighboring regions of 〈r, S〉, and define ti = s[R← 0] for each 1 ≤ i ≤ m. Then, there exist
well shrinking constraints Sti for all ti such that for any set of shrunk DBMs

(
(t′i, Qt′i

)
)

1≤i≤m
with

ti = t′i , we have that Qt′i
≤ Sti for all 1 ≤ i ≤ m if, and only if there exists P ≤ S such that

(r′, P ) ⊆ r ∩ shrink(
⋃

1≤i≤m

(s ∩ UnresetR((t
′
i, Qt′i

)))).

for some r′ = r. Moreover, all the 〈ti, Sti〉 can be computed in polynomial time.

Proof. It is useful to remember in this proof that ti = t′i implies ti ⊆ t′i since ti is a region.
Let 〈N,S′〉 be the (well) constrained neighborhood of 〈r, S〉, given by Lemma 3.14. For any region

s ∈ N , let Ss be the well shrinking constraint given by Lemma 3.12, such that for all shrunk DBMs
(s′, Q) with s′ = s and s ⊆ s′, Q ≤ Ss if, and only if there exists P ≤ S′ with s ∩ (N,P ) ⊆ (s′, Q).
Here, Ss is in fact a well shrinking constraint since s∩ (N,P ) 6= ∅ for all P ≤ S′, by the construction
of the neighborhood. Then, let us write t = s[R← 0], and let S′s be the well shrinking constraint
given by Lemma 3.12, such that for any shrunk DBM (t′, Qt) with t = t′ and t ⊆ t′, Qt ≤ S′s if,
and only if there exists Ps ≤ Ss with (s′, Ps) = s ∩ UnresetR((t

′, Qt)) for some s′ = s with s ⊆ s′.
We let St = mins∈N :t=s[R←0] S

′
s, where the minimum is taken componentwise. Then St is still a

well shrinking constraint. Now, St satisfies the following property: for any shrunk DBM (t′, Qt)
with t′ = t and t ⊆ t′, Qt ≤ St if, and only if for all regions s ∈ N with t = s[R← 0], there exists
Ps ≤ Ss such that (s′, Ps) = s ∩ UnresetR((t

′, Qt)) for some s′ with s′ = s and s ⊆ s′. Combining
this and S′ defined above, we get that St has the property that for any shrunk DBMs (t′, Qt) with
t′ = t and t ⊆ t′, Qt ≤ St if, and only if for all s ∈ N with t = s[R← 0], there exists Ps ≤ S′ such
that s ∩ (N,Ps) ⊆ s ∩ UnresetR((t

′, Qt)).
For any family of shrunk DBMs {(t′i, Qt′i

)}1≤i≤m with ti ⊆ t′i, ti = t′i and Qt′i
≤ Sti , consider the

set {Ps}s∈N as defined above. Let P ′ = maxs∈N (Ps), where the max is componentwise. We have
P ′ ≤ S′ since Ps ≤ S′ for all s ∈ N . We have s ∩ (N,P ′) ⊆ s ∩ UnresetR((t

′
i, Qt′i

)) for all s ∈ N ,
since Ps ≤ P ′. So,

(N,P ′) =
⋃

s∈N

s ∩ (N,P ′) ⊆
⋃

s∈N

s ∩ UnresetR((t
′
i, Qt′i

)).

By Lemma 3.14, there exists P ≤ S such that

(r′, P ) = r ∩ shrink((N,P ′)) ⊆
⋃

s∈N

s ∩ UnresetR((t
′
i, Qt′i

)).

This proves the first direction of the lemma.
Consider any SMs {Qti}1≤i≤m such that (Qti)x,y ≥ 1 and (St)x,y = 0 for some i and x, y ∈ C0.

Then there exists r0 ∈ N with r0[R ← 0] = t, such that if Qr0 denotes the SM that satisfies
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(r′0, Qr0) = r0 ∩ UnresetR((t
′
i, Qti)) with r′0 = r0 and r0 ⊆ r′0, we have Qr0 6≤ Sr0 . So, there is no SM

Pr0 such that r0 ∩ (N,Pr0) ⊆ (r′0, Qr0) and Pr0 ≤ S′. It follows that there is no P ′ ≤ S′ satisfying
(N,P ′) ⊆

⋃

s∈N (s
′, Qs) where (s′, Qs) = s ∩ UnresetR((t, Qt)). In fact, if this would imply that

(N,P ′) ∩ r0 ⊆ (r′0, Qr0), since the regions in N are pairwise disjoint. Therefore, if (N,P ′) satisfies
the above inclusion, then P ′ 6≤ S′, so there is no P ≤ S such that (r′, P ) satisfies the statement of
the lemma for some r′ = r.

This lemma gives for instance the shrinking constraints that should be satisfied in r1, r2 and r3,
in Fig. 5, once shrinking constraint in r′0 is known. In this case, the constraint in r′0 is 0 everywhere
since it is a punctual region. The neighborhood N of r′0 is composed of r′0 and two extra regions
(defined by (0 < x < 1) ∧ (x = y) and (1 < x < 2) ∧ (x = y)). If there are shrinkings of regions
r1, r2, r3 satisfying the corresponding shrinking constraints (given in the lemma), and from which
Controller wins, then one can derive a shrinking of r′0, satisfying its constraint, and from which
Controller wins. In the next section, we define the game RG(A) following this idea, and explain
how it captures the game semantics for robustness.

4. A finite game abstraction

Let A = (L, C, ℓ0, E) be a timed automaton. We define a finite turn-based game RG(A) on a
graph whose nodes are of two sorts: square nodes labelled by (ℓ, r, Sr), where ℓ is a location, r a
region, Sr is a well shrinking constraint for r; diamond nodes labelled similarly by (ℓ, r, Sr, e) where
moreover e is an edge leaving ℓ. Square nodes belong to Controller, while diamond nodes belong to
Perturbator. Transitions are defined as follows:

(a) From each square node (ℓ, r, Sr), for any edge e = (ℓ, g, R, ℓ′) of A, there is a transition to the
diamond node (ℓ, s, Ss, e) if the following conditions hold:

(i) r ⋖∗ s and s ⊆ g;

(ii) Ss is such that for all SMs Q, Q ≤ Ss iff there exists P ≤ Sr with

(r′, P ) = r ∩ shrink+(Pretime ((s,Q))),

for some r′ = r.

(b) From each diamond node (ℓ, r, Sr, e), where e = (ℓ, g, R, ℓ′) is an edge of A, writing N for the
set of regions in the neighborhood of (r, Sr) and N

′ = {s[R← 0] | s ∈ N}, there are transitions
to all square nodes (ℓ′, t, St) where t ∈ N ′, and (St)t∈N ′ are such that for all shrunk DBMs
((t′, Qt))t∈N ′ with t′ = t, it holds Qt ≤ St for every t ∈ N ′ iff there exists P ≤ Sr such that

(r′, P ) ⊆ r ∩ shrink(
⋃

s∈N

(s ∩ UnresetR((t
′, Qt))), where t = s[R← 0],

for some r′ = r.

Intuitively, the transitions from the square nodes are the decisions of Controller. In fact, it has to
select a delay and a transition whose guard is satisfied. Then Perturbator can choose any region in
the neighborhood of the current region, and, after reset, this determines the next state.

Note that RG(A) can be computed, thanks to Lemmas 3.16 and 3.17, and has exponential-size.
Observe also that RG(A) is constructed in a forward manner: we start by the initial constrained
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region (i.e. the region of valuation ~0 with the zero matrix as shrinking constraint), and compute its
successors in RG(A). Then, if Controller has a winning strategy in RG(A), we construct a winning
strategy for Gδ(A) by a backward traversal of RG(A), using Lemmas 3.16 and 3.17. Thus, we
construct RG(A) by propagating shrinking constraints forward, but later do a backward traversal
in it. The correctness of the construction is stated as follows.

Proposition 4.1. For any timed automaton A, Controller has a winning strategy in RG(A) if, and
only if there exists δ0 > 0 such that Controller wins Gδ(A) for all δ ∈ [0, δ0].

Note that as we compute a winning strategy for Controller (if any) by Proposition 4.1, we can
also compute a corresponding δ0. The upper bound of Theorem 2.3 is a consequence of the above
proposition, since RG(A) has exponential size and finite reachability games can be solved in time
polynomial in the size of the game.

Changing the perturbation parameters.. Consider the semantics where Controller’s delays are bounded
below by kδ, and the perturbations belong to [lδ,mδ] with lδ + kδ ≥ 0, for some rational number
δ > 0 and integers k ≥ 0, l,m (Observe that any choice of these rational parameters can be written
in this manner). The abstract game construction can then be adapted to this case. In fact,
it suffices to replace the operator shrink+ by shrink[0,kδ], and the operator shrink by shrink[lδ,mδ] in
the construction.

4.1. Proof of Proposition 4.1

4.1.1. Controller wins RG(A) ⇒ Controller wins Gδ(A) for all small enough δ > 0.

Assume we are given a reachability objective defined by ℓ⌣̈ ∈ L, and let σ be a memoryless
winning strategy for Controller in RG(A) for reaching ℓ⌣̈. Consider the execution tree Tσ of RG(A),
where Controller plays with σ. Tσ is finite by Koenig’s Lemma since all branches are winning, thus
finite, and all branches end in the target state.

To any square node n of Tσ labelled by (ℓ, r, Sr), we will assign a shrunk DBM
(
r′, Pn

)
and

δn > 0 with Pn ≤ Sr and r = r′, such that Controller wins the game Gδ(A) from any state of
{ℓ} × (r′ − δPn) for all δ ∈ [0, δn]. Remember that r′ = r implies r ⊆ r′ since r is a region. We will
define these by a bottom-up traversal of Tσ. We start by assigning Pn = 0 and δn =∞ to all nodes
with loc(n) = ℓ⌣̈ (which are leaves of Tσ). These are trivially winning for Controller.

Consider now a square node n of Tσ labelled by (ℓ, r, Sr) whose all square successors have
been treated. Then, n has only one successor which is given by σ, we assume it is the diamond
node n′ labelled by (ℓ, s, Ss, e). We write e = (ℓ, g, R, ℓ′). Let N be the set of neighboring regions
of 〈s, Ss〉 given by Lemma 3.14. Let s1, . . . , sm be the regions composing N , and let n′1, . . . , n

′
m

denote the successors of n′ in Tσ, where n′i is labelled by (ℓ′, ti, Sti), and such that ti = si[R← 0].
By construction, shrinking constraints Sti are given by Lemma 3.17 applied to 〈s, Ss〉. By induction,
for each 1 ≤ i ≤ m there is a shrunk DBM (t′i, Pn′

i
) and δn′

i
> 0 with t′i = ti and Pn′

i
≤ Sti , such

that Controller wins the game Gδ(A) from {ℓ
′} × (t′i − δPn′

i
) for all δ ≤ δn′

i
. Now, by Lemma 3.17,

there exists a shrunk DBM (s′, Q) with s′ = s and Q ≤ Ss such that

s′ − δQ ⊆ s ∩ shrink(
⋃

1≤i≤m

si ∩ UnresetR(t
′
i − δPn′

i
)),

for all 0 ≤ δ ≤ δn′ , where δn′ ≤ mini(δti) is computed by Lemma 3.8. Then, by construction of the
game, there exists Pn ≤ Sr and 0 < δn ≤ δn′ such that r′ − δPn = r ∩ shrink+(Pretime (s

′ − δQ)) for
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all 0 ≤ δ ≤ δn, for some r′ = r (Remember that Lemma 3.16 applies here on s′ since s = s′ and
s ⊆ s′). Here, δn can be computed using Lemma 3.6. Controller wins from these states: in fact, it
can delay into s′ − δQ, where, after any Perturbator’s move, and the clock resets, the next state
belongs to one of the states t′i − δPn′

i
, which are all winning by induction.

