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Abstract

The aim of this paper is to study the asymptotic expansion in total variation in the Central
Limit Theorem when the law of the basic random variable is locally lower-bounded by the Lebesgue
measure (or equivalently, has an absolutely continuous component): we develop the error in powers
of n−1/2 and give an explicit formula for the approximating measure.
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1 Introduction

The aim of this paper is to study the convergence in total variation in the Central Limit Theorem
(CLT) under a certain regularity condition for the random variable at hand. Given two measures µ, ν
in R

N , we recall that the distance in total variation is defined as

dTV (µ, ν) = sup
{∣∣∣

∫
fdµ−

∫
fdν

∣∣∣ : ‖f‖∞ ≤ 1
}
.

Let F be a centred r.v. in R
N with identity covariance matrix and let Fk, k ∈ N, denote independent

copies of F . We set

Sn =
1√
n

n∑

k=1

Fk.

We also define µn the law of Sn and Γ the standard Gaussian law in R
N .

The problem of the convergence in total variation for the CLT, that is dTV (µn,Γ) → 0 as n → ∞,
is very old. Prohorov [14] in 1952 proved that, in dimension 1, a necessary and sufficient condition
in order to get the result is that there exists n0 such that the law of

∑n0
k=1 Fk has an absolutely

continuous component (see next Definition 2.1). Then, many related problems have been considered
in the literature, such as the generalization to the multidimensional case, the study of the speed of
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convergence, the convergence and the development of the density of Sn, if it exists, or the case of a
r.v. F whose law has not necessarily an absolutely continuous component, the latter implying the use
of a different distance, which is similar to the total variation one but defined on a special class of test
functions, typically indicator functions of special sets.

A first class of results has been obtained by Rao [16] and then improved by Battacharaya [5]: in [16]
one proves that the convergence in the CLT holds when the test function is the indicator function
of a convex set D. This result is improved in [5] where D is no more a convex set but a set with a
boundary which is small in some sense. An overview on this topic is given in [6]. But it turns out
that one is not generally able to extend the above mentioned results to a general set D (and so to
general measurable and bounded test functions), because, thanks to the Prohorov’s result, one needs
to assume a little bit of regularity on the law of the basic random variable F which comes on in the
CLT. In such a case, Sirazhdinov and Mamatov [15] prove that if F ∈ L3(Ω) then the density of
the absolutely continuous component of the law µn converges in L1(RN ) to the standard Gaussian
density, and therefore the convergence of the CLT holding in total variation distance, at speed 1/

√
n.

This is done in the one dimensional case, but it works as well in the multi dimensional case. The
second part of the book [6] gives a complete view on the recent research on this topic, mainly on the
the development of the density of Sn around the standard Gaussian density. Results concerning the
convergence in the entropy distance (under the same type of hypothesis) has been recently obtained
in [7].

This paper contributes in this direction by giving the precise expansion of the CLT in total variation
distance. More precisely, we assume that the law of F is locally lower bounded by the Lebesgue
measure LebN on R

N in the following sense: there exists an open set D0 and ε0 > 0 such that for
every Borel set A one has

P(F ∈ A) ≥ ε0 × LebN (A ∩D0). (1.1)

We will show that this is equivalent to the request that the law of F has an absolutely continuous
component (and moreover, we can construct such absolutely continuous measure in order that the
associated density is a non negative lower semi-continuous function, see Appendix A). So it is clear
that our hypotheses overlaps the assumption of the existence of the density but one cannot reduce one
to another (if the law of F gives positive probability to the rational points then it is not absolutely
continuous; and doing convolutions does not help!). Let us give a non trivial example: consider
a functional F on the Wiener space and assume that F is twice differentiable in Malliavin sense:
F ∈ D

2,p with p > N where N is the dimension of F . Let σF be the Malliavin covariance matrix of
F. If P(detσF > 0) = 1 then the celebrated criterion of Bouleau and Hirsh ensures that the law of
F is absolutely continuous, so we are in the classical case (in fact it suffices that F ∈ D

1,2). But if
P(detσF > 0) < 1 this criterion does no more work (and one may easily produce examples when the
law of F is not absolutely continuous). In [2] we have proved that if P(det σF > 0) > 0 then the law
of F has the property (1.1). Notice also that in the one dimensional case (N = 1) the fact that F is
not constant immediately implies that P(σF > 0) > 0. Indeed, in this case σF = |DF |2 and if this is
almost surely null, then F is constant.

Let us present our results. We consider a random variable F ∈ L2(RN ) which satisfies (1.1), such that
E(F ) = 0 and the covariance matrix of F is the identity matrix. We take a sequence Fk, k ∈ N of
independent copies of F and we denote by µn the law of Sn = 1

n1/2

∑n
k=1 Fk and by Γ the standard

Gaussian law on R
N . Under these hypothesis we first prove that limn→∞ dTV (µn,Γ) = 0 where dTV

is the total variation distance. Then we give the asymptotic development, that we are able to find
according to additional requests on the existence of the moments of F . More precisely, we get that, for
r ≥ 2, if F ∈ Lr+1(Ω) and if the moments of F up to order r agree with the moments of the standard
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Gaussian law then under (1.1) one has

dTV (µn,Γ) ≤ C(1 + E(|F |r+1))[r/3]∨1 × 1

n(r−1)/2
.

In the general case, we obtain the following asymptotic expansion. For r ≥ 2 and n ≥ 1, we define a
measure on R

N through

Γn,r(dx) = γ(x)
(
1 +

[r/3]∑

m=1

1

n
m
2

Km(x)
)
dx, (1.2)

where γ denotes the probability density function of a standard normal random variable in R
N and

