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Social network modeling is generally based on graph theory, which allows for study of dynamics and emerging phenomena.
However, in terms of neighborhood, the graphs are not necessarily adapted to represent complex interactions, and the neighborhood
of a group of vertices can be inferred from the neighborhoods of each vertex composing that group. In our study, we consider
that a group has to be considered as a complex system where emerging phenomena can appear. In this paper, a formalism is
proposed to resolve this problematic by modeling groups in social networks using pretopology as a generalization of the graph
theory. After giving some definitions and examples of modeling, we show how some measures used in social network analysis
(degree, betweenness, and closeness) can be also generalized to consider a group as a whole entity.

1. Introduction

Network modeling is an area of research which covers
several domains like computer sciences, physics, sociology, or
biology. In social networksmodeling, graphs are often used to
describe the links representing relationships or flows between
entities [1]. Based on graph theory, the studies consider in
most cases individuals as single elements, a group being
formed by several persons interacting with each other. Most
of the few works on modeling groups in social networks
consider a group as a combination of persons [2], not as a
whole entity. As social network analysis leads to centrality
notion and others sociometric features, what about group
centrality?

The centrality of a vertex in a graph is widely used to
determine the relative “importance” of this vertex within the
network [3]. Centrality measures enable us to find users who
are extensively involved in relationships with other network
members. There are different centralities such as degree
centrality, betweenness centrality, or closeness centrality.The
problem we face is the following: analyzing a vertex can be
done with this kind of measure, but if we analyze a group of
persons using the same measure, we will have no particular
emergence of characteristics as the union property of the
neighborhoods in a graph is preserved. As social networks

are complex networks [4–6], emergence of phenomena can
occur [7], and the behavior of a group of persons can be
different from the “sum” of the person behaviors composing
the group. Some work tried to capture the different scales
of a network, and a group can be viewed as a community
[8]; thus, in our opinion, graph theory only is inadequate to
model all complex interactions occurring in a social network.
Some group-based measures based on graphs have been
proposed before [2, 9, 10], and multilayer analysis is a topic
widely studied [11–13] combining multiple graphs; however,
to our knowledge, there is no general framework coupling
the modeling of a group of entities with a multirelational
network. Based on this observation, we propose to use
a mathematical framework for group modeling in social
networks including several relation types and new group-
based measures from a topological point of view.

This paper is structured in two parts: first we introduce
pretopology formalism, and we give the definitions and some
illustrations for group modeling in a social network, which
are reminders of a previous work [14]. Then we define new
group measures with pretopology generalizing known clas-
sical methods. The reader of this paper is supposed to be
familiar with graph theory and some concepts from mathe-
matical topology.

Hindawi Publishing Corporation
Journal of Complex Systems
Volume 2014, Article ID 354385, 10 pages
http://dx.doi.org/10.1155/2014/354385

http://dx.doi.org/10.1155/2014/354385


2 Journal of Complex Systems

2. Modeling Groups in Social Networks

Before giving theoretical definitions, we first illustrate the
problem of a realistic group modeling by giving a simple
example: wewould like to represent interactions between four
persons. A small social network with a simple symmetrical
friendship relation will help in illustrating our approach
(Figure 1).

Let focus on John and Ed. John has three friends: Tim,
Ben, and Ed, while Ed has two friends: Ben and John. As
we notice, it is very easy to know who are the friends of
a person. But now, we want to know whose people are the
friends of the group {John, Ed}. In this case, having a look
at the nonoriented graph induced by the network, we see
Tim in relation with John, and Ben in relation with John and
Ed. As we can reach Tim and Ben from John and Ed, we
could say that Tim and Ben are friends with John and Ed.
However, in reality, Ed and Tim are not friends. We need to
set a constraint, saying, for instance, the friends of the group
{John, Ed}must be friends with each person of the group. So,
we finally have only Ben as a friend of the group {John, Ed}.
The operation we made in this small example is defining the
neighborhood of an element and, more generally, of a set of
elements. This example can be extrapolated to large known
online social networks like Facebook or Twitter. Thus, we
need a theory able to precisely model the neighborhood of
sets: here we thought of pretopology formalism.

Pretopology is a mathematical modeling tool for the con-
cept of proximity suitable for discrete spaces [15, 16]. It pro-
vides also powerful tools for structure analysis and automatic
classification [17]. Pretopology theory generalizes topology
theory and has weaker axioms than topology, allowing us to
analyze transformation procedures step-by-step and handle a
multirelation description. As pretopology formalism is based
on set theory, a group of individuals is now considered as a
set, allowing us to consider a group as a whole independent
entity.