Notice that at each step of the computation, we get non-empty shrunk DBMs satisfying the
corresponding shrinking constraints. By construction of RG(A), we have only well shrinking
constraints in all nodes, so the computed shrunk DBMs (r′, Pn) are always non-empty. The
procedure ends in the initial state (ℓ0,0,0), so Controller wins Gδ(A) by projecting the play to
RG(A) and always staying inside set r′ − δPn at any node n, which is possible by construction.

4.1.2. Upper bound on δ0.

We now assume that Controller has a winning strategy and give an upper bound on δ0 computed
by the algorithm. Consider the set M of all shrunk DBMs that appear when we construct the
winning strategy in the proof above, including the shrunk DBMs corresponding to intermediary
results. For instance, in the computation above, given the edge (ℓi, ri, Sri)→ (ℓi, r

′
i, Sr′i

, e) and Pr′i
,

we compute Pri such that

(ri, Pri) = r ∩ shrink+(Pretime

(
(r′i, Pr′i

)
)
).

Then,M contains the shrunk DBMs (ri, Pri) and (r′i, Pr′i
), but also (M1, Q1) such that (M1, Q1) =

Pretime ((ri, Pri)), and (M2, Q2) such that (M2, Q2) = shrink+((M1, Q1)). Now, δ0 is chosen by the
algorithm small enough so that all shrunk DBMs ofM are non-empty and normalized, and all such
equations that appear in the construction of a winning strategy above hold, for all δ ∈ [0, δ0). Note
that since RG(A) has exponential size,M may contain exponentially many shrunk DBMs. We show
that δ0 can be chosen, roughly, as the inverse of the maximal component of all shrinking matrices
that appear in all computations.

Proposition 4.2. Let m = max(M,P )∈Mmaxi,j∈C0 Pi,j. Then, one can choose δ0 = 1
3m .

Proof. To prove this, we need to show for all δ ∈ [0, δ0) that all shrunk DBMs ofM are normalized,
non-empty and satisfy the equations they are involved in. Let us first note that being normalized
implies non-emptiness for the shrunk DBMs ofM since all shrinking constraints are well. In fact, a
normalized DBM is non-empty if, and only if all its diagonals are 0. Here, for any (M,P ) ∈M, the
diagonal components of M and P must be 0 since M is non-empty and normalized, and M − δP is
non-empty and normalized for small enough δ > 0, by hypothesis. Hence, if M − δP is normalized,
it must be non-empty too. Let (M,P ) ∈M. Normalization condition requires

∀i, j, k ∈ C30 , Mi,j − δPi,j ≤Mi,k − δPi,k +Mk,j − δPk,j ,

for all δ ∈ [0, δ0). If Mi,j = Mi,k + Mk,j , then we must have Pi,j ≥ Pi,k + Pk,j since the above
condition holds for small enough δ > 0. But then, for these components, the condition holds for all
δ > 0. If Mi,j < Mi,k +Mk,j , then the condition holds if δ0 ≤ |

Mi,k+Mk,j−Mi,j

Pi,k+Pk,j−Pi,j
|, but this is already

the case since δ0 < 1
3m . It remains to show that all equations that appear in the computations

hold. Equations of the form (M,P ) = Pretime ((N,Q)) and (M,P ) = UnresetR((N,Q)) already hold
for δ ∈ [0, δ0) since all involved shrunk DBMs are normalized (see Lemma 3.6 and [36] for details).
For an equation of the form (M,P ) = (N1, Q1) ∩ (N2, Q2), we have either (N1)i,j = (N2)i,j and
Pi,j = max((Q1)i,j , (Q2)i,j), or for example (N1)i,j < (N2)i,j and (Mi,j , Pi,j) = ((N1)i,j , (Q1)i,j). In

the former case, the equation holds for all δ > 0. In the latter case, it holds for all δ < | (N2)i,j−(N1)i,j
(P2)i,j−(P1)i,j

|.

This is already the case since δ < 1
3m .
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How much can m grow? A quick analysis shows that it is at most doubly exponential in the size
of the input. In fact, the size of RG(A) can be exponential in the size of the automaton, and the
number of shrunk DBMs involved in our computations are linear in the size of RG(A). In fact, we
apply, for each edge, a constant number of operations on shrunk DBMs. Whenever we apply such an
operation, and say, obtain (M,P ), we apply normalization on (M,P ), which consists in assigning to
each Pi,j , the P -weight of the longest path in G(M) from i to j. So at each operation, the maximal
constant of shrinking matrices is multiplied at most by |C0|. Considering the size ofM, we get that

m = O(|C0|
2|A|

). Note however that this is an extremely pessimistic estimation; it is unlikely that
parameters will grow that much at each step, and never be reset along a path. This is confirmed by
the experimental results of [35], where shrunk DBMs are used to solve a different problem.

4.1.3. Controller loses RG(A) ⇒ Controller loses Gδ(A) for any δ > 0.

To prove the theorem, we will assume the Controller loses in RG(A), and we will construct a
winning strategy for the δ-Perturbator in Gδ(A) by looking at the projection of the plays in RG(A),
and by imitating the moves of a winning strategy for the Perturbator in RG(A). The core idea
is to show that the Perturbator can always force the game to be close, by some chosen ǫ, to all
boundaries of the current region for which the shrinking constraint is 0. This will ensure that from
any state of the play, for any move of Controller, Perturbator can force the game to some state
inside any successor in RG(A).

Let us first formalize what we mean by being close to boundaries.

Definition 4.3. Let 〈M,S〉 any constrained DBM. For any ǫ ≥ 0, we say that a valuation ν is
ǫ-tight in M w.r.t. S if ν ∈M , and,

∀x, y ∈ C0, Sx,y = 0 ⇒ Mx,y − ǫ ≤ ν(x)− ν(y). (4)

We say that M admits tight valuations w.r.t. S if it admits ǫ-tight valuations for any ǫ > 0.
We say that 〈M,S〉 admits tight valuations if for any P ≤ S, and for all small enough δ > 0,

M − δP admits tight valuations w.r.t. S.

In the proofs, we will also say that ν is ǫ-tight in M for a component (x, y) ∈ C20 when
Mx,y − ǫ ≤ ν(x)− ν(y).

We show that for any move of Controller in Gδ(A) from an ǫ-tight valuation, the corresponding
edge exists in RG(A):

Lemma 4.4. Fix δ > 0 and ǫ ≤ δ
2 . Assume that ν is ǫ-tight in r w.r.t. S, and let ν′ = (ν + d) for

some d ≥ δ, and some edge e = (ℓ, g, R, ℓ′) with ν′ |= g. Then, RG(A) has an edge from (ℓ, r, Sr) to
(ℓ, r′, Sr′ , e) for r′ = reg(ν′) and for some Sr′ .

Proof. Let N = Pretime (r
′), and consider, by Lemma 3.12, the shrinking constraint SN such that for

any SM Q, Q ≤ SN if, and only if the SM P such that (r, P ) = r ∩ (N,Q) satisfies P ≤ Sr. Thanks
to Lemma 3.16, it is sufficient to show that (SN )x,0 = ∞ for all x ∈ C. To get a contradiction,
assume that (SN )x,0 = 0 for some x ∈ C. By (the proof of) Lemma 3.12, SN is the normalization
of S′r defined by (S′r)x,y = (Sr)x,y if rx,y = Nx,y and (S′r)x,y = ∞ otherwise. So, (SN )x,0 = 0
means that there exists (z, z′) such that (x, 0) is on some path π of Πz,z′(G(N)), rz,z′ = Nz,z′ and
(Sr)z,z′ = 0. But since r ⊆ N and rz,z′ = Nz,z′ we have Πz,z′(G(N)) ⊆ Πz,z′(G(r)). Moreover, all
weights along π are the same in r and N . We get (Sr)x,0 = 0. On the other hand, since r′ ⊆ N and
r ⋖∗ r′, we have rx,0 ≤ r′x,0 ≤ Nx,0. So rx,0 = r′x,0. By hypothesis, we have rx,0 − ǫ ≤ ν(x) ≤ rx,0.
But ǫ ≤ δ/2 and d ≥ δ, so ν(x) + d > rx,0 = r′x,0, a contradiction.
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The following lemma shows that ǫ-tightness is preserved by resets.

Lemma 4.5. Let r, r′ be regions such that r′ = r[R ← 0] for some R ⊆ C. Consider shrinking
constraints Sr and Sr′ given by Lemma 3.12, such that for any SM Q, Q ≤ Sr′ iff there the SM P
such that (r, P ) = r ∩ UnresetR((r

′, Q)) satisfies P ≤ Sr. Let δ > 0 small enough so that these
equations hold for given P and Q. For any ǫ > 0, and any ν that is ǫ-tight in r − δP w.r.t. Sr, we
have that ν′ = ν[R← 0] is ǫ-tight in r′ − δQ w.r.t. Sr′ .

Proof. Let N = UnresetR(r
′) and SN be the shrinking constraints such that for any SM Q, Q ≤ SN

if and only if the SM P such that r− δP = r ∩ (N − δQ) satisfies P ≤ Sr. Then Sr′ is such that for
any SM Q, Q ≤ Sr′ if and only if there the SM P such that N − δP = UnresetR(r

′ − δQ) satisfies
P ≤ SN . By definition of the reset operation, we have r′x,y = rx,y for all x, y 6∈ R, and r′x,y = 0 for
all x, y ∈ R (we assume 0 ∈ R). For any x ∈ R and y 6∈ R, r′x,y = r0,y and r′y,x = ry,0.

