
HAL Id: hal-01104904
https://hal.science/hal-01104904

Submitted on 19 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Content-adaptive speech enhancement by a
sparsely-activated dictionary plus low rank

decomposition
Zhuo Chen, Hélène Papadopoulos, Daniel P.W. Ellis

To cite this version:
Zhuo Chen, Hélène Papadopoulos, Daniel P.W. Ellis. Content-adaptive speech enhancement by a
sparsely-activated dictionary plus low rank decomposition. IEEE Joint Workshop on Hands-free
Speech Communication and Microphone Arrays (HSCMA), May 2014, Nancy, France. pp.16-20,
�10.1109/HSCMA.2014.6843242�. �hal-01104904�

https://hal.science/hal-01104904
https://hal.archives-ouvertes.fr


CONTENT-ADAPTIVE SPEECH ENHANCEMENT BY A SPARSELY-ACTIVATED
DICTIONARY PLUS LOW RANK DECOMPOSITION

Zhuo Chen† Hélène Papadopoulos! Daniel P.W. Ellis †
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ABSTRACT
One powerful approach to speech enhancement employs strong
models for both speech and noise, decomposing a mixture into the
most likely combination. But if the noise encountered differs sig-
nificantly from the system’s assumptions, performance will suffer.
In previous work, we proposed a speech enhancement model that
decomposes the spectrogram into sparse activation of a dictionary
of target speech templates, and a low-rank background model. This
makes few assumptions about the noise, and gave appealing results
on small excerpts of noisy speech. However, when processing whole
conversations, the foreground speech may vary in its complexity and
may be unevenly distributed throughout the recording, resulting in
inaccurate decompositions for some segments. In this paper, we
explore an adaptive formulation of our previous model that incorpo-
rates separate side information to guide the decomposition, making
it able to better process entire conversations that may exhibit large
variations in the speech content.

Index Terms— speech enhancement, spectrogram decomposi-
tion, sparse, low-rank, robust PCA, voice activity detection

1. INTRODUCTION
In the context of processing and analyzing high-dimensional data,
such as videos, bioinformatics or audio data, a common challenge
is to extract useful information from a massive amount of related or
unrelated data in a complex environment. Very often, the problem
can be formulated as separating the foreground components from an
underlying background as, for instance, when separating the moving
objects from the stable environment in video surveillance [1]. Ro-
bust Principal Component Analysis (RPCA [2, 3]) is a technique that
attempts to decompose signals into sparse and low-rank components,
and has recently attracted substantial attention.

RPCA has been used extensively in the field of image process-
ing (e.g. image segmentation [4], visual pattern correspondence
[5], surveillance video processing [6], batch image alignment [7],
etc.). The framework has also been considered for extracting infor-
mation from audio signals. In the context of music signal process-
ing, RPCA has been used to separate the singing voice from a back-
ground accompaniment in monaural polyphonic recordings [8, 9].
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In the context of speech processing, RPCA has been used for the
task of speech enhancement [10, 11]. In both cases, the foreground
(signing voice/speech) and the background are separated by decom-
posing the Short-Time-Fourier Transform (STFT) magnitude (i.e.,
spectrogram) into sparse and low-rank components.

We are interested here in further exploring the framework of
sparse and low-rank decompositions for speech enhancement. En-
hancing degraded and noisy recordings of speech is a key problem
both for automatic speech recognition and for human listeners. Since
noise is usually unpredictable and highly variable, it can be difficult
to formulate constraints on the noise components that are both ade-
quately specific to support good-quality separation, and sufficiently
broad to handle unseen noise. Existing speech enhancement systems
make a number of assumptions about the noise, including stationar-
ity and/or low magnitude [12], or explicitly fix the spectra [13] or the
rank of the noise [14]. When the actual noise fails to match these as-
sumptions, enhancement rapidly declines. The high unpredictability
of noisy interference means that speech enhancement performance
cannot be guaranteed for real-world applications. However, in a
speech enhancement scenario, even unpredictable background noise
is often less spectrally diverse than the foreground speech, indicat-
ing that it could benefit from the RPCA’s ability to distinguish a more
regular background from a more variable foreground.

