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REGULARITY RESULTS FOR A CLASS OF HYPERBOLIC
EQUATIONS WITH VMO COEFFICIENTS

MAITINE BERGOUNIOUX AND ERICA L. SCHWINDT

ABSTRACT. In this note we show a regularity result for an hyperbolic system
with discontinuous coefficients. More precisely, we deal with coefficients in the

function space VMO and we prove the existence and uniqueness of a solution
53

ue L®(0,T; H2(R)) with also suitable regularity for %,%ZT;L and &3

1. INTRODUCTION

Let Q be a bounded open subset of R? with d > 3. In the context of photoacoustic

tomography process modelling [1], we are led to study the follwing wave equation
agp . 2 .
ﬁ(t,:v) —div(viVp)(t,z) = f(t,z) in (0,T) x Q
p(t,x) =0 on (0,T) x 082
0
p(0,2) = (0,2) = 0 in Q,

where p = p(t, x) is an acoustic pressure wave, v; = vg(z) is the speed of sound, f is
a distibuted source that comes from a lightning process and 2 is the domain where
the wave propagates. The coefficient vy is generally unknown and not smooth. We
are interested in establishing new results of regularity of the solution p in the case
of discontinuous coefficient v.

Hereafter we will assume that 02 is of class C? and we consider the following
initial/boundary value problem:

*u .
w—FLu:f 1D(O7T)><Q

(1.1) u=0 on (0,T) x 0
u(0,2) = uo, SHO2)=w W,

where f: (0,T) x Q@ - R, ug,uy :  — R are given and L denotes a second order
partial differential operator in the divergence form:
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d

(1.2) Lu=— Y (ai(2)us,)s,

5,j=1

where u,, denotes the partial derivative of u with respect to x;.

Systems of equations as (1.1) have been extensively studied. Classical results
of well-posedness and regularity can be found in [9, §7.2]. In this reference a
regularity result similar to our Theorem 3.1 is obtained under coefficient smoothness
assumptions, namely a;; € C1(Q) and V(a;;) € [C1(2)]%.

In this work, we consider discontinuous coefficients a;; such that a;; € VMO n
L*(Q) and Va;; € [LP(Q)]? with p > d. Assuming the coefficients a;; belong to
L*® (), it can proved that System (1.1) admits a unique solution u € C°(0,T’; H}(2))
with 2% € C°(0,T; L*(R)) (see first part of the proof of Theorem 3.1).

Roughly speaking, the improved regularity, with respect to space, of the solution

w is associated with the elliptic regularity of the equation for almost every t € [0, T7,
02
that is, with the regularity of Lu(t) = f(¢) — ﬁg(t) Several regularity results

for elliptic operator L have been obtained with more general elliptic operators of
d d
type Lu = — 2 aij(t, ) Ug, o, + 2 bi(t, x)uy, + c(t,x)u, and there exists a non-
i,j=1 i=1
exhaustive list of papers devoted to results of regularity associated with the operator
L with different hypothesis on the coefficients a;;, b; and ¢ (see for example [4, 5, 6,
, 7,9, 14, 15] and references therein). Other results for parabolic equations with
VMO coefficients can be found in [2, 11].
In Section 2 we introduce some definitions and notations and the variational
formulation of System (1.1). Section 3 is devoted to the proof of Theorem 3.1
which is based on the regularity results obtained in [14].

2. PRELIMINARIES

In the sequel, LP(2) is the space of measurable functions u on 2 such that
Jo luP < 400 for 1 < p < o0, L®(R) is the space of essentially bounded functions
on Q. C¥(Q) is the set of all functions k-times continuously differentiable and its
derivates of order |a| are continuous for all multiindex « such that || < k, CF(Q2)
denote the subspace of all functions w infinitely differentiable with compact support
in Q. We will denote H*(Q) the usual Sobolev space of all functions u such that
Dy exists in the distributional sense and belongs to L?(Q) for all multiindex «
with |a| < k. The subspace H{(2) is the closure of CX(2) in H'(Q) and the
subspace H~1(Q) denotes the dual subspace to Hg (). Let X be a Banach space:
we will denote by L?(0,T; X) the space of the all measurable functions u such that
w: [0,T] = X defined by u(t)(z) = u(t,z) (by abuse of notation) satisfies

1/p

T
lullLeo,;x) = (/ lu(t) % dt) < 4o, ifpell,+w0)
0

and

HuHLoo(O’T;X) =ess sup |u(t)|x < +oo, ifp=+o0.
0<t<T



Maitine Bergounioux and Erica L. Schwindt

The space W1P(0,T; X) denotes all the functions u € LP(0,7;X) such that
0
1—1; € LP(0,T; X). For simplicity, we will use often the notation W1P(X) instead
0
of Whr(0,T; X).
Recall that the partial differential operator L is elliptic if there exists a constant

k > 0 such that
d

D aij(@)6& = kIEP
i,j=1
for a.e. z €  and for all £ € R%. Moreover, we assume
(2.3) a;j = aj; and 0 < amin < ai; < a™, for all 4,5 € {1,2....,d}.

so that the operator defined by (1.2) is elliptic.