It suffices to assume that ν is ǫ-tight in 〈r, Sr〉 and show that ν′ = ν[R ← 0] is ǫ-tight in
〈r′, Sr′〉. For all x, y 6∈ R or x, y ∈ R, it is clear that ν′ satisfies the ǫ-tightness for these components.
Consider x ∈ R and y 6∈ R such that (Sr′)x,y = 0. Then (Sr′)0,y = 0, and it suffices to show that
−ν′(y) ≥ r′0,y − ǫ since ν′(x) = 0 and r0,y = r′0,y. We are going to show that (Sr)0,y = 0. If S′N
denotes the shrinking constraint defined by (S′N )x,0 = (S′N )0,x = 0 for all x ∈ R, (S′N )x,y = ∞
whenever x ∈ R and y ∈ C or inversely, and (S′N )x,y = (SN )x,y for x, y ∈ C0 \ R. Then Sr′ is the
normalization of S′N . Then, (Sr′)0,y = 0, for y 6∈ R, means that there is z, z′ ∈ C0 such that for some
path π ∈ Πz,z′(G(r′)), (0, y) belongs to π and (S′N )z,z′ = 0. Then either z, z′ 6∈ R and (SN )z,z′ = 0,
or z = 0 and z′ ∈ R.

• Consider the first case. We have r′z,z′ = Nz,z′ (by definition of unreset). We show that there
is a path π′ ∈ Πz,z′(G(N)) that contains (0, y) and whose all nodes are outside R. In fact,
r′z,0 = Nz,0 and r′y,z′ = Ny,z′ since z, z′, y 6∈ R, and these have finite weights (since π is a
shortest path). But N is obtained from r′ by setting to ∞ edges with an endpoint in R,
and applying normalization. So there must be shortest paths from z to 0, and from y to
z′ in G(N). Now, since (SN )z,z′ = 0, (z, z′) belongs to some path π′′ ∈ Πα,β(G(N)) where
rαβ = Nα,β and (Sr)α,β = 0. Moreover, from r ⊆ N , rα,β = Nα,β and rz,z′ = Nz,z′ , it follows
that π′, π′′ ∈ Πz,z′(G(N)) ⊆ Πz,z′(G(r)). Then, replacing the edge (z, z′) in π′′ by the path π′,
we still get a shortest path in G(r), that contains (0, y). Therefore, we must have (Sr)0,y = 0.

• Assume now that z = 0 and z′ ∈ R. Assume that π does not contain nodes in R other than
z′ (if it does, we can shorten π and change z′). Let us write π = z1z2 . . . zm where z1 = z
and zm = z′. Since r′0,zm = r′zm,0 = 0, π′ = z1 . . . zm−1 is a cycle with weight 0. But since all
nodes in π′ are outside R, this is also a path in G(r). Therefore (Sr)zi,zi+1

= 0 along all edges,
and in particular (Sr)0,y = 0.

By hypothesis, we have −ν(y) ≥ r0,y − ǫ, and since r′0,y = r0,y, we get −ν′(y) ≥ r′0,y − ǫ. The proof
of the symmetric case x 6∈ R and y ∈ R is similar.

The next lemma is the main lemma of the proof of the second direction of the theorem. It shows
that, starting from an ǫ-tight valuation of 〈r, S〉, and given a Controller’s move, Perturbator can,
not only choose any successor available in RG(A) but also make sure that the resulting valuation is
(ǫ+ ǫ′)-tight, for arbitrary ǫ′ > 0.

Lemma 4.6. Consider a valuation ν that is ǫ-tight in r w.r.t. S. Let ν′ = (ν + d) for some
d ≥ δ, let e = (ℓ, g, R, ℓ′) an edge of A with ν′ |= g. Consider the edge of RG(A) from (ℓ, r, Sr)

29



to (ℓ, r′, Sr′ , e) for r′ = reg(ν′) and for some Sr′ , from Lemma 4.4. Then, for any region s in
the 〈N,SN 〉 = neighbor〈r′, Sr′〉, and any ǫ′ > 0, there exists d′ ∈ [d − δ, d + δ] such that ν + d′ is
(ǫ + ǫ′)-tight in s w.r.t. Ss where Ss is such that for all SMs Q, Q ≤ Ss if, and only if there is
P ≤ SN with (N,P ) ∩ s ⊆ (s,Q).

Before proving Lemma 4.6, let us first prove the second direction of Proposition 4.1.

Proof of Proposition 4.1 (Second direction). We fix δ > 0, and consider an arbitrary strategy σ for
Controller in Gδ(A). We are going to define an infinite play π, where Controller follows strategy σ,
and the target location is not reached. This proves that Perturbator wins Gδ(A) against any strategy
of Controller since σ is chosen arbitrarily.

By hypothesis, Perturbator has a winning strategy γ in RG(A). We fix ǫ ∈ [0, δ/2], and we define
the sequence ǫi =

∑

1≤j≤i
ǫ
2j for i ≥ 1, which is positive and bounded above by ǫ. We construct in

parallel a play
(
(ℓi, ri, Sri), (ℓi, r

′
i, Sr′i

, ei)
)

i≥1
of RG(A) where Perturbator plays with strategy γ.

The play π = (ℓi, νi)i≥1 will satisfy the following invariant:

For each state (ℓi, νi), we have νi ∈ ri and νi is ǫi-tight in ri w.r.t. Sri .

Initially, we have (ℓ1, ν1) with ν1 = 0, and the initial state (ℓ1,0,0) of RG(A) satisfies the
invariant. For i ≥ 2, let us assume that state (ℓi, νi) of the play satisfies the invariant for the state
(ℓi, ri, Sri) of RG(A). Let d ≥ δ be the delay and ei = (ℓi, gi, Ri, ℓi+1) the edge prescribed by σ from
state (ℓi, νi) given the current history. Let ν′i = νi + d and r′i be the region of ν′i. Lemma 4.4 shows
that RG(A) has the corresponding edge. Let (ℓi+1, ri+1, Sri+1

) be the successor of (ℓi, r
′
i, Sr′i

, ei)
in RG(A), given by γ. Let s be a region in N = neighbor〈r′i, S

′〉 such that s[R← 0] = ri+1. From
Lemmas 4.6 and 4.5, it follows that first s, then ri+1 are reachable from ν′i by Perturbator’s move,
and that the resulting valuation is ǫi+1-tight in ri+1 w.r.t. Sri+1

by choosing ǫ′ = ǫ/2i+1

Proof of Prop. 4.6. Consider such valuations ν ∈ r and ν′ ∈ r′. For any x, y ∈ C, (Sr′)x,y = 0
implies that r′x,y − ǫ ≤ ν′(x)− ν′(y) ≤ r′x,y, since Sr and Sr′ have the same diagonal components
and time delays do not change the quantities ν(x)− ν(y). Hence, ν′ is ǫ-tight in r′ w.r.t. Sr′ for
all diagonal components. Assume that r′ ⋖∗ s. The other case is similar. Let Ss be the shrinking
constraint such that for all SMs Q, Q ≤ Ss if and only if there is P ≤ SN with (N,P ) ∩ s ⊆ (s,Q).
Let us write the clocks ordered according to their fractional values in r′:

0 = frac(X1) < frac(X2) < . . . < frac(Xm) < 1,

where each Xi is a set of clocks having the same fractional value, and X1 can be empty.

1. Assume that (Sr′)x,0 =∞ for all x ∈ X2 ∪ . . . ∪Xm. Then, by definition of the neighborhood,
either r′ = s or r′ ⋖ s, where the latter case is possible if X1 6= ∅.

• If r′ = s, then Perturbator perturbs by 0. Since (Ss)x,0 =∞ and (Ss)x,y = (Sr′)x,y for all
x, y ∈ C, by Lemma 4.7 (below), the valuation ν′ is ǫ-tight (s, Ss) for these components. If
(Ss)0,x = 0 for some x ∈ C, then N0,x < r′0,x by Lemma 4.7 since s0,x = r0,x, so we must
have (Sr′)0,x = 0, and ν′ is also ǫ-tight for components (0, x). Note that the ǫ-tightness
of diagonal components follow from the ǫ-tightness of ν in r′ w.r.t. Sr′ .
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• If r′ ⋖ s, we let Perturbator perturb by a positive amount 0 < d′ < ǫ′, so that the
valuation is in s. Since (Ss)x,0 =∞ and (Ss)x,y = (Sr′)x,y for all x, y ∈ C, by Lemma 4.7,
for these components, ν′ + d′ is ǫ-tight in (s, Ss). If (Ss)0,x = 0 for some x ∈ C, then
N0,x < r′0,x by Lemma 4.7, so we must have (Sr′)0,x = 0. We have, by hypothesis,
−ν′(x) ≥ r′0,x = s0,x− ǫ, so −(ν′(x)+d′) ≥ s0,x− ǫ− ǫ′. ν′+d′ is also ǫ-tight for diagonal
components since ν′ is.

2. Otherwise, consider the minimum k ∈ {2, . . . ,m} such that (Sr′)x,0 = 0 for all x ∈ Xk∪. . .∪Xm.
Since s is a successor region of r′, there exists k′ ∈ {k, . . . ,m} such that either clocks in Xk′

are integers, or all clocks Xk′+1 ∪ . . . ∪Xm have changed their integer parts and only these.
We treat each case separately:

(a) Assume sx,0 = r′x,0, ≺
s
x,0=≤ for x ∈ Xk′ ; sx,0 = r′x,0 + 1 and ≺s

x,0=< for all x ∈
Xk′+1 ∪ . . . ∪Xm; sx,0 = r′x,0 for all x ∈ X1 ∪ . . . ∪Xk′−1. We define Perturbator’s move
as d′ = 1− frac(ν′i(x)) for x ∈ Xk′ . It is clear that ν′ + d′ ∈ s, and that d′ ≤ ǫ since ν′ is
ǫ-tight. Let us show that the ν′ + d′ is ǫ-tight in s w.r.t. Ss. By Lemma 4.7, all diagonal
constraints in Ss are the same as in Sr′ so the property is satisfied for these components.

– Let us show ǫ-tightness for components (x, 0) (upper bounds). For all x ∈ Xk′+1 ∪
. . . Xm, we have (Ss)x,0 = ∞ by Lemma 4.7, since sx,0 = r′x,0 + 1 = Nx,0. We have
(ν′ + d′)(x) = sx,0 = −s0,x for x ∈ Xk′ , so ν′ + d′ is ǫ-tight for component (x, 0). For
all x ∈ Xk ∪ . . . ∪ Xk′−1, we have sx,0 = r′x,0, and ν′(x) ≥ r′x,0 − ǫ, which implies
ν′(x) + d′ ≥ sx,0 − ǫ as required. For all x ∈ X1 ∪ . . . ∪Xk−1, we have (Ss)x,0 =∞. In
fact, (Ss)x,0 = 0 means, by Lemma 4.7 that sx,0 < Nx,0. But since r

′⋖∗ s, we would have
r′ ≤ sx,0 < Nx,0, and this implies that (Sr′)x,0 = 0 by definition of N and Lemma 4.7.
But by the choice of k, and by Proposition 3.15, this is a contradiction.

