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(Luxembourg)

Abstract

This paper describes Cluster Sculptor, a novel interactive clustering system that

allows a user to iteratively update the cluster labels of a data set, and an as-

sociated low-dimensional projection. The system is fed by clustering results

computed in a high-dimensional space, and uses a 2D projection, both as sup-

port for overlaying the cluster labels, and engaging user interaction. By easily

interacting with elements directly in the visualization, the user can inject his

or her domain knowledge progressively, crafting an updated 2D projection and

the associated clustering structure that combine his or her preferences and the

manifolds underlying the data. Via interactive controls, the distribution of the

data in the 2D space can be used to amend the cluster labels, or reciprocally,

the 2D projection can be updated so as to emphasize the current clusters. The

2D projection updates follow a smooth physical metaphor, that gives insight of

the process to the user. Updates can be interrupted any time, for further data

inspection, or modifying the input preferences. The interest of the system is

demonstrated by detailed experimental scenarios on three real data sets.

Keywords: interactive clustering, dimensionality reduction, visual clustering

1. Introduction

Clustering algorithms are extensively employed in various domains such as

data mining, information retrieval and bio-informatics. They provide means to
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classify unlabeled multivariate items of various data types in an unsupervised

manner. Among other use-cases they are used to find genome-wide expres-

sion patterns [1], patterns in trajectories [2, 3] and similar documents in a text

corpus [4]. In order to exploit the full potential of these algorithms [5], inter-

active visual representations are required for both analysis and communication

purposes.

The high-dimensional spaces real-world data sets often lie in are typically

harmful to clustering algorithms. In particular, most well-known clustering

algorithms (e.g., k-means [5], spectral clustering [6], or EM for the Gaussian

mixture [7, Chapter 9]) rely on the Euclidean distance, or some transform of

the latter. Unfortunately, this kind of distance suffers from the curse of dimen-

sionality: as the dimensionality increases, the distribution of pairwise distances

is shifted towards high values, while its variance remains almost unchanged (see

Figure 1). Pairwise Euclidean distances thus tend to become indistinguishable

when the dimensionality increases [7, Section 1.4]. The use of some adaptive [8]

or locally sensitive [9] measure may alleviate the problem, the study of which

remains central in the machine learning community.

On the other hand, usage of clustering results as a communication tool is

promising, but also affected by the reference to these high-dimensional spaces.

The latter are indeed challenging for representation, and user understanding.

For effective communication and presentation, the results of clustering algo-

rithms are thus often combined with a Dimensionality Reduction (DR) tech-

nique. These techniques [10, 11] project a high dimensional data set to a lower

dimensional space, for visualization in two or three dimensions. The resulting

dimensionality reduced data set can be visualized using scatterplot techniques.

Cluster labels are then overlaid on this low dimensional projection, using a

mapping to glyphs or category colors, as illustrated in Figure 2.

Such visual representations can be used both for building and adjusting a

mental map of the data at hand, or as an entry point for finer data inspection

using brushing techniques [12]. This need may occur when considering the

organization of image collections [13], in the context of multimedia retrieval
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Figure 1: Distribution of pairwise distances computed from 2000 d-dimensional elements

generated uniformly in [0, 1], in red : for d = 10, in blue: for d = 500

Figure 2: t-SNE 2D projection of the COIL-20 image collection. The result from the spectral

clustering algorithm is mapped to categorical colors for the point glyphs.
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engines, or when reporting public or medical data. In many cases though, the

initial clustering of a data set is deemed to be imperfect with regard to a ground

truth, or user expectations. Decision bounds may be unsatisfactory, the ground

truth clusters may be multimodal in the 2D space or exhibit outliers. Worse,

data attributes might be badly chosen, noisy, or combined in an inappropriate

distance function.

Tackling all these issues at once is certainly not realistic, but at least should

the user be allowed to interact with the clustering and DR results in order to

investigate them, and partly cope with them. It is thus possible to let the user

manually amend a clustering structure by selecting and labeling points in the

projection. However, with naive rectangle or lasso selections this might result

in density gaps within the visual representation of the clusters, which is not

consistent with the intuitive meaning of a cluster. Also, when analyzing or

communicating clustering results, a user may have preferences in the arrange-

ment of clusters in the visualization space (e.g., highlighting semantic regions).

Rearrangement of the clusters’ relative positions should thus be supported to

some extent. However, clustering and DR techniques usually do not allow such

fine tuning.

The purpose of this work is to support the cluster analysis in a visual, semi-

automatic way. We largely build upon the t-SNE DR technique [14]. After

a review of the related work in Section 2, we recall its use in a batch setting

to build an initial 2D projection of the data in Section 3. Then in Section 4,

we give a first glance of the Cluster Sculptor interface and its data inspection

facilities. An interactive 2D scatterplot view and legend support the efficient

input of user preferences, and is augmented by controls to parametrize and

initiate updates of the visualization and the associated clustering. To avoid

tedious and error-prone manual grouping and relabeling of data elements, we

derive semi-automated label diffusion techniques, described to a greater extent

in Section 5. The user simply has to select few elements (i.e., seeds, in the

remainder), then used as a basis to interactively refine the clusters. Beyond

minimizing the amount of effort the user has to spend, this choice accounts for,
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and even actively uses, the data distribution in the 2D space. In Section 6, we

describe how the underlying dissimilarity matrix is updated behind the scenes to

emphasize the clustering structure. Section 7 then shows how the visualization is

smoothly and interactively adapted to reflect this update. Detailed experimental

scenarios on well known benchmark image collections (COIL-20 [15], MNIST

[16]) and an actual biological data set, presented in Section 8, illustrate tasks

that can be conducted with Cluster Sculptor, and demonstrate the interest of

the system. After a critical discussion of our proposition in Section 9, we give a

summary of our findings, and draw some perspectives for future work, in Section

10.

2. Related Work

This paper contributes essentially to the interactive and visual clustering

state of the art, by assembling ideas taken from the existing literature (i.e., DR

technique, clustering, information visualization and label propagation), with

crucial contributed parts (e.g., dissimilarity adaptation scheme) in an interac-

tive system. Therefore, in this section we focus on relating our work to the

existing interactive clustering literature, and enrich it with references from sev-

eral connected domains, such as DR and semi-supervised approaches.

The visual and interactive clustering literature covers a variety of work, that

differs essentially from the pursued objectives.

Seo and Shneiderman propose the Hierarchical Clustering Explorer (HCE)

[17]. This system contains various linked views to get oversight and detailed

views of hierarchically clustered data, obtained in the context of genetic anal-

ysis. They provide means to make cluster comparisons and dynamic query

controls to eliminate uninteresting clusters. Their approach is not only focusing

on hierarchical clusters, they also seem to assume that the clusters faithfully

represent a ground truth as they provide no means to change the clusters.

Turkay et al. [18] also proposed an interactive system to analyze clustering

results. With the cluster tendency view and the parallel cluster view, they
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put an emphasis on the comparative analysis of several clustering results. The

parallel cluster view visualizes where data points appear in different clusterings

using a visualization based on parallel sets, which allows to comparatively find

stable structures. As a complement, the cluster tendency view visualizes the

similarity matrix of a brushed subset of elements. This allows for validating if

the selected data points are likely to be clustered. In our approach we go one

step further and provide fine-grained interactive control of the clustering of a

selection of data points. Not only do we provide more control over clustering,

we also update the projection in order to visually separate the clusters more

clearly.

Rinzivillo et al. [19] and Adrienko et al. [3] propose an interactive clustering

method for large spatio-temporal data. Initially a density based clustering algo-

rithm is applied to a subset of the data points with a suitable distance function.

