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In this note we show a regularity result for an hyperbolic system with discontinuous coefficients. More precisely, we deal with coefficients in the function space VMO and we prove the existence and uniqueness of a solution u P L 8 p0, T ; H 2 pΩqq with also suitable regularity for Bu Bt , B 2 u Bt 2 and B 3 u Bt 3 .

Introduction

Let Ω be a bounded open subset of R d with d ě 3. In the context of photoacoustic tomography process modelling [START_REF] Bergounioux | An optimal control problem in photoacoustic tomography[END_REF], we are led to study the follwing wave equation

$ ' ' ' ' & ' ' ' ' % B 2 p Bt 2 pt, xq ´divpv 2
s ∇pqpt, xq " f pt, xq in p0, T q ˆΩ ppt, xq " 0 on p0, T q ˆBΩ pp0, xq " Bp Bt p0, xq " 0 in Ω, where p " ppt, xq is an acoustic pressure wave, v s " v s pxq is the speed of sound, f is a distibuted source that comes from a lightning process and Ω is the domain where the wave propagates. The coefficient v s is generally unknown and not smooth. We are interested in establishing new results of regularity of the solution p in the case of discontinuous coefficient v s . Hereafter we will assume that BΩ is of class C 2 and we consider the following initial/boundary value problem:

(1.1)

$ ' ' ' ' & ' ' ' ' % B 2 u Bt 2 `Lu " f in p0, T q ˆΩ u " 0 on p0, T q ˆBΩ up0, xq " u 0 , Bu Bt p0, xq " u 1 in Ω,
where f : p0, T q ˆΩ Ñ R, u 0 , u 1 : Ω Ñ R are given and L denotes a second order partial differential operator in the divergence form:

(1.2) Lu " ´d ÿ i,j"1

pa ij pxqu xi q xj
where u xi denotes the partial derivative of u with respect to x i . Systems of equations as (1.1) have been extensively studied. Classical results of well-posedness and regularity can be found in [9, §7.2]. In this reference a regularity result similar to our Theorem 3.1 is obtained under coefficient smoothness assumptions, namely a ij P C 1 pΩq and ∇pa ij q P rC 1 pΩqs d .

In this work, we consider discontinuous coefficients a ij such that a ij P V M O X L 8 pΩq and ∇a ij P rL p pΩqs d with p ą d. Assuming the coefficients a ij belong to L 8 pΩq, it can proved that System (1.1) admits a unique solution u P C 0 p0, T ; H 1 0 pΩqq with Bu Bt P C 0 p0, T ; L 2 pΩqq (see first part of the proof of Theorem 3.1). Roughly speaking, the improved regularity, with respect to space, of the solution u is associated with the elliptic regularity of the equation for almost every t P r0, T s, that is, with the regularity of Luptq " f ptq ´B2 u Bt 2 ptq. Several regularity results for elliptic operator L have been obtained with more general elliptic operators of type Lu " ´d ÿ i,j"1

a ij pt, xqu xixj `d ÿ i"1 b i pt, xqu xi `cpt, xqu,
and there exists a nonexhaustive list of papers devoted to results of regularity associated with the operator L with different hypothesis on the coefficients a ij , b i and c (see for example [START_REF] Caffarelli | Elliptic second order equations[END_REF][START_REF] Caffarelli | On W 1,p estimates for elliptic equations in divergence form[END_REF][START_REF] Chen | Regularity of solutions to elliptic equations with VMO coefficients[END_REF][START_REF] Chicco | Solvability of the Dirichlet problem in H 2 , p pΩq for a class of linear second order elliptic partial differential equations[END_REF][START_REF] Chiarenza | W 2,p -solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients[END_REF][START_REF] Evans | Partial differential equations[END_REF][START_REF] Vitanza | W 2,p -regularity for a class of elliptic second order equations with discontinuous coefficients[END_REF][START_REF]A new contribution to the W 2,p regularity for a class of elliptic second order equations with discontinuous coefficients[END_REF] and references therein). Other results for parabolic equations with VMO coefficients can be found in [START_REF] Bramanti | W 1,2 p solvability for the Cauchy-Dirichlet problem for parabolic equations with VMO coefficients[END_REF][START_REF] Heck | L 8 -estimates for parabolic systems with VMOcoefficients[END_REF].