Km(x) is a polynomial of order m ([·] standing for the integer part). Note that for r = 2 one gets
Γn,r(dx) = γ(x)dx = Γ(dx). So, we prove that if F ∈ Lr+1(Ω) with r ≥ 2 then there exist polynomials
Km(x), m = 1, . . . , [r/3] (no polynomials are needed for r = 2), such that, setting Γn,r the measure in
(1.2) and µn the law of Sn, under (1.1) one has

dTV (µn,Γn,r) ≤ C(1 + E(|F |r+1))[r/3]∨1+1 × 1

n([r/3]+1)/2
(1.3)

where C > 0 depends on r and N . So, in order to improve the development (and the rate of
convergence) one needs to pass from the request F ∈ L3k to F ∈ L3k+3, k ≥ 1.
The development given in (1.3) is analogous to the one obtained in Theorem 19.5 pg 199 in [6]. But
our development is explicit: in [6] the result is obtained using the Fourier transform and consequently
the coefficients in the development involve the inverse of the Fourier transform, whereas here we give
an explicit expression for the polynomials Km(x), as a linear combination of the Hermite polynomials
(see next formula (4.38)).
The main instrument used in this paper is the Malliavin type finite dimensional calculus defined in [3]
and [2]. It turns out that for a random variable which satisfies (1.1) a very pleasant calculus may be
settled. The idea is that (1.1) guarantees that the law of F contains some smooth noise. Then, using a
splitting procedure (see Proposition 3.1 for details), we may isolate this noise and achieve integration
by parts formulae based on it.
In the last years number of results concerning the weak convergence of functionals on the Wiener space
using Malliavin calculus and Stein’s method have been obtained by Nurdin, Peccati, Nualart and Poly,
see e.g. [9], [10], [11], [13]. In particular, in [9] and [13] the authors consider functionals living in a
finite direct sum of chaoses and prove that under a very weak non degeneracy condition (analogues
to the one we consider here) the convergence in distribution of a sequence of such functionals imply
the convergence in total variation. The results proved in these papers may be seen as variants of the
CLT but for dependent random variables - so the framework and the arguments are rather different
from the one considered here.

2 Main results

Let X be a random variable in R
N and let µX denote its law. The Lebesgue decomposition of µX

says that there exist a measure µ(dx) = µ(x)dx, i.e. µ is absolutely continuous w.r.t. the Lebesgue
measure, and a further measure ν which is singular, i.e. concentrated on a set of null Lebesgue
measure, such that

µX(dx) = µ(x)dx+ ν(dx). (2.1)

Definition 2.1. X is said to have an absolutely continuous component if the absolutely continuous
measure µ in the decomposition (2.1) is not null, that is ν(RN ) < 1.
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Definition 2.1 plays a crucial role when dealing with the convergence of the Central Limit Theorem
(CLT) in the total variation distance dTV . We recall the definition of dTV : for any two measures µ
and ν in R

N then

dTV (µ, ν) = sup
{∣∣∣

∫
fdµ−

∫
fdν

∣∣∣ : ‖f‖∞ ≤ 1
}
,

We discuss here the CLT in total variation distance, so we consider a sequence {Fk}k of i.i.d. square
integrable random variables, with null mean and covariance matrix C(F ). We set A(F ) the inverse of
C(F )1/2 and

Sn =
1√
n

n∑

k=1

A(F )Fk .

We recall the following classical result, due to Prohorov [14]:

Theorem 2.2. [Prohorov] Let µn denote the law of Sn and Γ denote the standard Gaussian law in R
N .

The convergence in the CLT takes place w.r.t. the total variation distance, that is dTV (µn, µ) → 0
as n → ∞, if and only if there exists n0 ≥ 1 such that the random variable Sn0 has an absolutely
continuous component.

Hereafter, we assume that the common law of the Fk’s has an absolutely continuous component, and
this is not a big loss in generality. In fact, due to the Prohorov’s theorem, otherwise we can packet
the sequence {Fk}k in groups of n0 r.v.’s, so we can deal with

S̄n =
1√
n

n∑

k=1

F̄k where F̄k =
1√
n0

(k+1)n0∑

i=kn0

Fi.

Let us introduce an equivalent way to see probability laws having an absolutely continuous component.
From now on, LebN denotes the lebesgue measure in R

N .

Definition 2.3. A probability law µ in R
N is said to be locally lower bounded by the Lebesgue

measure, in symbols µ � LebN , if there exist ε0 > 0 and an open set D0 ⊂ R
N such that

µ(A) ≥ ε0LebN (A ∩D0) ∀A ∈ B(RN ). (2.2)

We have

Proposition 2.4. Let F be a r.v. in R
N and let µF denote its law. Then the following statements

are equivalent:

(i) µF � LebN ;

(ii) F has an absolutely continuous component;

(iii) there exist three independent r.v.’s χ taking values in {0, 1}, with P(χ = 1) > 0, and V,W in R
N ,

with V absolutely continuous, such that

P(χV + (1− χ)W ∈ dv) = µF (dv). (2.3)

Moreover, if one of the above condition holds then the covariance matrix C(F ) of F is invertible.

The proof of Proposition 2.4 is postponed to Appendix A. As an immediate consequence of Proposition
2.4, if µF � LebN then λ(F ) > 0, λ(F ) denoting the smallest eigenvalue of Ĉ(F ) = C(F )−1. We
denote through λ(F ) the associated largest eigenvalue.

We are now ready to introduce the main contributions of this paper. We first give a new proof of the
convergence in total variation in the CLT:
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Theorem 2.5. Suppose that µF � LebN , E(F ) = 0 and E(|F |2) <∞. Then

lim
n→∞

dTV (µn,Γ) = 0 (2.4)

where µn denotes the law of Sn and Γ is the standard Gaussian law in R
N .

This is done especially in order to set up the main arguments and results from abstract Malliavin
calculus coming from representation (2.3), that are used throughout this paper. Let us stress that
Nourdin and Poly in [11] have dealt with r.v.’s fulfilling properties that imply (2.3), to which they
apply results from [4] about a finite dimensional Malliavin type calculus.
Afterwards we deal with the estimate of the error. In fact, by means of additional requests of the
existence of the moments of F up to order ≥ 3, we get the asymptotic expansion in powers of n−1/2

of the law of Sn in total variation distance. We first obtain

Theorem 2.6. Suppose that µF � LebN and E(F ) = 0. Let µn denote the law of Sn and Γ denote
the standard Gaussian law in R

N . Let r ≥ 2. If E(|F |r+1) < ∞ and all moments up to order r of
A(F )F agree with the moments of a standard Gaussian r.v. in R

N then

dTV (µn,Γ) ≤ C(1 + E(|F |r+1))[r/3]∨1 × 1

n(r−1)/2
(2.5)

where C > 0 depends on r, N , λ(F ) and λ(F ).

