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ABSTRACT

Robust Principal Component Analysis (RPCA) is a technique t
decompose signals into sparse and low rank components,aand h
recently drawn the attention of the MIR field for the problefn o
separating leading vocals from accompaniment, with ajmeees-
sults obtained on small excerpts of music. However, theoperf
mance of the method drops when processing entire musicstrack
We present an adaptive formulation of RPCA that incorparate
music content information to guide the decomposition. Expe

ments on a set of complete music tracks of various genres show

that the proposed algorithm is able to better process epitiees
of music that may exhibit large variations in the music cantand
compares favorably with the state-of-the-art.

1. INTRODUCTION

In the general context of processing high-dimensional,date-
current problem consists in extracting specific informatimom

a massive amount of related or unrelated information. Exesnp
include recovering documents with specific topics from decsl
tion of Web text document§][1] or detecting moving objectsfr
camera recordings for video surveillance purpése [2]. Agnou-
merous existing methods, the technique of Robust Prin€ipai-
ponent Analysis (RPCA][3,14], has recently drawn a lot ofmt
tion. All the above-mentioned problems can be formulateskas
arating some foreground components (the keywords in Wedy dat
the moving objects in video) from an underlying backgrouii (
background corpus topic in Web data, the stable environriment
video), that can be respectively modeled as a sparse plus-a lo
rank contribution.

RPCA has been used extensively in the field of image pro-

cessing (e.g. image segmentatidh [5], visual pattern spone
dence[[6], surveillance video processing [7], batch imdigna
ment [8], etc.). However, its application in Music Inforricat Re-
trieval (MIR) is much more recent. Existing applicationsindio
include audio classification, as in[9] where audio segm&ota
video sound files are classified into classes (applause agt-a
ter occurrences)[[10] addresses the problem of refininiadia
social tags obtained through social tagging websites tamiag
their quality. The main application of the RPCA framework in
music focuses on the task of separating a foreground compone
usually the singing voice, from a background accompaninent
monaural polyphonic recordings, i.e., when only one chiaohe

* Part of this research was supported by a Marie Curie IntematOut-
going Fellowship within the 7th European Community Framewero-
gram.

recording is available. This scenario is the primary focliths
paper.

The singing voice is a complex and important music signal
attribute that has been much studied in MIR. Its separasast
sential for many applications, such as singer identificafi],
melody transcription[I12], or query by hummirg [13]. We mefe
the reader to[14] for a recent review of singing voice sejiama
methods. Recently, approaches that take advantage ofti@pet
in the signal have emerged. These approaches assume that the
background accompaniment has a repetitive musical steydiu
contrast to the vocal signal whose repetitions, if any, oy
at a much larger timescale [15.116] 17]. [n][15] a simple métho
for separating music and voice is proposed based on thecggira
of the underlying repeating musical structure using birtane-
frequency masking (REPET algorithm). The methods assumes
that there is no variations in the background and is thustdiahi
to short excerpts. 11[16], the method is generalized to fietra
processing of complete musical tracks by relying on theragsu
tion of local spectral-periodicity. Moreover, artifacteaeduced
by using soft-masks. Inspired by these approaches, [1pbses a
model for singing voice separation based on repetitionwittiout
using the hypothesis of local periodicity. The backgroungsim
cal accompaniment at a given frame is identified using theaséa
neighbor frames in the whole mixture spectrogram.

Most recently, RPCA has emerged as a promising approach
to singing voice separation based on the idea that the tiopeti
musical accompaniment may lie in a low-rank subspace, while
the singing voice is relatively sparse in the time-freqyedo-
main [18]. The voice and the accompaniment are separated-by d
composing the Short-Time-Fourier Transform (STFT) magtet
(i.e., spectrogram) into sparse and low-rank componenteenV
tested on short audio excerpts from the MIR-1K dafh&RCA
shows improvement over two state-of-the-art approach@siE].
The decomposition is improved in [20] by adding a reguldiora
term to incorporate a prior tendency towards harmonicityhie
low-rank component, reflecting the fact that backgrouncce®i
can be described as a harmonic series of sinusoids at nesltipl
of a fundamental frequency. A post-processing step is ey
the sparse component of the decomposition to eliminate ¢he p
cussive sounds.[[21] addresses the problem of jointly fondin
sparse approximation of a varying component (e.g., theirging
voice) and a repeating background (e.g., the musical acaoimp
ment) in the sameedundant dictionaryIn parallel with the RPCA