In Section 2 we introduce some definitions and notations and the variational formulation of System (1.1). Section 3 is devoted to the proof of Theorem 3.1 which is based on the regularity results obtained in [START_REF] Vitanza | W 2,p -regularity for a class of elliptic second order equations with discontinuous coefficients[END_REF].

Preliminaries

In the sequel, L p pΩq is the space of measurable functions u on Ω such that ´Ω |u| p ă `8 for 1 ď p ă 8, L 8 pΩq is the space of essentially bounded functions on Ω. C k pΩq is the set of all functions k-times continuously differentiable and its derivates of order |α| are continuous for all multiindex α such that |α| ď k, C 8 c pΩq denote the subspace of all functions u infinitely differentiable with compact support in Ω. We will denote H k pΩq the usual Sobolev space of all functions u such that D α u exists in the distributional sense and belongs to L 2 pΩq for all multiindex α with |α| ď k. The subspace H 1 0 pΩq is the closure of C 8 c pΩq in H 1 pΩq and the subspace H ´1pΩq denotes the dual subspace to H 1 0 pΩq. Let X be a Banach space: we will denote by L p p0, T ; Xq the space of the all measurable functions u such that u : r0, T s Ñ X defined by uptqpxq " upt, xq (by abuse of notation) satisfies The space W 1,p p0, T ; Xq denotes all the functions u P L p p0, T ; Xq such that Bu Bt P L p p0, T ; Xq. For simplicity, we will use often the notation W 1,p pXq instead of W 1,p p0, T ; Xq.

}u} L p p0
Recall that the partial differential operator L is elliptic if there exists a constant κ ą 0 such that

d ÿ i,j"1 a ij pxqξ i ξ j ě κ|ξ| 2
for a.e. x P Ω and for all ξ P R d . Moreover, we assume

(2.
3) a ij " a ji and 0 ă a min ď a ij ď a max , for all i, j P t1, 2. . . . , du.

so that the operator defined by (1.2) is elliptic.

2.1. Elliptic regularity results. Here, we recall the results obtained in [START_REF] Vitanza | W 2,p -regularity for a class of elliptic second order equations with discontinuous coefficients[END_REF]. We first introduce useful functional spaces. 

lim rÑ0 ηprq " 0.
The space VMO was introduced by D. Sarason in [START_REF] Sarason | Functions of vanishing mean oscillation[END_REF]. The characterization of the VMO functions via the norm of the function over balls implies a number of good features of VMO functions not shared by general BMO functions; for example a VMO function can be approximated by smooth functions. The space BMO can be characterized as the dual space to H 1 . Furthermore, if f is a BMO function then for any q ă `8 f is locally in L q and if f belongs to the Sobolev space W θ,d{θ then f is a VMO function, for any θ P p0, 1s. For more details and properties of BMO and VMO functions we refer [START_REF] Garnett | Bounded analytic functions[END_REF][START_REF] Sarason | Functions of vanishing mean oscillation[END_REF][START_REF] Stein | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF].

