
HAL Id: hal-01105043
https://hal.science/hal-01105043v3

Submitted on 30 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Discrete Artificial Boundary Conditions for the
Korteweg-de Vries Equation

Christophe Besse, Matthias Ehrhardt, Ingrid Lacroix-Violet

To cite this version:
Christophe Besse, Matthias Ehrhardt, Ingrid Lacroix-Violet. Discrete Artificial Boundary Conditions
for the Korteweg-de Vries Equation. Numerical Methods for Partial Differential Equations, 2016, 35
(5), pp.1455-1484. �10.1002/num.22058�. �hal-01105043v3�

https://hal.science/hal-01105043v3
https://hal.archives-ouvertes.fr


Discrete Artificial Boundary Conditions
for the Korteweg-de Vries Equation

C. Besse
Institut de Mathématiques de Toulouse UMR5219,

Université de Toulouse; CNRS,
UPS IMT, F-31062 Toulouse Cedex 9, France.
Christophe.Besse@math.univ-toulouse.fr

M. Ehrhardt
Bergische Universität Wuppertal,

Fachbereich Mathematik und Naturwissenschaften,
Angewandte Mathematik - Numerische Analysis,

Gaußstrasse 20, 42119 Wuppertal, Germany.
ehrhardt@math.uni-wuppertal.de

I. Lacroix-Violet
Laboratoire Paul Painlevé, CNRS UMR 8524, Université Lille 1,

59655 Villeneuve d’Ascq Cedex, France.
Ingrid.Violet@math.univ-lille1.fr

November 5, 2015

Abstract

We consider the derivation of continuous and fully discrete artificial boundary
conditions for linearized Korteweg-de Vries equation. We show that we can obtain
them for any constant velocities and any dispersion. The discrete artificial boundary
conditions are provided for two different numerical schemes. In both continuous and
discrete case, the boundary conditions are non local with respect to time variable. We
propose fast evaluations of discrete convolutions. We present various numerical tests
which show the effectivness of the artificial boundary conditions.

1 Introduction

Korteweg-de Vries (KdV) equations are typical dispersive nonlinear partial differential
equations (PDEs). Zabusky and Kruskal [24] observed that KdV equation owns wave-like
solutions which can retain their initial forms after collision with another wave. This led
them to name these solitary wave solutions “solitons”.

These special solutions were observed and investigated for the first time in 1834 by Scott
Russell [11, 18]. Later in 1895, Korteweg and de Vries [14] showed that the soliton could
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be expressed as a solution of a rather simple one-dimensional nonlinear PDE describing
small amplitude waves in a narrow and shallow channel of water [1]:

∂η

∂τ
= 3

2
∂

∂ξ

(
1
2η

2 + 2
3αη + 1

3σ
∂2η

∂ξ2

)
, σ = 1

3h
3 − Th

ρg
, τ ∈ R+, ξ ∈ R, (1.1)

where α is some constant, g denotes the gravitational constant, ρ is the density, T the
surface tension and η = η(ξ, τ) denotes the surface displacement of the wave above the
undisturbed water level h. The equation (1.1) can be written in non-dimensional, simpli-
fied form by the transformation [1]:

t = 1
2

√
ghσ

τ
, x = − ξ√

σ
, u = 1

2η + 1
3α (1.2)

to obtain the usual KdV equation

ut + 6uux + uxxx = 0, t ∈ R+, x ∈ R, (1.3)

(subscripts x and t denoting partial differentiations), with the soliton solution is given by

u(x, t) = γ sech2(β(x− ct)
)
, t ∈ R+, x ∈ R. (1.4)

The KdV equation (1.3) has a broad range of applications [12]: description of the asymp-
totic behaviour of small- but finite-amplitude shallow-water waves [14], hydromagnetic
waves in a cold plasma, ion-acoustic waves [21], interfacial electrohydrodynamics [13], in-
ternal wave in the coastal ocean [17], water wave power stations [7], acoustic waves in an
anharmonic crystal [25], or pressure pulse propagation in blood vessels [15].

In this paper, we focus on the linearized KdV equation (also known as generalized Airy
equation) in one space dimension

ut + U1ux + U2uxxx = h(t, x), t ∈ R+, x ∈ R, (1.5)

where h stands for a source term and U1 and U2 are real constants such that U1 ∈ R and
U2 > 0. Recall that for U1 = 0 and U2 = 1 we recover the case considered by Zheng, Wen
& Han [28]. Although the PDE (1.5) looks very simple, it has a lot of applications, e.g.
Whitham [22] used it for the modelling of the propagation of long waves in the shallow
water equations, see also [23].

We emphasize the fact that the restriction of the solution to equation (1.5) to a finite
interval is not periodic. Thus concerning the numerical simulation, we cannot use the
FFT method and we consider instead the equation set on an interval and supplemented
with specially designed boundary conditions. Since the linear PDE (1.5) is defined on
an unbounded domain, one has to confine the unbounded domain in a numerical finite
computational domain for simulation. A common used method in such situation consists
in reducing the computational domain by introducing artificial boundary conditions. Such
artificial boundary conditions are constructed with the goal to approximate the exact so-
lution on the whole domain restricted to the computational one. They are called absorbing
boundary conditions (ABCs) if they lead to a well-posed initial boundary value problem
where some energy is absorbed at the boundary. If the approximate solution coincides on
the computational domain with the exact solution on the whole domain, they are called
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transparent boundary conditions (TBCs). See [2] for a review on the techniques used to
construct such transparent or artificial boundary conditions for the Schrödinger equation.

The linearity property of equation (1.5) allows to use many analytical tools such as
the Laplace transform. Using this tool, Zheng, Wen & Han [28] derived the exact TBCs
for equation (1.5) at fixed boundary points and then obtained an initial boundary value
problem "equivalent" to the problem in the whole space domain. Moreover, using a dual
Petrov-Galerkin scheme [20] the authors proposed a numerical approximation of this initial
boundary value problem. Thus the derivation in [28] of the adapted boundary conditions
is carried out at the continuous level and then discretized afterwards. Recently, Zhang,
Li and Wu [26] revisited the approach of Zheng, Wen & Han [28] and proposed a fast
approximation of the exact TBCs based on Padé approximation of the Laplace-transformed
TBCs.

In this paper we will follow a different strategy: we first discretize the equation (1.5)
with respect to time and space and then derive the suitable artificial boundary conditions
for the fully discrete problem using the Z-transformation. The goal of this paper is
therefore to derive analogous conditions of the transparent boundary conditions obtained
by the authors in [28] but in the fully discrete case. These discrete artificial boundary
conditions are superior since they are by construction perfectly adapted to the used interior
scheme and thus retain the stability properties of the underlying discretization method and
theoretically do not produce any reflections when compared to the discrete whole space
solution. However, there will be some small errors induced by the numerical root finding
routine and the numerical inverse Z-transformation and also later due to the fast sum-
of-exponentials approximation. Let us finally remark that there exists also an alternative
approach in this “discrete spirit”, namely to use discrete multiple scales, following the
work of Schoombie [19].

The paper is organized as follow. In Section 2 we use the ideas of Zheng, Wen & Han
[28] to obtain the TBCs for the linearized KdV equation (1.5) and we briefly recall the
results given in [28] for the special case U1 = 0 and U2 = 1. In Section 3 we present an
appropriate space and time discretization and explain the procedure to derive the artificial
boundary conditions for the purely discrete problem mimicking the ideas presented in
Section 2. Since exact ABCs are too time-consuming, especially for higher dimensional
problems, we propose in Section 4 to use a sum-of-exponentials approach [4], to speed up
the (approximate) computation of the discrete convolutions at the boundaries. Finally, in
Section 5 we present some numerical benchmark examples from the literature to illustrate
our findings.

2 Transparent boundary conditions for the continuous case

The motivation for this section is twofold. First, we briefly recall from the literature the
construction of TBCs for the 1D linearized KdV equation (1.5) for the special case U1 = 0
and U2 = 1 and the well-posedness of the resulting initial boundary value problem [28].

