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We explore the flow of highly shear thinning polymer solutions in straight geometry. The strong
variations of the normal forces close to the wall give rise to an elastic instability. We evidence a periodic
motion close the onset of the instability, which then evolves towards a turbulentlike flow at higher
flow rates. Strikingly, we point out that this instability induces genuine drag reduction due to the
homogenization of the viscosity profile by the turbulent flow.

DOI: 10.1103/PhysRevLett.114.028302 PACS numbers: 83.80.Rs, 47.50.Gj, 83.50.Ha

Viscoelastic polymer solutions are characterized by a
relaxation time λ required by the polymer molecules to
adjust to changes in the flow conditions. This time is at the
origin of purely elastic instabilities observed at very low
Reynolds numbers with no counterpart in pure Newtonian
fluids. In shear flows, purely elastic instabilities arise due
to stress tensor anisotropy inducing a destabilizing net
force perpendicularly to curved streamlines [1–3]. These
instabilities can lead to purely elastic turbulence [4–6].
In straight channels, theoretical studies demonstrate that

the viscosimetric properties of the fluid play a major role
in the stability of the flow. Plane Couette flows [7] and
Poiseuille flows [8] of Oldroyd-B fluids exhibit a nonlinear
subcritical elastic instability although the base flow is
linearly stable [9]. Recent experiments [10,11] have shown
that finite amplitude perturbation creates curved stream-
lines that drive the instability. In contrast, channel flows
of highly shear thinning fluids [12–14] are theoretically
linearly unstable. The instability is driven in this case by
the strong variations of both normal stress and viscous
dissipation in the shear direction. An extreme situation is
obtained with shear banding fluids, where the interface
bears an unbalanced normal stress [14]. This leads to an
interfacial instability which has been observed experimen-
tally [15]. A similar mechanism is theoretically expected
without shear banding but requires a strong gradient of
shear rate [13]. At this stage, channel flow stability of such
liquids has not been studied experimentally, although shear
thinning is a very common feature of elastic fluids.
In this Letter, we focus on highly shear thinning elastic

polymer solutions with no shear banding flowing in straight
channels. At low flow rates, no velocity fluctuations are
observed. At higher flow rates, the power spectrum density
of the velocity fluctuations displays a distinct peak indicat-
ing the onset of instability. The position of the peak is
in agreement with theoretical predictions for highly shear
thinning fluids [13]. At even higher flow rates, the
fluctuations occur at all scales and the spectrum becomes

broadband with a power law decay. This instability induces
genuine drag reduction: viscous losses are smaller than
expected from the fluid rheology. This is a remarkable
result since one expects additional energy losses due to the
enhancement of velocity fluctuations.
We study the flow of high molecular weight polymer

solutions (18 × 106 g=mol partially hydrolyzed polyacry-
lamide) in water at different concentrations in the semi-
dilute regime. The global flow curves of these solutions
are determined using the shear-rate-imposed mode of a
rheometer (TA Instruments ARG2) in a sanded cone-and-
plate geometry of angle θ ¼ 2°. Figure 1 reports both the
shear stress σ and the Weissenberg number Wi ¼ N1=2σ as
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FIG. 1 (color online). Flow curve obtained by standard bulk
rheometry (large open circles), and best power-low fit (straight
solid line) σ ¼ 3.73_γ0.21, for _γ < 50 s−1. The small colored
symbols are obtained by differentiating the velocity profiles in
both 152 and 170 μm width channels. The wall shear stress σw of
each experiment is indicated in the color bar. In the right axes is
plotted the Weissenberg number, either from direct normal force
measurement, Wi ¼ N1=2σ (open squares), or from characteristic
time estimations Wi ¼ τ_γ (colored circles) using step flow
experiments. The solid line stands for Wi ¼ 3.63_γ0.43.
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a function of the shear rate _γ (see Supplemental Material
[16] for additional details) of the most concentrated
solution (0.4%). N1 is the first normal stress difference.
The fluid is highly shear thinning: σ ¼ 3.73_γ0.21 and
Wi ¼ 3.63_γ0.43. This behavior corresponds to a White-
Metzner fluid, for which σ ¼ Gτ_γ and N1 ¼ 2G_γ2τ2; the
relaxation time τ and the elastic modulus G are power-law
functions of _γ, respectively given by τ ¼ 3.63γ−0.57 and
G ¼ 1.02γ−0.22. This description is validated by indepen-
dent measurements of τ, assumed to be the characteristic
time of the shear stress relaxation after a shear rate peak
hold (see Fig. 1). The stability of channel flows of this type
of fluid has been investigated theoretically [13] and found
linearly unstable when the shear-thinning exponent is
very low (< 0.2 ). More dilute solutions also exhibit an
important shear-thinning behavior, but cannot be described
using simple power law functions (see Supplemental
Material [16]).
We study the flow of these solutions in homemade