Next, prototypes are selected for each cluster which, in combination with a clus-

ter distance threshold, form classifiers. Classifiers may be refined by the user by

adapting the initial clusters. For example, subclusters can be excluded, turned

into new clusters or dissolved among other subclusters. These refinements are

supported by visual representations of the clusters and subclusters, which allow

the user to interact with both to perform classifier refinement operations. Fi-

nally, the obtained classifiers are used to infer the class of the remaining data

points. This approach differs from ours in that it does not have to deal with

the placement of clusters as these are fixed by their geo-spatial coordinates.

As a result, not much can be done in this case to make clusters visually more

separated.

In the context of document topic modeling, the iVisClustering [4] tool allows

to inspect and interact with textual data and a related latent Dirichlet alloca-

tion topic model. Its coordinated views comprise a force-directed layout, based

on the similarity of document topic distributions. The topic structure is used

to derive cluster summary nodes. The tool is used to identify documents poorly

reflected by the current model, or refine vague topics and derive hierarchies of

nested topics. The cluster structure is either updated via model parameters tun-
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ing or hierarchical refinements, significantly differing from our approach, where

a plain structure is non-parametrically adapted according to user interactions.

Schreck et al. [2] also propose a method for cluster analysis of trajectory

data, but base their approach on Kohonen maps. Traditionally, Kohonen maps

are unsupervised, as the initial grid is determined automatically based on, for

example, random initialization or principal component analysis of the input

data. In [2] a user guided approach is proposed where some of the grid elements

are drawn by the user while the remaining elements are interpolated from the

user-specified ones. The reasoning for this approach is very similar to our goal,

starting with a sensible initial layout which next can be iteratively refined by the

user, although we use the unsupervised t-SNE to get an initial map. Also, very

similar to what we do is the visualization of the iterative process of the Kohonen

map training process. For each step they update the color coding of the cell,

which allow the user to visually inspect how the learning process evolves and

when it starts to converge. We do something similar by updating the positions

of the data points in the map after each t-SNE iteration, also allowing the user

to interact with the mapping process, and visually estimating when it is stable

enough.

ManiMatrix by Kapoor et al. [20] provides an interactive way to change

the trade-off in the errors of a classifier. In a visual confusion matrix the user

can change the distribution of classification errors based on the requirements

for the scenario at hand. Although our approach is in the domain of clustering,

it somewhat echoes the approach of Kapoor et al. The ManiMatrix approach

starts with initial classifiers which are refined iteratively by the user. Our work

presents a similar iterative workflow, but applied to a clustering model. Ad-

ditionally, reminiscent to how interactions in ManiMatrix result in an updated

classifier model, the update of the clustering in our approach leads to a modified

mapping of the data points.

Contributions in visual clustering also emerged in literature from the DR

domain. For example, Broeksema et al. [21] combine dimensionality reduction

and clustering in their tool. The applied clustering is based on a Voronoi parti-
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Figure 3: Voronoi cells examples. The path between two elements is highlighted in red,

emphasizing that the respective Voronoi cell border is exactly halfway between them. The

glyph in the cell is thus the closest among all glyphs to any points in the cell.

tioning of the points in the projection space. The Voronoi cell of a data element

is the subset of the projection space such that the data element glyph is closer

than any other glyph to all points in the cell (see Figure 3). Starting at the

smallest cell, each cell is merged with its neighbors as long as these neighbors are

within a user configured distance. Their approach does not allow for updating

the clusters nor the projection to reflect changes in the clustering. Moreover,

they focus on categorical data, whereas the scope is set on multi-dimensional

numerical data in this paper.

Some interactive DR techniques are also closely related to our work. For

instance, Philippeau et al. [22] propose an interactive DR technique for orga-

nizing multimedia documents in a 2D visual space. A subset of the documents

is placed in the visual space by the user. Based on this placement, a similarity

measure is trained which is next used to place the remaining documents in the

visual space. A similar approach is taken by Mamani et al. [23], where the dif-

ferences between default positions of sampled elements and those set by the user

feed a feature transform optimization scheme. Those approaches are different

to ours in that the clustering is implicit, i.e., based on placements by the user.

Aupetit emphasizes that all but trivial data sets lie on high-dimensional
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(HD) manifolds, impossible to map faithfully to a two-dimensional (2D) space,

as recommended for rendering scatterplots on-screen. In practice, this causes

two types of projection artifacts [24]:

• tears: two elements close in the HD space are rendered too far in the 2D

space,

• false neighborhoods: two elements far in the HD space are rendered as

neighbors in the 2D space.

Aupetit then illustrates that each DR technique tends to favor a kind of

artifacts, e.g., PCA [25] is prone to false neighborhoods, whereas CCA [26] is

likely to tear manifolds of the HD data. To make these patterns apparent to

a viewer, the author suggests that hovering over a reference element in the 2D

space interactively maps the HD distances with respect to other elements to a

gray scale coloring of the respective Voronoi cells in the 2D space. This initial

work was then extended to ProxiViz [27] by the use of the Shepard interpolation

[28] to smoothen the Voronoi cells, and timer techniques to avoid the flickering

that often occurs with false neighbors. This important point pertains to our

approach, and we thus included a simplified version of ProxiViz in our system,

as shown in Section 4. Along with other tools, such as a data inspector, its use

as a support for taking informed decisions before modifying the visualization or

the clustering structure is illustrated in Section 8.

Martin et al. [29] propose an approach that has some similarities to our

own. In their approach, a user can interactively pose additional constraints on

the position of data items in the projected space. These constraints will be

taken into account in a next iteration of the dimensionality reduction. They

assume, like we do, that the user can inject knowledge on the similarity of

objects. However, they do not concern themselves with providing the users

with means to actually cluster objects, which is an explicit goal of our work.

Akin to the latter is Dis-Function [30], where user constraints are injected in

a feature weight optimization. Full interactive controls are provided, but each
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iteration requires a full optimization to proceed before the user can see the

result of his actions. The authors indicate that a couple of seconds are needed

to update the visualization of data sets with barely a hundred elements, thus

not pleading for the scalability of the method’s interactivity. Alternatively, we

ground upon the physical metaphor underlying t-SNE, to engage the user in

following the progressive update consecutive to his or her actions.

Some semi-supervised techniques also use constraints between elements, not

necessarily user-specified, to improve a classification function [31]. In this paper,

we actually adapt a technique from the semi-supervised literature, the label

propagation [32], and incorporate it as a label diffusion tool. To this respect,

our work distinguishes from Dis-Function and the approach by Martin et al.:

whereas seeds selected by the user directly affect the distance function and

thus the visualization in their work, label diffusion from seeds only modifies the

clustering structure in ours. The visualization then uses the clustering to guide

its updates more globally.

The present work is roughly a follow-up on the proposition of Bruneau and

Otjacques [33]. However, a greater care in now taken about providing consistent

user experience, with the use of t-SNE [14], overviewed in the next section, to

allow a smoothly evolving mental map.

3. A Summary of the t-SNE Projection Technique

Let us consider a set of N elements, which is fed as input to Cluster Sculptor.

We assume it is defined by d numerical features, with d > 3 for high-dimensional

data sets. Each element is stored as a row of the N × d matrix X.

Multidimensional projections have the intrinsic capability to represent a HD

data set in a visual space (consisting of either two or three dimensions) while,

to some extent, preserving pairwise distances. In this work, we focus on 2D

projections. The goal is thus to estimate the N × 2 matrix Y of the respective

elements in X. We use t-SNE [14] DR technique, already shown as resilient to

severe tearing and false neighborhood artifacts (see Section 2 for definitions).
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We motivate this choice by its suitability for the data sets and task at hand,

and the fact that the resulting 2D projections are especially useful to emphasize

clusters and the respective low-dimensional local manifolds [34].