Secondly, we extend the derivation of TBCs to the generalized case U1 ∈ R and U2 > 0;
these results will serve us as a guideline for the completely discrete case in Section 3.
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To do so, we consider the Cauchy problem

ut + U1ux + U2uxxx = h(t, x), t ∈ R+, x ∈ R, (2.1)
u(0, x) = u0(x), x ∈ R, (2.2)

u→ 0, x→ ±∞, (2.3)

where (for simplicity) the initial function u0 and the source term h are assumed to be
compactly supported in a finite computational interval [a, b], with a < b and where U1 ∈ R
and U2 > 0 are given constants. For the construction of TBCs in the case of non-compactly
supported initial data we refer the interested reader to [10].

Remark 2.1. Changing the sign of U2 means to reverse the time direction, we therefore
only consider the positive case. Moreover, if one reads the equation as ut/U2+(U1/U2)ux+
uxxx = h(t, x)/U2, we can perform the change of unknown v(U2t, x) = u(t, x) and the
equation for v becomes

vt̃ + cvx + vxxx = g(t̃, x), t̃ = U2t, c = U1/U2, g(t̃, x) = h(t̃/U2, x)/U2.

The dispersive constant U2 can therefore be eliminated from the generalized Airy equation
and be considered to be equal to 1.

The construction of (continuous) artificial boundary conditions associated to problem
(2.1)–(2.3) is established by considering the problem on the complementary of [a, b], i.e.

ut + U1ux + U2uxxx = 0, t ∈ R+, x < a or x > b, (2.4)
u(0, x) = 0, x < a or x > b, (2.5)

u→ 0, x→ ±∞. (2.6)

Denoting by û = û(s, x) the Laplace transform in time of the function u = u(t, x), we
obtain from (2.4) the transformed exterior problems

sû+ U1ûx + U2ûxxx = 0, x < a or x > b, (2.7)
û→ 0, x→ ±∞, (2.8)

where s ∈ C, with Re(s) > 0, stands for the argument of the transformation, i.e. the dual
time variable. The general solutions of the ODE (2.7) are given explicitly by

û(s, x) = c1(s) eλ1(s)x + c2(s) eλ2(s)x + c3(s) eλ3(s)x, x < a or x > b, (2.9)

where λ1(s), λ2(s), λ3(s) denote the roots of the (depressed) cubic equation

s+ U1λ+ U2λ
3 = 0. (2.10)

The three solutions are given by

λk(s) = ωk−1ζ(s)− 1
3
U1
U2

1
ωk−1ζ(s) , k = 1, 2, 3, (2.11)

where ω = exp(2iπ/3) and

ζ(s) = − 1
21/3

 s

U2
+

√(
s

U2

)2
+ 4

27

(
U1
U2

)3
1/3

.
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Theorem 2.1. The roots of the cubic equation (2.10) possess the following separation
property

Re(λ1(s)) < 0, Re(λ2(s)) > 0, Re(λ3(s)) > 0. (2.12)

The proof of the theorem 2.1 is given in Appendix A.

This result is crucial for defining later the TBCs; the separation property allows to
separate the fundamental solutions into outgoing and incoming waves.

Remark 2.2. Considering, as in [28], the case U1 = 0 and U2 = 1 we have

λ1(s) = − 3√s, λ2(s) = −ω 3√s, λ3(s) = −ω2 3√s.

Now using the decay condition (2.8), the general solution (2.9), the separation property
(2.12) and since solutions of (2.7) have to belong to L2(R), we obtain

c1(s) = 0 for x ≤ a, c2(s) = c3(s) = 0 for x ≥ b, (2.13)

which yields the following TBCs in the Laplace-transformed space

ûxx(s, a)−
(
λ2(s) + λ3(s)

)
ûx(s, a) + λ2(s)λ3(s) û(s, a) = 0, (2.14)

û(s, b)− 1
λ2

1(s)
ûxx(s, b) = 0, ûx(s, b)− 1

λ1(s) ûxx(s, b) = 0. (2.15)

Since λ1, λ2 and λ3 are roots of the cubic equation (2.10) we obtain immediately

λ2(s)λ3(s) = − s

U2λ1(s) and λ2(s) + λ3(s) = −λ1(s),

and hence the transformed left TBC (2.14) can be rewritten solely in terms of λ1(s)

û(s, a)− U2λ1(s)2

s
ûx(s, a)− U2λ1(s)

s
û(s, a) = 0. (2.16)

Now applying the inverse Laplace transform to equations (2.16) and (2.15) we get

u(t, a)− U2 L−1
(
λ1(s)2

s

)
∗ ux(t, a)− U2 L−1

(
λ1(s)
s

)
∗ uxx(t, a) = 0, (2.17)

u(t, b)− L−1
( 1
λ1(s)2

)
∗ uxx(t, b) = 0, ux(t, b)− L−1

( 1
λ1(s)

)
∗ uxx(t, b) = 0, (2.18)

where L−1(f(s)) stands for the inverse Laplace transform of f and ∗ denotes the convolu-
tion operator. We emphasize that those boundary conditions strongly depend on U1 and
U2 through the root λ1(s).

Remark 2.3. Considering, as in [28], the special case U1 = 0 and U2 = 1 we easily obtain
from (2.17)–(2.18)

u(t, a)− I1/3
t ux(t, a) + I

2/3
t uxx(t, a) = 0, (2.19)

u(t, b)− I2/3
t uxx(t, b) = 0, ux(t, b) + I

1/3
t uxx(t, b) = 0, (2.20)
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where Ipt with p > 0 is the nonlocal-in-time fractional integral operator given by the
Riemann-Liouville formula

Ipt f(t) = 1
Γ(p)

∫ t

0
(t− τ)p−1f(τ) dτ,

where Γ(z) =
∫+∞

0 e−ttz−1 dt is the Gamma function. We refer to [28] for more details.

To summarize our findings so far, the derived initial boundary value problem reads

ut + U1ux + U2uxxx = 0, t ∈ R+, x ∈ [a, b], (2.21)
u(0, x) = u0(x), x ∈ [a, b], (2.22)

u(t, a)− U2 L−1
(
λ1(s)2

s

)
∗ ux(t, a)− U2 L−1

(
λ1(s)
s

)
∗ uxx(t, a) = 0, (2.23)

u(t, b)− L−1
( 1
λ1(s)2

)
∗ uxx(t, b) = 0, (2.24)

ux(t, b)− L−1
( 1
λ1(s)

)
∗ uxx(t, b) = 0. (2.25)

Note that a solution of (2.21)–(2.25) can be regarded as the restriction on [a, b] of the
solution on the whole space domain.

For the special case U1 = 0 and U2 = 1 (cf. Remark 2.3) the following stability theorem
is shown in [28].

Theorem 2.2 ([28]). The initial boundary value problem (2.21)–(2.25) for U1 = 0 and
U2 = 1 is L2-stable. More precisely, for any t > 0, there is a constant positive number c(t)
such that ∫ b

a
u2(t, x) dx ≤ c(t)

(∫ b

a
u2

0(x) dx+
∫ t

0

∫ b

a
h2(t, x) dxdt

)
. (2.26)

In the sequel we use the same procedure to obtain the artificial boundary conditions for
the fully discrete case, i.e. for the discretized version of the equation (1.5). These so-called
discrete artificial boundary conditions are better adapted to the numerical scheme and
thus do not alter the stability properties. Also, they do not suffer from discretization
errors of convolution integrals and theoretically do not produce any unphysical reflections.
However, since some steps in the calculation of the convolution coefficients, like the root
finding and the inverse Z-transformation have to be done numerically, this procedure will
lead to some small errors.