2.1. Elliptic regularity results. Here, we recall the results obtained in [14]. We
first introduce useful functional spaces.

Definition 2.1. A function u is a bounded mean oscillation (BMO) function, if u
is a real-valued function whose mean oscillation is bounded (finite). This function
space is also called John—Nirenberg space. More precisely, we say that a locally
integrable function u is a BMO function if

sup][ |u(z) — up| dx =: |ul+ < +o0
B JB

where B ranges in the class of the balls of R and up = ][
B

1

u(z) dx = —/ u(zx) dx.
|B| /B

If w a BMO function and r > 0 we set

n(r) = sup]f3 |u(z) —up,| dr

psT
where B, ranges in the class of the balls with radius p less than or equal to 7.

Definition 2.2. A function u is a vanishing mean oscillation (VMO) function,
if u belongs to the subspace of the BMO functions whose BMO norm over a ball
vanishes as the radius of the ball tends to zero:

lir% n(r) = 0.

The space VMO was introduced by D. Sarason in [12]. The characterization of
the VMO functions via the norm of the function over balls implies a number of good
features of VMO functions not shared by general BMO functions; for example a
VMO function can be approximated by smooth functions. The space BMO can be
characterized as the dual space to H!. Furthermore, if f is a BMO function then
for any ¢ < 400 f is locally in L9 and if f belongs to the Sobolev space W %? then
f is a VMO function, for any 6 € (0,1]. For more details and properties of BMO
and VMO functions we refer [10, 12, 13].

The following theorem have been proved for C. Vitanza in [14]. We consider the
elliptic equation in non divergence form

d d
Lu=— Z Qi (T)Ug o, + Z bi(2)ug, +e(t,x)u=f
ij=1 i=1
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and the associated Dirichlet problem

Lu=f
(2.4) )
{uewﬂﬂm)mwgﬁgyfeL%Q)

Theorem 2.1. Let 0Q be C'. Assume a;; = aj;, a;j € VMO n L*(Q2) and that
there exists A > 0 such that

d
vee R AT < D) (@))€ < NEP ae. in Q.

=1
We also suppose b; € L*(2), s > d for 1 < q<d, s=q forq>d, and ¢ € L"(Q)

j <

with r = d Zfl <a<d and € <0 a.e. in Q. Then the Dirichlet problem (2.4)
q ifqg>d

has a unique solution w. Furthermore there exists a positive constant C such that

lullw.a @) nwio@) < C|fllzae)

where the constant C' depend on d, 0§2, X, on the VMO modulus of a;;, on the L*
and L% norms respectively of b; and & and their AC modulus (see [14] for definition
of AC modulus).

Here WH4(Q) denotes the space of all functions u such that D%u € L(8) for all
multiinder o with |a| <k and 1 < g < +00.

Remark 2.1. In this work, we will use Theorem 2.1 with no lower order term

(¢=0).

2.2. Variational formulation of (1.1). Let u e C?([0,T] x ) be a classical solu-
tion of (1.1), (i.e., u satisfies equation (1.1) at any (¢,z) € (0,7) x ). Multiplying
the main equation of (1.1) by ¢ € C*(2) and integrate by parts, we obtain

2u
(2.5) T D)l do + /

o Ot? Q

a;j(z)Vu(t,z) - Vo(z) do = /Qf(t,m)gb(x) dx

a.e. t € (0,T). Hence, from the density of C*() in H{(£2), we have (2.5) for all
¢ € H}(2). Now, we recall the definition of a weak solution for (1.1) (see [9])

Definition 2.3. We say a function

2
we L2(0,T; HX(Q)) with %‘ e L2(0,T; L2(Q)) and ZT;‘ e L2(0,T; H1(Q))

is a weak solution of Problem (1.1) provided (2.5) holds true for all p € HL(Q) and
0<t<T a e, and u(0,z) = ug(x) and 6—1:(0,36) = uy(x).
s o ou
We remark that the initial conditions u(0, z) = ug(z) and %(O, x) = uy(x) make
sense because of regularity of a weak solution; indeed we have u € C(0,T; L?(Q2))