Let us define P (respectively Q) as the matrix formed by the probabilities

Pnn′ (respectively Qnn′) of elements n and n′ being neighbors in X (respectively

Y). D (respectively G) is a N × N matrix of dissimilarities computed from

a function of pairs of elements in X (respectively Y). These dissimilarities

are initialized with normalized Euclidean distances, but any valid dissimilarity

(i.e., in the unit interval range) could be used instead. t-SNE estimates Y by

optimizing the Kullback-Leibler divergence KL(P||Q), with P and Q given as:

Pnn′ =
1

2

(
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D

2

nn
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2σ2
n

)
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m 6=n exp(−
D2

nm

2σ2
n
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mm′)−1

(2)

In Equation (1), the σn can be interpreted as reflecting the extent of the

neighborhood of element n, and is determined automatically with a binary

search, purposely avoiding overly peaked distributions for Pn. vectors. In the

literature, the functional form exp(Dnn
′/σ) is used extensively, e.g., in the con-

text of kernel learning [7] or neural networks [35]. It is often referred to as

the Radial Basis Function (RBF). Setting σ there has also been studied inde-

pendently of t-SNE, and alternatives to the binary search, e.g., using nearest

neighbors, have been proposed [36, 9].

The gradient of KL(P||Q) with respect to Y is available in closed form, and

can be used to find a local optimum for Y [14]. Equation (1) is symmetrized to

smooth computational issues induced by outliers.

The terms on the right hand side of Equation (1) are actually unnormalized

Gaussian distributions, while the right hand side of Equation (2) is the un-

normalized heavy-tailed Cauchy distribution. This characteristic ensures that

elements sharing a common neighborhood in 2D are also closely related in the

high dimensional space. Furthermore, using a heavy-tailed distribution for Q
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leads pairwise distances in Y exceeding close neighborhood to be relatively in-

sensitive to their counterpart in X. In other words, the method is focused on

extracting local manifolds in data, with little respect to higher-order structures

in the HD space. Actually, van der Maaten and Hinton noted that targeting

the faithful modeling of all distance ranges in a DR method causes a crowding

problem [14]: all elements tend to be packed in the center of the visualization,

increasing the risk of false neighborhood. The principles underlying t-SNE al-

leviate this risk, and encourage an efficient use of the 2D space.

Two successive phases happen in the optimization algorithm. The initial

phase is inspired from a simulated annealing optimization, and allows large

movements in the search space so that elements form rough regions. After a sig-

nificant amount of iterations (100 in the R implementation of the method), the

algorithm switches to the classical gradient steps, that perform the local opti-

mization of element positions. This local optimization can be interpreted as the

temporal evolution of a 2D graph completely linked by a system of springs. This

relates t-SNE to spring-based graph layout algorithms [37], already employed

as a DR method in the literature [22, 13, 4].

Figure 4 shows the result eventually obtained for the COIL-20 data set (see

Section 8 for a more detailed introduction). It illustrates the ability of the t-SNE

method to emphasize local manifolds of data, and distribute them more freely

in the 2D space. For example, a class in COIL-20 is formed by a set of images

representing the full rotation of an object (see r.h.s. of Figure 4), and translates

as a linear or circular component on the l.h.s. of Figure 4. The methods favors

the even distribution of these manifolds in the 2D space, facilitating the visual

identification of clusters.

Clustering usually takes place in the HD space, and its results are then

overlaid on a 2D projection for off-line inspection. In this paper, we propose

to go beyond this static approach, by rather considering HD clustering results

as an initial input, and allowing a user to amend it using interactive tools.

Alternatively, the user may want to keep the state of his or her clustering results,

and improve the fit of the visualization to the latter. This task is also supported
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Figure 4: Left : t-SNE 2D projection of the COIL-20 image collection. Ground truth classes

are mapped to the point glyphs as categorical colors. Right : The highlighted glyphs, and

the images they map, illustrate the ability of t-SNE to recover the manifold implied by the

rotation of the class object.
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by the interactive set of tools overviewed in Section 4.

As exposed further in the remainder, Cluster Sculptor is not a clustering

algorithm per se: HD clustering results are used as an input, and amended in-

teractively without requiring the full execution of an actual clustering algorithm.

An extensive presentation of clustering algorithms is thus outside the scope of

the paper. In Section 8, results from k-means [5] and spectral clustering [6] are

used, but Cluster Sculptor is agnostic of a specific algorithm, and just requires

to be fed with a set of labels mapping the data collection under consideration.

4. Cluster Sculptor Overview

In Figure 5, we overview the Cluster Sculptor interface, and the provided

inspection and interaction tools. The front-end is implemented as a one-page

AJAX application, and R runs as a server in the back-end. A node.js [38]

middleware manages routine calls by the front-end, and all the required data

exchanges. R workspace files act as databases, and maintain a consistent state

for the application. This section is aimed at giving a first glance of the interface,

and the actions that can be performed using it. Details about label diffusion,

dissimilarity transforms, or interactive t-SNE updates, are presented afterwards,

respectively in Sections 5, 6 and 7.

The interface is centered on a scatterplot view (Figure 5e), that displays

the N × 2 matrix Y output by t-SNE steps. When a data set is selected using

the data loading controls (Figure 5a), the data structure needed for t-SNE to

run (e.g., the P matrix from Equation (1)) is initialized asynchronously in the

back-end, and the user is informed of the currently pending operation. The user

may then run or stop the t-SNE process on demand. A label vector, selected

from the available clustering results in the data loading controls, triggers the

overlay of categorical colors (defined following the recommendations of Harrower

and Brewer [39]) on the current scatterplot. The controls also feature several

convenient overloads, such as cached t-SNE results, or updated dissimilarity

matrices.
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Figure 5: Overview of the Cluster Sculptor interface. a: Controls to load data from the

back-end. b: Controls of the element appearance in the scatterplot, and the behavior when

hovering. c: Scatterplot update controls. d : Label diffusion and dissimilarity transform

controls. e: The scatterplot, and the associated interactive legend. f : The data inspector,

stacked to the interactive list of currently selected seeds.
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Figure 6: a) Voronoi diagram view of the COIL-20 2D projection. The ProxiViz tool is acti-

vated, and overlays distances in the HD space w.r.t the hovered point. b) Classical scatterplot

view, supported by the data inspection tool. The hovered point is highlighted, and the data

inspection panel is refreshed interactively.

The controls from Figure 5b influence the appearance and behavior of the

scatterplot view content. The user may switch any time between a classical

scatterplot view, as shown in Figure 5e, or a Voronoi diagram view (e.g., Figure

6a and 19b). Both visual primitives support two hovering interactions: either

displaying a summary of the hovered point in the data inspector (Figure 6b),

or map the pairwise distances in the HD space relative to the hovered point

(Figure 6a). This interaction in largely inspired by the ProxiViz tool [27], and

is a valuable asset to assess the faithfulness of the visualization. We incorporated

slight modifications to the tool, by mapping the cluster categorical color to the

hovered point (instead of white in ProxiViz), and by dynamically substituting

the categorical legend by the distance bounds when the mouse is inside the

scatterplot (see Figure 6a).

The behavior of the t-SNE updates can be controlled via the scatterplot

update controls (Figure 5c). Specifically, the t-SNE phase (i.e., initial simulated

annealing, or local optimization after a sufficient convergence) depends on the

iteration count, that can be set when the t-SNE process is not currently running.

A check-box controls the restriction of t-SNE updates to the current scope; this

notion is explained to a greater extent below.

16



Figure 7: Panel listing the currently selected seeds. The labels can be interactively edited.

The label diffusion and dissimilarity transform controls are the prime tools

for amending the currently displayed clustering and visualization (Figure 5d).

The label diffusion techniques use the distribution of the data in the 2D space

to reshape the current set of labels. The dissimilarity transform facilities mirror

them, by triggering the update of the HD-related dissimilarity matrix D under-

lying the t-SNE computation (e.g., see Equation (1)), based on the current set

of labels. The outcome of such transforms can be immediately visualized using

the ProxiViz tool, and affect subsequent interactive t-SNE steps.