2.1. Pretopological Notions. The pretopology formalism
comes from classical topology but has weaker axioms. The
“closure” process is not necessary idempotent and only the
extensivity axiom is required. Reference [18] gave the first
definition of a pretopological space. Fréchet spaces [19],
Kuratowski’s closure axioms [20], and Čech closure operator
[21] have been preponderant in definition of a pretopological
space and of the pseudoclosure map (Definition 1 and
Figure 2).

Definition 1 (pseudoclosure). Let consider a nonempty set 𝐸
andP(𝐸)which designates all the subsets of 𝐸. A pseudoclo-
suremap, denoted by 𝑎(⋅) : P(𝐸) → P(𝐸), is a mapmeeting
the following conditions:

(1) 𝑎(0) = 0,

(2) ∀𝐴 ∈ P(𝐸), 𝐴 ⊆ 𝑎(𝐴).

A pretopological space is a set 𝐸 endowed with a pseudo-
closure map.

John Tim

Ed Ben

Figure 1: A small social network with friendship relation.

a(A)

A

Figure 2: Pseudoclosure of 𝐴.

Definition 2 (pretopological space). A pretopological space is
a pair (𝐸, 𝑎), where 𝐸 is a nonempty set and 𝑎 is a pseudoclo-
sure map 𝑎(⋅) : P(𝐸) → P(𝐸).

The pseudoclosure operator is useful to model dynamic
processes in the considered space (𝐸, 𝑎). In social networks,
we can say that elements belonging to 𝑎(𝐴) are close to
𝐴, allowing us to determine direct neighbors. For each
pseudoclosure, we absorb new elements (𝐴 ⊆ 𝑎

2
(𝐴) ⊆

𝑎
3
(𝐴) ⊆ ⋅ ⋅ ⋅ ⊆ 𝑎

𝑘
(𝐴)) which are more and more “distant.”

Hence, we are able to model complex dynamics like, for
instance, information diffusion process. The definition of the
neighborhood can also be based on several different relations
(see [16] for the complete mathematical definitions).

To understand this approach, let us return to our network
example with the four friends and define the problem by
applying the pretopology formalism. We build a pretopolog-
ical space (𝐸, 𝑎) with four elements in 𝐸 and we build 𝑎(𝐴)
with 𝐴 ∈ P(𝐸) as

𝑎 (𝐴)

= 𝐴 ∪ people who are friends with each person of 𝐴.
(1)
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John Tim

Ed Ben
a({John, Ed})

Figure 3: Pseudoclosure of {John, Ed}.

With the same assumptions, we make the same operations as
in the previous example:

(i) 𝑎({John}) = {John, Tim, Ben, Ed},
(ii) 𝑎({Ed}) = {Ed, John, Ben},
(iii) 𝑎({John, Ed}) = {John, Ed, Ben} (Figure 3).

As we notice, 𝑎({John, Ed}) ̸= 𝑎({John}) ∪ 𝑎({Ed}). We have
also {John} ⊆ {John, Ed} but not 𝑎({John}) ⊆ 𝑎({John,
Ed}). Pretopology helps us define interactions which are not
convenient to describe with other formalisms.

In a network, diffusion process modeled by the pseudo-
closure can stop its progression. Such a configuration is called
a closure [22] (Figure 4).

Definition 3 (closed subset and closure). Let (𝐸, 𝑎) be a pre-
topological space:

(i) a subset 𝐵 of 𝐸 such as 𝑎(𝐵) = 𝐵 is called a closed
subset of 𝐸 for 𝑎(⋅). The notation 𝐹(⋅) corresponds to
the closure operator,

(ii) an elementary closed subset, denoted as 𝐹
𝑥
, is the

closure of a one element set {𝑥} of 𝐸. The notation
𝐹({𝑥}) is equivalent.

Closure is very important because of the information it
gives about the “influence” or “reachability” of a set, meaning,
for example, that a set 𝐴 can influence or reach elements into
𝐹(𝐴), but not further.

2.2. Modeling Group Interactions. First, we have to define a
social network with pretopology concepts. A social network
is a social structure made of nodes (which are generally
individuals or organizations) that are tied by one or more
specific types of binary or valued relations [23].