3 Discrete transparent boundary conditions

In this section we present how to obtain the artificial boundary conditions in the fully
discrete case for the problem (2.1)–(2.3). For simplicity we focus here on the case without
source term, i.e. we assume h(t, x) = 0 for all t > 0 and x ∈ R. Moreover we consider the
problem restricted to the computational interval [a, b] for the finite time t ∈ [0, T ], i.e.

ut + U1ux + U2uxxx = 0, t ∈ [0, T ], x ∈ [a, b], (3.1)
u(0, x) = u0(x), x ∈ [a, b]. (3.2)
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Let us denote by (tn)0≤n≤N a uniform subdivision of the time interval [0, T ] given by
tn = n∆t with the temporal step size ∆t = T/N :

0 = t0 < t1 < · · · < tN−1 < tN = T.

We also define (xj)0≤j≤J a uniform subdivision of [a, b] given by xj = a + j∆x with the
spatial step size ∆x = (b− a)/J :

a = x0 < x1 < · · · < xJ−1 < xJ = b.

We emphasize here that the temporal discretization must remain uniform due to the
usage of the Z-transform to derive the discrete TBCs. On the other hand, the space
discretization in the interior domain could have been non uniform. In the following, we
denote by u(n)

j the pointwise approximation of the solution u(tn, xj).

We will consider in the sequel two different numerical schemes based on trapezoidal
rule in time (semi discrete Crank-Nicolson approximation). The first one is the Rightside
Crank-Nicolson (proposed by Mengzhao [16]) (R-CN) scheme defined for U1 = 0 and
U2 > 0. It reads

u
(n+1)
j − u(n)

j

∆t + U2
2(∆x)3

(
u

(n+1)
j+2 − 3u(n+1)

j+1 + 3u(n+1)
j − u(n+1)

j−1

)
+ U2

2(∆x)3

(
u

(n)
j+2 − 3u(n)

j+1 + 3u(n)
j − u

(n)
j−1

)
= 0. (3.3)

The second one is the Centered Crank-Nicolson (C-CN) scheme [16] which is used for the
generalized linear Korteweg-de Vries equation (1.5) where U1 ∈ R and U2 ≥ 0. It reads

u
(n+1)
j − u(n)

j

∆t + U1
4∆x

(
u

(n+1)
j+1 − u(n+1)

j−1

)
+ U1

4∆x
(
u

(n)
j+1 − u

(n)
j−1

)
+ U2

4(∆x)3

(
u

(n+1)
j+2 − 2u(n+1)

j+1 + 2u(n+1)
j−1 − u(n+1)

j−2

)
+ U2

4(∆x)3

(
u

(n)
j+2 − 2u(n)

j+1 + 2u(n)
j−1 − u

(n)
j−2

)
= 0.

(3.4)

Here, the convection term is discretized in a centered way. Indeed, using simply an upwind
Crank-Nicholson scheme for the first order term and (R-CN) scheme for the third order
term leads to a strongly dissipative scheme.

Both schemes are absolutely stable and their truncation errors are respectively

ER−CN = O(∆x+ ∆t2),
EC−CN = O(∆x2 + ∆t2).

(3.5)

The stencil of the different scheme involves respectively 4 nodes for (R-CN) and 5 nodes
for (C-CN) schemes. This structure will have a strong influence on the computation of
the roots for the corresponding equation to (2.10) at the discrete level. For the (R-CN)
scheme, we will recover as in the continuous case a cubic equation, but a quartic equation
for the (C-CN) scheme. The later case will turn out to be more difficult.
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3.1 Discrete artificial boundary conditions for (R-CN) scheme

Let us first consider the (R-CN) scheme (3.3) for the interior problem, i.e. with a spatial
index j such that 1 ≤ j ≤ J − 2. Let us recall that this scheme is only valid in the
case U1 = 0 and U2 > 0. For this scheme, as in the continuous case, we will obtain one
boundary condition at point x0 = a and two boundary conditions at the right side which
will involve the two nodes xJ−1 and xJ , cf. the continuous ABCs (2.23)–(2.25).

In order to derive appropriate artificial boundary conditions, we follow the same pro-
cedure as in Section 2, but on a purely discrete level. First we apply the Z-transform
with respect to the time index n, which is the discrete analogue of the Laplace transform
in time, to the partial difference equation (3.3). We refer the reader to the appendix of
[2, 8, 9] for a proper definition of the Z-transform and its basic properties. The standard
definition reads

û(z) = Z{(un)n}(z) =
∞∑
k=0

ukz−k, |z| > R ≥ 1, (3.6)

where R is the convergence radius of the Laurent series and z ∈ C.

Denoting by ûj = ûj(z) the Z-transform of the sequence (u(n)
j )n∈N0 we obtain from

(3.3) the homogeneous third order difference equation

ûj+2 − 3ûj+1 +
(

3 + 2(∆x)3

U2∆t
z − 1
z + 1

)
ûj − ûj−1 = 0, 1 ≤ j ≤ J − 2. (3.7)

It is well-known that homogeneous difference equations with constant coefficients possess
solutions of the power form ûj =

∑
k ck(z) r

j
k(z), where r = r(z) solves the cubic equation

r3 − 3r2 + (3 + p) r − 1 = 0, (3.8)

with
p = µ

z − 1
z + 1 , µ = 2(∆x)3

U2∆t .

Equation (3.8) admits three fundamental solutions denoted here by r1, r2 and r3 that can
be computed analytically or numerically up to a very high precision. Thus the general
solution of (3.7) on the exterior domains is of the form

ûj(z) = c1(z) rj1(z) + c2(z) rj2(z) + c3(z) rj3(z), j ≤ 1 or j ≥ J − 2.

Let

ζ(z) =

−p+
√
p2 + 4

27p
3

2

1/3

.

The three solutions of (3.8) are

rj(z) = ωj−1ζ(z)− p

3
1

ωj−1ζ(z) + 1, j = 1, 2, 3. (3.9)

If we consider z = ρeiθ, the roots rj(z) may be discontinuous due to branch changes with
respect to θ in the complex plane. One example of this phenomenom can be seen on left
part of figure 1 where we plot the evolution of roots ri for ρ = (1 + 10−2) and µ = 1. On
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Figure 1: Discontinuous and continuous roots rk and `k

one side, we clearly see that branch changes occur. On the other side, we always have
simultaneously one root inside the unit disk and two outside. Instead of considering roots
rk, it is more convenient to identify roots by continuity. We refer to these continuous roots
as `k (see right part of figure 1). We therefore have the following theorem.

Theorem 3.1. For any ∆x > 0, ∆t > 0 and |z| > 1, the continuous roots of the cubic
algebraic equation (3.8) are well separated according to

|`1(z)| < 1, |`2(z)| > 1, |`3(z)| > 1, for all z, (3.10)

which defines the discrete separation property.

The proof of the theorem 3.1 is given in Appendix B.

Like in the continuous case (2.13), using the decay condition we obtain,

• for the left exterior domain c1(z) = 0, j ≤ 1 and thus ûj(z) = c2(z) `j2(z)+c3(z) `j3(z),
j ≤ 1

• for the right exterior domain c2(z) = c3(z) = 0, j ≥ J − 2 and thus ûj(z) =
c1(z) `j1(z), j ≥ J − 2

Let us now derive the boundary conditions for (R-CN) scheme.