In addition to hovering, element glyphs can be clicked to define label dif-

fusion seeds. The currently selected seeds are listed (see Figure 7), and can

be interactively edited, for example to define multiple seeds for a single label

value. A legend is adjoined to the scatterplot view, and lists the mapping be-

tween glyph colors and cluster labels. Labels can be interactively edited, e.g.,

to give a semantic value to a cluster, or to trivially merge clusters when typ-

ing an already mapped label. The color patches are also interactive: clicking

them highlights the associated cluster in the visualization. Several clusters may

be selected simultaneously, and the selection is persistent beyond modifications

of the label vector. This can be useful to restrict the comparative analysis of

several clustering results (see Figure 8).

Beyond implementing a simple visual filter of the data according to the clus-

ter labels, the selection mechanism also implicitly defines a scope, i.e., a restric-

tion of the elements according to the selected clusters. When a scope is active,

operations such as label diffusions, dissimilarity transforms, or even t-SNE up-
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Figure 8: a) Example of scope restriction. The selected clusters are highlighted by lowering

the alpha channels of non-selected ones in the scatterplot and in the legend. b) When updating

the label vector, the current scope is maintained. The user may reset the selection when this

specific scope is not needed any more.

dates (if the control in Figure 5c is checked) occur on this restriction, without

affecting other 2D elements, or their underlying dissimilarity information. With

this mechanism, a user can work iteratively on parts of the projection, without

excessive discontinuities with respect to his mental map, and limiting the cog-

nitive burden and visual clutter. This also limits the computational burden of

diffusion and transform operations.

5. Label Diffusion From Selected Seeds

As envisioned in the previous section, reference elements, i.e., seeds, can

be selected directly in the scatterplot. They can be seen as tentative labels,

associated to a single element at the moment of the selection, and that can be

later diffused in a chosen scope, according to a specific mechanism. We see them

as a semi-automatic alternative to the classical rectangular and lasso selectors,

that uses the 2D distribution of elements to update the clustering structure.

We implemented two diffusion mechanism, that are of complementary use, as

shown experimentally in Section 8. The probabilistic label propagation scheme,

described in Section 5.1, is inspired by the semi-supervised learning literature,

and defines a comprehensive diffusion of the seeds in the current scope. The

isolation scheme (Section 5.2) uses the Minimum Spanning Tree of the current
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scope. A breadth-first exploration in cuts of the tree induces a limited diffusion

of the seeds.

5.1. Label Propagation

This operation is an interactive adaptation of the label propagation tech-

nique [32], taken from the semi-supervised learning literature. In this section,

for mathematical convenience the seeds selected in the current scope are as-

sumed to take values in 1 . . . C. This set of seeds is described here as the

labeled set, whereas the remainder of the scope is the unlabeled set. The goal

of the operator is to propagate the known labels exhaustively.

Consistently to the definitions in Section 3, let us define Ys as the restriction

of Y to the current scope, and Ys
L (respectively Ys

U ) the labeled (respectively

unlabeled) subset of l (respectively u) data elements. For further convenience,

elements in Ys are permuted so that:

Ys =





Ys
L

Ys
U



 (3)

Each row in Ys has a respective counterpart in Zs, the probabilistic labels

for the elements in the scope. The C columns of Zs mirror the C seed values,

with Zs
nc the probability of element n having label c, and

∑C

c=1 Z
s
nc = 1. Values

in Zs
L are thus set to binary values, so as to reflect the seeds set by the user (see

Figure 7 for an example).

The propagation scheme metaphorically lets labels jump from element to

element. It follows the intuitive idea that similar elements are likely to have

similar probabilistic labels. Instead of elements described in a vector space,

the propagation algorithm thus uses similarity values, ranging in [0, 1], such as

obtained by a RBF applied on rows of Ys. We note S the matrix in which Snn′

is the RBF of the difference between rows Ys
n. and Ys

n′.. To compute S, the

RBF function is parameterized using the method of Karatzoglou et al. [9]. We

define a probabilistic transition matrix as:
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Figure 9: Example of propagation of 3 seeds. A subsample from the t-SNE projection of

COIL-20 is used.

Tnn′ = P (n′ → n) =
Snn′

∑l+u

m=1 Smn′

, (4)

with Tnn′ being the probability of jumping from element n′ to element n.

Mirroring the permutation defined by Equation (3), T has the following block

structure:

T =





Tll Tlu

Tul Tuu



 (5)

To avoid notation clutter in later steps, T is assumed to have its rows nor-

malized to a unit sum in the remainder. The propagation then proceeds by

iterating Zs = TZs until Zs converges. In [32], the authors showed that this

algorithm converges to a unique fixed point, and that Zs
U can be initialized arbi-

trarily without influence on this fixed point. Specifically, the converged solution

is shown to be:

Zs
U = (I−Tuu)

−1TulZ
s
L (6)

An example application of this operator is shown in Figure 9. Applying

Equation (6), the operator thus diffuses the C seeds exhaustively to the data

set Ys, following the topological information provided in S.

5.2. Isolating Manifolds Using the Minimum Spanning Tree

Whereas the propagation operator described in Section 5 diffuses exhaus-

tively the seeds to the scope, Cluster Sculptor also features a more exclusive
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tool, that isolates local manifolds in the scope. It also proceeds from the seeds,

and similarly to the label propagation scheme, diffuses them according to the

vicinity between elements in the visualization, as implied by the pairwise dis-

tances in the 2D space.

Let us consider the complete graph over the elements in the scope, and,

borrowing notations from Section 5.1, define Enn′ the edge between elements

Ys
n. and Ys

n′.. This edge is weighted with wnn′ , the Euclidean distance between

Ys
n. and Ys

n′.. The Minimum Spanning Tree is then defined as the subgraph

that connects all elements with minimal summed weight (see Figure 10a). It is

usually obtained using Kruskal’s algorithm [40], or Prim’s algorithm [41]. We

also define a cut of this graph at wcut as its restriction such that:

Enn′ ∈ cut↔ wnn′ ≤ wcut (7)

Prior to triggering the isolate control in the interface, the user may adjust

wcut using the isolation cut control (Figure 5d). Updating the cut of a MST is

fast, and can be performed interactively (see Section 9 for notes on MST-related

computational complexity).

A set of connected components can then be extracted from the MST cut

using simple breadth-first explorations. Depending on the seed parametrization,

triggering the isolate control has a variable effect:

• if no seed is selected, root nodes for the breadth-first search are chosen ran-

domly in the scope as long as the scope has not been completely processed.

All extracted connected components become new clusters, replacing those

that defined the scope,

• if at least a seed is selected, new clusters are formed with the connected

components extracted by using the respective seed as root nodes of the

search. Depending on user preferences as set in the controls, the remaining

elements keep their label as prior to scope selection, or are regrouped in

a new cluster.
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Figure 10: a) MST of a subset of a COIL-20 t-SNE projection. The cut for wcut = 5 is shown

in red. b) For the highlighted set of seeds, the resulting new clusters are shown. According

to the user parametrization in this case, connected components with no associated seed are

gathered in a cluster.

The result of an isolation cut is shown in Figure 10. Be they defined as in

the original clustering results, or resulting from label diffusions such as shown

in this section or in Section 5.1, the current cluster labels serve as cues for

updating the dissimilarity matrix underlying the visualization. This mechanism

is presented in the next section.

6. Dissimilarity Updates

After updating the cluster labels using tools described in the previous sec-

tions, or simply on the account of the clustering results initially loaded, a user

may wish to update the 2D projection, so as to better reflect the clustering

information. Multiple reasons can be invoked:

• the clusters have too shallow borders,

• clusters may be multimodal in the 2D space,

• clusters may have unsatisfactory neighborhoods, irrelevant to user knowl-

edge.