In pretopology, we can generalize this definition by the
fact that a (social) network is a family of pretopologies on a
given set 𝐸 (Figure 5) [24].

a(A) a2(A)

a3(A) = a4(A) = F(A)

A

Figure 4: Iterated application of the pseudoclosure map leading to
the closure.

(E, a1)

(E, a2)

(E, a3)

Figure 5: Social network defined with pretopology and composed
of three different pseudoclosures.

Definition 4 (network). Let 𝐸 be a nonempty set.
Let 𝐼 be a countable family of indexes.
Let {𝑎

𝑖
, 𝑖 ∈ 𝐼} be a family of pretopologies on 𝐸.

The family of pretopological spaces {(𝐸, 𝑎
𝑖
), 𝑖 ∈ 𝐼} is a

(social) network on 𝐸.

Different kinds of relations with different natures can be
represented: for instance, we can model a social network
containing work colleagues and geographic relations. We can
build a pseudoclosure answering to amodeling problem, hav-
ing, for example, a person close to another if they are friends,
working together, and living close to each other (using a
given distance threshold). The following paragraphs give to
the reader examples of how we can build pseudoclosures
depending on the data or information we want to use for our
modeling.

Example 5 (metric space). We represent the relations be-
tween people with an euclidean distance (the people are rep-
resented as nodes), considering, for instance, the geographi-
cal location of each person.

Let 𝐸 be endowed with a metric defined by a distance 𝑑.
Let 𝑟 be a positive real. For each element 𝑥 of 𝐸, 𝐵(𝑥, 𝑟) is a
ball with the center 𝑥 and a radius 𝑟 defined by

𝐵 (𝑥, 𝑟) = {𝑦 ∈ 𝐸 | 𝑑 (𝑥, 𝑦) ≤ 𝑟} . (2)

A pseudoclosure 𝑎(⋅) can be built with 𝐵(𝑥, 𝑟):

∀𝐴 ∈ P (𝐸) , 𝑎 (𝐴) = {𝑥 ∈ 𝐸 | 𝐵 (𝑥, 𝑟) ∩ 𝐴 ̸= 0} . (3)
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a(A)

A

≠a(A) = {x ∈ E | B(x, r) ∩ A 0}

Figure 6: Pseudoclosure of 𝐴 in a metric pretopological space.

The pseudoclosure 𝑎(𝐴) is composed of all elements of𝐴 and
all elements 𝑦 ∉ 𝐴 such that 𝑦 is within a distance of at most
𝑟 from at least one element of 𝐴 (Figure 6).

Example 6 (binary space). In social networks, we are con-
fronted to nonmetric relations, representing qualitative infor-
mation (friendship relation, etc.). In such a space, the ele-
ments of𝐸 are boundby 𝑛 reflexive binary relations𝑅

𝑖
with 𝑖 ∈

N∗. 𝑅 is not necessarily symmetric. We define ∀𝑖 ∈ {1, . . . , 𝑛}:

𝑅
𝑖
(𝑥) = {𝑦 ∈ 𝐸 | 𝑥𝑅

𝑖
𝑦} ,

𝑅
−1

𝑖
(𝑥) = {𝑦 ∈ 𝐸 | 𝑦𝑅

𝑖
𝑥} .

(4)

As the relation 𝑅 is reflexive, 𝑥 belongs to 𝑅(𝑥) and to 𝑅−1(𝑥).
We can construct two pseudoclosures:

∀𝐴 ∈ P (𝐸) ,

𝑎 (𝐴) = {𝑥 ∈ 𝐸 | ∀𝑖 ∈ {1, . . . , 𝑛} , 𝑅
𝑖
(𝑥) ∩ 𝐴 ̸= 0} ,

∀𝐴 ∈ P (𝐸) ,

𝑎 (𝐴) = {𝑥 ∈ 𝐸 | ∀𝑖 ∈ {1, . . . , 𝑛} , 𝑅
−1

𝑖
(𝑥) ∩ 𝐴 ̸= 0} .

(5)

These pseudoclosures are not equivalent when 𝑅 is not
symmetric. The pseudoclosure 𝑎(𝐴) is composed of 𝐴 (𝑅
is reflexive) and of all elements 𝑦 which have 𝑅

𝑛
(or 𝑅−1
𝑛
)

relations with, at least, one element of 𝐴. An illustration of
this kind of space with two binary relations is illustrated
in Figure 7. In this example, an element 𝑥 of 𝐸 belongs to
pseudoclosure of 𝐴 if 𝑥 is in relation with an element of 𝐴
according to relation 𝑅

1
and 𝑅

2
.