– We now show ǫ-tightness for components (0, x) (lower bounds). For all x ∈ Xk′+1∪ . . .∪
Xm, we have, −(ν′(x) + d) ≥ s0,x − ǫ since d′ ≤ ǫ. The property is again clearly satisfied
by ν′(x) + d′ for x ∈ Xk′ since ν′(x) + d′ = sx,0. Consider now x ∈ X1 ∪ . . .∪Xk′−1 such
that (Ss)0,x = 0. We have (Ss)0,y = 0 for y ∈ Xk′ , and (Ss)0,x = 0, which implies that
(Ss)y,x = 0 since paths 0, y, x and 0, x belong to G(s), and Ss is normalized. Then, we
also have (Sr′)y,x = 0, so ν′(y)− ν′(x) ≥ sy,x − ǫ. means that frac(ν′(x)) + d′ ≤ ǫ. The
following figure illustrates this, assuming x ∈ Xi.

0 < X1 < . . . < Xi
︸ ︷︷ ︸

frac(ν′(x))

< Xi+1 < . . . < Xk′

︸ ︷︷ ︸

≥1−ǫ

< . . . < 1
︸ ︷︷ ︸

=d′

Therefore ν′ + d′ satisfies ν′(x) + d′ ≤ −s0,x + ǫ, for all x ∈ C such that (Ss)0,x = 0.

(b) sx,0 = r′x,0 + 1 and ≺s
x,0=< for all x ∈ Xk′ ∪ . . . ∪Xm; sx,0 = r′x,0 and ≺s

x,0=< for all
x ∈ X1 ∪ . . . ∪Xk′−1. In this case, we first delay to the immediate time predecessor of
s as in the previous case, then add a positive delay d′ of at most ǫ′. Then, ν′ + d′ is
(ǫ+ ǫ′)-tight in s w.r.t. Ss.

The following technical lemma is used in the proof of Lemma 4.6 above.

Lemma 4.7. Let 〈N,SN 〉 denote the constrained neighborhood of some constrained region. Let r be
any region included in N . Let Sr denote the shrinking constraint such that for all SMs Q, Q ≤ Sr
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if, and only if there is P ≤ SN with (N,P ) ∩ r ⊆ (r,Q) for all small δ > 0. Then, for all x, y ∈ C,
(Sr)x,y = 0 implies that (SN )x,y = 0; for all x ∈ C, (Sr)x,0 = 0 implies rx,0 < Nx,0 and (Sr)0,x = 0
implies r0,x < N0,x.

Proof. By Lemma 3.12, Sr is defined as follows. Let S1 obtained by (S1)x,y = Sx,y if rx,y = Nx,y

and 0 otherwise. Then, Sr is the normalization (in the sense of SMs) of S1, so S1 ≤ Sr. But all
diagonal constraints are the same in r and N , and rx,0 = Nx,0 implies (S1)0,x = Sx,0 = ∞, and
similarly r0,x = N0,x implies (S1)0,x = S0,x =∞. The result follows.

We also note the following corollary of Lemma 4.6 and Lemma 4.5, which will be used in Section 5.

Corollary 4.8. Let (ℓ, r, Sr) be a square node of RG(A). Then 〈r, Sr〉 admits tight valuations.

Proof. We prove this for each node n = (ℓ, r, Sr) by induction on the shortest path from the initial
node of RG(A) to n. It is true for the initial node (ℓ0,~0,~0). Assume it is the case for n = (ℓ, r, Sr),
and pick any square node n′′ = (ℓ′, t, St) reached via a diamond node n′ = (ℓ, s, Ss, e). For all
successor (ℓ′, t′, St′) of n

′, pick any SM Qt′ ≤ St′ , and consider P ′ ≤ Ss given by Lemma 3.17 such
that

(s, P ′) ⊆ s ∩ shrink(
⋃

s′∈N

(s′ ∩ UnresetR((t
′, Qt′)))),

where N is the neighborhood of 〈s, Ss〉, and we write t′ = s′[R ← 0] for any s′ ∈ N . Further, let
Pr ≤ Sr such that

(r′, Pr) = r ∩ shrink+(Pretime ((s, P
′))).

Choose δ > 0 small enough so that all equations hold. Let ν be any ǫ-tight valuation in r′ − δP . By
the above equations, by a joint move of Controller and Perturbator, the game can proceed to any of
the set t′ − δQt′ . In particular, by Lemmas 4.6 and 4.5, the resulting valuation can be chosen by
Perturbator to be inside t − δQt as (ǫ+ ǫ′)-tight for any ǫ′ > 0. Since Qt was chosen arbitrarily,
〈t, St〉 admits tight valuations.

5. Extension to Turn-based Timed Games

In this section, we extend the reachability algorithm to turn-based timed games.
The correctness of the abstract game for timed automata (Proposition 4.1) was based on 1) the

ability of the controller to always delay inside shrinkings of regions it visits, 2) while not being able
to avoid visiting tight valuations. While the former ensured Controller to win Gδ(A) if a winning
strategy of the abstract game is given, the latter ensured the symmetric property for Perturbator.

The situation is different in a game setting since from locations LP , Perturbator has no reason
to delay into particular shrinkings. In fact, consider Figure 10 which shows the states that can be
reached by a delay inside region r′, at a location LP , starting from a shrinking of r, with r ⋖+ r′.
Perturbator can thus delay to valuations close to borders. In fact, if the play arrives to LP inside
r − δP , then r′ ∩ Posttime(r − δP ) is the set of valuations that that can be reached inside r′ after a
delay. While this can still be expressed as a shrunk region (by Lemma 3.6), this set does not admit
tight valuations, so the previous proof cannot be carried out directly. We will show however that
this set is always included in the union of at most two shrunk regions that admit tight valuations
(See Fig. 10(b)). This property will allow us to adapt the abstract game construction and prove its
correctness following the same proof as for timed automata.
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r

r′

(a) A region r and
its time successors in-
side r′.

⊆
⋃

(b) The shrinking of r′ on the
left can be decomposed as two
shrinkings that admit tight valu-
ations. Any actual delay of Per-
turbator will belong to one of
these two shrinkings.

Figure 10: At Perturbator’s locations, the delays cannot be expected to end in shrinkings of a particular form. In this
example, if Perturbator delays in region r′ from r, the valuation can be closed to the borders of the region, and the
shrinking expressing the reachable valuations do not admit tight valuations (on the left). We will rather decompose
this shrunk region into two shrunk regions that do admit tight valuations (on the right).

For the proofs, we first need the following characterization of constrained regions that admit
tight valuations. Intuitively, a constrained region does not admit tight valuations 1) if we have
Sx,y = Sy,x = 0 for some pair x, y ∈ C0 with rx,y 6= −ry,x since this would require a valuation v
to be close to two distant lines, and 2) if the zeros of S are “transitive”. The characterization is
formally proved in the next lemma.

Lemma 5.1. Let 〈r, Sr〉 be a constrained region. Then, 〈r, Sr〉 admits tight valuations if, and only
if the two following conditions hold:

1. For any x, y ∈ C0, if rx,y 6= −ry,x and (Sr)x,y = 0, then (Sr)y,x =∞,

2. For any x, y ∈ C0, if there is x1x2 . . . xn ∈ Πx,y(G(r)) with (Sr)xi,xi+1
= 0 for 1 ≤ i ≤ n− 1,

then (Sr)x,y = 0.

Proof. Assume that the first condition is not satisfied. If rx,y 6= −rx,y and (Sr)x,y = (Sr)y,x = 0,
then for any ν ∈ r, ν(x)−ν(y) > rx,y− ǫ implies ν(x)−ν(y) > −rx,y + ǫ, for small enough ǫ > 0. So
no valuation ν is tight in r. Assume now that the second condition is not satisfied. If (Sr)xi,xi+1

= 0
for all 1 ≤ i ≤ n− 1 and (Sr)x1,xn

= ∞, then consider any SM P with Px1,xn
= 1. If ν is ǫ-tight

in r − δP , then we have rxi,xi+1
− ǫ ≤ ν(xi) − ν(xi+1) for all 1 ≤ i ≤ n − 1. Summing these

yield
∑n−1

i=1 rxi,xi+1
− nǫ ≤ ν(x1)− ν(xn). We have

∑n−1
i=1 rxi,xi+1

= rx1,xn
by hypothesis, and also

ν(x1)− ν(xn) ≤ r − δ. Now, this means rx1,xn
− ǫn ≤ rx1,xn

− δ, which is a contradiction for small
enough ǫ > 0.

Consider the fractional ordering of the clocks in r: X1, . . . , Xn and let 2 ≤ i0 ≤ n + 1 and
1 ≤ j0 ≤ n be the indices given by Lemma 3.15. By hypothesis, we must have j0 < i0, since otherwise
j0 ≥ 2, and rx,0 6= −r0,x for x ∈ Xj0 , but (Sr)x,0 = (Sr)0,x = 0, contradicting the hypothesis.

Observe that if x ∈ Xk and y ∈ Xl with j0 < k < l < i0, then (Sr)y,x = ∞, since (y, 0, x) ∈
Πy,x(G(r)) and (Sr)y,0 =∞. Furthermore, unless i0 = j0 + 1, there exists

j0 + 1 = α1 ≤ α′1 < α2 ≤ α′2 < . . . < αm ≤ α′m = i0 − 1,

such that for all x ∈ Xk and y ∈ Xl with αi ≤ k < l ≤ α′i, we have (Sr)x,y = 0, and if αi ≤ k ≤ α′i
and l > α′i then (Sr)x,y = ∞. In fact, for any pair x ∈ Xk and y ∈ Xl with j0 < k < l < i0,
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(Sr)x,y = 0 implies that (Sr)x′,y′ = 0 for all x′ ∈ Xk′ and y′ ∈ Xl′ with k ≤ k′ < l′ ≤ l, because
Sr is normalized. Moreover, for such a pair x, y, if for z ∈ Xl+1, we have (Sr)y,z = 0, then also
(Sr)x,z = 0. This follows from the hypothesis since x, y, z ∈ Πx,z(G(r)) and has Sr-weight equal to
0. Thus, the sequence (αi, α

′
i)i is well-defined. Consider x ∈ Xk and y ∈ Xl for k ∈ [αi, α

′
i] and

y ∈ [αj , α
′
j ] with i < j, then (Sr)x,y = ∞. In fact, for any clock z ∈ Xα′

i
and z′ ∈ Xαj

, we have
x, z, z′, y ∈ Πx,y(G(r)), and (Sr)z,z′ =∞ by definition of the sequence α, α′.

We now show that (r, Sr) has ǫ-tight valuations. Consider any normalized SM P ≤ Sr and
1/δ > 2(|C|+ 2)maxx,y∈C0(Px,y).

Fix any 0 < ǫ < δ/2. We define a valuation ν as follows. We let ν(x) = rx,0 for x ∈ X1.
We choose the values ν(x) for x ∈ X2 ∪ . . . ∪Xj0 as −r0,x < ν(x) < −r0,x + ǫ/2, such that they
respect the fractional ordering. Similarly, we choose rx,0 − ǫ/2 < ν(x) < rx,0 for x ∈ Xi0 ∪ . . . ∪Xn,
respecting the fractional ordering. Define Ai =

i
|C|+2 for 1 ≤ i ≤ m. Define Xi,j = Xi∪Xi+1∪ . . . Xj .