Overall, the user could either want to inject knowledge absent from the

raw features used to compute the dissimilarities underlying the 2D projection,
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or emphasize cluster boundaries. In this paper, we choose to translate these

preferences in updates to the dissimilarity matrix D (see Equation (1)). As

t-SNE is exactly about mapping the distribution of values in this matrix to Y,

modifying the dissimilarity matrix is expected to be progressively reflected in

the 2D projection as a side effect of t-SNE updates.

In this section, we focus on the dissimilarity modification process, and iden-

tify two ways a user would want to update the distribution of the clusters in

the visualization space: gathering them, i.e., making the clusters in the current

scope closer to each other, and spreading them, i.e., emphasize the separation

between the clusters in the scope.

Let us consider the complete weighted graph implicitly defined by the ma-

trix D. We choose to restrict dissimilarity updates to the bipartite subgraphs

between clusters in the current scope. This choice preserves the topology of

components in the visualization, and the efficient use of the 2D space by t-SNE,

which prevents elements from excessively packing together.

In Cluster Sculptor, both operations are implemented as different parame-

terizations of the cumulative beta distribution function, Pbeta(α,β). Considering

a scope with two label values l1 and l2, this function is applied on the bipartite

graph between l1 and l2 (i.e., its edges link elements with label l1, to elements

labeled with l2) weighted by the respective matrix cells in D. Generalizing this

principle to any number of labels, D is filtered according to Pbeta(α,β):

Dnew
nn′ ← Pbeta(α,β)(Dnn′), (8)

for n, n′ referring to an edge in the bipartite graph. To preserve the structure

of local manifolds initially learned by t-SNE, we enforce monotonous updates of

the dissimilarities (i.e., Dnn′ > Dmm′ → Dnew
nn′ > Dnew

mm′), by constraining either

α or β to be 1. The resulting family of functions is shown in Figure 11. This

family of functions bijectively maps the unit domain to itself. While maintaining

the order of dissimilarities, this guarantees valid dissimilarity values after the

filter application. As Figure 11 shows, curves for α > 1 (resp. β > 1) tend
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Figure 11: The family of cumulative beta distribution functions with either α or β set to 1.

The identity (both parameters set to 1) is indicated as a reference.

to reduce (resp. increase) the dissimilarity between elements, thus effectively

gathering (resp. spreading) them.

The impact of the operation can be more clearly interpreted in Figure 12,

showing the absolute increase or decrease of dissimilarity caused by applying

Pbeta for a range of α and β values. Figure 12a highlights that enforcing valid

similarities causes the functions to be bounded from above and below. Then

Figure 12b displays the closeness to the bound of the dissimilarities after the

transform, i.e., the relative influence of the operation. As gathering and spread-

ing functions are mirroring, these closeness profiles are similar in both cases.

From this plot, it is clear that increasing α or β tightens a wider range of sim-

ilarities to the minimal or maximal valid dissimilarity. The choice of the Pbeta
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Figure 12: a) Plot of Pbeta(α,β)(x)− x with respect to x. 1− x and −x bound this family of

functions from above and below. These bounds ensure transformed similarities remain valid.

b) Closeness to the bound of the spreading functions. The curves for the gathering functions

are similar, up to varying α, setting −x in the ratio denominator, and thus varying from 1 to

0.

family of functions is motivated by the behavior at the vicinity of x = 0 in Fig-

ure 12b: trying to spread elements that are extremely similar can be disruptive

for the visualization. Pbeta smooths this problem, and ensures the manifolds

underlying D are preserved to some extent. α or β can then be seen as the

sharpness of this smoothing.

In Figures 11 and 12, dissimilarities are assumed to range in the unit interval,

which may be overly restrictive in practice. Considering an arbitrary domain

[a, b], Pbeta(α,β) can be rescaled according to Equation (9). This operation pre-

serves the required properties, i.e., it bijectively ranges in [a, b], and preserves

the order of dissimilarities, with minimal and maximal bounds respectively at

a and b.

P
[a,b]
beta(α,β)(x) = (b− a)P

[0,1]
beta(α,β)

(x− a

b− a

)

+ a (9)

In practice, we use this rescaling to ensure two desirable properties:

• the modified dissimilarity should not exceed the current maximal dissim-
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ilarity in D,

• when gathering two clusters, the decreased dissimilarity should account

for the internal cohesion of the clusters.

The first property amounts to set b statically for a given data set. When

spreading clusters, a plays a marginal role, and can be left to 0. When gathering

clusters, we choose to set a to some quantile of the distribution of dissimilarities

internal to the clusters (i.e., outside the bipartite graph). In the experiments

described in Section 8, we use the 5% quantile.

The next section describes how we adapt the t-SNE algorithm to discontin-

uous changes in the matrix D such as described above, and smoothly render

this change to the user in an animated fashion.

7. Updating the t-SNE

Being a gradient-based method, t-SNE is quite expensive to compute afresh

[34]. For instance, it took approximately 11 minutes, on an 8 core machine,

to compute 1000 gradient steps for the COIL-20 data set (1440 elements, 30

principal PCA features). Assuming a perturbation of the dissimilarity matrix

D such as described in Section 6, computing a t-SNE projection from the ground

up at each user interaction is clearly not acceptable.

The available R implementation [42] is a classical batch algorithm. We

adapted it to support independent step executions, and maintain an internal

state for the algorithm on the R server, as our interactive scheme requires.

Convenience accessors are also implemented to support updates of any part of

the internal state, e.g., modifying its parametrization, updating the dissimilarity

matrix (see Section 6), or overloading the current 2D projection (see Figure 5a).

Let us note that updating D triggers the re-computation of the P matrix, along

with the re-estimation of the σn parameters.

In its local optimization phase, t-SNE can be qualified as an anytime method,

with each iteration being a smooth update of the preceding 2D layout, following
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a physical metaphor. Consequently, discontinuous updates of D are supported

by continuously updating the 2D position matrix Y towards its new conver-

gence point, ensuring the visual stability of the projection. Furthermore, the

convergence of gradient-based methods such as t-SNE is typically difficult to

assess with automatic means. A user is actually much more qualified to assess

visually when the projection is stable enough, and can take this decision using

the t-SNE controls.

Spring-based layouts are prone to get stuck in local optima [13]. Worse, a

complete graph is involved in t-SNE, which causes a high effort against any live

update of D. In the context of the batch t-SNE, this problem is handled by the

simulated annealing phase (i.e., early exaggeration and compression in [14]).

Though efficient in the latter case, doing so when live updating D would be

visually disruptive, and thus inadequate.

Instead, we implemented a scope restriction of the gradient steps, i.e., the

gradient sums are performed only over elements in the selected scope, ignoring

the rest of the data set. This option can be activated on user demand (see

t-SNE update controls in Figure 5c). As experimentally shown in Section 8,

this option is effective at quickly updating the position of clusters in the scope,

but their new positions may be conflicting with others outside the scope. The

user then has to find a satisfactory configuration by alternating scope-restricted

and classical update sequences. If necessary, this might be supplemented by

including the conflicting cluster in the scope, and using an additional spread

operation.

Via detailed experimental scenarios on real data, the next section shows

how the assembly of tools described above can be used to amend an initial 2D

projection, and associated clustering results. We specially put an emphasis on

how the tools are used to harness the differential information carried respectively

by the 2D projection and the HD clustering results.
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8. Experimental Scenarios

This section describes three scenarios of a user that iteratively amends initial

2D projections and their associated clustering using Cluster Sculptor. Rather

than focusing on low-granularity tasks, we show on a higher level how a user

can use the tools to get some insight of the data, and update the visualization

and clustering structure according to his or her findings.