Example 7 (valued space). In order to model certain prob-
lems, binary relations are not sufficient. We therefore need
to have a value (integer, real, function, . . .) on the links. In
this kind of space, the elements of 𝐸 are bound by a valued
relation. For instance, we can define an integer value V on
relations as

(i) 𝐸 × 𝐸 → N,
(ii) (𝑥, 𝑦) → V(𝑥, 𝑦).

a(A)
A

R1
R2

≠a(A) = {x ∈ E | ∀i ∈ {1, 2}Ri(x) ∩ A 0}

Figure 7: Pseudoclosure of 𝐴 in a binary pretopological space.

6 2

1

2

1

1

3

a(A)
A

a(A) = {y ∈ E − A | ∑
x∈A

�(x, y) ≥ 4} ∪ A

Figure 8: Pseudoclosure of 𝐴 in a valued pretopological space.

We can build a pseudoclosure giving different results between
singletons and sets (𝐸 − 𝐴 and 𝐴𝑐 are equivalent notations
corresponding to the complementary of 𝐴):

∀𝐴 ∈ P (𝐸) , 𝑎 (𝐴) = {𝑦 ∈ 𝐸 − 𝐴 | ∑
𝑥∈𝐴

V (𝑥, 𝑦) ≥ 𝑠} ∪ 𝐴,

(6)

where 𝑠 is an integer.
The pseudoclosure 𝑎(𝐴) is composed of 𝐴 and of all

elements 𝑦 where the sum of valued edges between some
elements of 𝐴 and 𝑦 is greater than the threshold 𝑠. Figure 8
gives an illustration of this space with 𝑠 = 4. This kind of
modeling can be used in social networks where weighted
relations are necessary and illustrates the interest of the pre-
topology modeling. Indeed, this example shows that group
behavior is different than the “sum” of individuals composing
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it. In Figure 8, the person at top (bold) is absorbed because
he knows 2 persons (value = 1) a little and better another one
(value = 2), so he can be considered as a friend of group 𝐴. If
we take each individual of 𝐴 saying this external individual,
the person, at top, is friend of 𝐴; if the value of a link is
superior to 𝑠 = 4, he will not be taken into account.

2.3. Example of a Complex Group Interactions Model. We
show how we can model social networks with complex
interactions. The following example is taken from [25] study,
a dataset which represents several relations between monks
in a cloister and has been often used in sociology studies. It
concerns the social interactions which have been collected as
numerous sociometric rankings. A lot of relations are coded,
but we focus on two of them: esteem and disesteem. Relations
are nonsymmetric and weighted with three integer values,
from 1 to 3 (3 indicates the highest or first choice and 1 the last
choice). We built our model on the following assumptions: a
person 𝑦 is close to another person 𝑥 if

(i) there is an esteem relation from 𝑦 to 𝑥 according to a
chosen threshold,

(ii) there is no disesteem relation from 𝑥 to 𝑦 according
to a chosen threshold.

This proximity definition makes sense if we consider group
coalitions: if a person asks other people “whowants to joinmy
group ?”, people who have the greatest esteem for him should
join his group more than the others. But this person will not
accept in his group people he does not esteem, even if these
people have esteem for him.We set two valued nonsymmetric
relations with 𝐸 the set containing individuals:

(i) 𝐸 × 𝐸 → N,
(ii) (𝑥, 𝑦) → est(𝑥, 𝑦),
(iii) (𝑥, 𝑦) → disest(𝑥, 𝑦),

with est being the esteem relation and disest the disesteem
relation.

We build our pseudoclosure as

∀𝐴 ∈ P (𝐸) ,

𝑎 (𝐴) = {𝑦 ∈ 𝐸 − 𝐴 | ∑
𝑥∈𝐴

est (𝑦, 𝑥)

≥ 𝛼 ∧ ∑
𝑥∈𝐴

disest (𝑥, 𝑦) < 𝛽} ∪ 𝐴

(7)

with 𝛼, 𝛽 ∈ N.
With 𝛼 = 3 and 𝛽 = 1, we put a strong restriction on

the neighborhood: if we apply this pseudoclosure on a set
𝐴, people would be in 𝑎(𝐴) if they have esteem with one or
several persons of 𝐴 (according to 𝛼) and if no people of 𝐴
have disesteem for them (see Figure 9).