In the general case, that is the moments do not generally coincide, we get the following expansion.
For r ≥ 2 and n ≥ 1, we define a measure on R

N through

Γn,r(dx) = γ(x)
(
1 +

[r/3]∑

m=1

1

n
m
2

Km(x)
)
dx, (2.6)

where γ denotes the probability density function of a standard normal random variable in R
N and

Km(x) is a polynomial of order m - the symbol [·] stands for the integer part and for r = 2 the sums
in (2.6) nullify, so that Γn,2(dx) = γ(x)dx = Γ(dx). Then we get

Theorem 2.7. Let r ≥ 2 and E(|F |r+1) < ∞. Then there exist polynomials Km(x), m = 1, . . . , [r/3]
(no polynomials are needed for r = 2), such that, setting Γn,r the measure in (2.6) and µn the law of
Sn, one has

dTV (µn,Γn,r) ≤ C(1 + E(|F |r+1))[r/3]∨1 × 1

n([r/3]+1)/2

where C > 0 depends on r, N , λ(F ) and λ(F ).

The statement of Theorem 2.7 is not properly written, because no information is given about the
polynomials Km’s. We observe that in next formula (4.38) we give a closed-form expression for the
Km’s in terms of a linear combination of Hermite polynomials, whose coefficients can be explicitly
written (so not involving inverse Fourier transforms).

Remark 2.8. Let F ∈ D
2,p with p > N , D

k,p denoting the set of the random variables which are
derivable in Malliavin sense up to order k in Lp (see Nualart [12]). If P(σF > 0) > 0, σF standing
for the Malliavin covariance matrix of F (and note that this request is much weaker than the non
degeneracy of σF ) then Theorem 2.11 in [2] gives that µF � LebN (and this property may be strict,
that is F may not be absolutely continuous). So both Theorem 2.6 and Theorem 2.7 can be applied.

The rest of this paper is devoted to the proofs of the above results: Section 3 allows us to prove
Theorem 2.5 and the remaining Theorem 2.6 and Theorem 2.7 are discussed in Section 4.
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3 Convergence in the total variation distance

The aim of this section is to prove Theorem 2.5, whose proof requires some preparatives which will
be useful also in the sequel.
We consider a random variable F ∈ R

N whose law µF is such that µF � LebN . As proved in
Proposition 2.4, the covariance matrix C(F ) of F is invertible. So, without loss of generality we can
assume from now on that C(F ) is the identity matrix, otherwise we work with A(F )F , A(F ) being
the inverse of C(F )1/2.
We consider the following special splitting for the law of µF , giving, as a consequence, representation
(2.3). We start from the class of localization functions ψa : R → R, a > 0, defined as

ψa(x) = 1|x|≤a + exp
(
1− a2

a2 − (|x| − a)2

)
1a<|x|<2a. (3.1)

Then ψa ∈ C∞
b (R), 0 ≤ ψa ≤ 1 and we have the following property: for every k, p ∈ N there exists a

universal constant Ck,p such that for every x ∈ R+

ψa(x)
∣∣∣(lnψa)

(k)(x)
∣∣∣
p
≤ Ck,p

apk
. (3.2)

By the very definition, if µF � LebN then we may find v0 ∈ R
N , r0 > 0 and ε0 > 0 such that

P(F ∈ A) ≥ ε0LebN (A ∩Br0(v0)). Then for every non negative function f : RN → R+ we have

E(f(F )) ≥ ε0

∫

RN

ψr0/2(|v − v0|)f(v)dv. (3.3)

We denote

m0 = ε0

∫

RN

ψr0/2(|v − v0|)dv. (3.4)

Of course, m0 > 0. But, up to choose ε0 smaller, we also have m0 < 1. So, we consider three
independent random variables χ ∈ {0, 1} and V,W ∈ R

N with laws

P(χ = 1) = m0, P(χ = 0) = 1−m0,

P(V ∈ dv) =
ε0
m0

ψr0/2(|v − v0|)dv,

P(W ∈ dv) =
1

1−m0

(
µF (dv) − ε0ψr0/2(|v − v0|)dv

)
.

(3.5)

Then
P(χV + (1− χ)W ∈ dv) = µF (dv). (3.6)

So, we have just proved the following

Proposition 3.1. If µF � LebN then representation (2.3) holds.

From now on we will work with the representation of µF in (3.5) so we always take

F = χV + (1− χ)W,

χ, V and W being independent and whose laws are given in (3.5).
We come now to the Central Limit Theorem. We consider a sequence χk, Vk,Wk ∈ R

N , k ∈ N of
independent copies of χ, V,W ∈ R

N and we take Fk = χkVk + (1− χk)Wk. Then we look to

Sn =
1

n1/2

n∑

k=1

Fk =
1

n1/2

n∑

k=1

(
χkVk + (1− χk)Wk

)
.
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In order to prove the CLT in the total variation distance, we will use the abstract Malliavin calculus
settled in [3] and [2] associated to the basic noise

V = (V1, . . . , Vn) = ((V 1
1 , ..., V

N
1 )..., (V 1

n , ..., V
N
n )) ∈ R

N×n

(this will be done for each fixed n). To begin we recall the notation and the basic results from [2].
We work with functionals X = f(V ) with f ∈ C∞

b (RN×n;R). For such a functional we define the
Malliavin derivatives

D(k,i)X =
∂X

∂V i
k

=
∂f

∂vik
(V ), k = 1, ..., n, i = 1, ..., N. (3.7)

The Malliavin covariance matrix for a multi dimensional functional X = (X1, ...,Xd) is defined as

σi,jX =
〈
DXi,DXj

〉
=

n∑

k=1

N∑

r=1

D(k,r)X
i ×D(k,r)X

j , i, j = 1, . . . , d. (3.8)

We will denote by λX the lower eigenvalue of σX that is

λX = inf
|ξ|=1

〈σXξ, ξ〉 = inf
|ξ|=1

n∑

k=1

N∑

i=1

〈
D(k,i)X, ξ

〉2
. (3.9)

Moreover we define the higher order derivatives just by iterating D: for a multi index α = (α1, ..., αm)
with αj = (kj , ij), kj ∈ {1, ..., n}, ij ∈ {1, ..., N} we define

DαX =
∂mX

∂V im
km
....∂V i1

k1

= ∂αf(V ) (3.10)

with

∂αf(v) =
∂mf

∂vimkm ....∂v
i1
k1

(v).

We will work with the norms

|X|21,m =
∑

1≤|α|≤m

|DαX|2 , |X|2m = |X|2 + |X|21,m (3.11)

‖X‖1,m,p = ‖ |X|1,m ‖p = (E(|X|p1,m))1/p, ‖X‖m,p = ‖X‖p + ‖X‖1,m,p (3.12)

We define now the Ornstein Uhlenbeck operator by

− LX =
n∑

k=1

N∑

i=1

D(k,i)D(k,i)X +
n∑

k=1

N∑

i=1

D(k,i)X∂i lnψr0/2(|Vk − v0|). (3.13)

These are the operators introduced in [3] and [2] in connection to the random variable V and taking
the weights πk = 1. We will use the results from [2] in this framework. So we come now back to Sn,
which we write as

Sn =
1√
n

n∑

k=1

(
χkVk + (1− χk)Wk

)
.