Based on the idea of using sparse and low-rank decompositions
for speech enhancement, we recently proposed a model that further
decomposes the sparse component of RPCA into the product of a
pre-learned dictionary of spectra with a sparse activation matrix, and
where the background noise is identified as the sum of a low-rank
matrix and a residual [10]. The only assumption about the noise
component is that its spectrogram can be accurately modeled as a
low rank part and residual, where the low-rank “basis” adapts to par-
ticular signal at hand, making it better able to deal with unseen noise.
This model, here referred to as sparsely activated dictionary RPCA
(SaD-RPCA), will serve as a baseline for the present work.

Sparse and low-rank decomposition-based approaches for
speech processing have mostly been evaluated on short audio ex-
cerpts consisting in a single speaker and a single type of background
noise. However, real-world scenarios, such as real-life conversa-
tions, involve in general several speakers that interact in a complex
acoustic environment. In this case the background may include sig-
nificant changes in its acoustic characteristics and dynamics which
may rival the variation in the foreground (e.g. background music
plus noise from the other conversations plus ambient noise in a
restaurant conversation scenario), and hence its rank in the spec-
trogram representation. Further, the foreground may vary in its
complexity (e.g., several persons possibly speaking together then
one by one) and may be unevenly distributed throughout the record-



ing (e.g., entire segments without speech). The question of how
to cope with the intrinsic structure of the analyzed data (e.g. the
speech/non speech patterns) remains open.

In this article, we explore an adaptive version of SaD-RPCA that
is able to handle such conversations with large variations in the fore-
ground by adjusting the task through the incorporation of domain
knowledge that guides the decomposition towards results that are
physically and semantically meaningful. More specifically, we in-
corporate speech activity information as a cue to separate the speech
voice from the background. The sparse (foreground) component
should be denser in sections containing voice, while portions of the
sparse matrix corresponding to non-speech segments should ideally
be null. Thus, while the technique remains the same as in [10] at
the lowest level, we consider the problem of segmenting a longer
conversation into suitable pieces, and how to locally adapt the de-
composition by incorporating prior information.

2. PROPOSEDMODEL
2.1. RPCA via Principal Component Pursuit
In [2] , Candès et al. show that, under very broad conditions, a
data matrix Y ∈ R

m×n (in our case the spectrogram) can be ex-
actly and uniquely decomposed into a low-rank component L and a
sparse component S via a convex program called Principal Compo-
nent Pursuit (RPCA-PCP) given by:

min
L,S

‖L‖∗ + λ‖S‖1 s.t. Y = L + S (1)

where λ > 0 is a regularization parameter that trades between the
rank of L and the sparsity of S. The nuclear norm ‖·‖∗ (the sum of
singular values) is used as surrogate for the rank of L [15], and the
"1 norm ‖·‖1 (the sum of absolute values of the matrix entries) is an
effective surrogate for the "0 pseudo-norm (the number of non-zero
entries in the matrix [16, 17]).

The Augmented Lagrange Multiplier Method (ALM) and its
practical variant, the Alternating Direction Method of Multipliers
(ADMM), have been proposed as efficient optimization schemes to
solve this problem [18, 19, 20].

2.2. Sparsely Activated Dictionary RPCA (SaD-RPCA)
In the speech enhancement application, we may expect certain kinds
of noise to be low-rank, but the target speech may also be described
by a limited number of spectral bases. We have thus proposed in [10]
replacing the sparse matrix S in Eq. (1) with an explicit, fixed dictio-
nary of speech spectral templates, W , multiplied by a set of sparse
temporal activations H . With this model, we expect the background
noise to have little variation in spectrum even if it has substantial
variation in amplitude, and thus to be successfully captured by the
low-rank component L. Conversely, the fixed set of spectral bases
W combine with their sparse activationsH to form a product that is
constrained to consist of speech-like spectra. We further improve the
suitability of the model by extending it to include nonnegativity con-
straints on the activationsH , since the spectrogram is intrinsically a
non-negative energy distribution. Finally, since there will likely be
a low level of full-rank random variation in the spectral columns,
we include a conventional mean-squared error (i.e., Gaussian noise)
term in the decomposition. This leads to the following model:

min
H,L,E

1
2
‖E‖2

2 + λH ‖H‖
1

+ λL ‖L‖
∗

+ I+ (H)

s.t. Y = WH + L + E

(2)

where I+ (H) is the auxiliary function to provide the nonnegativity
constraints, which has value of infinity where H is negative and has
zero elsewhere, E is the Gaussian noise residual, and λL and λH are
two weighting terms to control the optimization.