In this model, the question of finding the largest group
following the rules of our neighborhood can be treated by
buildingF

𝑒
, the family of all elementary closed subsets of 𝐸

(see Definition 3.). When closure is applied to each singleton

2

1

3 1

2

a(A)

2A

1

3

x

y

z

v

w

Figure 9: Pseudoclosure of 𝐴 with 𝛼 = 3, 𝛽 = 1. Esteem relation is
plain and disesteem relation is dashed.

GREG 2
ALBERT 16

BASIL 13

SIMP 18
PETER 4

AMBROSE 9

LOUIS 11

BONAVEN 5

BERTH 6

ELIAS 17

MARK 7

BONI 15
HUGH 14

ROMUL 10

AMAND 13

JOHN 1

WINF 12

VICTOR 8

Figure 10: Largest group found according to the neighborhood
definition.

of 𝐸, it reveals that VICTOR 8 is the person who can rally the
biggest amount of people in the network (Figure 10).

To highlight the interest of this formalism for centrality
measures, using the network sample Figure 9, we give the
example of the degree centrality (see Section 3.1 for defini-
tions). First, degree definition in weighted directed graph
changes from the classical definition, as we can, instead of
counting incoming or outgoing arcs, sum all the weights of
incoming or outgoing arcs. In this example, there are two
relations, giving two graphs.The set𝐴 contains two vertices 𝑥
and 𝑦: as we can easily compute degree values for each vertex
with each relation (e.g., we choose the incoming arcs giving
degEst-in(𝑥) = 6, degEst-in(𝑦) = 5 by summing weights or only
use the classical degree definition giving degEst-in(𝑥) = 3 and
degEst-in(𝑦) = 3), and even for the set 𝐴 (degEst-in(𝐴) = 8 by
summing weights or degEst-in(𝐴) = 5 using classical degree
definition), but we cannot directly answer the problemwe are
working on, meaning representing a degree for people who
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b
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d

e

f

g

h

i

j

k

A

(a) NGDC(𝐴) = 5/(10 – 2) = 0.625

b

c
d

e

f

g

h

i

j

k

B

(b) NGDC(𝐵) = 1/(10 – 9) = 1

Figure 11: Bias in normalized extended degree centrality group measure.

wants to join a group. We should put others rules like “an
esteem arc is taken into account if its weight is superior to
𝛼” and we should also consider disesteem to obtain the same
results we can have directly with pretopology which are, in
this case, deg(𝑥) = |𝑎({𝑥})−{𝑥}| = 1, deg(𝑦) = |𝑎({𝑦})−{𝑦}| =
0, and deg(𝐴) = |𝑎(𝐴) − 𝐴| = 1. Different kinds of rules
can be transparently inserted into the pseudoclosure map
to represent a special type of interaction (logic conditional
statements, functions, Markov processes, etc.).

General examples of social networks modeled with pre-
topology and complex interactions modeling have been
presented. Building a pseudoclosure map depends on the
network nature and problem representation and can need
several pseudoclosures to be combined to obtain specific
results. Several previous works have investigated in modeling
complex systems with pretopology and have shown some
interesting results in modeling the impact of geographic
proximity on scientific collaborations [26], structuring and
clustering data [17], modeling pollution phenomena [27],
analyzing the evolution of a communicable disease [28],
or analyzing communities of the Web [29]. This section
showed the interest of modeling groups in multirelational
social networks by applying pretopology. In the next section,
existingmeasures used in social network analysis are adapted
in order to give more general and relevant results for group
measurement.

3. Group Measures for Social
Network Analysis

In social network analysis, choosing the “good” measure
depends on the problem we are working on and on the prop-
erties we would like to highlight. Measures are used to
describe the features of actors within social networks as well
as to indicate personal importance of individuals [2].The cen-
tralities are some of these measures and are usually applied to
individual actors. However, there are many situations when it
would be advantageous to be able to apply them to a group or
a set of actors. The proximity of actors would be dependent
on each actor neighborhood but also on a neighborhood
group formed by the actors. It would be useful to identify

emergent groups in a network (such as cliques or structural
equivalence in graphs). In another way, we would like to
construct groups that havemaximal centrality, for example, to
maximize information diffusion through a particular group.
Another thing is the ability to optimize the efficiency of a
group by removing actors who would not or slightly reduce
the centrality of the group.

Moreover, the current original and extended centralities
measures have some weakness [30] that the group versions
resolve:

(i) classical centralities are rarely used in multirelational
networks, as the complex networks consist of more
than one type of relationship,

(ii) there is a lack of applicability in weighted networks,
(iii) disconnected networks are not handled by methods

based on the shortest paths (if a given node cannot
be reachable by one of the rest nodes, it results in not
relevant outcomes).