1The MIR-1K dataset [[19] is a set of 1000 short excerpts
(4 — 13s) extracted from 110 Chinese karaoke por) songs, where
accompaniment and the singing voices are separately egtordSee
https://sites. google.conisite/unvoi cedsoundseparation/ mr-1Kk.
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idea of [3], the mixture is decomposed into a sum of two com- 2. ROBUST PRINCIPAL COMPONENT ANALYSISVIA

ponents: astructured sparse matrix and annstructuredsparse PRINCIPAL COMPONENT PURSUIT

matrix. Structured sparsity is enforced using mixed norasng

with a greedy Matching Pursuit algorithin [22]. The modehiale In [3] , Candest al. show that, under very broad conditions, a data
uated on short popular music excerpts from the Beach Bbj. [2 matrix D € R™*" can be exactly and uniquely decomposed into
proposes a non-negative variant of RPCA, termed robustémk- a low-rank componen#l and a sparse componehtvia a convex

non-negative matrix factorization (RNMF). In this apprbabe program callecPrincipal Component PursuifRPCA-PCP) given

low-rank model is represented as a non-negative linear owmb  by:

tion of non-negative basis vectors. The proposed framewbrk glig Al + M| E|lL st D=A+E (1)

lows incorporating unsupervised, semi-, and fully-sused learn- " o

ing, with supervised training drastically improving thesuéis of where) > Ois a regularlzatlon parameter that trades between the

the separation. Other related works includifgl [24, 25] eger ~ fank of A and the sparsity off. The nuclear nornfj-||.. —the sum

singing voice separation based on low-rank representatitome of singular values —is used as surrogate for the rank 0], and

but are beyond the scope of this article. _the 2 norm [|-|[x (sum of absolute values of the matrix entries)
While RPCA performs well on the-10 sec clips of MIR-1K, is an effective surrogate for the pseudo-norm, the number of

. non-zero entries in the matrix [31,132].
the full-length Beach Boys examples 6f[14] give much leds sa A .
isfying results. When dealing with whole recordings, thesimu The Augmented Lagrange Multiplier Method (ALM) and its

cal background may include significant changes in instruatzm practical variant, the Alternating Direption 'V'?”.‘Od .Of Mipliers
and dynamics which may rival the variation in the foregrquamt (ADM), _have been proposed as efficient optlmlzatl_o_n s_c_hemnes
hence its rank in the spectrogram representation. Furibies; solve this problem([33, 34, 5. ALM works by minimizing the

ground may vary in its complexity (e.g., solo voice followeygla augmented Lagrangian function bf (1):
duet) and may be unevenly distributed throughout the pieag,( _ 1 2
entire segments with background only). Thus, the best way to L(A,EY, p) = [[All-+A| £l Y, AJFE*D)JFEHAHE*D”F

apply RPCA to separateompletemusic pieces remains an open ) o . 2
question. whereY € R™*"™ is the Lagrange multiplier of the linear con-

straint that allows removing the equality constrajat,> 0 is a
penalty parameter for the violation of the linear cons'ﬂ:am’lg.|
denotes the trace inner prodliend |- ||  is the Frobenius noti:
ALM [34] is an iterative scheme that works by repeatedly mini
mizing A and E simultaneously. In contrast, ADM splits the min-
imization of [2) into two smaller and easier subproblemshwi
and £ minimized sequentially:

In this article, we explore an adaptive version of RPCA (A-
RPCA) that is able to handle complex music signals by taking
into account the intrinsic musical content. We aim to adfbst
task through the incorporation of domain knowledge thatesii
the decomposition towards results that are physically andiim
cally meaningful. Time-frequency representations of masidio
may be structured in several ways according to their contemit

instance, the frequency axis can be segmented into regres-c Vi : k xk K
) . . = argmin L(A,E",Y", 3a
sponding to the spectral range of each instrument of theumaxt gA (4, ) (32)
In the singing separation scenario, coefficients that atémihe k+1 : k41 kK
S . ’ . E = argmin A E)Y 3b
singing voice spectral band should not be selected in thesspa gE & Y1) (3b)

layer. In the time dimension, music audio signals can gdiyera )
be organized into a hierarchy of segments at different scekech Both subproblemg {a) anid {3b) are shrinkage problems #vat h
with its own semantic function (bar, phrase, entire sectitm), closed-form solutions that we briefly present here. We rtfer
and each having specific characteristics in terms of ingtrum  reader to[[34. 35] for more details. For convenience we thice
tation, leading voice, etc. Importantly, as the segmentoive the scalar soft-thresholding (shrinkage) operaidr|:
shorter, we expect the accompaniment to span less variaizh
thus the rank of the background to reduce.