Note that without L this model would be equivalent to sparse
NMF, and speech enhancement approaches along these lines have
been previously proposed [14]. For a more detailed comparison be-
tween SaD-RPCA and sparse NMF, we refer the reader to [10].

The optimization problem in (2) is equivalent to:

min
H,L

1
2
‖Y − WH − L‖2

2
+ λH ‖H‖

1
+ λL ‖L‖

∗
+ I+ (H) (3)

To make objective function (3) separable, we introduce an aux-
iliary parameter Z with an associated equality constraint, leading to:

min
H,L

1
2
‖Y − WH − L‖2

2
+ λH ‖Z‖

1
+ λL ‖L‖

∗
+ I+ (Z)

s.t. Z = H

(4)

By introducing the scaled dual variable Ω and the scaling pa-
rameter ρ > 0, we formulate the augmented Lagrangian function of
(4) as:

Lρ =
1
2
‖Y − WH − L‖2

2
+ λH ‖Z‖

1
+ λL ‖L‖

∗

+
ρ

2
‖H − Z + Ω‖2

2
+ I+ (Z)

(5)

Problem (4) can be solved by minimizing the augmented La-
grangian function of (5). The Alternating Direction Method of Mul-
tipliers splits the minimization of (5) into smaller and easier sub-
problems, by sequentially updating H , L, Z, and Ω, while holding
the other parameters fixed.

2.3. Content-Adaptive SaD-RPCA (CaSaD-RPCA)
As discussed in Section 1, in a conversation, the speech signal typi-
cally exhibits a clustered distribution in the time-frequency plane re-
lating to the structure of the conversation that consists of alternating
speech and non-speech (silent) segments. This structure should be
reflected in the decomposition: frames belonging to speech-inactive
segments should result in zero-valued columns in Z.

The balance between the sparse and low-rank contributions is
set by the value of the regularization parameters λH and λL. Exper-
iments show that the decomposition is very sensitive to the choice
of these parameters, with frequently no single set of values able
to achieve a satisfying separation between speech and background
across a whole conversation. This is illustrated in Fig. 1, which
shows one example on one utterance of the relation between the sep-
aration quality and the choice of the regularization parameter λH

(with λL fixed). As we can observe, the best λH differs depending
on whether we process the entire utterance, or restrict processing to
just the speech-active parts. Because the separation for the silent part
is monotonically better as λH increases, the difference between the
optimum λH indicates that the global separation quality is compro-
mised between the speech and the noise part.

We propose an adaptive variant of the SaD-RPCA algorithm,
referred to as Content-Adaptive SaD-RPCA (CaSaD-RPCA), that
adapts the decomposition to the content of the signal by incorporat-
ing side information about the structure of the speech signal. Specif-
ically, speech activity information is used as a cue to adjust the reg-
ularization parameter through the entire analyzed recording during
the update of the sparse component Z, and therefore better match
the balance between sparse and low-rank contributions to suit to the
actual semantic content. This idea is related to previous theoreti-
cal work [21, 22, 23], but to our knowledge, its application in the
framework of RPCA is new.

From Eq. (5), we can see that minimization of Z reduces to:

Zk+1 = min
Z

n

λH‖Z‖1 +
ρ

2
‖Z − (H + Ω)‖2

2 + I+ (Z)
o

(6)



Fig. 1. Variation of SDR with λH under two situations. Blue:only the speech part of
the separated signal is evaluated. Red: SDR for the entire separated signal.