For every k = 1, . . . , n and l, i = 1, . . . , N , we have

D(k,i)S
l
n =

1√
n
χk1l=i.

7



As a consequence, we obtain

σSn =
1

n

n∑

k=1

χkI, (3.14)

where I denotes the identity matrix, and

λSn =
1

n

n∑

k=1

χk (3.15)

The derivatives of order higher than two of Sn are null, so we obtain for every q ∈ N

|Sn|21,q ≤
1

n

n∑

k=1

χk ≤ 1, |Sn|2q ≤ |Sn|2 +
1

n

n∑

k=1

χk ≤ |Sn|2 + 1, (3.16)

and consequently

‖Sn‖1,q,p ≤ 1, ‖Sn‖q,p ≤ ‖Sn‖p + 1. (3.17)

In particular, ‖Sn‖1,q,p is finite for every q, p whereas ‖Sn‖q,p is finite according to F ∈ Lp(Ω).

Let us now compute LSn. We have

−LSl
n =

n∑

k=1

N∑

i=1

D(k,i)D(k,i)S
l
n +

n∑

k=1

N∑

i=1

D(k,i)S
l
n∂i lnψr0/2(|Vk − v0|)

=
1√
n

n∑

k=1

χk∂l lnψr0/2(|Vk − v0|).

We now estimate ‖LSn‖q,p .

Lemma 3.2. For every q ∈ N there exists a universal constant Cq such that

‖LSn‖q,p ≤
Cq

rq+1
0

. (3.18)

Proof. The basic fact in our calculus is that

E(∂i lnψr0/2(Vk − v0)) =
ε0
m0

∫

RN

∂i lnψr0/2(|v − v0|)× ψr0/2(|v − v0|)dv

=
ε0
m0

∫

RN

∂iψr0/2(|v − v0|)dv = 0.

We denote

Qk = ∇ lnψr0/2(Vk − v0)

and we have

E(Ql
k) = E(∂l lnψr0/2(|Vk − v0|)) = 0.

So
∑n

k=1 χkQ
l
k, n ∈ N, is a martingale and the Burckholder’s inequality gives

E(
∣∣∣LSl

n

∣∣∣
p
) = E

(∣∣∣ 1√
n

n∑

k=1

χkQ
l
k

∣∣∣
p)

≤ CE

(( 1

n

n∑

k=1

χk

∣∣∣Ql
k

∣∣∣
2 )p/2)

≤ C

n

n∑

k=1

E(
∣∣∣Ql

k

∣∣∣
p
).
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By (3.2)

E(|Ql
k|p) ≤ C

1

rp0

so that

‖LSn‖p ≤
C

r0
.

We go further and we compute D(k,i)LSn. We have

−D(k,i)LS
l
n =

1√
n

n∑

k′=1

χk′D(k,i)∂l lnψr0/2(|Vk′ − v0|) =
1√
n
χkD(k,i)∂l lnψr0/2(|Vk − v0|)

so that

|DLSn|21 ≤ |LSn|2 +
1

n

n∑

k=1

N∑

i=1

∣∣D(k,i)∇ lnψr0/2(|Vk − v0|)
∣∣2

≤ |LSn|2 +
C

n

n∑

k=1

N∑

i,j=1

∣∣∂i∂j lnψr0/2(|Vk − v0|))
∣∣ .

Once again using (3.2) we obtain

∥∥∂i∂j lnψr0/2(|Vk − v0|)
∥∥
p
≤ C

r20

and consequently

‖LSn‖1,p ≤
C

r20
.

For higher order norms the estimates are similar. �

We add a final property on the behavior of the Malliavin covariance matrix that will be used in next
Section 4.2.

Lemma 3.3. Suppose that µF � LebN . There exists a universal constant C such that for every n ∈ N

and every
ε ≤ ε∗ = 2−NmN

0 (3.19)

then
P(detσSn ≤ ε) ≤ C exp(− n

4( 1
m0

− 1)
), (3.20)

m0 being defined in (3.4).

Proof. Using (3.15)

P(det σSn ≤ ε) ≤ P(λSn ≤ ε1/N ) = P

( 1
n

n∑

k=1

χk ≤ ε1/N
)
= P

( 1

n

n∑

k=1

(χk −m0) ≤ ε1/N −m0

)
.

Since ε1/N ≤ 1
2m0 the above term is upper bounded by

P

( 1

n

n∑

k=1

(χk −m0) ≤ −1

2
m0

)
= P

( 1

n1/2

n∑

k=1

χk −m0

vm0

≤ −n1/2 m

2vm0

)
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with vm0 = (m0(1 − m0))
1/2 = Var(χk). We denote by a = n1/2 m0

2vm0
and we use the Berry-Esseen

theorem in order to upper bound this quantity by

C

∫ a

−∞
exp

(
− x2/2

)
dx ≤ C ′ exp

(
− a2

4

)
= C ′ exp

(
− n

4( 1
m0

− 1)

)
.

�

We are now ready for the

Proof of Theorem 2.5. For each K ≥ 1 we define

Θn,K = ψK(Sn) and dPΘn,K
= Θn,KdP

where ψK is defined in (3.1). We will use the results from Section 2.1 of [2] for this localization
random variable and for the random variable V = (V1, . . . , Vn). We recall that for, 0 ≤ q, 1 ≤ p, in [2]
we denoted

‖G‖p,Θn,K
= (EΘn,K

(|G|p))1/p = (E(Θn,K |G|p))1/p and

‖G‖q,p,Θn,K
= (EΘn,K

(|G|pq))1/p = (E(Θn,K |G|pq))1/p.