We will show a way for this music content information to be
incorporated in the decomposition to allow an accurategssiog

of entiremusic tracks. More specifically, we incorporate voice ac- \yherex € R ande > 0. This operator can be extended to matrices

x—e If z>e€
Sc[z] = sgn(z) - max(jz| —€,0) =< x+e if =< —e
0 otherwise

tivity information as a cue to separate the leading voicenftbe by applying it element-wise.
background. Music pieces can be segmented into vocal segmen
(where the leading voice is present) and background segr(teat Problem[(3R) is equivalent to:

can be purely instrumental or may contain backing voices)d-+

ing vocal segments (voicing detectidn [26]) is a subject tas bt ] uh PR R
received significant attention within MIR 26,147,128 29hélde- A = mmn Al + 7”14 -(D-E"+ FY e (4)
composition into sparse and low-rank components shouldobe ¢

herent with the semantic structure of the piece: the spdose-( that has, according tb[36], a closed-from solution given by
ground) component should be denser in sections contaihiag t

leading voice while portions of the sparse matrix corresiiogto A =Us SV

non-singing segments should ideally be null. Thus, whigetéth- .

nique remains the same as|[18] at the lowest level, we carniide 2The inner product between two matrices and B is defined as
problem of segmenting a longer track into suitable pieass faw (A, B) = trace(A* B), * being the conjugate transpose.

to locally adapt the parameters of the decomposition byrjpo 3The Frobenius norm of matrix is defined ag/A|| = /Z A2
rating prior information. g ’
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whereU € R™*", V € R™*" andX € R"*" are obtained via the
singular value decompositiqit/, 32, V') = SV D(D — E* + Z—,f).

Problem[(3b) can be written as:

E*! = min

ik
n { A+ 1B -

D— Akt 4 Ly
o

a )H%}

®)
whose solution is given by the least-absolute shrinkage saad
lection operatorl(assq [37], a method also known in the signal
processing community as basis pursuit denoising [38]:

}/k
m

l;k+1 ::é;;L

e

[D — AM 4 —]

In other words, denoting® = D — A**! 4 Z—:

Vie[l,m],Vje[l,n] ES= sgr(Gﬁ)-max(|Gﬁ|—%,0)

3. ADAPTIVE RPCA (A-RPCA)

Figure 2: Waveform of the separated voice for various vahfes
A for the songls This Loveby Bob Marley. From top to bottom:
clean voice = A\1,2 % A1, 5 % A1, 10 % \p.

In the theoretical formulation of RPCA-PCP [3], there is no
single value of\ that works for separating sparse from low-rank

components in all conditions. They recommeng: max(m, n)’%
but also note that the decomposition can be improved by ehoos
ing A in light of prior knowledge about the solution. In prac-
tice, we have found that the decomposition of music audi@ig v
sensitive to the choice of with frequently no single value able
to achieve a satisfying separation between voice and mstnl

As discussed in Sectidd 1, in a given song, the foreground vo- tal parts across a whole recording. This is illustrated ig. [,

cals typically exhibit a clustered distribution in the tiffrequency
plane relating to the semantic structure of the piece thetraltes
between vocal and non-vocal (background) segments. Trois-st
ture should be reflected in the decomposition: frames béigng
to singing voice-inactive segments should result in zedoed
columns inE.

The balance between the sparse and low-rank contribution
is set by the value of the regularization parameterThe voice
separation quality with respect to the valuexdbr the Pink Noise
Party songTheir Shallow Singularitys illustrated in Fig[JL. As we
can observe, the beatdiffers depending on whether we process
the entire song, or restrict processing to just the singioige+
active parts. Because the separation for the backgrourtdigpar
monotonically better as\ increases, the difference between the
optimum X indicates that the global separation quality is compro-
mised between the singing voice and the background part.