Algorithm 1 Content-AdaptiveSaD-RPCA (CaSaD-RPCA)
Input: Y ,W , blocks
Output: H, L
Initialization: H = random; L = 0; Z = 0; Ω = 0; t = 1
while not converged do
updateH, Z:
for each block l do

λH = λH
l ;

Ht+1

l = (W!

l Wl + ρIl)
−1(W!

l (Yl − Lt
l) + ρ(Zt

l − Ωt
l ))

Zt+1

l = S
+λH /ρ(Ht+1

l + Ωt
l )

end for
Ht+1 = [H1H2 · · ·HNblock ]

Zt+1 = [Z1Z2 · · ·ZNblock ]
update L:
UΣV = svd(Y − WHt+1); Lt+1 = USλL (Σ)V
update Ω:
Ωt+1 = Ωt + Ht+1

− Zt+1

t = t + 1
end while

Without the term I+ (Z), the solution of (6) would be given by the
soft-threshold operator [24, 25] 1:

Zk+1 = S λH
ρ

[H + Ω]

The effect of the indicator function I+ (Z) is to project onto the
first orthant, leading to:

Zk+1 = max



0,S λH
ρ

[H + Ω]

ff

(7)

where the maximum is to be understood in the componentwise sense.
To incorporate side information in the decomposition, we con-

sider a time segmentation of the magnitude spectrogram into Nblock
consecutive (non-overlapping) blocks of speech / non-speech (back-
ground noise) segments. We can represent the magnitude spectro-
gram as a concatenation of column-blocks Y = [Y1Y2 · · ·YNblock ],
the sparse layer as Z = [Z1 · · ·ZNblock ] and so on.

We can minimize the objective function with respect to each
column-block separately. To guide the separation, we aim at setting
a different value of λH

l , l ∈ [1, Nblock] for each block according to
the speech activity side information. Note that we could further opti-
mize the approach by choosing different ρ for each block, but in this
work we hold ρ constant. For each block, the problem is equivalent

1The scalar soft-thresholding (shrinkage) operator is defined as Sε[x]:

Sε[x] = sgn(x) · max(|x|− ε, 0) =

8

<

:

x − ε if x > ε
x + ε if x < −ε

0 otherwise

where x ∈ R and ε > 0. This operator can be extended to matrices by
applying it element-wise.

to Eq. (6) and accordingly, the solution to the resulting problem:

Zk+1

l = min
Zl

n

λH
l ‖Zl‖1 +

ρ

2
‖Zl − (Hl + Ωl)‖

2
2 + I+ (Zl)

o

is given by:

Zk+1

l = max

(

0,S λH
l
ρ

[Hl + Ωl]

)

(8)

Using a large λH
l in blocks without speech will favor retaining

all non-zero coefficients in the background layer. We detail here
how we adapt the decomposition when exact speech activity location
prior information is incorporated. Denoting by Ωspeech the set of
time frames that contain speech, the values of λH

l are set as:

∀ l ∈ [1, Nblock]



λH
l = λH

s if Zl ⊂ Ωspeech

λH
l = λH

ns otherwise
(9)

with λH
ns > λH

s to enhance sparsity of Z when no speech activity
is detected. In the evaluation, we will present experiments where
the parameter λH is not binary, but more precisely designed to bet-
ter suit the semantic information that is incorporated. The update
rules of the CaSaD-RPCA algorithm are detailed in Algorithm 1.
There, Sλ(·) refers to the well-known soft-threshold operator [26]2,
and S+λ[·] indicates the additional non-negative projection step after
the soft-threshold step.

In Section 3, we investigate the results of content-adaptive SaD-
RPCA using both exact and estimated speech activity side informa-
tion. A noise-robust pitch tracking method based on subband auto-
correlation classification (SAcC) is proposed in [27]. Pitch extrac-
tion and voicing detection is obtained by classifying the autocorrela-
tions of a set of subbands from an auditory filterbank using an multi-
layer perceptron neural network. We use this algorithm to obtain
speech activity information as it has been shown to be particularly
effective for speech activity detection in high-noise situations [28].

3. EVALUATION
3.1. Parameters, Dataset, and Criteria
The proposed algorithm was evaluated with 400 noisy speech ex-
amples, totaling 3.5 hours of audio. The noisy signal were gen-
erated by adding clean speech to noise signals of different types
and different signal-to-noise-ratios (SNRs). The clean speech was
randomly collected from the BABEL Vietnamese language pack3, a
dataset of conversational telephone speech. These single conversa-
tion sides contain approximately equal proportions of active speech
regions and silent gaps. The noise data were drawn from the AU-
RORA dataset and other internet resources. We include 8 stationary
noises – car, exhibition, restaurant, babble, train, subway, train, air-
port – and 3 transient noises – casino, keyboard, and birds. The test
samples were mixed with noise at four SNRs from−10 to 5 dB. All
signals were resampled to 8 kHz . The spectrograms were calculated
using a window of 32 ms and a hop of 10 ms.