Furthermore, if groups are seen as sets in a pretopologi-
cal space with complex neighborhoods, groups cannot be
measured with classical centralities. Some work goes beyond
simple graph theory using hypergraph formalism [31], but it
is still not sufficient to model multirelational and dynamic
networks [32, 33].

In this section, group measures are not normalized
because it can bring some bias in the measures. If we take
the normalized group degree centrality (NGDC) in [2] study,
normalizing themeasure benefits larger group (Figure 11) and
gives erroneous results. Constructing groups with maximal
centrality becomes a problem, and working without normal-
ization allows for making this construction where resulting
groups will have a pertinent size.

Remark Notation. The difference between two sets noted as
𝐴 − 𝐵means we remove 𝐴 ∩ 𝐵 from 𝐴.

3.1. Group Degree Centrality. In graph theory, we simply call
this measure the degree. In a nonoriented graph, the degree
of a node is the number of edges incident upon a node. In an
oriented graph, we distinguish for a vertex V its indegree and
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outdegree. The indegree corresponds to the number of arcs
with V as the target of the arc. The outdegree corresponds to
the number of arcs with V as the source of the arc. The degree
of V is equal to the sum of indegree and outdegree of V (see
[34]).

In sociology, degree centrality measures locally the indi-
vidual capacity to communicate, independent of its neighbor
centralities [35, 36].Degree centrality is the simplest andmost
intuitive measure that can be used in network analysis.

Definition 8 (group degree centrality). We define the group
degree centrality in a pretopological space (𝐸, 𝑎) denoted by
𝐶
𝐺

𝑑
(𝐴), where 𝐴 ∈ P(𝐸) such as

𝐶
𝐺

𝑑
(𝐴) = |𝑎 (𝐴) − 𝐴| . (8)

In pretopology, this process already exists and is called orle or
external semifrontier defined by 𝑜(𝐴) = 𝑎(𝐴) − 𝐴. The group
degree centrality returns the cardinality of this process equal
to the amount of direct neighbors of a group.

Example 9. Considering Figure 9, 𝐶𝐺
𝑑
(𝐴) = 1.

3.2. Group Betweenness Centrality. Betweenness centrality
has been proposed by [37]. The concept of this measure is
based on the idea that an individual can be weakly connected
to others and be distant from them, but this individual
can nevertheless be an important intermediary, for example,
concerning information exchange between other individuals
of the network. The stronger the intermediary role of a
person is, the more he or she can take control over the
communications or be independent of other members. Such
a person can easily influence the network by filtering or
distorting information circulating on it. This special position
allows an assurance of the network coordination. Here is the
classical betweenness centrality definition.

Definition 10 (betweenness centrality). Let 𝑛 be the number
of vertices of a graph, let 𝑔

𝑗𝑘
be the number of geodesic

(shortest) paths from vertex 𝑗 to vertex 𝑘, and let 𝑔
𝑗𝑘
(𝑖) be

the number of these paths passing through vertex 𝑖, and we
note 𝐶

𝑏
(𝑖) the betweenness centrality of the vertex 𝑖 such as

𝐶
𝑏
(𝑖) =

𝑛

∑
𝑗

𝑛

∑
𝑘

𝑔
𝑗𝑘
(𝑖)

𝑔
𝑗𝑘

(9)

with 𝑗 ̸= 𝑘 ̸= 𝑖 and 𝑗 < 𝑘.

The original measure has been extended to measure the
amount of geodesic paths passing through a group [9]. It gives
more general results, but the problems resulting from this
method remain the same: individuals in a group are treated
separately. Reference [38] proposed a more precise measure,
but it can only be applied to simple graphs with only one type
of relation, and their framework cannot be reused for other
centralities measures.

Our approach for processing a general betweenness
centrality is slightly different from Freeman’s approach: we do
not consider paths as in graph theory: there is a path from 𝐴

to 𝐵 if 𝐵 is entirely reachable from 𝐴 [15].

A 

B 

F(A) 

Figure 12: Pretopological path from 𝐴 to 𝐵.

Definition 11 (path). Let (𝐸, 𝑎) be a pretopological space,
∀𝐴, 𝐵 ∈ P(𝐸), and there is a path from 𝐴 to 𝐵 only and only
if 𝐵 ⊆ 𝐹(𝐴) (Figure 12).