* entire
+ voice only|

10

-20r

25 5 6 7 8

value of A

9 10 20 100

Figure 1: Variation of the estimated singing voice NSDR (@efe
inition in Sectior[ %) according to the value afunder two situa-
tions. e: NSDR when only the singing voice-active parts of the
separated signal are processedNSDR when the entire signal is
processed.

which shows the waveforms of the resynthesized separaied vo
obtained with the RPCA-PCP formulation for variousFor A =
A1 = 1/4/max(m,n) andz = 2«\1, aroundt = 1.15 s (dashed
rectangle) there is a non-zero contribution in the voiceidut no
actual lead vocal. This is eliminated with larger values\p§uch
as\ = 5 A1, 10 x A\ but at the expense of a very poor quality
gvoice estimate: the resulting signal consists of percassounds
and higher harmonics of the instruments, and does not rdsemb
the voice. Note that similar observations have been madkein t
context of video surveillance[39].

To address the problem of variationsinwe propose an adap-
tive variant of the RPCA consisting of a weighted decomposi-
tion that incorporates prior information about the musiateat.
Specifically, voice activity information is used as a cue tb a
just the regularization parameter through the entire aealypiece
in the [3b) step, and therefore better match the balanceeleetw
sparse and low-rank contributions to suit to the actual mosn-
tent. This idea is related to previous theoretical work Bi[42],
but to our knowledge, its application in the framework of RPIE
new.

We consider a time segmentation of the magnitude spectro-
gram into Npiock cOnsecutive (non-overlapping) blocks of vocal /
non-vocal (background accompaniment) segments. We can rep
resent the magnitude spectrogram as a concatenation aheelu
blocksD = [D1 D3 - - - Dnyo.l, the sparse layer @ = [E1 - - - Engoudl
andG” = [GT - Gyl

We can minimize the objective function with respect to each
column-block separately. To guide the separation, we aigetat
ting a different value of\;,! € [1, Nuocks] for each block ac-
cording to the voice activity side information. For eachdilothe
problem is equivalent to Eq[](5) and accordingly, the sotutio
the resulting problem:

k
Efftt = n}ziln {)\lHElHl + %HEI - GlEH%}

is given by:

BT =85 [GT] (6)
s
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Algorithm 1 Adaptive RPCA (A-RPCA)

Input: spectrogranD, blocks, A\, A1, ..., AN, .xe
Output: F, A
Initialization:  Y° = D/J(D) where J(D) =
maz(||Dll2, A" |Dljee); E° = 0; po > 0; p > L
while not convergedio
update A:
(U,%,V) = SVD(D — E* + X2); AL = U8, [S]VT
update E: .
for each block do
A=A
&
Elt+1 = Sﬂ [Dl — A;C+1 + %]
end for "
B = BB B
updateY’, u:
Yk:+1 _ Yk o ,uk(Ak+1 + Ek+l o D)
Mk+1 _ pluk
k=k+1
end while

Denote), the constant value of the regularization paramater
used in the basic formulation of RPCA for voice separatidj.[1
To guide the separation, in the A-RPCA formulation we assign
to each block a valug; in accordance with the considered prior
music structure information. Using a large in blocks without
leading voice will favor retaining non-zero coefficientstire ac-
companiment layer. Denoting Yy the set of time frames that
contain voice, the values of; are set as:

N =MNIf B, C Qv
V1€ [1, Notoc] { A, = Anv Otherwise ™
with Ay > Ay to enhance sparsity df when no vocal activity
is detected. Note that instead of two distinct values\gf fur-
ther improvements could be obtained by tunignmore precisely
to suit the segment characteristics. For instance, vibrdtoma-
tion could be used to quantify the amount of voice in the nrixtu
within each block and to set a specific regularization patanse-
cordingly. The update rules of the A-RPCA algorithm are itieta
in Algorithm 1.

In Sectiori %, we investigate the results of adaptive-RPCi wi
both exact (ground-truth) and estimated vocal activitgiinfation.
For estimating vocal activity information, we use the voigide-
tection step of the melody extraction algorithm implemenite
the MELODIA Melody Extraction vamp plugdh as it is freely
available for people to download and use. We refer the re@der
[26] and references therein for other voicing detectiomatgms.
The algorithm for the automatic extraction of the main mglod
from polyphonic music recordings implemented in MELODIA is
a salience-based model that is described in [43]. It is based
the creation and characterization of pitch contours grdugsng
auditory streaming cues, and includes a voice detectignthe
indicates when the melody is present; we use this melodyitota
as an indicator of leading voice activity. Note that whilelouky
can sometimes be carried by other instruments, in the ew@tua
dataset of Sectidd 4 it is mainly singing.