Left boundary. On the left boundary we only need one relation. It is easy to see that

ûj+1(z)−
(
`2(z) + `3(z)

)
ûj(z) + `2(z)`3(z) ûj−1(z) = 0. (3.11)

Applying it for j = 1 and denoting by Z−1{f(z)} the inverse Z-transform of f(z), we
obtain

Z−1{`2(z)`3(z))} ∗d u
(n)
0 −Z

−1{`2(z) + `3(z))} ∗d u
(n)
1 + u

(n)
2 = 0, n = 0, 1, 2 . . . , (3.12)
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where ∗d stands for the discrete convolution with respect to the temporal index n:

P ∗d u
(n)
i =

n∑
k=0

P (k)u
(n−k)
i ,

for P = (P k) a sequence and i an integer. Let us denote the convolution kernels by
k1,R(z) = `2(z) + `3(z) and k2,R(z) = `2(z)`3(z) and by Yi,R the sequences of the inverse
Z-transform of kernel ki,R i.e. Yi,R = Z−1{ki,R(z)}. Then (3.12) can be written

Y2,R ∗d u
(n)
0 − Y1,R ∗d u

(n)
1 + u

(n)
2 = 0, n = 0, 1, 2 . . . . (3.13)

Right boundary. On the right boundary we need two relations since the fully discrete
scheme involved four grid points. It is easy to see that

ûj+2(z) = `1(z)2 ûj(z), and ûj+1(z) = `1(z) ûj(z), (3.14)

Applying them for j = J − 2 and using inverse Z-transformation, we obtain

u
(n)
J − Y4,R ∗d u

(n)
J−2 = 0, u

(n)
J−1 − Y3,R ∗d u

(n)
J−2 = 0, n = 0, 1, 2 . . . , (3.15)

where k3,R(z) = `1(z) and k4,R(z) = `21(z).

Remark 3.1. We can easily obtain continuous roots `k. We compute roots rk(z) where
z = ρeiθ for a fixed radius ρ and various angle θ thanks to (3.9). For each values of θ, we
sort roots thanks to the relation r1(θ) < r2(θ) < r3(θ).

Remark 3.2. We draw on Figure 2 (top figures) the behaviour of the inverse Z-transform
only for the two kernels k1,R(z) and k3,R(z) (the behavior of k2,R(z) and k4,R(z) being
analogous). We clearly see that the signs of the coefficients alternate. This will possibly
create subtractive cancellation errors when we will use them in the boundary convolu-
tions. Following [4, 5], we modify the convolution kernels. The idea is to multiply a
Z-transformed kernel ki,R(z) by ξ(z) = 1 + z−1 which corresponds to add two neighboured
values in the series Z−1{ki,R(z)}. We draw on Figure 2 (bottom figures) the behavior
of the inverse Z-transform for ξ(z)k1,R(z) and ξ(z)k3,R(z). We can clearly see that the
signs of the coefficients do not alternate anymore. In the sequel we introduce the nota-
tions Y ξ

i,R = Z−1{ξ(z)ki,R(z)}. We refer to section 5 for more details on the numerical
procedure used to compute the inverse Z-transform for a kernel.

Remark 3.2 yields the algorithm used in Section 5 to solve numerically the problem.
Assuming that the solution on the previous time level (u(n)

j )0≤j≤J is known, (u(n+1)
j )0≤j≤J

is given for n ≥ 0 by

Y ξ
2,R ∗d u

(n+1)
0 − Y ξ

1,R ∗d u
(n+1)
1 + u

(n+1)
2 = −un2 ,

−αu(n+1)
j−1 + (3α+ 1)u(n+1)

j − 3αu(n+1)
j+1 + αun+1

j+2

= αu
(n)
j−1 − (3α− 1)u(n)

j + 3αu(n)
j+1 − αu

(n)
j+2, 1 ≤ j ≤ J − 2,

u
(n+1)
J−1 − Y

ξ
3,R ∗d u

(n+1)
J−2 = −unJ−1,

u
(n+1)
J − Y ξ

4,R ∗d u
(n+1)
J−2 = −unJ ,

(3.16)

with the mesh ratio α = U2∆t/(2(∆x)3).
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Figure 2: Coefficients of the inverse Z-transform for the kernels ki,R(z), i = 1, 3 and
kernels ξ(z)ki,R(z), i = 1, 3 with ∆t = 4/2560, ∆x = 12/5000 and r = 1.001.

3.2 Discrete artificial boundary conditions for (C-CN) scheme

We treat here the case of the (C-CN) scheme for the interior nodes with a spatial index j
such that 2 ≤ j ≤ J − 2. Since we consider a difference scheme with a five points stencil,
we need two artificial boundary conditions on each side of the computational interval [a, b].

In order to derive suitable artificial boundary conditions for the (C-CN) scheme (3.4)
we follow the same procedure as in Section 3.1 for (R-CN) scheme. First we apply the Z-
transform with respect to the time index n, denoting by ûj the Z-transform of the sequence
(u(n)
j )n∈N0 we obtain from (3.4) the homogeneous fourth order difference equation:

ûj+2−
(

2− U1(∆x)2

U2

)
ûj+1 + 4(∆x)3

U2∆t
z − 1
z + 1 ûj +

(
2− U1(∆x)2

U2

)
ûj−1− ûj−2 = 0, (3.17)

for the spatial index range 2 ≤ j ≤ J − 2.
The solutions of this difference equation are again of the power form ûj(z) =

∑
k ck(z) `

j
k(z),

where ` = `(z) solves now the quartic equation

`4 − (2− a) `3 + 2p`2 + (2− a) `− 1 = 0, (3.18)

with a = U1(∆x)2/U2 and p = 2λ(z − 1)/(z + 1).

11



Equation (3.18) admits four roots which can be computed numerically or analytically
by the well-known Ferrari’s solution formula. As in the case of the cubic equation we
identify these roots by continuity and refer to them as `k for k = 1, 2, 3, 4. Thus the
general solution of (3.17) is of the form

ûj(z) = c1(z) `j1(z) + c2(z) `j2(z) + c3(z) `j3(z) + c4(z) `j4(z).

Like in the previous sections we can show the following theorem

Theorem 3.2. For any U1 ∈ R, U2 > 0, ∆x > 0, ∆t > 0 and |z| > 1, the continuous
roots of the quartic algebraic equation (3.18) are well separated according to

|`1(z)| < 1, |`2(z)| < 1, |`3(z)| > 1, |`4(z)| > 1, for all z, (3.19)

which defines the discrete separation property.

The proof of the theorem is given in Appendix C.

As previously, using theorem 3.2 and the decay condition of the solution we obtain

• for the left exterior domain c1(z) = c2(z) = 0, j ≤ 2 and thus ûj(z) = c3(z) `j3(z) +
c4(z) `j4(z), j ≤ 2

• for the right exterior domain c3(z) = c4(z) = 0, j ≥ J − 2 and thus ûj(z) =
c1(z) `j1(z) + c2(z) `j2(z), j ≥ J − 2

Right boundary. On the right boundary we need two relations. It is easy to see that

ûj+2(z)−
(
`1(z) + `2(z)

)
ûj+1(z) + `1(z)`2(z)ûj(z) = 0, (3.20)

ûj+2(z)−2(`1(z)+`2(z))ûj+1(z)+(`1(z)+`2(z))2ûj(z)−(`1(z)`2(z))2ûj−2(z) = 0, (3.21)

which will give a link between u(n)
J , u(n)

J−1, u
(n)
J−2 and u(n)

J−4 with j = J − 2.

For brevity of the notation we introduce Yi,C = Z−1{ki,C(z)}, i = 1, 2, 3, 4 with

k1,C(z) = `1(z) + `2(z), k2,C(z) =
(
`1(z) + `2(z)

)2
,

k3,C(z) = `1(z)`2(z), k4,C(z) =
(
`1(z)`2(z)

)2
,

and we obtain from (3.23)–(3.24)

u
(n)
J − Y1,C ∗d u

(n)
J−1 + Y3,C ∗d u

(n)
J−2 = 0,

u
(n)
J − 2Y1,C ∗d u

(n)
J−1 + Y2,C ∗d u

(n)
J−2 − Y4,C ∗d u

(n)
J−4 = 0.