One can deduce from Definition 11 that there is a path
from 𝐴 to 𝐵 also if 𝐵 ⊆ 𝑎𝑘(𝐴) as 𝑎𝑘(𝐴) ⊆ 𝐹(𝐴).

Definition 12 (group betweenness centrality). Let (𝐸, 𝑎) be
a pretopological space, and 𝑘, 𝑟 ∈ N. Let us define 𝑝

𝑥𝑦
as

a pretopological path between singletons {𝑥} and {𝑦} of 𝐸
meaning {𝑦} ⊆ 𝑎𝑘({𝑥}). We note 𝑝

𝑥𝑦
(𝐴) as a pretopological

path (Figure 13) where

∃𝐴 ∈ P (𝐸) | 𝐴 ⊆ 𝑎
𝑘
({𝑥}) ∧ {𝑦} ⊆ 𝑎

𝑟
({𝑥}) ∧ 𝑘 ≤ 𝑟. (10)

The group betweenness centrality of a set 𝐴 is defined as

𝐶
𝐺

𝑏
(𝐴) =

|𝐸|

∑
𝑥

|𝐸|

∑
𝑦

𝜙 (𝐴) (11)

with 𝑥 ̸= 𝑦 and 𝜙(𝐴) = { 1 if ∃𝑝𝑥𝑦(𝐴)
0 else .

Experiments. To illustrate the interest of the generalized
group betweenness centrality measure, we applied it to the
network model used in Section 2.3 part using only one
relation (esteem) with the same threshold value (𝛼 = 3).
The problem to resolve becomes slightly different: we want
to find the groups which give the best score. As all parts
of a set cannot all be tested, we rely on the construction of
the family of elementary closed subsets. For each singleton
{𝑥}, while processing its closure 𝐹

𝑥
, we measure the group

betweenness centrality of the intermediate sets obtained.
Having the configuration {𝑥} ⊆ 𝑎2({𝑥}) ⊆ 𝑎3({𝑥}) ⊆ ⋅ ⋅ ⋅ ⊆
𝑎
𝑘
({𝑥}) ⊆ 𝐹

𝑥
, we measure the group betweenness centrality

on each 𝑎𝑘({𝑥}). The use of a single relationship is justified by
the fact that we want to compare our measure to the classic
version [2] which cannot handle multirelational networks.

To be able to compare the results, we changed the classic
group betweeness centrality (GBC) definition: for a couple
{𝑢, V} in the network, considering the GBC of a set 𝐶,
we increment its value of 1 if at least one shortest path
passing through 𝐶 exists. It follows the idea developed in
Definition 12. The results (Remark: as classic GBC is based
on the shortest paths in a graph, we inversed values, meaning
that if a link has its esteem value set to 3 in the pretopological
model (max value), we change the value in the network
(Section 2.3) to 1 (min value) which corresponds here to a
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a4({x})

a3({x})

a 2({x})
a({x})

A

x

y

(a) 𝐴 belongs to 𝑝𝑥𝑦 path

a4({x})

a3({x})

a 2({x})
a({x})

A

x

y

(b) 𝐴 does not belong to 𝑝𝑥𝑦 path

Figure 13: Pretopological path 𝑝
𝑥𝑦

illustration.

“cost” for a shortest path algorithm) of the group betweeness
centralities are given in Table 1. In this table, we highlighted
the three groupswith the highest GBC values: results between
classical and generalized GBC show that our measure is able
to detect emergent persons who have not been considered
with the classical measure.

It is interesting to find matches in the results from both
methods but also to see that a pretopologicalmodel highlights
some groups that should not have been considered otherwise.

3.3. Generalized Closeness Centrality. The closeness of an
element 𝑥 describes the total distance of 𝑥 to all other
elements in the network [39, 40]. For calculation, sum the
shortest paths 𝑑(𝑥, 𝑥

𝑗
) of a node 𝑥 to all other nodes in the

network:
𝑛

∑
𝑗

𝑑 (𝑥, 𝑥
𝑗
) , (12)

where 𝑥 ̸= 𝑥
𝑗
, 𝑑(𝑥, 𝑥

𝑗
) the shortest path between nodes 𝑥 and

𝑥
𝑗
, and 𝑛 the total number of nodes in the network.
Closeness can be regarded as a measure of how long

information will take to spread from a given vertex to other
reachable vertices in the network [41].