The following theorem have been proved for C. Vitanza in [START_REF] Vitanza | W 2,p -regularity for a class of elliptic second order equations with discontinuous coefficients[END_REF]. We consider the elliptic equation in non divergence form

Lu " ´d ÿ i,j"1 āij pxqu xixj `d ÿ i"1
bi pxqu xi `cpt, xqu " f and the associated Dirichlet problem (2.4) # Lu " f u P W 2,q pΩq X W 1,q 0 pΩq, f P L q pΩq. Theorem 2.1. Let BΩ be C 1,1 . Assume āij " āji , āij P V M O X L 8 pΩq and that there exists λ ą 0 such that

@ξ P R d λ ´1|ξ| 2 ď d ÿ i,j"1 āij pxqξ i ξ j ď λ|ξ| 2 a.e. in Ω.
We also suppose bi P L s pΩq, s ą d for 1 ă q ď d, s " q for q ą d, and c P L r pΩq with r "

" d if 1 ă q ď d q if q ą d and c ď 0 a.e. in Ω. Then the Dirichlet problem (2.4)
has a unique solution u. Furthermore there exists a positive constant C such that }u} W 2,q pΩqXW 1,q 0 pΩq ď C} f } L q pΩq where the constant C depend on d, BΩ, λ, on the VMO modulus of āij , on the L s and L d norms respectively of bi and c and their AC modulus (see [START_REF] Vitanza | W 2,p -regularity for a class of elliptic second order equations with discontinuous coefficients[END_REF] for definition of AC modulus). Here W k,q pΩq denotes the space of all functions u such that D α u P L q pΩq for all multiindex α with |α| ď k and 1 ď q ď `8.

Remark 2.1. In this work, we will use Theorem 2.1 with no lower order term (c " 0).

2.2.

Variational formulation of (1.1). Let u P C 2 pr0, T s ˆΩq be a classical solution of (1.1), (i.e., u satisfies equation (1.1) at any pt, xq P p0, T q ˆΩ). Multiplying the main equation of ( 

The main result

Now, we may give the main result: 

Theorem 3.1. Suppose a ij P V M O X L 8 pΩq
max 0ďtďT ˜}uptq} H 2 pΩq `› › › › Bu Bt ptq › › › › H 1 0 pΩq `› › › › B 2 u Bt 2 ptq › › › › L 2 pΩq ¸`› › › › B 3 u Bt 3 › › › › L 2 pH ´1 pΩqq ď C ´}f } H 1 pL 2 pΩqq `}u 0 } H 2 pΩq `}u 1 } H 1 pΩq
with the constant C depending on Ω, T and the coefficients a ij .

Proof. We split the proof in several steps.

Step 1: Finite-dimensional approximate solutions.

For sake of simplicity, we denote u

1 " Bu Bt , u 2 " B 2 u Bt 2 , u 3 " B 3 u Bt 3 and f 1 " Bf Bt in
the proof. We construct finite-dimensional approximate solutions of (2.5) by the method of Faedo-Galerkin. As H1 0 pΩq is a separable Hilbert space, there exist a family of functions tw m u mě1 in H 1 0 pΩq such that tw m u mě1 is an orthogonal basis of H 1 0 pΩq and tw m u mě1 is an orthonormal basis of L 2 pΩq. Fix now a positive m, we look for approximate solutions of (2.5) u m : r0, T s Ñ H 1 0 pΩq, as

(3.6) u m ptq " m ÿ i"1 g im ptqw i
with g m :" pg 1m , g 2m , . . . , g mm q satisfying (3.7)

# ´u2

m ptq, w j ¯`pa ij ∇u m ptq, ∇w j q " pf ptq, w j q g im p0q " pu 0 , w i q , g 1 im p0q " pu 1 , w i q pi " 1, 2, . . . , mq where p¨, ¨q denotes the scalar product in L 2 pΩq. The initial conditions in system (3.7) mean that u m p0q and u 1 m p0q are the respective projections of u 0 and u 1 onto the subspace spanned by tw 1 , w 2 , . . . , w m u; thus we have lim mÑ`8 u m p0q " u 0 and lim mÑ`8 u 1 m p0q " u 1 (see, for example [START_REF] Brezis | Analyse fonctionnelle[END_REF]Chapter 5]). From the classical theory of ordinary differential equations and assumptions of w i , system (3.7) admits a unique local solution g m such that g jm P C 2 p0, T m q for j " 1, 2, . . . , m. Then, for each fixed m, u m defined by (3.6) is solution of (3.7).