straight channels (length L ¼ 5.5 cm, height h ¼ 1 mm,
widths w ¼ 152 and 170 μm) using particle image veloc-
imetry (see Supplemental Material [16] and Ref. [18]). The
canyon geometry used here is rather well approximated by
two infinite parallel planes (at least close to the midplane).
The main velocity component is along the channel length
(x direction), and the velocity gradient is along the channel
width (y direction). The typical error on the velocity for a
single correlation is about 10%, independently of the
velocity value, since the time step is adjusted for each
experiment. The mean velocity is estimated using about
1000 images; the precision is below 1%. A differential
pressure-control regulator (MFCS 4C, Fluigent), with a
range of pressure drops ΔP between 5 and 125 mbar is
used. Even though the experiments are performed in
rectangular channels, no vortices along the channel have
been observed [19] within our experimental precision.
For all the experiments reported here, the transverse
velocity components vy, vz are negligible compared to
that in the flow direction vx. Lubrication approximation is
thus valid and the time-averaged shear stress is given by
σxy ¼ y∂xp, where p is the pressure. Velocity profiles
measured at different locations along the channel length
superimposed perfectly, indicating a constant pressure
gradient ΔPc=L. Using a Bagley correction [20], we found
ΔPc between 0.8 and 1 times ΔP [16]. Here, we use the
wall shear stress σw ¼ ΔPcw=2L as the control parameter.
Figure 2 reports the instantaneous velocities and the

time-averaged velocity profiles for the 0.4% solution at
different σw. The latter are pluglike as expected for shear
thinning fluids. The experiments could be separated into
two regimes: for σw ≥ 4.86 Pa, the velocity exhibits large
fluctuations and apparent slippage at the wall which is
typically 30% of the maximal velocity. For lower values of
σw, the velocity fluctuations are small and the apparent slip
velocity contribution to the flow is much higher (greater

than 80%). The apparent slip in these velocity profiles
corresponds to the presence of a very small depletion zone
devoid of polymers [21]. For low σw no velocity fluctua-
tions are observed. The standard deviation (std) of the
longitudinal velocity (Fig. 3) then increases from nearly
zero to 50% of the mean velocity at higher values of σw.
The variation of the std versus σw clearly indicates the onset
of an instability. The onset wall shear stress comprises
between 3.5 and 4.7 Pa (corresponding to 3.65 < Wi <
5.8). The std goes through a maximum at σw ¼ 6 Pa
and reaches a plateau value of 30% of the mean velocity
for σw > 7 Pa.
We then measure the fluctuations along the y direction.