For each set Xαi,α′
i
for 1 ≤ i ≤ m, we choose values in the interval [Ai − ǫ/2, Ai + ǫ/2] respecting

the fractional orderings. The valuation is illustrated in the following figure.

0 X2 ··· Xj0

≤ǫ/2

Xα1
Xα′

1

≤ǫ

Xα2
Xα′

2

≤ǫ

··· Xi0 ··· Xn 1

≤ǫ/2

We show that ν is ǫ-tight in r − δP . We verify at the same time that ν belongs to r − δP , and
that it is ǫ-tight. We first consider the constraints between clocks X2 ∪ . . . Xj0 and Xi0 ∪ . . . ∪Xn,
then between clocks in xj0+1 ∪ . . . ∪Xi0−1, and finally for pairs between the two sets.

1. For all x ∈ X2 ∪ . . . ∪Xj0 , we have, by definition (Sr)0,x = 0 and −r0,x < ν(x) < −r0,x + ǫ/2,
and (Sr)x,0 =∞. By the choice of δ, ν(x) < −r0,x + ǫ/2 < rx,0 − δQx,0. For any pair x ∈ Xk

and y ∈ Xl with 1 ≤ k < l ≤ j0, we have (Sr)x,y = 0 by normalization since 0, x, y is in
Π0,y(G(r)), but the previous inequality implies that rx,y − ǫ/2 < ν(x)− ν(y) < rx,y. We have,
therefore, (Sr)y,x =∞, and ν(y)− ν(x) < −rx,y + ǫ/2 < ry,x − δPx,y by the choice of δ.

2. Similarly, for all x ∈ Xi0 ∪ . . .∪Xn, we have (Sr)0,x =∞, (Sr)x,0 = 0 and rx,0− ǫ/2 < ν(x) <
rx,0. For any pair x ∈ Xk and y ∈ Xl with i0 ≤ k < l ≤ n, we have (Sr)x,y = 0 as before,
and rx,y − ǫ/2 < ν(x)− ν(y) < rx,y. We have (Sr)y,x =∞, and ν(y)− ν(x) < −rx,y + ǫ/2 <
ry,x − δPy,x by the choice of δ and ǫ.

3. For any pair x ∈ X2∪ . . .∪Xj0 and y ∈ Xi0 ∪ . . .∪Xn, we have (Sr)y,x = 0 by hypothesis, since
y, 0, x is in Πy,x(G(r)) and all edges have Sr-weight 0. Thus, ν(y)− ν(x) < ry,x − δPy,x, and
we have ry,x − ǫ < ν(y)− ν(x) since ν(x) > rx,0 − ǫ/2 and ν(y) < −r0,y + ǫ/2. Furthermore,
−rx,y + δPx,y < ν(y)− ν(x) since −rx,y + δPx,y < ry,x − ǫ by the choice of δ and ǫ.

4. Let us now consider constraints between clocks inXj0+1∪. . . Xi0−1. For any x ∈ Xk and y ∈ Xl

with j0 < k < l < i0, we have (Sr)y,x =∞ since (y, 0, x) belongs to Πy,x(G(r)) and (Sr)y,0 =∞.
We have ν(y)− ν(x) < ry,x − δPy,x since frac(frac(ν(y))− frac(ν(x))) ≤ m−1

|C|+2 + ǫ ≤ 1− δPy,x.

Assume that αi ≤ k < l ≤ α′i, for some i. We have (Sr)x,y = 0 and rx,y−ǫ < ν(x)−ν(y) < rx,y
by definition of ν. If k ∈ [αi, α

′
i] and l ∈ [αj , α

′
j ] for i < j, then (Sr)x,y = ∞. Since

1
|C|+2 + ǫ > δPx,y, we have ν(x)− ν(y) < rx,y − δPx,y.

5. Consider now clock x ∈ X2 ∪ . . . ∪Xj0 and y ∈ Xj0+1 ∪ . . . ∪Xi0−1. We have (Sr)x,y = ∞
by hypothesis. In fact, (0, x, y) ∈ Π0,y(G(r)) and (Sr)x,y = 0 would imply (Sr)0,y = 0. Also,
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(Sr)y,x = ∞ because (Sr)y,0 = ∞. We have −ry,x + δPy,x < ν(x) − ν(y) < rx,y − δPx,y by
1

|C|+2 + ǫ > δmaxx,y Px,y.

We need to extend Lemma 3.12 to the Posttime() operation.

Lemma 5.2. Let M , N be normalized non-empty DBMs such that
N = Posttime(M) and S ≤ Well(M). There exists a shrinking constraint S′ for N such that
for all SMs Q, Q ≤ S′ if, and only if there exists P ≤ S with Posttime((M,P )) = (N ′, Q) with
N′ = N.

Proof. Recall that N is obtained from M by setting all components (x, 0) to (∞, <) and that the
resulting DBM is already normalized. Define (S1)x,0 =∞ for all x ∈ C and (S1)x,y = Sx,y for all
(x, y) ∈ C0 × C. We define S′ as the normalization of S1.

For any P ≤ S, let (N,Q) denote the shrunk DBM such that (N,Q) = Posttime((M,P )). Let us
show that Q ≤ S′. Here, Q is the normalization of Q′ defined by Q′x,y = Px,y if y 6= 0 and Q′x,y = 0
if y = 0. Since Nx,0 = ∞ for all x ∈ C, we only need to verify that Q′x,y ≤ S′x,y when y 6= 0. For
these components, we have Nx,y = Mx,y and M ⊆ N , therefore Πx,y(G(N)) ⊆ Πx,y(G(M)). So Q′

is already normalized because P is, and Q = Q′. By definition of S1 above, we have Q ≤ S1, which
implies Q ≤ S′ (since Q is normalized). This also shows that if Q 6≤ S′, then for all P ≤ S, we have
Posttime(M − δP ) 6⊆ N − δQ. In fact, for any such P , as we just showed, there exists Q′ ≤ S′ such
that Posttime(M − δP ) = N − δQ′. But N − δQ′ ⊆ N − δQ if, and only if Q ≤ Q′, and Q′ ≤ S′

implies Q ≤ S.
For any Q ≤ S′, let us define P such that (M,P ) = M ∩ (N,Q). We have Posttime((M,P )) =

(N,Q), since Posttime(M ∩ (N,Q)) = (N,Q). Let us show that P ≤ S. P is the normalization of P ′

defined by P ′x,y = Qx,y if y 6= 0 and P ′x,y = 0 otherwise. Consider (x, y) such that Sx,y = 0.
- If y 6= 0, then S′x,y = 0, by definition of S′. Consider any path x1 . . . xn in Πx,y(G(M)). We

have Sxj ,xj+1
= 0 for all 1 ≤ j ≤ n − 1. But, if xj+1 = 0, then P ′xj ,xj+1

= 0 by definition, and
otherwise P ′xj ,xj+1

= 0 because S′xj ,xj+1
≤ Sxj ,xj+1

= 0. Therefore, Px,y ≤ Sx,y.
- For the case y = 0, one can notice that since Nx,0 =∞ for all x ∈ C, for all normalized SMs P ,

we have Px,0 = 0 by definition.

The following lemma gives the construction illustrated in Fig. 10. The idea is the following. We
know that a time successor region of a constrained region admitting tight valuations does not admit
tight valuations in general (see Fig. 10). Nevertheless, we show, in the following lemma, that such a
time successor can be over-approximated by the union of at most two constrained regions admitting
tight valuations (see the two regions on the right, in Fig. 10). This property will allow us to carry
out the same proof as in the previous section, based on tight valuations. The idea of the proof
consists in showing that, given 〈r, Sr〉 and a successor region r′, the time successor valuations of r
that are in r′ are either close to the first facet of r′ they cross when entering r′, or to the last facet
they cross before leaving r′. These facets can be defined looking at the order in which the fractional
values of the clocks evolve during a delay, as in the figures below.

Lemma 5.3. Let 〈r, Sr〉 be any constrained region that admits tight valuations, and r′ such that
r ⋖∗ r′. There exist, and one can compute, S1, Sm with m ∈ {1, 2}, such that each 〈r′, Si〉 admits
tight valuations and for any SMs (Qi)1≤i≤m, we have Qi ≤ Si for all 1 ≤ i ≤ m, if, and only if
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there exists an SM P ≤ Sr with

Posttime(r − δP ) ∩ r′ ⊆
m⋃

i=1

(r′ − δQi),

for all small δ > 0. Moreover, in this case, for any ǫ-tight valuation v ∈ (r, P ) and any i ∈ {1, 2}
and ǫ′ > 0, there exists d ≥ 0 such that v + d is (ǫ+ ǫ′)-tight in (r′, Qi).

Proof. Consider the clock ordering of a constrained region with tight valuations as in the proof of
Lemma 5.1. We assume the indices 1 ≤ i0, j0 ≤ n and αi, α

′
i’s are defined (see figure below). We

distinguish cases according to the last clock that crosses an integer value during the delay from r
to r′: There exists 1 ≤ k0 ≤ n and m ∈ N such that for all x ∈ X1 ∪ . . . ∪Xk0

, −r′0,x = −r0,x +m,
while for all x ∈ Xk0+1 ∪ . . . ∪Xn, we have −r′0,x = −r0,x +m+ 1. Notice that −r0,x is the integer
part of the clock x in region r. If all integer parts have grown by m, then we let k0 = 1. In the
following figure, we represent by a vertical gray line some possible values of the index k0.

We distinguish several cases according to the relative position of k0.

1. Assume that 1 ≤ k0 ≤ j0− 1. The clock ordering before the delay is illustrated in the following
figure in black, whereas the ordering after the delay is given between the gray 0 and 1.

0 X2 ···

0 1

Xj0

≤ǫ/2

Xα1
Xα′

1

≤ǫ

Xα2
Xα′

2

≤ǫ

··· Xi0···Xn 1X1...Xk0

≤ǫ/2

Let us consider the shrinking constraint Sr′ given by Lemmas 3.12 and 5.2, so that for all SMs
Q, we have Q ≤ Sr′ iff there is P ≤ S with Posttime(r− δP )∩ r′ ⊆ r′− δQ. The constraint Sr′

can be obtained from Sr by only changing the following components: for all x ∈ X1 ∪ . . .∪Xk0

(Sr′)x,0 = 0, and either r′x,0 = −r′x,0 and (Sr′)0,x = 0 or (Sr′)0,x =∞. In fact, since r′ − δQ
contains the successors of r − δP , the diagonal constraints are the same. Moreover, the
partition of the clocks given by i0, j0 and αi, α

′
i’s are preserved by delays; while time is only

translated. So the clocks X0, . . . , Xk0
will be mixed with Xi0 , . . . , Xn but the constraints on

the rest of the clocks will remain. By Lemma 5.1, (r′, Sr′) has tight valuations.