4http://ntg. upf.edu/technol ogi es/ el odi a

4. EVALUATION

In this section, we present the results of our approach atedion

a database of complete music tracks of various genres. We com
pare the proposed adaptive method with the baseline meffgid [
as well as another state-of-the-art methiod [16]. Sound phesm
discussed in the article can be found at:

http:// papadopoul osel I'i sdaf x14. bl ogspot.fr.

4.1. Parameters, Dataset and Evaluation Criteria

To evaluate the proposed approach, we have constructedtzagat
of 12 complete music tracks of various genres, with sepdnate
cal and accompaniment files, as well as mixture versionsddrm
as the sum of the vocal and accompaniment files. The traskex i
in Tab.[1, were created from multitracks mixed in Auddgitpen
exported with or without the vocal or accompaniment lines.

Following previous work[18, 44, 15], the separations aw@d-ev
uated with metrics from the BSS-EVAL toolbdx [45], which pro
vides a framework for the evaluation of source separatigo-al
rithms when the original sources are available for comparis
Three ratios are considered for both sources: Sourcegtsifion
(SDR), Sources-to-Interference (SIR), and Sources-tdakts (SAR).
In addition, we measure the improvement in SDR between the
mixture d and the estimated resynthesized singing veéity the
Normalized SDR (NSDR, also known 8®R improvemenSDRI),
defined for the voice as NSOR e, d) = SDR(é, e) — SDR(d, e),
wheree is the original clean singing voice. The same measure is
used for the evaluation of the background. Each measurenis co
puted globally on the whole track, but also locally accogdimthe
segmentation into vocal/non-vocal segments. Higher gabdi¢he
metrics indicate better separation.

We compare the results of the A-RPCA with musically-infodme
adaptive) and the baseline RPCA methdd [18] with fixadus-
ing the same parameter settings in the analysis stage: A€ &T
each mixture is computed using a Hanning window @24 sam-
ples length with75% overlap at a sampling rate @f.5KHz. No
post-processing (such as masking) is added. After speatrode-
composition, the signals are reconstructed using thesev8iTFT
and the phase of the original signal.

The parametek is set tol //max(m, n) in the baseline method.
Two different versions of the proposed A-RPCA algorithm are
evaluated. First, A-RPCA with exact voice activity infortica,
using manually annotated ground-truth (A-RPCA_GT), and=
A for singing voice regions and, = 5x* \ for background only re-
gions. In the other configuration, estimated voice actikdbation
is used (A-RPCA_est), with same settings for Me

We also compare our approach with the REPET state-of-the-
art algorithm based on repeating pattern discovery andyptimae-
frequency maskind [16]. Note that we use for comparison #re v
sion of REPET that is designed for processing complete ralsic
tracks (as opposed to the original one introduced in [15his T
method includes a simple low pass filtering post-processiag
[46] that consists in removing all frequencies belbddHz from
the vocal signal and adding these components back into ttle ba
ground layer. We further apply this post-processing stepuio
model before comparison with the REPET algorithm.

Paired sample t-tests at the 5% significance level are peefdr
to determine whether there is statistical significance érésults
between various configurations.

Shttp://audacity.sourceforge.net
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Table 1: Sound excerpts used for the evaluatlmatk. proportion of background (no leading voice) segments4inf the whole excerpt
duration); RecalRec.and False Alarnf.A. voicing detection rate.

Name % back. | Rec. | FA. | Name % back. | Rec. | FA.
1- BeatlesSgt Pepper’s Lonely Hearts Club Baryd 49.3 74.74 | 45.56 | 8 -Bob Marleyls This Love 37.2 66.22 | 36.84
2 - Beatleswith A Little Help From My Friends 13.5 70.10 | 14.71 | 9 - Doobie Brotherd.ong Train Running 65.6 84.12 | 58.51
3 - BeatlesShe’s Leaving Home 24.6 77.52 | 30.17 | 10 -Marvin GayeHeard it Through The Grapevine 30.2 79.22 | 17.90
4 - BeatlesA Day in The Life 35.6 61.30 | 63.96 | 11 -The EaglesTake it Easy 35.5 78.68 | 30.20
5,6 -Puccinipiece for soprano and piano 24.7 47.90 | 27.04 | 12 -The PoliceMessage in aBottle 24.9 73.90 | 20.44
7 - Pink Noise PartyTheir Shallow Singularity 42.1 64.15 | 61.83