(3.22)

Left boundary. On the left boundary we need now two relations. We can easily verify

ûj(z)−
(
`3(z) + `4(z)

)
ûj−1(z) + `3(z)`4(z) ûj−2(z) = 0, (3.23)

ûj+2(z)−2(`3(z)+`4(z))ûj+1(z)+(`3(z)+`4(z))2ûj(z)−(`3(z)`4(z))2ûj−2(z) = 0, (3.24)
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which give a link between u(n)
0 , u(n)

1 , u(n)
2 , u(n)

3 and u(n)
4 setting j = 2. Indeed, denoting

by Yi,C = Z−1{ki,C(z)}, i = 5, 6, 7, 8 with

k5,C(z) = `3(z) + `4(z), k6,C(z) = (`3(z) + `4(z))2,

k7,C(z) = `3(z)`4(z), k8,C(z) = (`3(z)`4(z))2,

we obtain from (3.23)-(3.24)

Y7,C ∗d u
(n)
0 − Y5,C ∗d u

(n)
1 + u

(n)
2 = 0,

−Y8,C ∗d u
(n)
0 + Y6,C ∗d u

(n)
2 − 2Y5,C ∗d u

(n)
3 + u

(n)
4 = 0.

(3.25)

Following Remark 3.2, we finally obtain the algorithm used in Section 5 to solve numer-
ically the problem. Assuming that the solution (u(n)

j )0≤j≤J on the previous time level is
known, then (u(n+1)

j )0≤j≤J is given for n ≥ 0 by

Y ξ
7,C ∗d u

(n)
0 − Y ξ

5,C ∗d u
(n)
1 + u

(n)
2 = −u(n−1)

2 ,

−Y8,C ∗d u
(n)
0 + Y6,C ∗d u

(n)
2 − 2Y5,C ∗d u

(n)
3 + u

(n)
4 = −u(n−1)

4 ,

−α2 u
(n+1)
j−2 + (α− β)u(n+1)

j−1 + u
(n+1)
j + (−α+ β)u(n+1)

j+1 + α

2 u
(n+1)
j+2

= α

2 u
(n)
j−2 + (−α+ β)u(n)

j−1 + u
(n)
j + (α− β)u(n+1)

j+1 − α

2 u
(n+1)
j+2 , 1 ≤ j ≤ J − 2,

u
(n)
J − Y

ξ
1,C ∗d u

(n)
J−1 + Y ξ

3,C ∗d u
(n)
J−2 = −u(n−1)

J ,

u
(n)
J − 2Y ξ

1,C ∗d u
(n)
J−1 + Y ξ

2,C ∗d u
(n)
J−2 − Y

ξ
4,C ∗d u

(n)
J−4 = −u(n−1)

J .

(3.26)
with the mesh ratios α = U2∆t/(2(∆x)3) and β = U1∆t/(4∆x).

Remark 3.3. Concerning the implementation, it is usual to define the midpoint unknown
v

(n+1/2)
j = (u(n+1)

j + u
(n)
j )/2, with v

(−1/2)
j = u

(0)
j . In this case, (3.16) for the (R-CN)

scheme reads

Y
ξ,(0)

2,R v
(n+1/2)
0 − Y ξ,(0)

1,R v
(n+1/2)
1 + v

(n+1/2)
2 = −v(n−1/2)

2 −
n∑
k=1

Y
ξ,(k)

2,R v
(n+1/2−k)
0 −

Y
ξ,(n+1)

2,R u
(0)
0 /2 +

n∑
k=1

Y
ξ,(k)

1,R v
(n+1/2−k)
1 + Y

ξ,(n+1)
1,R u

(0)
1 /2,

v
(n+1/2)
j + α

(
v

(n+1/2)
j+2 − 3v(n+1/2)

j+1 + 3v(n+1/2)
j − v(n+1/2)

j−1

)
= unj , 1 ≤ j ≤ J − 2.

−Y ξ,(0)
3,R v

(n+1/2)
J−2 + v

(n+1/2)
J−1 = −v(n−1/2)

J−1 +
n∑
k=1

Y
ξ,(k)

3,R v
(n+1/2−k)
J−2 + Y

ξ,(n+1)
3,R u

(0)
J−2/2,

−Y ξ,(0)
4,R v

(n+1/2)
J−2 + v

(n+1/2)
J = −v(n−1/2)

J +
n∑
k=1

Y
ξ,(k)

4,R v
(n+1/2−k)
J−2 + Y

ξ,(n+1)
4,R u

(0)
J−2/2,

(3.27)
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For the (C-CN) scheme, (3.26) reads for 1 ≤ j ≤ J − 2.

Y
ξ,(0)

7,C v
(n+1/2)
0 − Y ξ,(0)

5,C v
(n+1/2)
1 + v

(n+1/2)
2 = −v(n−1/2)

2 −
n∑
k=1

Y
ξ,(k)

7,C v
(n+1/2−k)
0 −

Y
ξ,(n+1)

7,C u
(0)
0 /2 +

n∑
k=1

Y
ξ,(k)

5,C v
(n+1/2−k)
1 + Y

ξ,(n+1)
5,C u

(0)
1 /2,

−Y ξ,(0)
8,C v

(n+1/2)
0 + Y

ξ,(0)
6,C v

(n+1/2)
2 − 2Y ξ,(0)

5,C v
(n+1/2)
3 + v

(n+1/2)
4

= −v(n−1/2)
4 +

n∑
k=1

Y
ξ,(k)

8,C v
(n+1/2−k)
0 + Y

ξ,(n+1)
8,C u

(0)
0 /2−

n∑
k=1

Y
ξ,(k)

6,C v
(n+1/2−k)
2

−Y ξ,(n+1)
6,C u

(0)
2 /2 + 2

n∑
k=1

Y
ξ,(k)

5,C v
(n+1/2−k)
3 + Z

(n+1)
5 u

(0)
3 ,

−α2 v
(n+1/2)
j−2 + (α− β)v(n+1/2)

j−1 + v
(n+1/2)
j + (−α+ β)v(n+1/2)

j+1 + α

2 v
(n+1/2)
j+2 = unj ,

Y
ξ,(0)

3,C v
(n+1/2)
J−2 − Y ξ,(0)

1,C v
(n+1/2)
J−1 + v

(n+1/2)
J = −v(n−1/2)

J −
n∑
k=1

Y
ξ,(k)

3,C v
(n+1/2−k)
J−2 −

Y
ξ,(n+1)

3,C u
(0)
J−2/2 +

n∑
k=1

Y
ξ,(k)

1,C v
(n+1/2−k)
J−1 + Y

ξ,(n+1)
1,C u

(0)
J−1/2,

−Y ξ,(0)
4,C v

(n+1/2)
J−4 + Y

ξ,(0)
2,C v

(n+1/2)
J−2 − 2Y ξ,(0)

1,C v
(n+1/2)
J−1 + v

(n+1/2)
J

= −v(n−1/2)
J +

n∑
k=1

Y
ξ,(k)

4,C v
(n+1/2−k)
J−4 + Y

ξ,(n+1)
4,C u

(0)
J−4/2−

n∑
k=1

Y
ξ,(k)

2,C v
(n+1/2−k)
J−2

−Y ξ,(n+1)
2,C u

(0)
J−2/2 + 2

n∑
k=1

Y
ξ,(k)

1,C v
(n+1/2−k)
J−1 + Y

ξ,(n+1)
1,C u

(0)
J−1.

(3.28)
Solving (3.27) or (3.28), we recover u(n+1)

j by u(n+1)
j = 2v(n+1/2)

j − u(n)
j .