Consider SMs Q and P such that Posttime(r − δP ) ∩ r′ ⊆ r′ − δQ for all small enough δ > 0.
Let ν ∈ r − δP be an ǫ-tight valuation in (r, Sr). Define d = m + 1 − ν(xk0+1) if xk0+1

has integer value in r′ and d = m + 1 −
ν(xk0

)+ν(xk0+1)

2 otherwise (if k0 = n, then let us
assume xn+1 = 1). Then, according to the definition of k0 and m, ν + d belongs to r′.
Therefore, also ν+d ∈ r − δQ. We show that ν+d is ǫ-tight in (r′, Sr′). Diagonal components
stay unchanged both in shrinking constraints and in valuations, so we only need to verify
the constraints (Sr′)x,0 and (Sr′)0,x. Since the distances between the first j0 clocks are at
most ǫ in ν (i.e. ν(xj0) − (−r0,xj0

) ≤ ǫ), we have that r′x,0 − ǫ ≤ ν(x) + d ≤ r′x,0 for all
x ∈ X1 ∪ . . .∪Xk0

, and −r′0,x ≤ ν(x) + d ≤ −r′0,x + ǫ for all x ∈ Xk0+1 ∪ . . .∪Xj0 . It remains
to verify that r′y,0 − ǫ ≤ ν(y) + d ≤ r′y,0 for y ∈ Xi0 ∪ . . .∪Xn. This follows from the fact that
ry,x − ǫ ≤ ν(y)− ν(x) ≤ ry,x (which holds by hypothesis on (r, Sr)).

The case where k0 ≥ i0 + 1 is symmetric.
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2. Assume that j0 ≤ k0 < α1. Note that we may have Xj0 = ∅ or Xi0 = ∅, or both. We define two
shrinking constraints S1

r′ and S2
r′ , such that (r, Si

r′) admits tight valuations for both i = 1, 2.
Both have the same diagonal components as Sr, since these do not change along delays. The
first one corresponds to delaying to points where clocks Xk0

can be very close to their upper
integer values (Fig. 11(a)), and the second one to points where clocks Xα1

are very close to
their integer parts (Fig. 11(b)). We will show that for any pair Q1 ≤ S1

r′ and Q2 ≤ S2
r′ , there

is a corresponding P ≤ Sr such that any valuation obtained by delaying from r − δP inside r′

lies either in (r′ − δQ1) or (r′ − δQ2), and moreover ǫ-tight valuations are reached in these
shrunk regions if one starts at an ǫ-tight valuation in (r, Sr).

To define (Si
r′), we modify Sr as follows. We let (S1

r′)x,0 = 0 and (S1
r′)0,x = ∞ for all

x ∈ X1 ∪ . . . ∪Xj0 . Then (S1
r′) admits ǫ-tight valuations by Lemma 5.1. We let (S2

r′)x,0 =
(S2

r′)0,x =∞ for all x ∈ X1∪. . .∪Xj0 and x ∈ Xi0∪. . .∪Xn, and (S2
r′)0,x = 0 and (S2

r′)x,0 =∞
for all x ∈ Xαi

∪ . . . ∪Xα′
i
. Then, similarly, (S2

r′) admits ǫ-tight valuations. The definitions
are illustrated in Figure 11.

S1

r′
:

0 Xj0

0

Xα1
Xα′

1
Xi0Xn

1 Xj0

1

(S1

r′
)x,0=0

(a) S1
r′

S2

r′
:

0 Xj0

0

Xα1
Xα′

1
Xi0Xn

1 Xj0

1

(S2

r′
)0,x=0

(b) S2
r′

Figure 11: The ordering of the clock partition X1, . . . , Xn in region r is shown in black in both figures. The new
ordering inside r′ is shown in gray.

Consider any pair of SMs Qi ≤ (Si
r′) for i ∈ {1, 2}. We define P satisfying Sr as follows. We

let Px,0 = 0 whenever (Sr)x,0 = 0 or (Sr′)x,0 = 0, and P0,x = 0 whenever (Sr)0,x = 0. We
choose arbitrary values for other components satisfying Sr and the following constraints:

(a) Px,y ≥ max(Q1
x,y, Q

2
x,y) for all x, y ∈ C. Notice here that Q1

x,y = Q2
x,y = 0 whenever

(Sr)x,y = 0 by definition of S1
r′ and S2

r′ .

(b) For all x ∈ Xα1
∪ . . .∪Xi0−1, Px,0 ≥ max(Q1

x,0, Q
2
x,0). Notice that (Sr)x,0 =∞ for these

components.

(c) For all x ∈ C \ (Xα1
∪ . . . ∪ Xα′

1
), Pα1,x ≥ Q2

0,x. Notice that (Sr)x,α1
= ∞ for these

components.

(d) For all x ∈ C \ (Xα1
∪ . . .∪Xα′

1
), and y ∈ Xα1

∪ . . .∪Xα′
1
, Px,α1

≥ max(Q1
0,x, Q

2
x,0+Q1

0,y).
We have again (Sr)x,α1

=∞.

This shows that one can choose values for P while satisfying Sr. Note also that normalization
of P can only increase its components, so all lower bounds given above will still be satisfied.

Consider any ν ∈ r − δP . Let us show that for any d ≥ 0 with ν + d ∈ r′, we have
ν + d ∈ r′ − δQi for i = 1 or i = 2. For diagonal components (x, y) ∈ C2, we have −r′y,x +

δ(Qi)y,x ≺
r′

y,x ν(x) + d− (ν(y) + d) ≺r′

x,y r′x,y − δ(Qi)x,y for small enough δ > 0. In fact, either

(Sr′)x,y = 0 and (Qi)x,y = 0 for i = 1, 2, since Si
r′ has the same diagonal components as Sr, or

Px,y ≥ max((Q1)x,y, (Q2)x,y).

It remains to choose i ∈ {1, 2} such that the constraints on the components (x, 0) and (0, x)
are satisfied. Let us write ν′ = ν + d.
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(a) Assume that for all x ∈ X1∪. . . Xn, −r
′
0,x+δQ1

0,x ≺
r′

0,x ν′(x). For all x ∈ Xi0∪. . .∪Xn and

x ∈ X1∪. . .∪Xj0 , we have Q
1
x,0 = 0 so ν(x) ≺r′

x,0 r′x,0−δQ
1
x,0. For any x ∈ Xα1

∪. . . Xi0−1,

we have Px,0 ≥ Q1
x,0, so ν′(x) ≺r′

x,0 r′x,0 − δQ1
x,0.

(b) Assume that for some 1 ≤ i ≤ n, for clocks x ∈ Xi, −r
′
0,x + δQ1

0,x 6≺
r′

0,x ν′(x). We show
that ν′ ∈ r′ − δQ2. Let us first show that we have i ∈ {α1, . . . , α

′
1}. This follows from

the fact that Px,α1
≥ Q1

0,x for all clocks x ∈ C \ (Xα1
∪ . . . ∪Xα′

1
). In fact, this ensures

that the constraint −r′0,x + δQ1
0,x ≺

r′

0,x ν′(x) is always satisfied for these clocks, hence
i ∈ {α1, . . . , α

′
1}.

We first show that the upper bounds hold. Let y ∈ Xα1
and y′ ∈ Xi. We have ν′(y) ≤

−r′0,y+δQ1
0,y′ since ν′(y′) ≤ −r′0,y′ +δQ1

0,y′ by definition of i, and frac(ν(y)) ≤ frac(ν(y′)).

For any x ∈ Xi0 ∪ . . . ∪Xn ∪X1 ∪ . . . ∪Xj0 , we also have ν′(x)− ν′(y) ≺r′

x,y r′x,y − δPx,y,

which together yields ν′(x) ≺r′

x,0 r′x,0 − δ(Px,y −Q1
0,y′). This implies the desired bound

since Px,y ≥ Q2
x,0 + Q1

0,y′ . For any clock x ∈ Xα1
∪ . . . ∪ Xi0−1, we have Px,0 ≥ Q2

x,0,

which yields ν′(x) ≺r′

x,0 −δQ
2
x,0.

It remains to show the lower bounds. We have Q2
0,x = 0 for all x ∈ Xα1

∪ . . . ∪ Xα′
1

so −r′0,x + δQ2
0,x ≺

r′

0,x ν′(x). For all x ∈ C \ (Xα1
∪ . . . ∪ Xα′

1
), we have by definition

Pα1,x ≥ Q2
0,x. Then, −r

′
α1,x + δPα1,x ≺

r′

α1,x ν′(x)− ν′(α1). Combining with the fact that

ν′(α1) ≥ −r
′
0,α1

we get −r′0,x + δQ2
0,x ≺

r′

0,x ν′(x).

It is now easy to see that from ǫ-tight valuations in (r, Sr), one can reach (ǫ+ ǫ′)-tight
valuations in both (r′, S1

r′) and (r, S2
r′). In fact, for any ǫ′ > 0, the delay d ≥ 0 can be

chosen such that r′x,0 − ν′(x) ≤ ǫ′, for x ∈ Xj0 , but also such that ν′(x) + r′0,x ≤ ǫ′ for
x ∈ Xα1

. In the former case, ν′ is (ǫ+ ǫ′)-tight in (r′, S1
r′), and in the latter case, ν′ is

(ǫ+ ǫ′)-tight in (r′, S2
r′).

3. The cases where α′i ≤ k0 < αi+1 for i > 1 or α′m ≤ k0 < i0 are treated similarly to the previous
case: Here α′i has the role of j0, and αi+1 has the role of α1.

4. Assume that αi ≤ k0 < α′i. Then Sr′ has the same diagonal components as Sr, and for any
x ∈ Xαi

∪ . . . ∪ Xk0
, (Sr′)x,0 = 0 and (Sr′)0,x = ∞, while for any x ∈ Xk0+1 ∪ . . . ∪ Xα′

i
,

(Sr′)x,0 =∞ and (Sr′)0,x = 0. Furthermore, for any other clock x ∈ C, (Sr′)x,0 = (Sr′)0,x =∞.

If we fix SMs P and Q such that Posttime(r− δP )∩ r′ ⊆ r′− δQ, then for any ǫ-tight valuation
ν ∈ r − δP , any delay d with ν + d ∈ r′ is ǫ-tight in (r′, Sr′). In fact, the diagonal components
stay unchanged during delays, and the fractional values of clocks Xαi

∪ . . . ∪Xα′
i
differ by at

most ǫ in ν.

5. Assume that j0+1 = i0 (there is no αi, α
′
i). Consider the case k0 = j0. The proof follows again

the same ideas as before, but is simpler. We give the details. We define (S1
r′)x,y = (S2

r′)x,y =
(Sr)x,y for all x, y ∈ C. We let (S1

r′)x,0 = 0 and (Sr′)0,x =∞ for all x ∈ C, and (S2
r′)0,x =∞

and (Sr′)0,x = 0 for all x ∈ C. S1
r′ is represented in Figure 11(a) (with the difference that there

is no αi’s).