4.2. Resultsand Discussion

Results of the separation for the sparse (singing voice)l@md
rank (background accompaniment) layers are presentecbiesa

[@,[3,[2 andb. To have a better insight of the results we present a0
measures computed both on the entire song and on the singing

voice-active part only, that is obtained by concatenatithgeg-
ments labeled as vocal segments in the ground truth.

e Global separation results. As we can see from Tablé$ 2 and
[3, using a musically-informed adaptive regularizationapaeter
allows improving the results of the separation both for thekh
ground and the leading voice components. Note that therlénge
proportion of purely-instrumental segments in a piece (sde 1),
the larger the results improvement (see in particular gidcd, 8
and 9), which is consistent with the goal of the proposed oteth
Statistical tests show that the improvement in the ressibgginifi-
cant.

As discussed in Sectidd 3, the quality of the separation with
the baseline method [18] depends on the value of the regatari
tion parameter. Moreover, the value that leads to the bestrae
tion quality differs from one music excerpt to another. Thusen
processing automatically a collection of music tracks cthace of
this value results from a trade-off. We report here resuitaioed
with the typical choice\, = 1/4/max(m,n) in Eq. [4). Note that
for a given value of\, in the baseline method, the separation can
always be further improved by the A-RPCA algorithm usingg re
ularization parameter that is adapted to the music contesedon
prior music structure information: in all experiments, fogiven
constant value\, in the baseline method, setting, > A, in EQ.

(@) improves the results.

For the singing voice layer, improved SDR (better overgitse
aration performance) and SIR (better capability of remgvimusic
interferences from the singing voice) with A-RPCA are ofxai
at the price of introducing more artifacts in the estimatette
(lower SARyice). Listening tests reveal that in some segments
processed by A-RPCA, as for instance segnj&itt0” — 1'15"]
in Fig. [3, one can hear some high frequency isolated cosfficie
superimposed to the separated voice. This drawback coule-be
duced by including harmonicity priors in the sparse compbioé
RPCA, as proposed i [20]. This performance trade-off is-com
monly encountered in music/voice separation [14, 47]. Haxe
we can notice that all three measures are significantly ingao
with A-RPCA for the background layer.

e Ground truth versus estimated voice activity location. Im-
perfect voice activity location information still allows@amprove-
ment, although to a lesser extent than with ground-trutbesaic-
tivity information. In tabldlL, we report the accuracy reswf the
voicing detection step. Similarly to the measures used &lody

00

Figure 3: Separated voice for various values éér thePink Noise
Party songTheir Shallow Singularity From top to bottom: clean
voice, constanh; = 1/4/max(m,n), constant\ = 5x A1, adap-
tive A = ()\1, 5% Al).

detection in[[48,12], we consider tMeicing Recall Ratedefined

as the proportion of frames labeled voiced in the groundh titost
are estimated as voiced frames by the algorithm, and/tiheing
False Alarm Ratedefined as the proportion of frames labeled as
unvoiced in the ground truth that are mistakenly estimatedet
voiced by the algorithm. The decrease in the results mamiyes
from background segments classified as vocal segments.udowe
statistical tests show that the improvement in the reste/den
RPCA and A-RPCA_est is still significant.

e Local separation results. It is interesting to note that using
an adaptive regularization parameter in a unified analysthe
whole piece is different from separately analyzing the essive
vocal/non-vocal segments with different but constant eslaf A
(see for instance the dashed rectangles areas ifFig. 3).

e Analysis of theresults on vocal segments. We expect the sep-
aration on background-only parts of the song to be improvitial w
the A-RPCA algorithm. Indeed the side information diredtly
dicates these regions where the foreground (sparse) c@nizon
should be avoided,; this can be clearly seen in[Hig. 3. Howéver
improvements under the proposed model are not limited te non
vocal regions only. Results measured on the vocal segmiemts a
indicate that by using the adaptive algorithm, the voicdde aet-
ter estimated, as shown in Table 3. The improvement over RPCA
is statistically significant, both when using ground trutid a&sti-
mated voice activity location information. This indicatest side
information helps not only to better determine the backgcoonly
segments, but also enables improved recovery of the singicg,
presumably because the low-rank background model is arbette
match to the actual background.