4 The Sum-of-Exponentials Approach

An ad-hoc implementation of the discrete convolutions of the form
n∑
k=1

X(k)
m u

(n−k)
j

with convolution coefficients X(n)
m has still one disadvantage. The boundary conditions

are non–local in time (and space for higher dimensions) and therefore computations are
too expensive. As a remedy, to get rid of the time non-locality, we use as in [4] the sum of
exponentials ansatz, i.e. to approximate the convolution coefficients X(n)

m by a finite sum
(say Lm terms) of exponentials that decay with respect to time. This approach allows for
a fast (approximate) evaluation of the discrete convolution since the convolution can now
be evaluated with a simple recurrence formula for Lm auxiliary terms and the numerical
effort per time step now stays constant.
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4.1 The Exponential Approximation

To do so we will follow the ideas of [4] and approximate the coefficients of a sequence X(n)
m

by the following sum-of-exponentials ansatz

X(n)
m ≈ X̃(n)

m :=
{
X

(n)
m , n = 0, . . . , νm − 1,∑Lm
l=1 bm,lq

−n
m,l, n = νm, νm + 1, . . . ,

(4.1)

where Lm ∈ Z, νm ≥ 0 are given integer parameters, e.g. Lm = 20, νm = 2, that have
to be chosen appropriately to guarantee good approximation properties of X̃(n)

m . In the
following, X(n)

m has to be seen as Y ξ,(n)
m,R or Y ξ,(n)

m,C respectively for (R-CN) and (C-CN)
schemes.

In [4] the authors presented a deterministic method of choosing such an optimal ap-
proximation, i.e. finding the set {bm,l, qm,l} for fixed Lm and νm.

The “split” definition of X̃(n)
m in (4.1) is motivated by the fact that the implementation

of the discrete TBCs involves a convolution sum with k ranging only from 1 to k = n. Since
the first coefficient X(0)

m does not appear in this convolution, it makes no sense to include
it in our sum-of-exponential approximation, which aims at simplifying the evaluation of
the convolution. Hence, one may choose νm = 1 in (4.1). We observe numerically that the
two first coefficients have a larger magnitude compared to the other ones. This suggests
even to exclude Z(1)

m from this approximation and to choose νm = 2 in (4.1). We use this
choice in our numerical implementation.

Let us fix Lm and consider the formal power series:

gm(x) := s(νm) + s(νm+1)x+ s(νm+2)x2 + . . . , |x| ≤ 1. (4.2)

If there exists the [Lm − 1|Lm] Padé approximation

g̃m(x) := PLm−1(x)
QLm(x)

of (4.2), then its Taylor series

g̃m(x) = X̃(νm)
m + X̃(νm+1)

m x+ X̃(νm+2)
m x2 + . . .

satisfies the conditions

X̃(n)
m = X(n)

m , n = νm, νm + 1, . . . , 2Lm + νm − 1, (4.3)

due to the definition of the Padé approximation rule.
Theorem 4.1 ([4]). Let QLm(x) have Lm simple roots qm,l with |qm,l| > 1, l = 1, . . . , Lm.
Then

X̃(n)
m =

Lm∑
l=1

bm,lq
−n
m,l, n = νm, νm + 1, . . . , (4.4)

where
bm,l := −PLm−1(qm,l)

Q′Lm(qm,l)
qm,l 6= 0, l = 1, . . . , Lm. (4.5)

Evidently, the approximation of the convolution coefficients X(n)
m by the representation

(4.1) using a [Lm − 1|Lm] Padé approximant to (4.2) behaves as follows: the first 2Lm
coefficients are reproduced exactly, see (4.3). However, the asymptotics of X(n)

m and X̃(n)
n

(as n→∞) differ strongly – algebraic versus exponential decay.
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4.2 Fast Evaluation of the Discrete Convolution

Let us consider the approximation (4.1) with νm = 2 for the discrete convolution kernel
appearing in the discrete TBCs. With these “exponential” coefficients the approximated
convolution

C̃
(n)
m,j :=

n∑
k=2

X̃(k)
m u

(n−k)
j , X̃(n)

m =
Lm∑
l=1

bm,lq
−n
m,l, |ql| > 1, (4.6)

of the discrete function u(n−k)
j , k = 1, 2, . . . with the coefficients X̃(n)

m can be calculated
by recurrence formulas, and this will reduce the numerical effort significantly.

A straightforward calculation ([4]) yields (for νm = 2):

C̃
(n)
m,j({u

(n)
j )n} =

Lm∑
l=1

C̃
(n)
m,j,l, n ≥ 2, (4.7)

where
C̃

(2)
m,j,l ≡ 0,

C̃
(n)
m,j,l = q−1

m,lC̃
(n−1)
m,j,l + bm,lq

−1
m,lu

(n−2)
j , (4.8)

n = 2, 3, . . . , l = 1, . . . , Lm.
In order to use this fast evaluation procedure in our implementation point of view, we

must transform it before to use it for midpoint v(n+1/2)
j unknown. It is easy to see that

the second relation of (4.8) can be transformed as

C̃
(n)
m,j,l{(u

(n)
j )n} = bm,l

n−1∑
k=2

q−km,lu
(n−k)
j . (4.9)

For example, let us consider the last TBC of (3.16)

u
(n+1)
J − Y ξ

4,R ∗d u
(n+1)
J−2 = −unJ .

We have to see Y ξ
4,R ∗d u

(n+1)
J−2 as

Y
ξ,(0)

4,R u
(n+1)
J−2 + Y

ξ,(1)
4,R u

(n)
J−2 + C̃

(n+1)
4,J−2{(u

(n+1)
J−2 )n}.

In order to get an equation for v(n+1/2)
J−2 , we write the previous relation at discrete time

level n and average the equations. We therefore get

v
(n+1/2)
J − Y ξ,(0)

4,R v
(n+1/2)
J−2 − Y ξ,(1)

4,R v
(n−1/2)
J−2

= −v(n−1/2)
J + 1

2
(
C̃

(n+1)
4,J−2{(u

(n+1)
J−2 )n}+ C̃

(n)
4,J−2{(u

(n)
J−2)n}

)
. (4.10)

Thanks to (4.7) and (4.9), we obtain

v
(n+1/2)
J − Y ξ,(0)

4,R v
(n+1/2)
J−2 − Y ξ,(1)

4,R v
(n−1/2)
J−2

= −v(n−1/2)
J + C̃

(n)
4,J−2{(v

(n+1/2)
J−2 )n}+

Lm∑
l=1

b4,lq
−n
4,l v

(1/2)
0 . (4.11)

These equation then replaces the last one of (3.27).
These computations can be easily transferred to other convolutions appearing in other

TBCs.
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5 Numerical Results

In this section we first present the numerical procedure used to compute the inverse Z-
transforms required for the discrete absorbing boundary conditions. Then we consider
two different examples for which we give some numerical results. The first example can
be considered for either (R-CN) or (C-CN) scheme since U1 = 0, U2 = 1. The second one
can only be considered for the (C-CN) scheme since in this ones U1 = U2 = 1.

5.1 Numerical procedure for the inverse Z-transform

In this section, we recall for a self-contained presentation the numerical procedure pre-
sented in [29] to compute the inverse Z-transform.

Let us recall that if we consider the sequence (un)n∈N, then its Z-transform reads

U(z) =
∞∑
k=0

ukz
−k, |z| > R.

Assuming we know U(z), we can recover the value of the sequence un thanks to the relation

un = 1
2iπ

∮
Sr
U(z)zn−1dz, r > R,

where Sr denotes any circle of radius r > R. Performing the change of variable z = reiϕ,
we obtain

un = rn

2π

∫ 2π

0
U(reiϕ)einϕ dϕ.

Discretizing the angular variable ϕ with N nodes, we obtain the approximation

un ≈
rn

N

N−1∑
k=0

U
(
rei

2π
N
k
)
ei

2π
N
kn.

Let us now consider the finite sequence
(
fn
)N−1
n=0 . Its discrete Fourier transform is given

by

Fk = F{fn}(k) =
N−1∑
n=0

fnω
−nk
N

and we recover the value of fn through

fn = F−1{Fk}(n) = 1
N

N−1∑
k=0

Fkω
nk
N

where ωN = ei
2π
N . Therefore, if we define Uk = U(rωkN ), we have

un ≈
rn

N

N−1∑
k=0

Ukω
k
N = rnF−1{Uk}(n), 0 ≤ n < N.

Thus, in order to obtain approximation of un, we have to multiply the inverse discrete
Fourier transform of U(z) evaluated at nodes zk = re2iπk/N by rk. The inverse discrete
Fourier transform if easily obtain thanks for inverse fast Fourier transform.