By using (3.16) and by recalling that 1{Θn,K 6=0}|Sn| ≤ 2K, we obtain

‖Sn‖q,p,Θn,K
+ ‖LSn‖q−2,p,Θn,K

≤ CK. (3.21)

We use now Theorem 2.8 from [2]. (3.21) says that the hypothesis (2.32) from [2] is satisfied. We
check now the hypothesis (2.34) from [2]. Since |Θn,K| ≤ 1 and χk, k ∈ N are i.i.d, the law of large
numbers says that for ε < E(χk) = m0 one has

η(ε) := lim
n→∞

PΘn,K
(λSn ≤ ε) ≤ lim

n→∞
P(

1

n

n∑

k=1

χk ≤ ε) = 0

in which we have used (3.15), and this is actually (2.34) from [2].
We consider now the probability measures µn,K and µK defined by

µn,K(A) =
1

E(Θn,K)
PΘn,K

(Sn ∈ A) =
1

E(Θn,K)
E(Θn,K1A(Sn)),

µK(A) =
1

E(ΘK)
PΘK

(G ∈ A) = 1

E(ΘK)
E(ΘK1A(G))

where G is a standard normal Gaussian random variable in R
N and ΘK = ψK(G). Since ψK ∈ Cb(R

N )
the CLT gives limn E(Θn,K) = E(ΘK). And again by the CLT, for every f ∈ Cb(R

d) one has

lim
n

E(ψK(Sn)f(Sn)) = E(ψK(G)f(G)).

We conclude that for every f ∈ Cb(R
N ) one has

lim
n

∫
fdµn,K =

∫
fdµK.

Using now Theorem 2.8 from [2] we conclude that

lim
n
dTV (µn,K , µK) = 0. (3.22)
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Consider now a measurable function f : RN → R such that ‖f‖∞ ≤ 1. We write

|E(f(Sn))− E(f(G))| ≤ |E(f(Sn)(1 −Θn,K))|+ |E(f(G)(1 −ΘK))|
+ |E(f(Sn)Θn,K)− E(f(G)ΘK)| .

Using the Chebyshev’s inequality

|E(f(Sn)(1−Θn,K))| ≤ ‖f‖∞ P(|Sn| ≥ 2K) ≤ 1

4K2
‖f‖∞

and a similar estimates holds for G. We conclude that

sup
‖f‖∞≤1

|E(f(Sn))− E(f(G))| ≤ C

K2
+ sup

‖f‖∞≤1
|E(f(Sn)Θn,K)− E(f(G)ΘK)| .

Using (3.22) we obtain

lim
n→∞

sup
‖f‖∞≤1

|E(f(Sn))− E(f(G))| ≤ C

K2

for every K ≥ 1. So the above limit is null. �

Remark 3.4. We note that if C(F ) was not the identity matrix then (3.14) and (3.15) would become

σSn =
1

n

n∑

k=1

χkĈ(F ) and λSn = λ(F )
1

n

n∑

k=1

χk

respectively, where Ĉ(F ) = C(F )−1 and λ(F ) is the smallest eigenvalue of Ĉ(F ). This means that
the estimates in (3.17) and (3.18) continue to hold up to a multiplying constant that now depends on
λ(F ) and λ(F ) as well, the latter denoting the largest eigenvalue of Ĉ(F ).

4 Asymptotic expansion

The aim of this section is to prove Theorem 2.6 and Theorem 2.7. We proceed similarly as before: we
first study the case of smooth functions and then, using a regularizing argument, we will be able to
deal with general functions.

4.1 The development for smooth test functions

We recall that we are assuming that the r.v. F has null mean and non degenerate covariance matrix,
that we have set equal to the identity matrix. And we have set

Fi = χiVi + (1− χi)Wi

so that Sn = 1√
n

∑n
i=1 Fi. Moreover we consider Gi = (G1

i , ..., G
N
i ), i ∈ N, some independent standard

normal random variables in R
N . For k ∈ {0, 1, ..., n} we define

Sk
n =

1√
n

( k∑

i=1

Fi +

n∑

i=k+1

Gi

)
, Ŝk

n =
1√
n

( k−1∑

i=1

Fi +

n∑

i=k+1

Gi

)
(4.1)

in which we use the convention that the sums are null when done on the indexes i ∈ {i0, . . . , i1} with
i0 > i1. Therefore, one has

Sn
n = Sn and S0

n =
1√
n

n∑

i=1

Gi

11



and S0
n is a standard normal random variable in R

N . Moreover,

Sk
n = Ŝk

n +
Fk√
n

and Sk−1
n = Ŝk

n +
Gk√
n
. (4.2)

In the sequel we will use the following notations. For a multi index α = (α1, ..., αr) ∈ {1, ..., N}r
and x = (x1, ..., xN ) we denote xα =

∏r
i=1 x

αi . We also denote by ∂α = ∂xα1 ...∂xαr the derivative
corresponding to α and by |α| = r the length of α. We allow α to be the null multi-index: in this case,
we set |α| = 0, ∂αf = f and xα = 1.
Moreover, we will use the following form of the Taylor formula of order r ∈ N : for f ∈ Cr+1(RN ),

f(x+ y) = f(x) +

r∑

p=1

1

p!

∑

|α|=p

∂αf(x)y
α + Urf(x, y) (4.3)

with

Urf(x, y) =
1

r!

∑

|α|=r+1

yα
∫ 1

0
(1− λ)r∂αf(x+ λy)dλ (4.4)

We notice that for some cr > 0 it holds

|Urf(x, y)| ≤ cr|y|r+1‖f‖r+1,∞, (4.5)

where ‖ · ‖r+1,∞ is the usual norm on Cr+1
b (RN ): ‖f‖r+1,∞ =

∑
|α|≤r+1 ‖∂αf‖∞.

For a multi index α = (α1, ..., αr) ∈ {1, ..., N}r , that is |α| = r, we now set

∆α = E(Fα)− E(Gα) = E
( r∏

i=1

Fαi
)
− E

( r∏

i=1

Gαi
)

and θα = E(Gα) = E(

r∏

i=1

Gαi). (4.6)

It is clear that ∆α = 0 for |α| ≤ 2 and, for r ≥ 3, the assumption sup|α|≤r |∆α| = 0 means that
all moments of F up to order r (and not only up to order 2) agree with the moments of a standard
Gaussian random variable.
We now introduce the basic differential operators which appear in the asymptotic expansion: we set

Ψt =
t∑

p=0

(−1)t−p

p!(t− p)!

∑

|α|=p

∑

|β|=t−p

∆αθβ∂β∂α, t = 0, 1, 2, . . . . (4.7)

The property ∆α = 0 if |α| ≤ 2 gives that the above sum actually starts from p = 3, so we have

Ψt = 0 if t = 0, 1, 2 and Ψt =
t∑

p=3

(−1)t−p

p!(t− p)!

∑

|α|=p

∑

|β|=t−p

∆αθβ∂β∂α, t ≥ 3.