Step 2: a priori estimates. Multiplying (3.7) by g 

(3.9) B Bt › › ›u 1 m ptq › › › 2 L 2 pΩq loooooooomoooooooon ě0 `ě0 hkkkkkkkkkkkkikkkkkkkkkkkkj B Bt }a ij ∇u m ptq} 2 L 2 pΩq ď ˆ}f ptq} 2 L 2 pΩq `› › ›u 1 m ptq › › › 2 L 2 pΩq ˙.
Integrating on p0, sq, we deduce

› › ›u 1 m psq › › › 2 L 2 pΩq ď }f } 2 L 2 pL 2 pΩqq `ˆs 0 › › ›u 1 m ptq › › › 2 L 2 pΩq dt `› › ›u 1 m p0q › › › 2 L 2 pΩq
and with Gronwall's inequality

}u 1 m ptq} 2 L 2 pΩq ď exppT q ´}f } 2 L 2 pL 2 pΩqq `}u 1 m p0q} 2 L 2 pΩq ¯.
Therefore,

(3.10) max 0ďtďT }u 1 m ptq} 2 L 2 pΩq ď C ´}f } 2 L 2 pL 2 pΩqq `}u 1 } 2 L 2 pΩq
with C depending on T and Ω. Here, we have used that u 1 m p0q is the projection of u 1 onto the subspace spanned by tw 1 , . . . , w m u.

Using (3.9) again, integrating on p0, sq and using (3.10), we obtain

}a ij ∇u m ptq} 2 L 2 pΩq ď }f } 2 L 2 pL 2 pΩqq `}a ij ∇u m p0q} 2 L 2 pΩq `ˆt 0 }u 1 m psq} 2 L 2 pΩq ds ď }f } 2 L 2 pL 2 pΩqq `pa max q 2 }∇u 0 } 2 L 2 pΩq `T C ´}f } 2 L 2 pL 2 pΩqq `}h} 2 L 2 pΩq ď C ´}f } 2 L 2 pL 2 pΩqq `}∇u 0 } 2 L 2 pΩq `}u 1 } 2 L 2 pΩq
with C depending on T , Ω and a max . From hypothesis on a ij and Poincaré inequality we get

}a ij ∇u m ptq} 2 L 2 pΩq ě Ca 2 min }u m ptq} 2 H 1 0 pΩq . So, (3.11) max 0ďtďT }u m ptq} 2 H 1 0 pΩq ď C ´}f } 2 L 2 pL 2 pΩqq `}u 0 } 2 H 1 pΩq `}u 1 } 2 L 2 pΩq
with C depending on Ω, T , a min and a max . Now, we estimate }u

2 m } L 2 pH ´1 pΩqq : }u 2 m ptq} H ´1 pΩq " sup φPH 1 0 pΩq }φ} H 1 0 pΩq"1 A u 2 m ptq, φ E H ´1 ,H 1 0 " sup φPH 1 0 pΩq }φ} H 1 0 pΩq"1 rpf ptq, φq ´pa ij ∇u m ptq, ∇φqs ď ď }f ptq} L 2 pΩq `}a ij ∇u m ptq} L 2 pΩq . Thus (3.12) }u 2 m } L 2 pH ´1 pΩqq ď C ´}f } 2 L 2 pL 2 pΩqq `}u 0 } 2 H 1 pΩq `}u 1 } 2 L 2 pΩq
where C depends on Ω, T , a min and a max . From these estimates we can conclude that T m " T , that is g m " pg 1m , g 2m , . . . , g mm q is a global solution of system (3.7) and consequently a global solution u m .