This is a difficult task since vy is very small compared to vx.
The channel is placed on a translation stage, moving in
the opposite direction to the flow, with a velocity tuned
manually so that the observation frame almost coincides
with that of the maximum velocity. The same particles thus
remain in the field of observation. Rather than image pairs,
we acquire standard image sequences at 10 fps and
reconstruct the trajectories of the individual tracers using
a standard particle tracking algorithm [26]. For σw < 4.7 Pa,
the particle trajectories are well aligned in the x direction
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FIG. 2 (color online). Velocity profiles obtained in a channel of
width w ¼ 152 μm. From top left to bottom right, the values of
the applied pressure drop are 10, 17.8, 26.7, 36.7, 47.5, 57.7, 80,
and 90 mbar, which correspond after end-effect correction to wall
shear stress σw of 1.33, 2.36, 3.54, 4.86, 6.28, 7.60, 10.4, and
11.5 Pa. The velocity is normalized by the average maximum
velocity measured in the channel center, i.e., 5.57×10−6,
1.14×10−5, 8.22×10−5, 4.17×10−4, 9.19×10−4, 1.62 × 10−3,
4.41 × 10−3, 5.43 × 10−3 m=s. The mean velocity profile is
displayed as circles and is superimposed on a gray-scale image
which represents the velocity density probability estimated from
correlation counts in a correlation box of width 5.6 μm. The
dashed line is the velocity prediction from the liquid bulk
rheological power law (see text) where the slip velocity is the
single fitting parameter. The solid line represents the best fit to the
data using the nonlocal fluidity model (see text).
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[std ðvyÞ ¼ 0]. For 4.6 < σw < 8 Pa, we observe a periodic
variation of the transverse velocity vy as a function of time
(Fig. 4, top left). The period equals 1.17 s for σw ¼ 7.8 Pa.
In this regime the tracers’ trajectories are strongly correlated
and the std of vy is independent of the position along the
channel width, at least in the central region. For σw > 8 Pa,
the std of the velocity fluctuations saturates at about 4 μm=s,
as shown in Fig. 3. The tracer trajectories become random
with fewer correlations and a rather broad temporal spec-
trum, qualitatively illustrated in Fig. 4, right. In these
experiments, inertial forces are negligible compared to the
viscous forces (Reynolds numbers are less than 0.02). The
instability is thus of purely elastic origin. The fluid is highly
shear thinning; there is thus a strong gradient of normal
stress and shear rate close to the wall, which can destabilize
the base flow, depending on the fluid properties. As those of
the 0.4% solution are well described by a White-Metzner
equation, we could refer to the linear stability analysis
proposed by Wilson and Rallison [13], which concludes that
the base flow is unstable if the shear thinning exponent is on

the order of or below 0.2, which is the case of the solution
under study. We experimentally found a threshold for the
onset of instability for values of Wi between 3.65 and 5.8.
We observe that more dilute concentrations exhibit a similar
elastic instability occurring for the same value of Wi. The
measured values of the critical Wi are 7.3 (�3) for the 0.1%
solution and 4 (�1) for the 0.2% solution (see Supplemental
Material [16]). These measurements suggest that the critical
Wi does not depend significantly upon the concentration
and can be assumed constant and equal to 5 (�3). This value
reasonably compares to the theoretical one Wi ¼ 2. The
discrepancy may be due to the fact that our fluids are not
pure White-Metzner fluids with constant elastic modulii.
Theory [13] predicts a temporal period for the velocity
oscillations (as observed in Fig. 4) equal to πw=Umax=ωc
where Umax is the velocity of the centerline and ωc is the
characteristic dimensionless frequency given by the numeri-
cal analysis (near the instability, ωc ¼ 0.8). For the data
displayed in Fig. 4, this leads to a period of 0.72 s in
reasonable agreement with the observed 1.17 s.
We now analyze the impact of the instability on the flow.

From the velocity profiles in such a channel, we can deduce
the local rheological behavior [27]. As explained above,
the time averaged local shear stress field is given by
σxy ¼ 2yσw=w. The mean local shear rate _γ ¼ ∂yhvxi is
directly obtained by differentiating the averaged velocity
profiles. Strikingly, for all the experiments above the onset
of instability, the local shear stress is significantly lower
than the one measured using the rheometer, in stable flow
conditions (see Fig. 1). The effective viscosity of the liquid
in the unsteady channel flow is thus smaller than the
unperturbed one. This point is clearly highlighted in
Fig. 2. The expected velocity profiles, calculated using
the bulk rheological properties, are given by vx ¼ vsþ
α½1 − ð2y=wÞ1þ1=n�, where α ¼ ðσw=AÞ1=nwn=2ðnþ 1Þ
and vs is the slip velocity, treated as a fitting parameter.
These theoretical profiles coincide with the measured ones
below the onset of the instability, but highly underestimate
themaximal velocity above. The discrepancy is higher in the
vicinity of the threshold. This result indicates the presence
of genuine drag reduction associated with the onset of
instability and the presence of velocity fluctuations.
In the following we propose a framework capturing this