We use the two image collections: COIL-20 and MNIST handwritten digits.

COIL-20 contains 1440 images, each having 32x32=1024 pixels. The images

are photographs of 20 objects rotated by all possible angles modulo 5◦. A class

is thus made of the 72 images of a given object. The MNIST collection is

made of 60000 images, with each 28x28=784 pixels. The images are variants of

handwritten digits, thus forming 10 even classes.

Additionally, we used a biological data set, describing 31483 bacterial DNA

fragments over 8 numerical features. These fragments were sampled from di-

gesters, where biodegradable waste is stored, and slowly degraded by bacteria,

to eventually generate biogas. This data set was handed by biologists, in the

context of a beginning collaborative exploratory analysis of the data. We further

refer to this data set as biogas.

As MNIST and biogas are too big for the current Cluster Sculptor imple-

mentation (see Section 9 for a discussion on complexity issues), we sampled

randomly respectively 1500 and 3000 elements in these data sets. After remov-

ing dimensions that carry no information in each collection (i.e., zero variance),

SVD is applied on these, thus removing effects caused by potential correlations

among variables. Van der Maaten and Hinton prescribe to retain the coordi-

nates on the 30 principal axes as element representatives [14]. For COIL-20,

this amounts to retaining 88% of the data set variance, as indicated by the

singular values. For MNIST, 30 principal axes summarize less than 80% of the

variance. We thus extended the size of the axes set to 50, that explain 83% of

the variance. biogas has only 8 variables, so all axes can be retained.

The next subsections present interaction scenarios specific to each data set.
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Figure 13: a) Initial configuration of t-SNE. b) 2D projection after 1000 t-SNE iterations. c)

Overlay of the spectral clustering result. Cluster 14 is highlighted in red.

In the scenarios, we refer to clusters with integer IDs, as we have no prior on

their meaning. If desirable, these default IDs can directly be edited in the

interactive legend (see Section 4).

8.1. COIL-20

Selecting COIL-20 in the data loading controls (see Figure 5a) triggers the

initialization of the t-SNE internal state. The initial projection is eventually

displayed (see Figure 13a). The user then clicks the t-SNE updates button to

start iterating t-SNE steps, that proceed until the t-SNE stop button is clicked.

The result after 1000 iterations is shown in Figure 13b.

The user then selects a label vector obtained with the spectral clustering

algorithm [6], on the HD representation of the data set. At the time of the

clustering process, the user had no clue about an adequate number of clusters,

and parametrized his algorithm with 15 clusters (Figure 13c).

The clustering algorithm visibly captured some clear structure in the data

set, e.g., Cluster 14 highlighted in Figure 13c, but also fails to recover clear

patterns discovered by the t-SNE projection. Maybe resulting from a bad

parametrization, some clusters aggregate several unrelated groups (e.g., see

Clusters 12, 13 and 15 on Figure 14a). The adjusted Rand index [43] of the

clustering w.r.t. the ground truth labels, of 33%, reflects these observations to

some extent. The user decides to use the tool to improve this initial guess.
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Figure 14: a) Highlight on Clusters 12 (orange), 13 (brown) and 15 (green). b) Resulting

clusters after isolation of manifolds from the highlighted seeds. The remaining elements in

the scope become Cluster 18 (in purple).

Before modifying the 2D projection, the user wants to quickly reorganize

Clusters 12, 13 and 15 using the label diffusion tools. He or she defines a scope

for this operation, by clicking the related color patches in the legend. He or

she then selects 5 seeds, purposely to isolate the 5 manifolds these seeds lie

on (Figure 14b). The remainder of the scope is to be regrouped in Cluster 18.

After adjusting the isolation cut slider, and observing interactively the resulting

isolations, the users retains 5 for this parameter, leading to the result shown in

Figure 14b. It is worth noting that the short sequence of actions taken until

now (a dozen of clicks and few slider interactions) led the adjusted Rand index

of the clustering to 69%.

The user then notices Cluster 10, with 3 distinct manifolds in the current

clustering. To restrict his or her attention, the user defines a scope on Cluster 9,

10 and 18. Elements of the 3 components are first hovered over, using the data

inspector as a confirmation that they indeed are related to the same ground

truth object (see Figure 15a). The user then activates the Voronoi diagram

view, along with the ProxiViz tool. In the scope restriction, he or she searches

potential tears that would suggest a re-unification of the 3 components of Cluster

10. The lighter the gray shade, the closer the mapped element in the respective

Voronoi cell is to the reference element in the HD space. Using Cluster 10 and
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Figure 15: a) Scope containing Clusters 9 (orange), 10 (green) and 18 (purple). For each

of the three components of Cluster 10, we attach the respective data inspector to one of

its elements, highlighted in brown. b) and c) ProxiViz view of the scope, for two reference

(hovered) elements, with Cluster 10 components highlighted in green. The scope extent is

indicated using alpha blending. The Voronoi cells of non-hovered elements in the scope are

mapped with gray shades, indicating the distance in the HD space w.r.t. the reference element.

A tear occurs if an element is far to the reference element in the projection, but close in the

HD space.

the neighboring ones as a cue for an inspection with the ProxiViz tool, manifold

tear artifacts are clearly identified (Figure 15b and c). The data inspector is

then used to confirm the separated components are indeed related to a single

object. The user decides to amend the 2D projection, so that Cluster 10 is

displayed as a single manifold.

First, as some confusion errors seem to affect Cluster 10, the user first selects

it, along with Clusters 9 and 18, also involved in the confusion. Three seeds

then mark the components of Cluster 10, whereas one is sufficient for Cluster

9. The user isolates Clusters 9 and 10 after having adjusted the isolation cut,

the remainder of the scope being again assigned to Cluster 18 (Figure 16a).

Setting the sole Cluster 10 as the scope, the user tries to run restricted t-SNE

steps to see if the distinct components can be reunited this way. Two of the

three components merge quickly, after approximately 50 iterations. However,

the algorithm stabilizes to a configuration with still two distinct components,

with one of the latter in conflicting positions with another cluster (Figure 16b).

Striving for the reunion of the two components, the user defines a seed on each

component, and diffuses them with the propagation tool. A gathering trans-

31



Figure 16: a) Cluster 10 after correction of the clustering errors using the label diffusion tools

from three seeds. b) Result after 50 scope-restricted t-SNE steps, without a dissimilarity

transform. c) Resulting projection after a gathering transform and 50 more scope-restricted

steps.

Figure 17: a) Highlight on Cluster 13. b) Isolation of a subset of the cluster using three seeds.

c) Resulting projection and clustering, with the clearly separated Clusters 13 and 19. An

outlying subset of Cluster 18 was spontaneously gathered to the new cluster.

form is then applied to this scope, with moderate sharpness (3), to encourage

the merger of the temporary clusters as a single manifold. Subsequent t-SNE

steps on this scope indeed quickly lead to a reunion, with its internal structure

reflecting the underlying data topology. The temporary clusters are then triv-

ially merged, and restored as Cluster 10, using simple edits in the legend (see

Section 4). Few switches between scope-restricted and unrestricted t-SNE steps

lead to a proper cluster separation (Figure 16c).

The user then notices Cluster 13, standing out from the others with its

distinct shape (Figure 17a). It actually regroups the images of three cars. As

car images differ more by their pose than by the patterns overlaid on them,

t-SNE has laid them in close manifolds.
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Distinguishing the three cars happens to be difficult for clustering algorithms,

leading to a single cluster. This layout does not conform to user preferences,

rather expecting a single car in each cluster. The user thus decides to modify

the clustering and 2D projection to have one of the cars standing out from the

others. By setting three seeds, and testing several isolation cuts with slider

adjustments, he is able to derive a close to correct cut of one of the cars in the

original Cluster 13 (see Figure 17b). He or she then applies a spread dissimilarity

transform to make the separation clearer. Interestingly, as a side effect, a part

of Cluster 18 referring to the same car as the new Cluster 19, but initially lying

out of Cluster 13, is automatically connected to the new cluster (see Figure

17c). Label 19 can then be quickly diffused, by isolating a seed on the part of

Cluster 18 highlighted in Figure 17c, and performing a trivial merger by setting

19 as the legend ID of the freshly isolated component.