Let Qi ≤ Si
r′ for i = 1, 2. Let j′0 = min{j | 1 ≤ j ≤ j0, Xj 6= ∅}. Define P , where Px,y ≥ Q1

0,x

for all x ∈ Xi0 ∪ . . . ∪Xn and y ∈ Xj′
0
. Let Px,i0 ≥ Q1

0,y +Q2
x,0 for all x ∈ C \Xi0 and y ∈ C.

Consider ν ∈ r − δP . Let ν′ = ν + d such that ν′ ∈ r′. If −r′0,x + δ ≺r′

0,x ν′(x) for all x ∈ C,
then ν′ ∈ r′ − δQ1 since (Q1)x,0 = 0 and Px,y ≥ Q1

x,y for all x, y ∈ C.
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Otherwise, we have ν′(y′) ≤ −r′0,y′ + δQ1
0,y′ for some y′ ∈ C, so ν′(i0) ≤ −r

′
0,i0

+ δQ1
0,y′ since

frac(ν′(i0)) ≤ frac(ν′(y′)). This means that ν′(i0) ≺
r′

i0,0
r′i0,0 − δQ2

x,0 for small enough δ > 0.

For all x ∈ C \ Xi0 , we have ν′(x) − ν′(i0) ≺
r′

x,i0
r′x,i0 − δPx,i0 . This implies, by the above

constraint on ν′(i0) that ν
′(x) ≺r′

x,0 r′x,0− δ(Px,i0 +Q1
0,y′). This implies ν′(x) ≺r′

x,0 r′x,0− δQ2
x,0

since Px,i0 ≥ Q1
0,y′ +Q2

x,0. We are done since Q2
0,x = 0 for all x ∈ C.

It is clear that from ǫ-tight valuations in r − δP , one can delay to (ǫ + ǫ′)-tight valuations
both in r′ − δQ1 and r′ − δQ2, for any ǫ′ > 0.

We can now generalize the abstract game to turn-based timed games, and prove the main theorem
for these games.

Let us fix a timed game A = (LC ∪ LP , C, ℓ0, E). We define RG(A) as follows. The states of
RG(A) is again given as a set of square nodes (ℓ, r, Sr), where ℓ ∈ LC and 〈r, Sr〉 is a well constrained
region. The diamond nodes are now either of the form (ℓ, r, Sr, e) with ℓ ∈ LC and e is an edge
leaving ℓ, or (ℓ, r, Sr) with ℓ ∈ LP . As before, square nodes belong to Controller, and diamond
nodes belong to Perturbator. The edges leaving square nodes and the diamond nodes of the form
(ℓ, r, Sr, e) are defined as for timed automata. There is an edge from a diamond node (ℓ, r, Sr) to
(ℓ′, t, St), if there is an edge e = (ℓ, g, R, ℓ′) in A, and the following conditions hold:

i) There is a region s with r ⋖∗ s and t = s[R← 0],

ii) Let m ∈ {1, 2} and (s, Si) for i = {1,m} be the constrained region(s) given by Lemma 5.3
applied to 〈r, Sr〉. There exists i ∈ {1, 2} such that for all SMs P , P ≤ St iff there exists an SM
Q ≤ Si with (s′, Q) = UnresetR((t, P )), for some s′ = s.

Notice that (t, St) can be computed in polynomial time thanks to Lemmas 5.3 and 3.12. Also,
all constrained regions of the square nodes admit tight valuations by Lemma 5.3 and Corollary 4.8.

Theorem 2.3, for turn-based timed games, follows from the following proposition.

Proposition 5.4. For any turn-based timed game A, Controller has a winning strategy in RG(A)
if, and only if there exists δ0 > 0 such that Controller wins Gδ(A) for all δ ∈ [0, δ0].

Proof. Assume that Controller wins RG(A). As in the proof of Proposition 4.1, we assign to
nodes n = (ℓ, r, Sr) in RG(A), shrunk DBMs (r′, Pn) with r′ = r, describing the set of winning
states from the corresponding locations in Gδ(A). The construction and the proof are the same
for square nodes. If n is a diamond node of the form (ℓ, r, Sr), then fix any s with r ⋖∗ s and
an edge e = (ℓ, g, R, ℓ′) from n with s ⊆ g. Assume, by induction hypothesis, that we have
shrunk DBMs (t, Pn1

) and (t, Pn2
) describing winning states from the successors n1 = (ℓ′, t, S1

t ) and
n2 = (ℓ′, t, S2

t ) of n through the edge e, where t = s[R← 0] (Assume n1 = n2 if there is only one
such successor). Consider (s, S1) and (s, S2) given by Lemma 5.3 applied to 〈r, Sr〉 (assume again
that S1 = S2 if there is only one such constrained region). By construction, for each i ∈ {1, 2},
〈t, Si

t〉 is defined by Lemma 3.12, such that for all SMs Pni
, Pni

≤ Si
t iff there exists SM Qi ≤ Si

with (si, Q
i) = UnresetR((t, Pni

)), for some si = s and s ⊆ si. Then, by Lemma 5.3, there exists P s
e

such that

Posttime((r
s
e, P

s
e )) ∩ s ⊆

m⋃

i=1

(si, Qi),
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for some rse = r with r ⊆ rse. Here, (r
s
e, P

s
e ) describes a set of winning states from location ℓ assuming

Perturbator chooses the edge e and delays anywhere in the region s. We define (re, Pe) as the
intersection of all (rse, P

s
e ) with r ⋖∗ s, and define (r′, Pn) as the intersection of all (re, Pe) for all

edges e leaving n. This concludes one direction of the proof.
Now, assume that Perturbator wins RG(A). The proof of Proposition 4.1 is based on the

construction of a strategy for Gδ(A), that ensured that the valuation is always ǫ-tight inside any
visited constrained region. When one projects the play in RG(A), this property allows Perturbator
to choose valuations in Gδ(A) belonging to any successor it would choose in RG(A) in order to win.
Thus, Perturbator’s strategy simply consists in following in Gδ(A) its winning strategy in RG(A).
The same proof carries over to timed games since Lemma 5.3 shows that given a ǫ-tight valuation
of 〈r, Sr〉, there exist delays that lead to (ǫ+ ǫ′)-tight valuations inside 〈s, S1〉 and 〈s, S2〉 for any
ǫ′ > 0.

6. Hardness Result

The hardness result is shown by reduction from the halting problem in linear-bounded alternating
Turing machines. These are Turing machines whose computations do not use more tape cells than
the size of the input, and checking whether there is an accepting computation is EXPTIME-complete.
Each transition is either an instruction, a disjunction, or a conjunction. Disjunction and conjunction
transitions are given with pairs of successor states. Given an input, the set of accepting states
are defined inductively as follows. There is a distinguished accepting state which is accepting by
definition. A state with an instruction is accepting if its successor is. A disjunctive state accepts if,
and only if one of the successors is accepting, and a conjunctive state accepts if, and only if both of
its successors are accepting. The acceptance condition can thus be formalized by a two-player game
played on the Turing machine; the first player controls the disjunctive states and instructions, and
the second player controls the conjunctive states.

Proposition 6.1. The robust reachability problem is EXPTIME-hard.

The reduction has the following idea. We adapt a standard encoding of linearly bounded Turing
machines for timed automata in order to take care of imprecisions. In addition, the gadget of
Figure 14 allows the simulation of the alternation, thanks to the ability of distinguishing positive
and negative perturbations. We now give the detailed proofs.

Proof. We use a reduction from the halting problem in linear-bounded alternating Turing machines
over a two-letter alphabet Σ = {a, b}. LetM be such a Turing machine, and write n for the bound
on the tape length. We assume w.l.o.g. that n ≥ 3 and that instructions are of the form:

• (disjunction) δ(q) = q′ ∨ q′′

• (conjunction) δ(q) = q′ ∧ q′′

• (instruction) δ(q) = (γ, γ′, dir, q′) where γ, γ′ ∈ {a, b} and dir ∈ {←,→}. Such a transition
reads γ in the current cell, writes γ′ and follows direction given by dir.

Our encoding ofM uses the set of n+ 2 clocks X = {xi | i = 1 . . . n} ∪ {y, z}. The content of
cell i is encoded by clock xi: it is an a if the value of clock xi is n− i, and a b if the value of clock xi

is bounded below by 2n− i. Due to robustness concerns, these guards will be relaxed a bit in the
construction.
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We assume the content of the tape is represented by a word w over alphabet Σ of length n.
Let k ∈ N and ǫ ≥ 0. We say that a valuation v over X is a k-shift encoding of w with precision ǫ
whenever v(y) = v(z) = 0, and for every 1 ≤ i ≤ n:

• wi = a iff −ǫ ≤ v(xi)− (n− i)− k ≤ ǫ

• wi = b iff −ǫ ≤ v(xi)− (2n− i)− k

We encode the instructions as follows.

◮ Regular instruction. A transition δ(q) = (γ, γ′, dir, q′) is mimicked thanks to modules

instr
i,k
δ(q)=(γ,γ′,dir,q′) for every 1 ≤ i ≤ n and 0 ≤ k < n. Such a module is depicted on Fig-

ure 13: it is a sequence of n modules, the ith one being of a special shape. The initial state is
(q, i, k, 1). We write I for the interval [n− 1, n+ 1] and I ′ for the interval [2n− 1,+∞), and adopt
the notation S + k = {b+ k | b ∈ S} for any set S.

q,i,k,p q,i,k,p+1

xp∈I+k∧ z=p

xp:=0

xp∈I
′+k∧ z=p

module abp

q,i,k,p q,i,k,p+1

xp∈I+k∧
z=p

xp:=0

module (a→ a)p

q,i,k,p q,i,k,p+1

xp∈I
′+k∧

z=p

module (b→ b)p

q,i,k,p q,i,k,p+1

xp∈I+k∧
z=p

module (a→ b)p

q,i,k,p q,i,k,p+1

xp∈I
′+k∧

z=p

xp:=0

module (b→ a)p

Figure 12: Intermediary modules: when traversing module abp, either clock xp belongs to I + k while z = p,
corresponding to an a at position p. Clock xp is then reset, so that position p still contains an a; or clock xp is
in I′ + k when z = p, encoding a b at position p. In that case, clock xp is not reset, and the content of cell p is
preserved. Using similar ideas, modules (γ → γ′)p, with γ, γ′ ∈ {a, b}, check that cell p initially contains γ, and
replace it with γ′.

module instr
i,k
δ(q)=(γ,γ′,dir,q′)

ab1 ab2 (γ → γ′)i abn

q,i,k,1 q,i,k,2 q,i,k,3 q,i,k,i q,i,k,i+1 q,i,k,n q,i,k,n+1 q′,dir(i),0,1
z=n

y,z:=0

Figure 13: Module instr
i,k

δ(q)=(γ,γ′,dir,q′)
for the simulation of the regular instruction δ(q) = (γ, γ′, dir, q′), and its

constituent submodules. If dir =→, dir(i) = i+ 1 if 1 ≤ i < n, and undefined otherwise. If dir =←, dir(i) = i− 1 if
1 < i ≤ n, and undefined otherwise.