effect. It relies on the observation that the velocity fluctua-
tions exhibit a time scale (typically on the order of 1 s) which
is slightly shorter than the relaxation time of the liquid
(3.6 s at _γ ¼ 1 s−1). Thus, the structural properties, such as
the shear-rate dependent viscosity, are advected by these
fluctuations. Velocity fluctuations exchange fluid parcels
initially located close to the center and having high viscosity
with parcels located close to the wall with low viscosity.
Such a process would have no effect in a Newtonian liquid
but tends to homogenize the viscosity in a shear thinning
liquid, which is consistent with the rounding of the velocity
profiles displayed in Fig. 2. Let us assume that it is the
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FIG. 3 (color online). Left: normalized standard deviation of
the maximum velocity in the flow direction (channel width:
colored circles 170 μm, open circles 152 μm). Right: standard
deviation of the transverse component vy of the velocity field.
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FIG. 4 (color online). Top: superposition of 26 successive
images taken at 10 Hz in the 152 μmwidth channel. The channel
was mounted on a translation stage that is moving at a velocity
close to the mean liquid velocity, in the x direction. Left:
σw ¼ 7.8 Pa, stage velocity 0.83 mm=s. Right: σw ¼ 12.3 Pa,
stage velocity 3.75 mm=s. Bottom: superposition of all the
individual tracer velocity in the y (transverse) direction. Addi-
tional pictures and movies are available in the Supplemental
Material [16].
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fluidity f, defined by _γ=σ, which is advected [28]. In stable
stationary conditions, as measured by the rheometer, the
unperturbed fluidity f0 is given by f0 ¼ 1=Gτ, which is a
power-law function of _γ. Because of fluctuations, it varies
both in space and time. We supplement the classical
White-Metzner equation by a generic transport equation

for the fluidity which reads ∂tf þ ~v · ~∇f ¼ αðf − f0Þ. α is
the inverse of a characteristic time, and should be on the
order of 1=τ. We then split the variables into their time
averaged values and fluctuations as f ¼ hfi þ f0 and
~v ¼ h~vi þ ~v0, where the brackets stand for the mean values
and where hf0i ¼ h~v0i ¼ 0. The time average of Eq. (1)

reduces to h~v0 · ~∇f0i ¼ αðhfi − hf0iÞ. By analogy with the
mixing length theory [29], we propose that hv0i∂if0i ¼
−νii∂2

i hfi, where νii are positive scalar coefficients that
depend on the flow. The symmetry of the mean flow implies
that hfi depends only upon y. This leads to

ξ2
d2hfi
dy2

¼ hf0i − hfi; ð1Þ

where ξ ¼ ffiffiffiffiffiffiffiffiffiffiffi

νyy=α
p

is the characteristic length over which
viscosity mixing occurs.
In addition to the straightforward condition ∂yhfi ¼ 0 in

the middle of the channel, one requires a second boundary
condition to solve Eq. (2). The empirical shear rates at
the wall _γw are used to solve this equation and to fit, after
integration, the velocity profiles with ξ being the only fitting
parameter [30]. The fitted profiles (Fig. 2) are in good
agreement with the experimental data (fluidity profiles are
displayed in the Supplemental Material [16]). From almost
zero below the onset of the instability, ξ reaches a value of
about 20 μm above the onset (Fig. 5). This value can be

compared to the transverse distance traveled by a polymer
molecule before relaxation, which is of the order of τhv2yi1=2.
As shown in Fig. 5, this quantity obtained from independent
measurements captures well the order of magnitude of ξ,
which reinforces the consistency of our approach.
In this Letter, we have studied the flow of highly shear

thinning polymer solutions in straight channels. We have
shown an elastic instability occurring above a critical
Weissenberg number. The origin of the instability lies in
the important normal stress gradients close to the wall.
This elastic instability homogenizes the viscosity profiles,
increases significantly the shear rate at the wall, and
consequently induces genuine drag reduction despite the
presence of strong velocity fluctuations.
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