8.2. MNIST Handwritten Digits

Distinctly from the COIL-20 scenario, the user loads a cached t-SNE pro-

jection, that has been computed off-line on the server. The spectral clustering

algorithm has also been processed off-line using the HD representation of the

MNIST collection, and the result is overlaid on the projection (see Figure 18a).

Using the inspector, the user sees that t-SNE is rather good at identifying

regions in the data set, and some pieces of manifolds (e.g., of the digit 1 at

the center of the projection, or 7 in Cluster 12, see Figure 18b). However,

maybe due to the high variability of digit drawings, there is no clear boundaries

between clusters. The visualization could thus be improved. In addition, the

HD clustering performs badly, with initially 13% as Rand index.

Some clusters are clearly irrelevant, because their elements are scattered

almost evenly in the visualization, and inspection confirms their elements are

rather unrelated (e.g., Clusters 1, 2, 8, 9 and 15, see Figure 19b).

The user first focuses on the center of the projection, that looks more densely

populated. A scope is thus defined by the selection of Clusters 11 and 3. Inter-

estingly, despite a bad general performance of the clustering, these two specific
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Figure 18: a) t-SNE projection of the MNIST image collection, with the spectral clustering

result overlaid as categorical colors. b) Cluster 11 (purple, in the center) contains almost

exclusively the digit 1. Cluster 12 (orange, on the left) is mostly populated by samples of the

digit 7.

Figure 19: a) 2D projection after the trivial merger of Clusters 11 and 3. The spreading

transform emphasizes the boundaries of the new cluster (center of the projection) b) Highlight

of Clusters 1, 2, 8, 9 and 15. The Voronoi visualization emphasizes the distribution in the 2D

projection. c) The same scope, after propagation of 4 seeds.
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Figure 20: a) Clusters 12 (purple) and 13 (orange) before isolating the central manifold.

b) The central manifold becomes Cluster 12 (purple), and the remainder populates Cluster

13 (orange). c) Visualization after applying a general spreading transform, and 50 t-SNE

iterations. Cluster 6, highlighted in red, contains exclusively 1 digits, and the subset of

Cluster 2 highlighted in green gathers samples of the digit 4.

clusters have captured a pattern absent from the projection: they seem to de-

limit a region for the digit 1, that was not clear at all from the sole projection.

The user wants to emphasize this pattern. First, Clusters 11 and 3 are trivially

merged via a simple legend edit. He or she then applies a spreading transform,

with a sharpness of 5, to this new cluster against all others (Figure 19a).

Judging that most of the clustering appears as visual clutter, the user then

focuses on Clusters 1, 2, 8, 9 and 15, that exhibit a poor locality w.r.t. the

projection. In a scope defined by the selection of the latter, he or she uses the

inspector, and the marginal distribution of the scope in the visualization, to

define the seeds for four rough regions, and diffuses them using the propagation

tool, leading to more localized clusters (see Figure 19c).

The user then notices Clusters 12 and 13, with both a more densely popu-

lated part and few outliers. Beyond their apparent proximity, inspection reveals

they are both related to the same ground truth digit (7 ). After trivially merging

them with a legend edit, the user isolates the central manifold from the outliers

with a single seed selection. The new merged cluster takes the label 12, and the

remainder populates its own small residual cluster 13 (Figures 20a and b).

Finally, to emphasize the borders between the current clusters, the user
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Figure 21: a) t-SNE projection of the biogas data set b) Overlay of the k-means clustering

results. c) Overlay of the spectral clustering results.

applies a general spread transform (i.e., of all clusters w.r.t. all others) with

a significantly high sharpness (10). After 50 iterations, the visualization looks

much clearer, with a stronger emphasis given to manifolds and potential outliers

(Figure 20c). Actually, this operation emphasized patterns unnoticed before-

hand, e.g., Cluster 6, and dense regions in Cluster 2 (see Figure 20c). The few

interactions led to a significant improvement of the Rand index, now reaching

20%. This leaves an important margin for progression though.

8.3. biogas

Similarly to the MNIST scenario, the user first loads a cached t-SNE projec-

tion of the biogas data (Figure 21a). For this data set, two clustering results are

available: a k-means output of 30 clusters, handed by the experts, and a spectral

clustering output with the parametrization used in the two previous sections (15

clusters). Both results are overlaid on the 2D projection as categorical colors,

respectively in Figure 21b and 21c.

Using the data loading controls to compare the two clustering results, the

user immediately notices a clear distinction between them. Whereas spectral

clustering results are quite closely related to the manifolds found by t-SNE,

k-means finds a different kind of patterns, with clusters splitting across compo-

nents (see Figure 22a). As the experts provided the k-means results, the user

chooses to use them as a starting point, and expects to use his or her findings

36



Figure 22: a) Highlight of Clusters 1 (blue), 4 (light blue) and 7 (pink). b) ProxiViz distance

pattern when hovering over the element highlighted by a red circle. Cluster 14 is highlighted

in green. Cluster 8, highlighted in blue, contains the component on the right, and the outlying

element on top of the visualization. c) Among the four closely mapped elements (highlighted

in red), from his dark shade, only one is clearly standing out.

as a support for further interactions with the experts.

Before actually amending the visualization, the user wants to inspect the

projection using the ProxiViz tool along with the Voronoi diagram visualiza-

tion (see Figure 22b). The user immediately identifies some outlying patterns,

by their significantly darker shade (i.e., higher distance in the HD space), ir-

respectively of the hovered element (i.e., the element is far from everyone in

the HD space). Quoting the experts, such outliers are likely to be representing

viral DNA. With its three elements clearly standing out, Cluster 14 has already

been identified as such using other visualization techniques, such as the parallel

coordinates (see Figure 22b). The user found another pattern, more subtle,

that could serve expert hypothesis formulation: with its dark shade, an element

looks very clearly as an outlier, but was mapped very closely to three other

elements that clearly do not look as such (Figure 22c). The user also notes

that the suspect element belongs to Cluster 8, that looks a bit outcast in the

visualization, as confirmed by the ProxiViz view (Figure 22b). Cluster 8, and

the three elements mapped close to the suspect element, are interesting cues for

further analysis. The user is tempted to gather the components of Cluster 8, but

owing to the heterogeneity of the elements highlighted in Figure 22c, chances

are their position is due to a subtle equilibrium with many other elements in
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Figure 23: a) Scope containing Cluster 1 (blue). b) Voronoi visualization of the components

isolated by the MST cut.

the 2D projection. In this context, gathering components in a restricted scope

would require a very high sharpness, and could be widely disruptive.

The user then concentrates on Cluster 1, and wants to use the label diffusion

and dissimilarity transform tools to regroup its components (see Figure 23a).

After having defined Cluster 1 as the current scope, the user adjusts the isolation

cut control to reflect the spread he or she wants to reduce (Figure 23b). No seed

has been selected before, so the isolation effectively defined all components under

the cut as new, temporary clusters (see Section 5.2). The user then gathers

this new scope with a moderate sharpness (5). The temporary clusters that

served as a cue for the gathering transform are then trivially restored as a single

cluster (see Figure 24a). The user is not satisfied with the resulting visualization

though, and would like to have the new Cluster 1 more clearly separated from

its neighbors, Clusters 4 and 11. Using spread transforms parametrized with

a medium sharpness (10), the visualization shown in Figure 24b is eventually

obtained.