17



Note that the choice of the inversion radius r is crucial to guarantee the good approx-
imation of the inverse Z-transform and then the convergence of the numerical scheme as
presented in Figure 8. Note that in [29] the best choice of r seems to be 1.02 while in our
case it seems to be 1.001. For a concise discussion on the choice of r we refer the reader
to [29].

5.2 Numerical Example 1

Let us first consider the example from Zheng, Wen and Han [28] which is concerned with
the following equation (U1 = 0, U2 = 1):

ut + uxxx = 0, x ∈ R, (5.1)

u(0, x) = e−x
2
, x ∈ R, (5.2)

u→ 0, |x| → ∞. (5.3)

The fundamental solution of equation (5.1) is [28]

E(t, x) = 1
3√3t

Ai
(

x
3√3t

)
,

where Ai(·) is the Airy function. The exact solution of (5.1)-(5.3) can be written in terms
of E(t, x) as

uexact(t, x) = E(t, x) ∗ e−x2
,

where ∗ denotes the convolution product on the whole real axis.

We present in Figure 3 the exact solution and the approximate solution obtained with
(R-CN) scheme for ∆t = 4/2560, ∆x = 12/5000 and r = 1.001 at different times t =
1, 2, 3, 4. We see that the (R-CN) solution is a very good approximation of the exact
solution all along the time. No unphysical reflections can be seen at the boundaries. The
same can be obtained by using the (C-CN) scheme.

We present in Figure 4 a comparison at time T = 1 between the exact solution and the
approximate solution obtained with the sum of exponential approach either for various
values of N (N = 640, 1280, 2560) and a fixed value of Lm (Lm = 20) or for a fixed value
of N (N = 2560) and various values of Lm (Lm = 10, 20). In each case ∆x = 12/5000 and
r = 1.001. We observe that the accuracy of the approximate solution depend on N for a
fixed Lm and on Lm for a fixed N .

Let us define as e(n) the relative `2-error at time t = n∆t given by:

e(n) =
∥∥∥u(n)

exact − u(n)
num

∥∥∥
2
/
∥∥∥u(n)

exact

∥∥∥
2
,

where we use trapezoidal rule to compute the `2-norm. Note that here unum stands for
the numerical solution computed with either (R-CN) or (C-CN) scheme. We decided to
compute from e(n) two error functions; first the maximum in time and secondly the `2-error
in time:

rel.ErrTm = max
0<n<N

(
e(n)

)
, rel.ErrL2 =

(
∆t

N∑
n=1

(e(n))2
)1/2

.
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Figure 3: Numerical and exact solutions at times t = 1, t = 2, t = 3 and final time T = 4
for the first example with ∆t = 4/2560, ∆x = 12/5000 and r = 1.001.

The behaviour of these two errors with respect to ∆x are presented in Figure 5. We
observe that we obtained numerically the expected order of accuracy for each scheme: the
(R-CN) scheme has a convergence order of one and the (C-CN) scheme is of order two. We
can also see that for each value of N there is a saturation phenomena for the error, for very
small ∆x the round-off errors balances with the errors in the solution. Also, changing ∆x
also modifies the roots of the cubic/quartic equations needed in the boundary convolution
and the numerical inverse Z-transform of the convolution kernels may degrade the overall
accuracy (at least for the selected inversion radius).

We present in Figure 6 the rel.ErrTm and rel.ErrL2 with respect to ∆t for J = 20000
and r = 1.001. Again we obtain for each scheme a numerical rate of convergence of order
two in time. Surprisingly, the saturation effects from the previous figure do not show up,
although with smaller ∆t the size of the boundary convolutions is increasing and this often
leads to additional errors.

We present in Figure 7 the evolution of the `2-error with respect to time for various
values of N , J = 20000 and r = 1.001. As expected, the error decreases for increasing N ,
i.e. finer mesh size. In any case, the error remains moderately bounded over the whole
simulation time which shows the usefulness of the proposed method. At the beginning the
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Figure 4: Comparison at time T = 1 between the exact solution and the approximate
solution obtained with the sum of exponential approach for the (C-CN) scheme (top fig-
ures) and the (R-CN)-scheme (bottom figures). The left figures are obtained with a fixed
Lm = 20 and various N = 640, 1280, 2560 and the right figures with a fixed N = 2560 and
various Lm = 10, 20 for (C-CN) and (R-CN)-schemes.

first increase is due to the interaction with the artificial boundaries and the second long
term growth is due to an accumulation effect of errors, e.g. due to the increasing time
convolution at the boundaries.

We present in Figure 8 the rel.ErrL2 with respect to r for each scheme and either
with N = 2560 and various J or J = 5000 and various N . The choice of r in the inverse
Z-transform procedure is clearly impacting the error and depend on the values of J and
N . It seems that our choice, r = 1.001, is a good choice for a large set of values of N and
J .
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Figure 5: Relative errors with respect to ∆x at time T = 4 for the (R-CN) scheme (figures
on left) and the (C-CN)-scheme (figures on right) and for different values of N .

5.3 Numerical Example 2

Let us now consider a second example. We consider the dispersive equation (1.5) with
U1 = U2 = 1 and we choose as initial condition

u0(x) = exp(−8(x− 5)2) sin
(50π

4

)
,

for 0 ≤ x ≤ 10 and for a final time T = 4.8× 10−4. This example was already considered
in [6]. Note that using the Fourier transform, the problem being a linear and periodic
problem, we can compute the exact solution uexact(t, x). Indeed, applying the Fourier
transformation in the space variable to the equation (1.5) we obtain

ût + iξû− iξ3û = 0,

where ξ stands for the Fourier variable. Then it is easy to see that the transformed exact
solution reads

ûexact(t, ξ) = û0 exp
(
−
(
iξ − iξ3

)
t
)
.

Using the inverse Fourier transform we have the exact solution of the problem. A reference
solution is computed using 50000 points in space and 2560 iterations in time and used for
Figures 9 and 10.
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Figure 6: Relative errors with respect to ∆t at time T = 4 for the (R-CN) scheme (figures
on left) and the (C-CN)-scheme (figures on right) and for J = 20000.

We present in Figure 9 the exact solution and the approximate solution obtained with
(C-CN) scheme for ∆t = T/2560, ∆x = 10/5000 and r = 1.001 at final time. We see that
the (C-CN) solution is a very good approximation of the exact oscillatory solution, the
two solutions are nearly indistinguishable.

We present in Figure 10 the relative `2-error e(n) computing at final time (i.e. for n=N)
with respect to ∆x and for various values of N and r = 1.001. Again, we see that we obtain
the order two as predicted. As for the first example there is a saturation phenomena.
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Figure 7: Evolution of the `2 error between T = 0 and T = 4 for the (R-CN) scheme
(figure on left) and the (C-CN)-scheme (figure on right) and for J = 20000 and various
values of N .
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Conclusion and Outlook

In this work we presented some new discrete absorbing boundary conditions adapted to
two different numerical schemes for the linearized KdV equation (1.5). The orders of each
scheme in time and space are shown numerically and given evidence that they are not
perturbed by the discrete absorbing boundary conditions. To speed up the calculations of
the costly boundary convolutions, especially in higher-dimensional cases, we proposed
to use the sum-of-exponentials ansatz. We gave finally two numerical examples that
supported our theoretical findings.

Future work will be to design an automatic good choice of the inversion radius, establish
a transformation rule in the spirit of [4] for the KdV equation, treat the 2D and the
nonlinear case.
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Appendix A Proof of theorem 2.1

We saw in Remark 2.1 that the dispersive constant U2 can be forced to be equal to 1.
Without loss of generality, we therefore consider for this proof U2 = 1. The behavior of
the roots is given on Figure 11. We prove here the result for stricly positive or negative
velocity U1. In both cases, we want to determine the domains Dk, image of C+ = {z ∈
C, Re z > 0}, by roots λk defined by (2.11)

C+ −→ Dk
s 7−→ λk(s).