Step 3: passage to the limit. The estimates of step 2 allow us to conclude there exists a subsequence u mk still denoted u m and a function u such that

u m á u L 2 p0, T ; H 1 0 pΩqq u 1 m á u 1 L 2 p0, T ; L 2 pΩqq u 2 m á u 2 L 2 p0, T ; H ´1pΩqq
where á stands for the weak convergence. This yields

ˆΩ B 2 u m Bt 2 ptqw j dx Ñ ˆΩ B 2 u Bt 2 ptqw j dx as m Ñ `8
ˆΩ a ij pxq∇u m ptq ¨∇w j dx Ñ ˆΩ a ij pxq∇uptq ¨∇w j dx as m Ñ `8

for every w j , by a density argument, for every H 1 0 function so equation (2.5) is satisfied. Furthermore, by standard arguments is possible to show that up0q " u 0 and u 1 p0q " u 1 . This proves that u is a weak solution of (1.1). Moreover from (3.10)-(3.12) we have u P L 8 p0, T ; H 1 0 pΩqq, u 1 P L 8 p0, T ; L 2 pΩqq and u 2 P L 2 p0, T ; H ´1pΩqq.

Step 4: The uniqueness solution of (1.1) follows similarly to the classical results for hyperbolic equations (for example [9, §7.2 ]) and from the conditions (2.3) for a ij .

Step 5: Regularity improvment. Let us differentiate the mais equation of (3.7) with respect to t and multiply by g that is,

(3.13) B Bt › › ›u 2 m ptq › › › 2 L 2 pΩq loooooooomoooooooon ě0 `ě0 hkkkkkkkkkkkkikkkkkkkkkkkkj B Bt › › ›aij∇u 1 m ptq › › › 2 L 2 pΩq ď ˆ› › ›f 1 ptq › › › 2 L 2 pΩq `› › ›u 2 m ptq › › › 2 L 2 pΩq ˙.
Integrating on p0, sq gives

› › ›u 2 m ptq › › › 2 L 2 pΩq ď › › ›f 1 › › › 2 L 2 pL 2 pΩqq `ˆs 0 › › ›u 2 m ptq › › › 2 L 2 pΩq dt `› › ›u 2 m p0q › › › 2 L 2 pΩq
and with (3.8) we deduce

› › ›u 2 m p0q › › › 2 L 2 pΩq ď C ´}f } 2 H 1 pL 2 pΩqq `}u m p0q} 2 H 2 pΩq ¯ď C ´}f } 2 H 1 pL 2 pΩqq `}u 0 } 2 H 2 pΩq ¯. Then Gronwall's inequality gives max 0ďtďT › › ›u 2 m ptq › › › 2 L 2 pΩq ď C ´}f } 2 H 1 pL 2 pΩqq `}u 0 } 2 H 2 pΩq
where C depends on T , a min and Ω.

On the other hand, by integrating on p0, sq in (3.13) and using the last inequality, we obtain › › ›aij∇u

1 m ptq › › › L 2 pΩq ď › › ›f 1 › › › 2 L 2 pL 2 pΩqq `› › ›u 2 m › › › 2 L 2 pL 2 pΩqq `› › ›aij∇u 1 m p0q › › › L 2 pΩq ď C ´}f } 2 H 1 pL 2 pΩqq `}u 0 } 2 H 2 pΩq `}u 1 m p0q} 2 H 1 pΩq ď C ´}f } 2 H 1 pL 2 pΩqq `}u 0 } 2 H 2 pΩq `}u 1 } 2 H 1 pΩq
with C depending on T , a min , a max and Ω. Therefore, (3.14)

max 0ďtďT ˆ› › ›u 2 m ptq › › › 2 L 2 pΩq `› › ›u 1 m ptq › › › H 1 0 pΩq ˙ď C ´}f } 2 H 1 pL 2 pΩqq `}u 0 } 2 H 2 pΩq `}u 1 } 2 H 1 pΩq
where C depends on T , a min , a max and Ω. In order to establish the higher regularity for u, we remark that, from (3.8), for a.e t P r0, T s we have p´divpa ij ∇u m ptqq, φq " pf ptq ´u2 m ptqq, φq for every φ P H 1 0 pΩq. We taking q " 2, āij " a ij , bi " where C depends on Ω, T and the coefficients a ij . Passing to limit as m Ñ `8, we obtain the same regularity and bounds for u. This concludes the proof of theorem.
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 1 , summing for j " 1, . . . , m and taking relation (3.6) into account, we get (3.8) ´u2 m ptq, u 1 m ptq ¯`´a ij ∇u m ptq, ∇u 1 m ptq ¯" ´f ptq, u or equivalently