Definition 13 (closeness centrality). The closeness centrality
𝐶
𝑐
(𝑥) for a vertex 𝑥 is standardized on the size of the network:

𝐶
𝑐
(𝑥) =

𝑛 − 1

∑
𝑛

𝑗
𝑑 (𝑥, 𝑥

𝑗
)
. (13)

With pretopology, we can generalize this concept, as the
pseudoclosure is a function that represents direct proximity
and the closurewhich represents the largest proximity of a set.
Our measure is built on the eigenvector centrality and power

Table 1: Group betweenness centrality scores of a sample network
obtained by classic and generalized methods.

Group Classic GBC
JOHN 1, VICTOR 8 75
JOHN 1 64
VICTOR 8 48
PETER 4 47
JOHN 1, HUGH 14, WINF 12, BASIL 3, GREG 2 43
LOUIS 11, PETER 4 42
JOHN 1, HUGH 14, WINF 12, AMBROSE 9,
VICTOR 8, BASIL 3, GREG 2 34

AMBROSE 9 32
LOUIS 11 32
GREG 2 27

Group Generalized
GBC

JOHN 1, VICTOR 8 39
AMBROSE 9, LOUIS 11 38
LOUIS 11, PETER 4 37
BERTH 6 33
BONAVEN 5, AMBROSE 9, LOUIS 11, PETER 4 33
BONAVEN 5, VICTOR 8, AMBROSE 9, BERTH 6,
PETER 4 33

BONAVEN 5, VICTOR 8, AMBROSE 9, LOUIS 11,
BERTH 6, PETER 4 29

BONAVEN 5, AMAND 13 27
AMAND 13 27
HUGH 14 22

centrality ideas [42, 43]. Regarding a set, the further away an
element is from this set, the less it is influenced by this set.
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Figure 14: Successive pseudoclosures of a set 𝐴 for generalized
closeness centrality calculation.

Definition 14 (generalized closeness centrality). We define
generalized closeness centrality in a pretopological space
(𝐸, 𝑎) denoted by 𝐶𝐺

𝑐
(𝐴), where 𝐴 ∈ P(𝐸) such as

𝐶
𝐺

𝑐
(𝐴) = ∑

𝑘


𝑎
𝑘
(𝐴) − 𝑎

𝑘−1
(𝐴)


𝑘
(14)

until we reach closure of 𝐴 (𝑎𝑘+1(𝐴) = 𝑎
𝑘
(𝐴)) with 𝑘 a

positive integer.

Closure is defined in Definition 3 and illustrated in
Figure 4. The more pseudoclosure steps are needed to
reach closure, the less 𝐴 is close to the rest of the net-
work. It depends on the number of elements that can be
reached too.The distances used in classic closeness centrality
(Definition 13) are represented in our generalized definition
by the number of pseudoclosures needed to reach an element.
The case 𝐹(𝐴) = 𝐴means 𝐴 is a closed subset, and it cannot
reach other elements but itself. In that case, 𝐶𝐺

𝑐
(𝐴) = 0. Here,

one can realize the meaning of closure: all elements in the
closure of 𝐴 can be reached from 𝐴.

Example 15. Figure 14 gives an example of the calculation of
the generalized closeness centrality. After making the closure
of𝐴, we obtain its “influence” domain, the elements absorbed
for each new pseudoclosure being less and less close to𝐴. We
get 𝐶𝐺
𝑐
(𝐴) = 2 + (4/2) + (1/3) + (1/4) ≈ 4.58.

By this measure, we can find which elements or groups
are the “closest” to others in a complex network.

4. Conclusion

In this paper, we presented ideas and concepts which lead to
two main contributions.

First, we proposed using pretopology, a general math-
ematical framework, in order to model groups and rela-
tions in social networks. With definitions and examples, we
have highlighted the interest to model complex interactions
using the pretopology formalism, generalizing graph theory.
Furthermore, the introduction of various pseudoclosures
functions through examples illustrates our approach.

The second contribution is the generalization of var-
ious social network analysis measures, which are degree,
betweenness, and closeness centralities. These measures are
real group-based measures as we consider a group as a whole
entity, not as a combination of individuals.

This paper provides tools to model group interactions
in multirelational complex networks. A point not discussed
in this paper which can be seen as a perspective is that we
can also model dynamic relationships as the neighbourhood
functions of a pseudoclosure can evolve through time. Future
works can also be axed on some new methods using gen-
eralized measures to find groups which maximize a given
centrality, to optimize the “efficiency” of a group or to identify
emergent groups in a network. Moreover, other centralities
and measures could be generalized and based on the same
mathematical framework.
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