Side information could have been added as a pre- or post-
processing step to the RPCA algorithm. The adaptive-RP@é-al
rithm presents advantages over such approaches. To anhiyze
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Table 2: SDR, SIR and SAR (in dB) and NSDR results for the voiceTable 3: SDR, SIR and SAR (in dB) and NSDR results for the voice
(Voice and background layemB@ack), computed across the whole (Voice and background layeB@ack), computed across the vocal seg-

song, for all models, averaged across all the songs. RPQw isdse-
line system, A-RPCA_GT is the adaptive version using growuth

voice activity information, and A-RPCA_est uses estimataide ac-
tivity.

Entire song Vocal segments
RPCA | A-RPCA_GT | A-RPCA_est RPCA | A-RPCA_GT | A-RPCA_est

SDR (dB) | -4.66 -2.16 -3.18 SDR (dB) | -3.19 -2.00 -1.96

Voice SIR (dB) | -3.86 0.74 -0.46 Voice SIR(dB) | -2.33 -0.39 0.74
SAR (dB) 8.99 481 3.94 SAR (dB) 9.44 7.27 4.64

NSDR 1.70 4.20 3.18 NSDR 1.67 2.85 2.90

SDR (dB) | 4.14 6.52 6.08 SDR (dB) | 3.63 518 5.28
Back SIR (dB) 11.48 13.30 12.07 Back SIR (dB) 9.95 10.64 10.41
" | SAR (dB) 5.51 8.03 7.83 " | SAR (dB) 5.39 7.32 7.54
NSDR -2.35 0.03 -0.41 NSDR -1.37 0.18 0.29

ments only, for all models, averaged across all the songsCARP
is the baseline system, A-RPCA_GT is the adaptive versiamgus
ground truth voice activity information, and A-RPCA_esesi®sti-
mated voice activity.

Table 4: SDR, SIR and SAR (in dB) and NSDR results for the voiceTable 5: SDR, SIR and SAR (in dB) and NSDR results for the voice

(Voice and background layemB@ack), computed across the whole
song, for all models, averaged across all the songs. RPQw isdse-
line system, A-RPCA_GT is the adaptive version using growuath
voice activity information, and A-RPCA_est uses estimataide ac-
tivity. Low-pass filtering post-processing is applied. HHPis the
comparison algorithmi [16].

we compare the A-RPCA algorithm with two variants of RPCA in-
corporating side information either as a pre- or a postgssitig
step:

e RPCA OV ... Only the concatenation of segments clas-
sified as vocal is processed by RPCA (the singing voice
estimate being set to zero in the remaining non-vocal seg-
ments).

RPCA OV ,0s¢: The whole song is processed by RPCA
and non-zeros coefficients estimated as belonging to the

voice layer in non-vocal segments are transferred to the RPCAOV yosy | RPCAOV pre | A-RPCAGT | A-RPCA est
SDR 319 3.28 2.00 1.96
background layer. voice | SIR -2.33 -2.31 3.62 0.74
Results of the decomposition computed across the vocal segH SAR 9.44 8.97 7.27 4.64
. NSDR 1.67 1.57 2.85 2.90
ments only are presented in Table 6. Note that the RROA, SOR 353 377 =18 553
results reduce to the RPCA results in TdHle 3 since they are co SIR 9.95 9.22 10.64 10.41
d | Iv. There i istical diffee b Back- | sar 5.39 5.85 7.32 7.54
puted on vocal segments only. There is no statistical diffee be- NSDR I 5% 018 02

tween the estimated voice obtained by processing with RREA t
whole song and the vocal segments only. Results are sigmtifjca
better using the A-RPCA algorithm than using RPCA/,,,.. and
RPCA OV 5. This is illustrated in Figur€l4, which shows an
example of the decomposition on an excerpt of w@bie Broth-
erssongLong Train Runningcomposed of a non-vocal followed
by a vocal segment. We can see that there are misclassifigalpar
in the voice spectrogram obtained with the baseline RPCiatea
removed with A-RPCA. Moreover, the gap in the singing voice
around frame 50 (breathing) is cleaner in the case of A-RR@A t
in the case of RPCA. Listening tests confirm that the backuttou

DAFX

(Voice and background layeB@ck), computed across the vocal seg-
ments only, for all models, averaged across all the songsCARP
is the baseline system, A-RPCA_GT is the adaptive versiamgus
ground truth voice activity information, and A-RPCA_esesi®sti-
mated voice activity. Low-pass filtering post-processia@pplied.
REPET is the comparison algorithm [16].