The speech dictionary W was learned from 10 conversation
sides, each of about 10 minutes. Each side consisted of a different
speaker, and these were disjoint from the speakers used to make the
test samples. Sparse NMF with generalized KL-divergence [29] was
used to generate the dictionary that contained 800 bases.

The non-adaptive SaD-RPCA model was used as the baseline,
with λL = 500 and λH = 10, chosen empirically. Three differ-
ent versions of the proposed CaSaD-RPCA algorithm were evalu-

2The scalar soft-thresholding (shrinkage) operator Sλ[x] is defined as :
Sλ[x] = sgn(x) · max(|x| − λ, 0), where x ∈ R and λ > 0. It can be
extended to matrices by applying it element-wise.

3IARPA Babel Program Vietnamese language collection release
babel107b-v0.7, FullLP.



Ori MMSE SaD CaSaD GT CaSaD b CaSaD m
-10dB -12.79 -9.10 -7.16 -6.11 -6.67 -5.88
-5dB -9.10 -3.44 -0.74 1.08 0.28 0.53
0dB -2.95 3.16 4.25 5.16 4.35 4.83
5dB 2.04 6.81 7.11 7.57 7.46 8.03

Table 1. SDR values (in dB) for the whole utterance.
Ori MMSE SaD CaSaD GT CaSaD b CaSaD m

-10dB -12.79 -6.47 -3.74 1.29 -0.09 -0.64
-5dB -7.91 -0.29 3.98 8.28 9.59 7.83
0dB -2.95 6.24 12.54 15.38 16.15 14.89
5dB 2.04 10.24 20.11 21.69 21.37 20.14

Table 2. SIR for the whole utterance
Ori MMSE SaD CaSaD GT CaSaD b CaSaD m

-10dB 43.79 2.22 2.03 0.31 -0.44 0.30
-5dB 43.91 3.11 4.02 3.48 2.42 3.20
0dB 44.00 7.31 6.14 6.19 5.37 6.06
5dB 44.19 10.22 7.99 7.96 7.95 8.68

Table 3. SAR for the whole utterance, for all systems at various SNRs, averaged
across all noise types. Ori is the SDR value of original noisy speech. SaD is the baseline
system, CaSaD GT is the adaptive version using ground truth speech activity informa-
tion, CaSaD b uses binary estimated speech activity, and CaSaD m uses multi-level
estimated speech activity. MMSE is the comparison algorithm [30].

Ori MMSE SaD CaSaD GT CaSaD b CaSaD m
-10dB -9.17 -5.82 -4.25 -3.92 -4.19 -4.00
-5dB -4.30 -0.82 1.41 1.69 1.12 1.48
0dB 0.66 4.53 5.38 5.69 4.75 5.25
5dB 5.65 8.00 7.61 8.09 7.71 8.29

Table 4. SDR for the speech part only.
Ori MMSE SaD CaSaD GT CaSaD b CaSaD m

-10dB -9.17 -2.74 -0.70 -0.34 1.39 0.80
-5dB -4.30 -3.66 6.29 6.35 9.40 7.65
0dB 0.66 8.21 13.42 12.96 14.51 13.15
5dB 5.65 11.62 19.34 18.77 18.82 17.48

Table 5. SIR values (in dB) for the speech part
Ori MMSE SaD CaSaD GT CaSaD b CaSaD m

-10dB 287.13 2.43 2.91 2.91 0.80 1.65
-5dB 286.85 3.16 5.13 5.35 3.29 4.42
0dB 287.56 7.97 6.91 7.35 5.99 6.96
5dB 289.16 11.12 8.17 8.76 8.39 9.34