From now on, we use the convention
∑t

p=3(·) = 0 if t < 3. So, for example we can write

Ψt =

t∑

p=3

(−1)t−p

p!(t− p)!

∑

|α|=p

∑

|β|=t−p

∆αθβ∂β∂α, t = 0, 1, 2, . . .

We note that Ψt = 0 for all t when ∆α = 0 for all α, that is when all the moments of F agree with the
moments of the standard Gaussian law. And moreover, for every t ≥ 3 and q ≥ 0 there exists Ct,q > 0
such that if f ∈ Ct+q

b then
‖Ψtf‖q,∞ ≤ Ct,q sup

|α|=t
|∆α| × ‖f‖t+q,∞. (4.8)
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We also define the following objects (“remainders”): for r ∈ N,

Rk
r,nf =

r∑

p=3

1

p!

∑

|α|=p

∆αn
r−p+1

2 E

(
Ur−p∂αf

(
Ŝk
n,

−Gk√
n

))
+

+n
r+1
2

[
E

(
Urf

(
Ŝk
n,
Fk√
n

))
− E

(
Urf

(
Ŝk
n,
Gk√
n

))]
,

(4.9)

Urf being defined in (4.4). As usual, the first term of the above r.h.s. is set equal to zero if r < 3.

Remark 4.1. We note here if F ∈ L2 then for every f ∈ C2
b (Ω) then

Rk
0,nf =

1√
n
Rk

1,nf.

And if F ∈ L3(Ω) then for every f ∈ C3
b then

Rk
0,nf =

1√
n
Rk

1,nf =
1

n
Rk

2,nf. (4.10)

In fact, for every r ≥ 0, if f ∈ Cr+2
b then

Urf(x, y) = Ur+1(x, y)−
1

(r + 1)!

∑

|α|=r+1

yα∂αf(x).

Therefore, for r = 0, F ∈ L2 and f ∈ C2
b we obtain

Rk
0,nf =

√
n
[
E

(
U1f

(
Ŝk
n,
Fk√
n

))
− E

(
U1f

(
Ŝk
n,
Gk√
n

))]
−

√
n

∑

|α|=1

E

([( Fk√
n

)α
−

(Gk√
n

)α]
f(Ŝk

n)
)
.

Since Ŝk
n is independent of Fk and Gk and since ∆α = 0 for |α| = 1 we get E([(Fk

)α− (Gk)
α]f(Ŝk

n)) =

∆αE(f(Ŝ
k
n)) = 0, so that

Rk
0,nf =

1√
n
Rk

1,nf.

As for (4.10), one uses ∆α = 0 for |α| = 2 and the statement is proved similarly.

Since E(f(Sn)) − E(f(G)) = E(f(Sn
n)) − E(f(S0

n)), we study E(f(Sk
n))− E(f(Sk−1

n )) for k = 1, . . . , n
and then apply a recurrence argument.

Lemma 4.2. Let n ∈ N, 1 ≤ k ≤ n and r ∈ N. If F ∈ Lr+1(Ω) then for every f ∈ Cr+1
b (RN ) one has

E(f(Sk
n))− E(f(Sk−1

n )) =

r∑

p=3

1

p!np/2

∑

|α|=p

E
(
∂αf(Ŝ

k
n)
)
∆α +

1

n(r+1)/2
R̃k

r,nf (4.11)

where

R̃k
r,nf = n

r+1
2

[
E

(
Urf

(
Ŝk
n,
Fk√
n

))
− E

(
Urf

(
Ŝk
n,
Gk√
n

))]
.

Proof. We will use the Taylor formula (4.3). Since Sk
n = Ŝk

n + Fk

n1/2 and Fk is independent of Ŝk
n, we

obtain

E(f(Sk
n)) = E(f(Ŝk

n)) +

r∑

p=1

1

p!np/2

∑

|α|=p

E(∂αf(Ŝ
k
n))E(F

α
k ) + E

(
Urf

(
Ŝk
n,

Fk

n1/2

))
.
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We now use that Sk−1
n = Ŝk

n + Gk

n1/2 : the same reasoning for Gk gives

E(f(Sk−1
n )) = E(f(Ŝk

n)) +

r∑

p=1

1

p!np/2

∑

|α|=p

E(∂αf(Ŝ
k
n))E(G

α
k ) + E

(
Urf

(
Ŝk
n,

Gk

n1/2

))
.

By recalling that ∆α = E(Fα)− E(Gα) = 0 for |α| ≤ 2, the statement holds. �

Our aim is now to replace Ŝk
n by Sk−1

n in the development (4.11). This opens the way to use a
recurrence procedure.

Lemma 4.3. Let n ∈ N, 1 ≤ k ≤ n and r ∈ N. If F ∈ Lr+1(Ω) then for every f ∈ Cr+1
b (RN ) one has

E(f(Sk
n))− E(f(Sk−1

n )) =
r∑

t=3

1

nt/2
E
(
Ψtf(S

k−1
n )

)
+

1

n(r+1)/2
Rk

r,nf

where Ψt and Rk
r,n are defined in (4.7) and (4.9) respectively.

Proof. We apply the Taylor’s expansion (4.3) to the generical term of (4.11): we write Ŝk
n = Sk−1

n − Gk√
n

and for |α| = p ≤ r we write

∂αf(Ŝ
k
n) =

r−p∑

q=0

1

q!

∑

|β|=q

∂β∂αf(S
k−1
n )

(
− Gk√

n

)β
+ Ur−p∂αf

(
Sk−1
n ,−Gk√

n

)
.

We pass to the expectation: since Sk−1
n and Gk are independent, we have

E
(
∂αf(Ŝ

k
n)
)
=

r−p∑

q=0

(−1)q

q!nq/2

∑

|β|=q

E
(
∂β∂αf(S

k−1
n )

)
θβ + E

(
Ur−p∂αf

(
Sk−1
n ,−Gk√

n

))

(recall that θβ = E(Gβ), G being a standard normal random variable). By inserting in (4.11) we get

E(f(Sk
n))− E(f(Sk−1

n )) =
r∑

p=3

1

p!np/2

∑

|α|=p

∆α

r−p∑

q=0

(−1)q

q!nq/2

∑

|β|=q

E
(
∂β∂αf(S

k−1
n )

)
θβ+

+

r∑

p=3

1

p!np/2

∑

|α|=p

E

(
Ur−p∂αf

(
Sk−1
n ,−Gk√

n

))
+

1

n(r+1)/2
R̃k

r,nf

=
r∑

p=0

r−p∑

q=0

(−1)q

p!q!n(p+q)/2

∑

|α|=p

∑

|β|=q

E
(
∂β∂αf(S

k−1
n )

)
∆αθβ+

+
1

n(r+1)/2
Rk

r,nf

in which, for the last line, we have used (4.9) and in the first sum we can let the index p start from 0
because as p = 0, 1, 2, ∆α = 0. Now, by considering the change of variable t = p+ q in the first term,
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we get

E(f(Sk
n))− E(f(Sk−1

n )) =
r∑

t=0

t∑

s=0

(−1)t−s

s!(t− s)!nt/2

∑

|α|=s

∑

|β|=t−s

E
(
∂β∂αf(S

k−1
n )

)
∆αθβ+

+
1

n(r+1)/2
Rk

r,nf

=
r∑

t=0

1

nt/2
E

( t∑

s=0

(−1)t−s

s!(t− s)!