Vocal segments only

Entire song

RPCA | A-RPCA_GT | A-RPCA_est| REPET RPCA | A-RPCA_GT | A-RPCA_est| REPET
SDR(dB) | -2.76 0.72 211 2.20 SDR (dB) | -1.25 -0.53 -0.83 -0.70
Voice | SIR@B) | -0.17 4.03 2.22 1.34 Voice | SIR(@B) | 149 3.04 3.62 3.02
SAR (dB) | 4.33 3.33 2.32 3.19 SAR(dB) | 5.02 4.46 3.12 4.02
NSDR 3.60 5.64 4.25 4.16 NSDR 3.60 4.32 4.02 4.15
SDR(dB) | 5.16 7.61 6.81 5.01 SDR (dB) | 4.85 6.03 6.11 4.80
Back. | SIR(@B) | 14.53 14.49 12.99 16.83 Back. | SIR(@@B) | 13.07 12.38 11.41 15.33
| SAR(dB) | 5.96 9.02 8.44 5.47 | SAR(dB) | 5.91 7.69 8.20 5.41
NSDR -1.32 1.12 0.33 -1.48 NSDR -0.14 1.03 1.11 -0.20

Table 6: SDR, SIR and SAR (in dB) and NSDR results

for the voice Yoice and background layerB@ack), com-
puted across the vocal segments only, averaged acrosseall th
songs. RPCAOV ,.s: is when using the baseline system and
set the voice estimate to zero in background-only segments,
RPCA_OV,,. is when processing only the voice segments with
the baseline model, A-RPCA_GT is the adaptive version using
ground truth voice activity information, and A-RPCA_ests®s-
timated voice activity.

is better attenuated in the voice layer when using A-RPCA.

e Comparison with the state-of-the-art. As we can see from Ta-
ble[d, the results obtained with the RPCA baseline methodatre
better than those obtained with the REPET algorithm. Ondine ¢
trary, the REPET algorithm is significantly outperformed the
A-RPCA algorithm when using ground truth voice activityant
mation, both for the sparse and low-rank layers. Howevete no
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Figure 4: [Top Figure] Example decomposition on an excefpt o
the Doobie BrotherssongLong Train Runningand [Bottom Fig-
ure] zoom between frames [525-580] (dashed rectangle ifidhe
Figure). For each figure, the top pane shows the part betvasd
500Hz of the spectrogram of the original signal. The clean sign-
ing voice appears in the second pane. The separated sigoicgy v
obtained with baseline model (RPCA), with the baseline rhode
when restricting the analysis to singing voice-active segtsonly
(RPCA_OV ,re), and with the proposed A-RPCA model are rep-
resented in panes 3 to 5. For comparison, the sixth pane ghews
results obtained with REPET [16].

that when using estimated voice activity information, tfiéed
ence in the results between REPET and A-RPCA is not statistic
significant for the sparse layer. If we look closer at the ltssit

is interesting to note that the voice estimation improvengnA-
RPCA_GT over REPET mainly comes from the non-vocal parts
where the voice estimated is favored to be null. Indeed,€l8bl
indicate that the voice estimates on vocal segments olotavita
A-RPCA_GT and REPET are similar. This is illustrated by the
two last panes in the [bottom] Figuré 4, which show similagsp

trograms of the voice estimates obtained with the A-RPCA and [11]

REPET algorithms on the vocal part of the excerpt.

Conference on Digital Audio Effects (DAFx-14), Erlamg Germany, September 1-5, 2014

5. CONCLUSION

We have explored an adaptive version of the RPCA technicte th
allows the processing of entire pieces of music includincalo
variations in the music structure. Music content informatis
incorporated in the decomposition to guide the selectiaroeffi-
cients in the sparse and low-rank layers according to thasgm
structure of the piece. This motivates the choice of usinggai+
larization parameter that is informed by musical cues. Resu
dicate that with the proposed algorithm, not only the backgd
segments are better discriminated, but also that the gingiice is
better estimated in vocal segments, presumably becaudevihe
rank background model is a better match to the actual baakgro
The method could be extended with other criteria (singentide
fication, vibrato saliency. etc.). It could also be improwsdin-
corporating additional information to set differently ttegulariza-
tion parameters foeachtrack to better accommodate the varying
contrast of foreground and background. The idea of an adapti
decomposition could also be improved with a more complex for
mulation of RPCA that incorporates additional constraja@ or

a learned dictionary [49].
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