Since C+ is simply connected, we just have to identify the boundary of each domain Dk
and a single point inside it to completely determined them. The boundaries are given by
the image of s = ε+ iξ, ε > 0, ε� 1 and ξ ∈ R.

A.1 Case U1 > 0

We perform an asymptotic expansion with respect to ε. Let us defineA =
√
|ξ2 − (4/27)U3

1 |,
B = ((ξ +A)/2)1/3, C = B − U1/(3B) and D = B + U1/(3B). Let us consider ξ > 0.

For ξ2 > 4U3
1 /27, the general expression for roots is for k = 1, 2, 3

λk = −
(
ωk−1Beiπ/6 − U1

3
1

ωk−1Beiπ/6

)
+
(
ωk−1Be2iπ/3 − U1

3
1

ωk−1Be2iπ/3

)
ε

3A +O(ε2),
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Figure 11: Roots λ1(s), λ2(s), λ3(s) to the equation (2.10) for U1 = −1, 0, 1 and U2 = 1.

26



and we have

λ1(s) = −
(√

3
2 C + i

2D
)
−
(

1
2C − i

√
3

2 D

)
ε

3A +O(ε2),

λ2(s) = −
(
−
√

3
2 C + i

2D
)
−
(

1
2C + i

√
3

2 D

)
ε

3A +O(ε2),

λ3(s) = iD + C
ε

3A +O(ε2).

It is easy to show that A, B, C and D are positive for any ξ2 > 4U3
1 /27. Clearly, we

have Reλ1 < 0, Reλ2 > 0 and Reλ3 > 0. Concerning λ1, since −C/2 < 0 and D/2 > 0,
domain D1 is located on the left and above the complex curve −(

√
3C + iD)/2. The

conclusion for λ2 is similar and we conclude that domain D2 is located on the left and
below the complex curve (

√
3C − iD)/2. The domain D3 is located on the right of the

complex curve iD.

For ξ2 < 4U3
1 /27, we define E = ((iξ + A)/2)1/3 and have |E| =

√
U1/3. We therefore

can write E =
√
U1/3eiθ(ξ) with 0 < θ(ξ) < π/6. We obtain

λk(s) = −2

√
U1
3 i sin

(
θ + (k − 1)2π

3

)
− 2

√
U1
3 cos

(
θ + (k − 1)2π

3

)
ε

3A +O(ε2).

We can conclude that λ1 is located on the left of the complex curve if(θ), −
√
U1/3 <

f(θ) < 0, λ2 is on the right of the complex curve ig(θ), −
√
U1 < g(θ) < −

√
U1/3 and λ3

is on the right of ih(θ),
√
U1 < h(θ) < 2

√
U1/3.

The situation is completely symetric if we consider ξ < 0. We therefore recover the
figure 11 and we have shown the separation property

Re(λ1(s)) < 0, Re(λ2(s)) > 0, Re(λ3(s)) > 0.

A.2 Case U1 < 0

Like in the previous case, we perform an asymptotic expansion and consider ξ > 0. Let us
define Ã =

√
ξ2 + 4|U1|3/27, B̃ = ((ξ+Ã)/2)1/3, C̃ = B̃−U1/(3B̃) and D̃ = B̃+U1/(3B̃).

For any ξ ∈ R, we have Ã > 0, B̃ > 0, C̃ > 0 and D̃ > 0. The general expression for roots
is for k = 1, 2, 3

λk = −
(
ωk−1B̃eiπ/6 − U1

3
1

ωk−1B̃eiπ/6

)
+
(
ωk−1B̃e2iπ/3 − U1

3
1

ωk−1B̃e2iπ/3

)
ε

3A +O(ε2).

Thus, the asymptotics of λk are given by

λ1(s) = −
(√

3
2 C̃ + i

2D̃
)
−
(

1
2 C̃ − i

√
3

2 D̃

)
ε

3A +O(ε2),

λ2(s) = −
(
−
√

3
2 C̃ + i

2D̃
)
−
(

1
2 C̃ + i

√
3

2 D̃

)
ε

3A +O(ε2),

λ3(s) = iD̃ + C̃
ε

3A +O(ε2).

Thanks to the signs of Ã, B̃, C̃ and D̃, the conclusions can be drawn by a simliar study
to the U1 > 0 case and we have Re(λ1(s)) < 0, Re(λ2(s)) > 0 and Re(λ3(s)) > 0.
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Appendix B Proof of theorem 3.1

We consider here the continuous roots `k of (3.8) and ordered them thanks to the relation
|`1(z)| ≤ |`2(z)| ≤ |`3(z)|. We defined p = µ(z − 1)/(z + 1). If we note z = x + iy,
(x, y) ∈ R2, then

p = λ
(x2 + y2 − 1) + 2iy

(x+ 1)2 + y2 .

Since |z| > 1, we have x2 + y2 − 1 > 0 and

Re p > 0.

Thus, instead of studying `k as functions of z, we now consider them as functions of
variable p and try to identify the domains Dk

`k : C+ −→ Dk
p 7−→ `k(p)

Let us first show that `k can not belong to the unit circle. Let us assume that there exists
θ ∈ [0, 2π) such that `2 = eiθ. Since `k is a root of (3.8), then

e3iθ − 3e2iθ + (3 + p)eiθ − 1 = 0.

It leads to p = eiθ − 3 + e−iθ − e2iθ. We therefore obtain

Re p = −2(cos θ − 1)2 ≤ 0.

We have a contradiction since we had assume that Re p > 0. Thus, `k can not belong to
the unit circle. Since we consider the continuous roots `k and C+ is simply connected,
then Dk ∈ B(0, 1) or Dk ∈ B̄(0, 1), the complementary of B(0, 1) in C. In order to find if
Dk lie inside or outside the unit circle, we just have to determine the domains for a single
value of p.

Next, we know that if we consider a third order algebraic equation

x3 + bx2 + cx+ d = 0

then its roots satisfies
x1 + x2 + x3 = −b
x1x2 + x2x3 + x3x1 = c
x1x2x3 = −d.

Therefore, `1, `2 and `3 satisfy

`1`2`3 = 1
`1 + `2 + `3 = 3
`1`2 + `2`3 + `3`1 = 3 + p.

The first relation implies |`1| ≤ 1 ≤ |`3|. We therefore automatically have one root which
lies inside the unit circle and one outside. It remains to understand the behavior of `2(p).
In order to see the location of `2 in the complex plane, we can therefore take any value of
p such that Re p > 0. If we take p = 3, we have

|`1| ≈ 0.18, |`2| ≈ 2.34, |`3| ≈ 2.34.

Thus, |`2(p)| > 1 for any p ∈ C+ and we have shown

|`1(p)| < 1, |`2(p)| > 1, |`3(p)| > 1, p ∈ C+.
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Appendix C Proof of theorem 3.2

The proof is similar to the previous one. Let us consider a root `k and show that it can
not be equal to eiθ. Let us assume that `k = eiθ. Then

e4iθ − (2− a)e3iθ + pe2iθ + (2− a)eiθ − 1 = 0.

Since a ∈ R, this leads to

p = 2i((2− a) sin θ − sin 2θ) ∈ iR.

But, Re p > 0. This is a contradiction and `k 6= eiθ.
We moreover have

`1 + `2 + `3 + `4 = 2− a,
`1`2 + `1`3 + `1`4 + `2`3 + `2`4 + `3`4 = p,
`1`2`3 + `1`2`4 + `2`3`4 + `1`3`4 = a− 2,
`1`2`3`4 = −1.

If we sort the roots as |`1| ≤ |`2| ≤ |`3| ≤ |`4|, the last equation leads to

|`1(p)| < 1 and |`4(p)| > 1.

Computing `2 and `3 for p = 1 for example prove that |`2(p)| < 1 and |`3(p)| > 1. We
therefore have the discrete separation property of the roots.
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