∑

|α|=s

∑

|β|=t−s

∂β∂αf(S
k−1
n )∆αθβ

)
+

+
1

n(r+1)/2
Rk

r,nf

=

r∑

t=0

1

nt/2
E
(
Ψtf(S

k−1
n )

)
+

1

n(r+1)/2
Rk

r,nf.

Since Ψt = 0 for t ≤ 2, the statement holds. �

For k = 1, . . . , n, we define

Ψ
(1)
t = Ψt and for k ≥ 2, Ψ

(k)
t = Ψ

(k−1)
t +

∑t
p=0ΨpΨ

(k−1)
t−p , t = 0, 1, . . . (4.12)

Notice that Ψ
(k)
t is a differential operator which is linked to the convolution w.r.t. t between Ψ· and the

preceding operator Ψ
(k−1)
· . We also notice that Ψ

(k)
t = 0 for t = 0, 1, 2, as an immediate consequence

of the fact that Ψt = 0 for t ≤ 2. So, for k ≥ 2 we can write

Ψ
(k)
t = 1{t≥3}Ψ

(k−1)
t + 1{t≥6}

t−3∑

p=3

ΨpΨ
(k−1)
t−p , t = 0, 1, . . . , (4.13)

We also define the following reminder operators: for r ∈ N,

Φ(k)
r,nf =

k−1∑

j=1

r∑

t=0

Rk−j
r−t,nΨ

(j)
t f +Rk

r,nf. (4.14)

Note that, by definition, Φ
(0)
r,n = R0

r,n and Φ
(k)
0,n = Rk

0,n.

Lemma 4.4. Let n ∈ N, 1 ≤ k ≤ n and r ∈ N. If F ∈ Lr+1(Ω) then for every f ∈ Cr+1
b (RN ) one has

E
(
f(Sk

n)
)
− E

(
f(Sk−1

n )
)
=

r∑

t=3

1

nt/2
E
(
Ψ

(k)
t f(S0

n)
)
+

1

n(r+1)/2
Φ(k)
r,nf,

Ψ
(k)
t and Φ

(k)
r,n being given in (4.12) and (4.14) respectively.

Proof. We consider the development in Lemma 4.3:

E(f(Sk
n))− E(f(Sk−1

n )) =

r∑

t=0

1

nt/2
E
(
Ψtf(S

k−1
n )

)
+

1

n(r+1)/2
Rk

r,nf.

For t ≤ r, we apply such development up to order r − t to E
(
Ψtf(S

k−1
n )

)
and we get

E(Ψtf(S
k−1
n )) = E(Ψtf(S

k−2
n )) +

r−t∑

p=0

1

np/2
E
(
ΨpΨtf(S

k−2
n )

)
+

1

n(r−t+1)/2
Rk−1

r−t,nΨtf.
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By inserting, we obtain

E(f(Sk
n))− E(f(Sk−1

n )) =

r∑

t=0

1

nt/2
E(Ψtf(S

k−2
n )) +

r∑

t=0

r−t∑

p=0

1

n(t+p)/2
E
(
ΨpΨtf(S

k−2
n )

)
+

+
1

n(r+1)/2

r∑

t=0

Rk−1
r−t,nΨtf +

1

n(r+1)/2
Rk

r,nf

and by a change of variable in the second sum above we get

E(f(Sk
n))− E(f(Sk−1

n )) =

r∑

t=0

1

nt/2
E(Ψ

(2)
t f(Sk−2

n )) +
1

n(r+1)/2

[ r∑

t=0

Rk−1
r−t,nΨtf +Rk

r,nf
]
.

By iterating the same procedure up to step k we obtain the statement. �

We now set

T n
t =

n∑

k=1

Ψ
(k)
t and Un

r =

n∑

k=1

Φ(k)
r,n (4.15)

Ψ
(k)
t and Φ

(k)
r,n being given in (4.12) and (4.14) respectively.

Proposition 4.5. Let n ∈ N, 1 ≤ k ≤ n and r ∈ N. If F ∈ Lr+1(Ω) then for every f ∈ Cr+1
b (RN )

one has

E
(
f(Sn

n)
)
− E

(
f(S0

n)
)
=

r∑

t=3

1

nt/2
E
(
T n
t f(S

0
n)
)
+

1

n(r+1)/2
Un
r f

T n
t and Un

r are defined in (4.15).

Proof. Since E
(
f(Sn

n)
)
− E

(
f(S0

n)
)
=

∑n
k=1

(
E
(
f(Sk

n)
)
− E

(
f(Sk−1

n )
))
, the statement immediately

follows from Lemma 4.4. �

We give now an explicit expression for the operators Ψ
(k)
t in (4.12) and, as a consequence, for T n

t in
(4.15). For Ψt given in (4.7), i = 1, 2, . . ., we set

A1
t = Ψt and for i ≥ 1, Ai+1

t =

t∑

p=0

ΨpAi
t−p.