  Bt 2 P L 2 p0, T ; H ´1pΩqq is a weak solution of Problem (1.1) provided (2.5) holds true for all φ P H 1 0 pΩq and 0 ď t ď T a. e., and up0, xq " u 0 pxq and Bu Bt p0, xq " u 1 pxq.

	Definition 2.3. We say a function	
	u P L 2 p0, T ; H 1 0 pΩqq with	Bu Bt	P L 2 p0, T ; L 2 pΩqq and	B 2 u
	We remark that the initial conditions up0, xq " u 0 pxq and	Bu Bt	p0, xq " u 1 pxq make

1.1) by φ P C 8 c pΩq and integrate by parts, we obtain (2.5) ˆΩ B 2 u Bt 2 pt, xqφpxq dx `ˆΩ a ij pxq∇upt, xq ¨∇φpxq dx " ˆΩ f pt, xqφpxq dx a.e. t P p0, T q. Hence, from the density of C 8 c pΩq in H 1 0 pΩq, we have (2.5) for all φ P H 1 0 pΩq. Now, we recall the definition of a weak solution for (1.1) (see [9]) sense because of regularity of a weak solution; indeed we have u P Cp0, T ; L 2 pΩqq and Bu Bt P Cp0, T ; H ´1pΩqq.

  , ∇a ij P rL p pΩqs d with p ą d such that conditions (2.3) are ensured. We also suppose f P H 1 pL 2 pΩqq, u 0 P H 2 pΩq and u 1 P H 1 0 pΩq. Then there exists a unique solution u of (1.1) such that

	u P L 8 pH 2 pΩqq,	Bu Bt	P L 8 pH 1 0 pΩqq,	B 2 u Bt 2 P L 8 pL 2 pΩqq,	B 3 u Bt 3 P L 2 pH ´1pΩqq
	with the estimate				

  i1 Bx 1 `. . . `Ba id Bx d and c " 0 in Theorem 2.1 and from hypothesis for a ij and ∇a ij , we get u m ptq P H 2 pΩq and }u m ptq} H 2 pΩq ď C}f ptq ´u2 m ptq} L 2 pΩq where C depends on Ω and the coefficients a ij ( via }∇a ij } L p and the VMO modulus of aij ). C ´}f } H 1 pL 2 pΩqq `}u 0 } H 1 pΩq `}u 1 } 2 ptq} L 2 pΩq `}a ij ∇u 1 m ptq} L 2 pΩq . Thus, from (3.14) }u 3 m } L 2 pH ´1 pΩqq ď C ´}f } 2 H 1 pL 2 pΩqq `}u 0 } 2 H 2 pΩq `}u 1 } 2

	Hence, by using (3.14) we deduce
	max 0ďtďT	}u m ptq} H 2 pΩq ď C max 0ďtďT	}f ptq	´u2 m ptq} L 2 pΩq
						¯.
						L 2 pΩq
		φPH 1 0 pΩq	A u	3 m ptq, φ	E H ´1 ,H 1 0	1 }φ} H 1 0 pΩq
		φ‰0	
		sup φPH 1 0 pΩq	" pf	1 ptq, φq ´pa ij ∇u	1 m ptq, ∇φq ı	1 }φ} H 1 0 pΩq
		φ‰0		
		ď }f	1 H 1 pΩq

ď with C depending on Ω, T and the coefficients a ij .

Last, we estimate }u

3 m } L 2 pH ´1 pΩqq }u 3 m ptq} H ´1 pΩq " sup

m ptq ¯, a.e.t P r0, T s