The correctness of this module is given by the following lemma:
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Lemma 6.2. Let 0 ≤ ǫ ≤ 1 and 0 ≤ δ ≤ 1. Let w ∈ Σn such that wi = γ. Assume module
instr

i,k
δ(q)=(γ,γ′,dir,q′) is entered with valuation v which is a k-shift encoding of w with precision ǫ. The

Controller has a unique strategy in this module, and for every response of the δ-perturbator, the
valuation v′ when leaving the module is a 0-shift encoding of w[wi ← γ′] (the word obtained from w
by replacing wi with γ′) with precision 2δ.

Proof. There is a unique strategy for Controller, which is to play from state (q, i, k, j) when z
reaches j with the unique possible transition: if initially |v(xj)− (n− j)−k| ≤ ǫ, then he will choose
the top-most transition, and if initially v(xj) ≥ 2n− j + k − ǫ, then it will choose the bottom-most
transition. Indeed note that in the first case, since ǫ ≤ 1, the value of clock xj when z reaches j lies
within I + k. When clock xj is reset clock z is almost j (more precisely it lies between j − δ and
j + δ), whereas clock z is almost n when leaving the module (more precisely it lies between n− δ
and n + δ). In the second case, the value of xj is increased by almost n. This straightforwardly
implies the mentioned property.

Remark 6.3. Note that if the module above is entered while wi 6= γ, then it reaches a deadlock.
This could be avoided using extra transitions to a sink state.

◮ Conjunction. δ(q) = q′ ∧ q′′ is mimicked thanks to modules conji,kδ(q)=q′∧q′′ (for every 1 ≤ i ≤ n

and 0 ≤ k < n) on Figure 14. As in the previous module, the Controller has no other choice
than selecting the next transition when the constraint is satisfied. For the first transition, the
δ-Perturbator can choose to do it a bit earlier, or a bit later, and depending on this, the controller
will next choose either y = 1 ∧ z ≤ 2 or y = 1 ∧ z > 2.

q,i,k,1

q′,i,k+3,1

q′′,i,k+3,1

y=1, y:=0
y=

1∧
z≤

2

y=1∧z>2

z=3, y,z:=0

z=3, y,z:=0

y,z:=0

Figure 14: Module conj
i,k

δ(q)=q′∧q′′
for conjunctive transition

Lemma 6.4. Let 0 ≤ ǫ ≤ 1 and 0 ≤ δ ≤ 1. Let w ∈ Σn. Assume module conj
i,k
δ(q)=q′∧q′′ is

entered with valuation v which is a k-shift encoding of w with precision ǫ. The Controller has a
unique strategy in this module, and the δ-Perturbator can choose to reach either (q′, i, k + 3, 1) or
(q′′, i, k + 3, 1). In both cases, the valuation v′ when leaving the module is a (k + 3)-shift encoding of
w with precision ǫ+ δ.

Proof. The Controller has no other choice than satisfying the next constraint of the next transition.
On the other hand, the δ-Perturbator can either choose to postpone the first transition, or to fire it
earlier. In the first case, the Controller has then to choose the bottom-most transition, and in the
second case, the Controller has to choose the top-most transition. Globally the values of the clocks
are increased by 3 (plus or minus δ), which yields the expected property.
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◮ Disjunction. δ(q) = q′ ∨ q′′ is mimicked thanks to modules disji,kδ(q)=q′∨q′′ (for every 1 ≤ i ≤ n

and 0 ≤ k < n) on Figure 15.

q,i,k,1

q′,i,k+1,1

q′′,i,k+1,1

y,z:=0
y=1, y,z:

=0

y=1, y,z:=0

Figure 15: Module disj
i,k

δ(q)=q′∧q′′
for disjunctive transition

Lemma 6.5. Let ǫ ≥ 0 and δ ≥ 0. Let w ∈ Σn. Assume module disj
i,k
δ(q)=q′∨q′′ is entered with

valuation v which is a k-shift encoding of w with precision ǫ. The Controller can choose to reach
either (q′, i, k + 1, 1) or (q′′, i, k + 1, 1). In both cases, the valuation v′ when leaving the module is a
(k + 1)-shift encoding of w with precision ǫ+ δ.

Proof. Similar to the previous proof.

◮ Reset module. We fix an integer 0 ≤ k < n. Shifts encodings accumulate when stacking
disjunctive and conjunctive instructions. We present a module reseti,kq which resets the shift from
state q, position i.

module reseti,kq

ab1 ab2 abn

q,i,k,1 q,i,k,2 q,i,k,3 q,i,k,n q,i,k,n+1 q,i,0,1
z=n

y,z:=0

Figure 16: Module reset
i,k
q which resets the shift in the encoding.

Lemma 6.6. Let 0 ≤ ǫ ≤ 1 and 0 ≤ δ ≤ 1. Let w ∈ Σn. Assume module resetq,i,k is entered with
valuation v which is a k-shift encoding of w with precision ǫ. The Controller has a unique strategy
in this module, and for every response of the δ-Perturbator, the valuation v′ when leaving the module
is a 0-shift encoding of w with precision 2δ.

Proof. This proof is similar to the proof of Lemma 6.2.

◮ Global reduction. It remains to glue all the modules together. An easy solution is to apply
the reset module after each conjunctive or disjunctive instruction (though there are some more
thrifty solutions). The reset module allows both to reset the shift and to reinitialize the imprecision.
We write A for the resulting timed automaton. The halting location of the Turing machine is called
final in A.

One can easily check that in A, letting 0 ≤ δ < 1
2 , the Controller has a winning strategy against

the δ-Perturbator to reach location final if, and only if, the Turing machineM halts.
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7. Conclusion

We considered a game-based approach to robust reachability in timed automata, by modelling
the semantics as a game between the controller and its environment. We proved that a bound on
the imprecisions, and a corresponding robust strategy for reachability objectives in turn-based timed
games can be synthesized, and that the existence of such a bound and a strategy is EXPTIME-
complete. The problem is thus harder than classical reachability [4]. A similar semantics was studied
in [15], and our result partially answers to an open problem posed there for parity objectives on
general timed games.

A natural continuation of this work would be to look at zone-based on-the-fly algorithms, as
for usual timed games in [13]. Note that solving usual timed games is also an EXPTIME-complete
problem and on-the-fly algorithms allowed efficient implementations.

Developing algorithms for safety objectives, that is, ensuring infinite executions that avoid some
given state would require the use of different techniques and seems to be a challenging problem. In
fact, in that setting, one has to deal with the accumulation of the imprecisions over infinite runs,
which cannot be avoided by adjusting δ.

We are currently studying a different model in which the controller is required to choose delays
for which the guard of the chosen edge is satisfied no matter what the perturbation is, which is the
parameterized version of the framework of [15]. We believe both semantics are interesting and allow
different ways of incorporating perturbations in the model. Another interesting perturbation model
is to assume that imprecisions are probabilistic, that is, once Controller has chosen a delay d, the
actual delay is chosen from [d− δ, d+ δ] following a probability distribution.
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Appendix A. Modelling of our scheduling example

The scheduling problem described in Fig. 1 contains two processes: Process 1 executing A
and B, and Process 2 executing C, D, and E. Both processes need the same resources (machines
M1 and M2), which can only be used exclusively. This system can be modelled by a network of
timed automata, as follows. We define a timed automaton P1 corresponding to Process 1, and P2

corresponding to Process 2. A third timed automatonM will make sure the mutual exclusion for
both machines: no more than one task is executed on a machine at any time. Moreover, we will
also useM in order to impose a greedy scheduling: this automaton will block time if some task is
waiting for execution on a machine that is free (more details follow below). Each automaton Pi

makes sure that its tasks are executed respecting the dependences and timing constraints. All three
timed automata are given in figures below. Note that we use additional features such as invariants,
boolean variables and synchronization, which we didn’t define, but it can be seen that an equivalent
system can be defined as an ordinary timed automaton.

p1 p2 p3 p4 p5

t:=0 lock1!

xA:=0

unlock1!,xA=2 lock2!

xB :=0

unlock2!,xB=2

Figure A.17: Timed automaton P1 modeling Process 1.

q1 q2 q3

q4

q′4

q5

q6

q′6

q7
t:=0 lock2!,t≥2

xC :=0

unlock2!,xC=2

lo
ck

1
!

xD
:=
0

lock
2 !

x
D
:=
0

unlock
1 !

x
D
=
1

un
lo
ck

2
!

xD
=
1

lo
ck

1
!

xE
:=
0

lock
2 !

x
E :=

0

unlock
1 !

x
E=

1

un
lo
ck

2
!

xE
=
1

Figure A.18: Timed automaton P2 modeling Process 2.

r

locki?, ¬bi, bi := true, u := 0

unlocki?, bi, bi := false, u := 0

∀i ∈ {1, 2},¬bi ∧Waitingi ⇒ u = 0
t ≤ c

u := 0

Figure A.19: Timed automatonM ensuring mutual exclusion and greedy scheduling.

We use synchronization on labels locki: the meaning of locki! is that the corresponding edge can
only be taken if another component takes an edge labeled with locki?, and vice versa. For instance,
in automaton P1, the task A can be executed on M1 (first edge), only if lock1 can be taken. The
lock is released upon the termination of the task (second edge). AutomatonM has two boolean
variables b1, b2, where bi is set to true if machine Mi is busy. The two self-loops are defined for
i = 1, 2. For instance, the automatonM synchronizes with action locki only if bi is not set to true.
It has the invariants ∀i ∈ {1, 2},¬bi ∧Waitingi ⇒ u = 0 and t ≤ c. The first one ensures greedy
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scheduling, while the second one blocks the time above c time units. 2 Here, Waitingi is a formula
stating that some task is ready for execution on machine i. We omit the definition of Waitingi here
but it can be easily defined once we add a boolean variable for each task that is true if, and only if
the task has finished. Hence, automatonM blocks time in the whole system if some task is ready
for execution on a machine that is free.

Now, the reachability of the location (p5, q7, r) in the product of P1, P2 andM means that the
tasks are schedulable in c time units. For instance, this location is reachable for c = 6 in the usual
semantics as shown in Section 2.2. A strategy that ensures the reachability of this location gives a
greedy scheduler. However, this location is not robustly reachable for c = 6, but it is only for c = 8.
In fact, the product automaton contains the following transitions.

p1,q1 p2,q1 p3,q1

p3,q2

p4,q1

t,u:=0

u=0,xA:=0

lock1 unlock1

xA=2,u:=0

u=
0∧
t≥
2

lo
ck
2

u=
0

lock
2

The automaton must indeed start by scheduling the task A on M1. At state (p3, q1), it can
choose between scheduling C (upper transition) and scheduling B (lower transition). The former
one is always enabled in the usual semantics, and yields a total scheduling time of 6. But in the
game semantics, the lower transition may be the only option if we have a negative perturbation
during the transition (p2, q1)→ (p3, q1). This can only yield a scheduling time of 8 as shown before.

2Note that we do not really need to consider invariants. We could as well add this constraint as guards in the
edges ofM.
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