Table 6. SAR values (in dB) for the the speech part only.
ated. In each, the value of value λL remained the same while the
value of λH was adapted through the decomposition according to
speech activity information. First was CaSaD-RPCA with the exact
speech activity, using manually annotated ground-truth (CaSaD GT)
and λH

l = λH for speech regions and λH
l = 2λH for noise only

(silent) regions. For the two remaining conditions, estimated speech
activity from SAcC was used. SAcC outputs the posterior probabil-
ity of voicing for each frame in the noisy speech; this probability was
median-filtered over a 50 frame (500 ms) window, and the smoothed
estimate was used two ways: First, CaSaD b thresholds the voice ac-
tivity probability into a binary value for each frame, and adapts the
λH

l parameter as in the case of CaSaD GT. The final configuration
(CaSaD m) uses instead a ten-level quantization of the speech activ-
ity probability, and correspondingly sets λH

l to ten equally-spaced
values between λH and 2λH . We also include comparison with the
classic LogMMSE estimation [30] (MMSE).

The widely used Signal-to-Distortion Ratio (SDR) from the
BSS EVAL package [31] was used as the evaluation criteria; a
larger score indicates better performance. To accurately evaluate the
performance of the algorithms, the SDR of both the entire utterance
and the speech-only parts are reported. The result are shown in Ta-
bles 1 and 4. Paired sample t-tests at the 5% significance level were
performed to determine the statistical significance of the results.

The algorithms are implemented in MATLAB and performed
on a MacBook Pro Intel Core 2 at 2.4GHz with 2GB RAM. 30s are
needed to process 40s of noisy speech for both SaD and CaSaD.
3.2. Results and Discussion
Global enhancement results: As we can see from Table 1 all the
three comparison algorithms outperformed the baseline models on
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Fig. 2. Example decomposition. The top pane shows the spectrogram of speech
mixed with babble noise at 0 dB. The separated speech part of the baseline model (SaD-
RPCA) is shown in the second panel, and the third pane shows the sparse component
of the proposed CaSaD-RPCA m model (CaSaD-RPCA GT and CaSaD-RPCA b are
similar). For comparison, the fourth pane shows log-MMSE enhancement. The clean
speech appears in the fifth pane, with the smoothed estimated voice activity shown in
the bottom pane. Shaded regions correspond to true speech activity (derived from the
clean signal).

the entire test and in all SNRs conditions. Statistical tests show
that the difference in the results is significant. In all experiments,
for a given constant value λs in Eq. (9), setting λH

ns > λH
s always

improves the results. This shows that a structurally-informed adap-
tive regularization parameter allows improved speech enhancement.
However, note that artifacts may be introduced in low SNR condi-
tions, as can be seen in the SAR results, Tab. 3.1.
Speech parts only enhancement results:We expect the noise-only
(silent) parts of the utterance to be improved with the CaSad-RPCA
algorithm, since the side information directly indicates these regions
where the foreground (sparse) components should be avoided; this
can be clearly seen in Fig. 2. However, the improvements under the
proposed model are not limited to speech-inactive sections. Tab. 4
shows that by using the adaptive algorithm, the speech-active seg-
ments are also better enhanced. Indeed, apart from the binary model
at -5dB and 0dB, the separation is uniformly significantly better
when measured on the speech parts alone. This indicates that side
information helps not only to determine the silent gaps, but also en-
ables improved recovery of the speech, presumably because the low-
rank noise model is a better match to the actual noise.
Ground truth versus estimated speech activity location: The
results show that imperfect, estimated speech activity information
still allows an improvement, although not as much as with ground-
truth speech activity information. The decrement in performance is
mainly due to non-speech segments being classified as speech seg-
ments. Results obtained with CaSaD-RPCA m suggest that, when
using estimated speech activity as side information, a multiple-level
adaptive parameter helps reduce the impact of misclassified frames.

4. CONCLUSION

In this work, we have explored a novel framework for speech en-
hancement based on a combination of Robust PCA and learned tar-
get source models. Our approach incorporates side information to
adapt the decomposition to the local content of the audio excerpt.
Our experiments show that the proposed model is superior to exist-
ing approaches when applied to entire conversation sides that may
exhibit large variations in the speech content. We continue to in-
vestigate mechanisms to improve the quality of the separated tar-
get speech, for instance by incorporating other information, such as
knowledge of the speaker’s gender which could help guide the sparse
layer towards appropriate speech model bases.
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