%%ecwﬂxH*an)

and
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3. THE MAIN RESULT

Now, we may give the main result:

Theorem 3.1. Suppose a;; € VMO n L*(Q), Va;; € [LP()]? with p > d such
that conditions (2.3) are ensured. We also suppose f € HY(L*(Q)), up € H?(2)
and uy € HE (). Then there exists a unique solution u of (1.1) such that

ou %u Bu

ue L*(H?*(Q)), 5 € L*(H} (), 5z € L*®(L*()), =5 € L*(H1(Q))
with the estimate
ou 0%u u
mee ( u(®)] o) + \ <t>H T L) B ’ cu
0<t<T< H2(92) ot H1(9) ot? L2(Q) ot3 L2(H-1(2)

< C (Ifllm zaay + 1oz + It )
with the constant C depending on §, T and the coefficients a;;.

Proof. We split the proof in several steps.
Step 1: Finite-dimensional approximate solutions.
2 3

a—?,u :%71; —%andf :gi
the proof. We construct finite-dimensional approximate solutions of (2.5) by the
method of Faedo—Galerkin.

As H}(Q) is a separable Hilbert space, there exist a family of functions {wy, }m=1
in H}(2) such that

{wim}m>1 is an orthogonal basis of Hj(€2)

For sake of simplicity, we denote u = n

and
{wWy }m=1 is an orthonormal basis of L?(€).

Fix now a positive m, we look for approximate solutions of (2.5) u,, : [0,T] —
Hj(Q), as

(35 i (t) = ) gt

with g,,, := (g1m» G2m, - - - , gmm,) satisfying

57) { (tn (B, ) + (@i Vi (8), Voy) = (£(8),w)
gim(o) = (u07wi)a g;m(o) = (ulvwi) (Z = 172""7m)
where (-,-) denotes the scalar product in L?(€2). The initial conditions in system
(3.7) mean that u,,(0) and wu,, (0) are the respective projections of ug and u; onto
the subspace spanned by {w1, wa, ..., wy,}; thus we have lim,, 1 o Uy (0) = up and
lim,, 4 o 1, (0) = u; (see, for example [3, Chapter 5]). From the classical theory of
ordinary differential equations and assumptions of w;, system (3.7) admits a unique
local solution g,, such that gj,, € C?(0,T,) for j = 1,2,...,m. Then, for each
fixed m, u,, defined by (3.6) is solution of (3.7).
Step 2: a priori estimates.

Multiplying (3.7) by g;-m, summing for j = 1,...,m and taking relation (3.6) into
account, we get

’

(3.8) (u:n(t),u;n(t)) + (aijVum(t),Vu;n(tD - ( f(t),um(t)) . aete0,T]
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or equivalently

>0
2 2
39 5 i), o+ 5 0 VunOlag < (|f<>||Lz o m)).
>0
Integrating on (0, s), we deduce
, 2 ) sy, 2 , 2
s(3) gy < Wz + | @] gy 0+ fomO)] o

and with Gronwall’s inequality

”Ul (t )HL2 Q) S < exp(T) <||f||2L2(L2(Q)) + Hulm(O)H%?(Q)) :
Therefore,

(3.10) max [, ()32 < € (171320020 + 0132 )

0<t<T

with C depending on T and Q. Here, we have used that u,, (0) is the projection of

u1 onto the subspace spanned by {w1, ..., wn}.
Using (3.9) again, integrating on (0, s) and using (3.10), we obtain

t
lais Vum 1L ) < 11222 @) + lais Vi (0)[Z2q) + / [t (5)1Z2 () ds

< U1 zaqyy + (@) 2V ol + TC (112 zzqey) + 14132y

C (I B oy + IV uolFaay + lur o)

with C' depending on 7', £ and a™*. From hypothesis on a;; and Poincaré in-

equality we get
a5Vt () 2 2y > Cinllim ()11 -
So,

(3.11) Juax ||Um(t)”§101(9) <C (HfHQLQ(L?(Q)) + [luolFr oy + |\U1Hi2(n))

with C depending on Q, T, @iy and a™%".
Now, we estimate |u,, | L2z-1(Q)):

furs By = sup (un(6),6)
" “ peHE(Q) " H=',Hj
H¢”Hé(§2)=]

= sup [(f(t), ) — (aijVun(t), V)]
Hj\'IEHé(Q)
HE(©Q)=1

< < | f®)]z2) + lai Vum (t) |22
Thus

(3.12) |l 2(mr-1(0)) < C (HfHQLz(m(Q)) + ol Fri ) + |ua ||2L2(Q))

where C' depends on Q, T'; a4, and a™*".