This scenario is part of a preliminary stage to the exploratory analysis.

The user notes that the biogas data set lacks a summary representation for its

elements. Plugging such representations in the data inspection tool would give
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Figure 24: a) Cluster 1 (blue) after the gathering transform, and 200 t-SNE iterations. b)

Cluster 1 after being spread from conflicting neighbors (Clusters 4 (pink) and 11 (purple)).

a crucial cue for further insight. The design of such a representation is thus to

be shortly discussed with the experts.

9. Discussion

In the context of interactive systems, the computational complexity of the

involved tools is critical. Four potential bottlenecks exist in Cluster Sculptor:

• the computation of the Minimum Spanning Tree (MST),

• the interactive update of the MST cut,

• the dissimilarity transform,

• the t-SNE updates.

The graph underlying t-SNE is complete, causing MST computation to be

O(N2). This is not excessively harmful, as the MST has to be updated only

after a dissimilarity transform. Also, as using an optimal MST is not critical to

the application, increased speed could be obtained by filtering the highest range

of values from the graph implicit to D.
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Updating the cut is linear w.r.t. the number of edges in the MST, thus linear

w.r.t. the number of elements in the scope, as the MST of a graph defined over

N elements has N − 1 edges [40, 41]. This operation is generally quite fast, but

can become slow if no scope is defined, and the number of elements exceeds 5000.

However, the current implementation is naive, and dramatic improvements could

be made using a properly sorted data structure.

The dissimilarity transform is O(N2) in the worst case. However, this step

just applies Pbeta on graph edges in the selected scope (see Section 6): each

operation is thus considerably faster than those of the MST computation. For a

higher interactivity, in case of very large data sets, piecewise computation could

also be considered.

t-SNE updates are O(N2) [14]. Unlike dissimilarity transforms, they occur

frequently, and their speed is the basis for the interactivity of the system: a user

will perceive the succession of updates as a smooth move only if its frequency

is sufficiently high. Some studies argue that a system would be perceived as

interactive only if the response time is under 100 ms [12]. Unfortunately, in

the current implementation, updating the position of 2000 elements in the 2D

projection takes approximately 1 second. However, we did not investigate im-

provements to the baseline t-SNE steps, such as a random-walk approximation

[14], or more recently O(N logN) variants based on the Barnes-Hut algorithm

[44, 45]. Using this implementation, we could for example easily process the

complete biogas data set (see Section 8).

A major issue in our system is to keep the user engaged when making changes

to the projection. Heer and Robertson found that careful animation design has

significant advantages for graphical perception of changes in the context of sta-

tistical plots [46]. When applying a dissimilarity transform, the visual tracking

of objects is facilitated by the physical metaphor t-SNE follows (see Section 3).

However, if the frame rate of t-SNE updates is too low, the sequence may not be

perceived as a smooth move. This issue could be potentially alleviated by using

interpolation and animation features available in d3.js [47], a library already

widely used in the Cluster Sculptor prototype.
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In this paper, we emphasized the use of the label diffusion tools, instead

of classical lasso or rectangular selectors. In the current prototype state, this

is the only supported selection mode. This design choice was motivated by

our intuition, and should eventually be validated by a proper user study. In the

meantime, classical selection modes could be implemented, as we sense the most

efficient tool should depend on the properties of the selection to be performed.

We purposely chose to apply dissimilarity updates on the basis of the set of

labels in the scope and not specific pairwise constraints, such as seen in metric

learning approaches [48, 30]. We found that these methods require too high

amounts of user-specified constraints to be really effective, and wanted to spare

user efforts. For example, Martin et al. require approximately 30 pairwise con-

straints for their technique to be effective [48] and at least 20% of the collection

has to be labeled in Basu et al. [31]. In Dis-Function, the authors choose to

bias their objective function and give higher importance to the user specified

constraints. We alternatively aimed at implementing smooth, non disruptive

updates to the visualization, in a more robust fashion. Yet, a comparative

analysis, or a way of combining the approaches should be investigated.

Our approach has a strong weakness: unlike the metric learning approaches,

it is not currently able to generalize to new data points. This can be problematic

in the context of data streams and further work is needed to support them.

Another important point regards the updated dissimilarity matrix, D. It is

explicitly stated as a dissimilarity matrix as its transform by Pbeta may inval-

idate its initial Euclidean metricity. Fortunately, t-SNE is not limited by the

metricity of values used in Equation (1), and is able to cope with any valid

dissimilarity matrix.

In principle our approach is DR-technique agnostic and could be thus com-

bined with any DR technique, as long as the above mentioned concerns are

addressed. The choice of technique also depends on various factors such as the

input format, distance matrix or coordinates in original space or the trade-off

between computational complexity and projection quality [49, 50, 51].
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Finally, related work such as iVisClustering [4] and Dis-Function [30] demon-

strate the effective use of multiple coordinated views for a better insight and

understanding of the data and model at hand. This direction has not been ex-

plored in our work, though some needs have been identified in Section 8.3 (e.g.,

an adapted inspector view or complementary insight by parallel coordinates).

10. Conclusion and Perspectives

This paper extensively described Cluster Sculptor, a novel interactive clus-

tering system. Our system takes clustering results as an input, and exten-

sively uses the t-SNE projection technique, its iterative nature, and the physi-

cal metaphor underlying it. Its contributed components pertain essentially to a

framework of interactive tools, i.e., label diffusion and dissimilarity transform.

Cluster Sculptor also grounds in the ability of t-SNE to adapt smoothly to dis-

continuous similarity updates, thus preventing invasions in the user’s mental

map. Detailed experimental scenarios, using real data sets, showed how a user

could combine the diverse features of the system to amend clustering results,

and the associated 2D projection.

This work opens to numerous perspectives. The tools described in the paper

are prototypical, and could be improved in many aspects. For example, we

included the ProxiViz tool [52] to answer the most urgent needs, and did not

account for ProxiLens, the most recent evolution of the tool[53]. It features an

interactive lens, that animates tears and false neighborhoods when hovering over

any point in the visualization. Its integration could be considered in future work.

We are aware that the system lacks basic HCI implementations, such as a history

of interactions, or at least undo and redo features. Their implementation would

help reduce user frustration, render the system more usable, and to some extent

give some further insight of the data via the post-hoc navigation in interaction

sequences.

The discussion has shown openings for a better scalability. If very large and

dense data sets are targeted, Cluster Sculptor could be supplemented by tools
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for interacting with dense patterns, such as a zooming feature, or a fish-eye

plugin [54].

In the experimental section, numerous examples of MST cuts are given. As

a complement to the isolation cut parameterization, visualizing and interacting

directly with these graphs could give increased control to the user.

The dissimilarity transform is currently applied to all clusters in the current

scope. For example, when gathering the components underlying a cluster, or

spreading a cluster w.r.t. a subset of its neighbors, this design leads to tedious

relabeling. A set of predefined sequences could be derived, e.g. a gathering

operator including propagation and isolation steps.

The generalization of Cluster Sculptor to more data types (e.g., categorical)

and DR techniques could be investigated in future work. Also, as identified in

the discussion, the relationship, and potentially complementarity, with methods

based on learning a distance function using pairwise constraints, is an interesting

direction of research. Detecting the local relevance of HD features would be an

interesting perspective to limit the disruptive tendency of classical metric learn-

ing approaches. Accounting for the latter aspects could widen the applicability

of the system, e.g. to heterogeneous data types, or lessening the importance of

noisy features.

Finally, the experimental scenarios involve a variety of low-level tasks (e.g.,

isolating a cluster with a MST cut). As evoked in the experimental section, we

chose to put an emphasis on scenarios of use: but these tasks should certainly

be evaluated on a unitary basis in the context of a classical user study.
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