From these estimates we can conclude that T;,, = T, thatis g,,, = (g1m, 9om, - -

is a global solution of system (3.7) and consequently a global solution w,,.

* 7gmm)
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Step 3: passage to the limit.
The estimates of step 2 allow us to conclude there exists a subsequence ,, still
denoted u,, and a function u such that

U —u  L*(0,T; HY(Q))
—u  L*(0,T;L*())

" ”

—u  L*0,T; H(Q))

U,

U,

where — stands for the weak convergence. This yields

*u, 0%u
/QW(t)wj dr — /Q w(t)’wj dr asm — 4o

/ a;j () Vi, (t) - Vw; de — / a;;(z)Vu(t) - Vw; de as m — +®©
Q Q

for every w;, by a density argument, for every H} function so equation (2.5) is
satisfied. Furthermore, by standard arguments is possible to show that u(0) =
uo and u (0) = w;. This proves that u is a weak solution of (1.1). Moreover
from (3.10)-(3.12) we have u € L*(0,T; HX(Q)), " € L*(0,T;L*()) and u" €
L2(0,T; H-1(Q)).

Step 4: The uniqueness solution of (1.1) follows similarly to the classical results
for hyperbolic equations (for example [9, §7.2 ]) and from the conditions (2.3) for
(%%]

Step 5: Regularity improvment.
Let us differentiate the mais equation of (3.7) with respect to ¢ and multiply by

9im
(tn (0, (1)) + (0 Vet (8), Ve, (8)) = (£ (0 u,(0)
that is,
=0
0| 2 0 T 2 L2 . 2
(313) 3 [un®], o+ 77 |as V], < (\ O] W O Lzm)).
>0
Integrating on (0, s) gives
” 2 J112 S, 2 . 2
i (t) L2(9) < ‘f L2(L2(Q)) +/0 i (t) L2(Q) dt+ Hum(0> L2(Q)

and with (3.8) we deduce

”

2 2 2 2 2
un O], o <€ (Il aa@y + umOli@) <€ (1l e + o)

Then Gronwall’s inequality gives

”

2
un®)] g

max
o<t<T

2 2
<C (HfHHl(Lz(Q)) + HuOHH’L’(Q))

where C depends on T, @ and €.
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On the other hand, by integrating on (0, s) in (3.13) and using the last inequality,
we obtain

, 2
35V, (1)

’ " 2

@55Vt (0)

Uy,

< +
£2(2) £2(12(2) L2(12()

< C (1130 (uaay + oz + 1 O3r1 )

< C (1713 zaqayy + Iolagay + ks ey )

with C' depending on T, aipn, a™** and ). Therefore,
(3.14)

2 2 2
onax ( Upy (1) Upy, (1) > <C (Hf“Hl(L?(Q)) + oz ) + lur HHl(Q))

where C' depends on T, amin, a™** and .
In order to establish the higher regularity for u, we remark that, from (3.8), for
a.e t € [0,T] we have

(= div(ai; Vum(t)), ) = (f(t) — up, (£)), 6)
daq 0aiq
(71’1 et all'd
in Theorem 2.1 and from hypothesis for a;; and Va;j, we get u,,(t) € H*(£2) and

[um (D)2 ) < ClF(#) = w220
where C' depends on € and the coefficients a;; ( via |Va;;|r» and the VMO modulus
of aij).
Hence, by using (3.14) we deduce

L2(Q)

2

(o]
L2() (@)

and¢c=0

for every ¢ € H}(Q). We taking q = 2, a;j = a;j, b; =

s [ (1) o) < C g |£(2) = 7, (8)] 2o

< C (Ifllm ey + ol ey + 32y ) -

with C' depending on 2, T and the coeflicients a;;.
Last, we estimate Hu:;’HLZ’(Hfl(Q))

" " 1
|t () E-10) = sup  (up,(t), ¢ Py —
R beHL(Q) >H‘1>Hé 1] 222 22)
¢#0
, / 1
peH(Q) HE ()
¢#0

<1 ®)llz20) + laiy Vi, ()] 220
Thus, from (3.14)

lirmllz2qar-c@) < € (11 zaqany + bz + lua o)

where C' depends on Q, T and the coefficients a;;. Passing to limit as m — +o0,
we obtain the same regularity and bounds for u. This concludes the proof of
theorem. 0
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