Since Ψt = 0 for t = 0, 1, 2, straightforward computations give that Ai
t = 0 if t < 3i, so that we can

also write

A1
t = Ψt and for i ≥ 1, Ai+1

t =

t−3i∑

p=3

ΨpAi
t−p. (4.16)

We can give an alternative representation for the Ai
t’s. We set M the set of all multi-indexes and for

α, β ∈ M (possibly with different length), we set (α, β) ∈ M the associated concatenation. So, for
γ ∈ M we define

Aγ = {(α, β) : (α, β) = γ}

and

c1γ =
∑

(α,β)∈Aγ

(−1)|β|

|α|!|β|!∆αθβ and for i ≥ 1, ci+1
γ =

∑

(α,β)∈Aγ

c1αc
i
β, i ≥ 1. (4.17)
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Since c1γ = 0 if |γ| < 3, by recurrence one gets ciγ = 0 if |γ| < 3i for every i. Then, straightforward
computations give that, for i ≥ 1,

Ai
t =

∑

γ : |γ|=t

ciγ∂γ , with {ciγ}γ∈M given in (4.17). (4.18)

It is immediate to see that for every γ ∈ M there exists C such that for every i ≥ 1

|ciγ | ≤ C sup
|α|≤|γ|

|∆α|i. (4.19)

As a consequence, for t, q ≥ 0 there exists C > 0 (depending on t, q only) such that for every i ≥ 1
and f ∈ Ct+q

b (RN )

‖Ai
tf‖q,∞ ≤ C sup

|α|≤t
|∆α|i × ‖f‖t+q,∞ ≤ C(1 + E(|F |t))i−1 sup

|α|≤t
|∆α| × ‖f‖t+q,∞. (4.20)

Moreover, the Ai
t’s give the following representation formula for the Ψ

(k)
t ’s:

Proposition 4.6. For every k ≥ 1 the operator Ψ(k) given in (4.12) can be written as

Ψ
(k)
t =

[t/3]∑

i=1

Qi−1(k)Ai
t, t = 0, 1, . . .

where Qi−1(k) is defined as follows:

Q0(k) = 1 and for l ≥ 1, Ql(k) =

k∑

j=l+1

Ql−1(j − 1).

In particular, Ql(k) = 0 if k ≤ l and Ql(k) > 0 otherwise.

Proof. We have already observed that if [t/3] = 0 then Ψ
(k)
t = Ψt = 0 for every k and if [t/3] = 1

then Ψ
(k)
t = Ψt for every k, see (4.13), so the formulas agree. We now assume that the formula is true

for [t/3] = j ≥ 1 and for every k, and we prove it for [t/3] = j + 1 and for every k. We recall that

Ψ
(k)
t = Ψ

(k−1)
t +

∑t−3
p=3ΨpΨ

(k−1)
t−p . But if [t/3] = j + 1 then [(t− p)/3] ≤ j for any p = 3, . . . , t− 3, so

that by induction Ψ
(k−1)
t−p fulfils the formula. Therefore, we can write

Ψ
(k)
t =Ψ

(k−1)
t +

t−3∑

p=3

[(t−p)/3]∑

i=1

Qi−1(k − 1)ΨpA
i
t−p.

We do a change of variable in the last sum: the condition i ≤ [(t − p)]/3 gives 3i ≤ t − p, that is
p ≤ t− 3i, and if p ≥ 3 then i ≤ [t/3]− 1. So, by using also (4.16) we get

Ψ
(k)
t −Ψ

(k−1)
t =

[t/3]−1∑

i=1

Qi−1(k − 1)
t−3i∑

p=3

ΨpAi
t−p =

[t/3]−1∑

i=1

Qi−1(k − 1)Ai+1
t =

[t/3]∑

i=2

Qi−2(k − 1)Ai
t.

By summing

Ψ
(k)
t =Ψt +

[t/3]∑

i=2

k∑

j=2

Qi−2(j − 1)Ai
t = Q0(k)A1

t +

[t/3]∑

i=2

k∑

j=2

Qi−2(j − 1)Ai
t

17



and the statement holds for Q0(k) = 1 and Qi−1(k) =
∑k

j=2Qi−2(j − 1), i ≥ 2. We now prove that
Ql(k) = 0 if k ≤ l and Ql(k) > 0 for k ≥ l + 1. For l = 1, Ql(k) = k − 1, and the statement holds. If
we assume that Ql(k) is not null for k ≥ l + 1 then

Ql+1(k) =
k∑

j=2

Ql(j − 1)1j−1≥l+1 =
k∑

j=2

Ql(j − 1)1j≥l+2

and this is null for k ≤ l + 1 and strictly positive if k ≥ l + 2. �

We now give an explicit formula for T n
t , namely we write it in such a way that n 7→ T n

t is a polynomial
whose coefficients will be explicitly written. To this purpose, we need to handle polynomials of the
type

n 7→ SSl(n − 1) =
n−1∑

k=1

kl, l ∈ N, n ≥ 1.

We recall the exact expansion for SSl(L) =
∑L

k=1 k
l:

SSl(L) =
1

l + 1

l+1∑

p=1

( l + 1
p

)
Bl+1−p L

p (4.21)

where {Bm}m denotes the sequence of the (second) Bernoulli numbers (which are in fact defined as
the numbers for which the above equality holds, see [1]), whose first numbers are given by

B0 = 1, B1 =
1

2
, B2 =

1

6
, B3 = 0, B4 = − 1

30
, B5 = 0, B6 =

1

42
, B7 = 0, B8 = − 1

30
, . . .

Then, straightforward computations give that for l ∈ N and n ≥ 1,

SSl(n− 1) =
n−1∑

k=1

kl =
l+1∑

q=0

bl,qn
q

where the sequence (bl,q)q=0,...,l+1 is given by

bl,q =
1

l + 1

l+1∑

p=q∨1

( l + 1
p

)
Bl+1−p

( p
q

)
(−1)p−q, q = 0, 1, . . . , l + 1 and l ∈ N, (4.22)

in which Bl, l ≥ 0, denote the (second) Bernoulli numbers. Just as an example:

• l = 0 : b0,0 = −1, b0,1 = 1;

• l = 1 : b1,0 = 0, b1,1 = −1
2 , b1,2 =

1
2 ;

• l = 2 : b2,0 = 0, b2,1 =
1
6 , b2,2 = −1

2 , b2,3 =
1
3 .

Then one has

Proposition 4.7. Let n ≥ 1, r ∈ N and F ∈ Lqr+1(Ω), where qr = max(r, 2). For t ≤ r, let T n
t be

defined as in (4.15). Then,

T n
t =

[t/3]∑

i=1

Pi(n)Ai
t, t = 0, 1, . . .

18



where Pi(n) = 0 if n < i and for n ≥ i,

Pi(n) =

i∑

p=0

ai,pn
p, i = 1, . . . , n (4.23)

with

a1,0 = 0, a1,1 = 1 and for i ≥ 1

ai+1,0 =

i∑

l=0

ai,lbl,0 −
i∑

l=0

ai,lSSl(i− 1), ai+1,p =

i∑

l=p−1

ai,lbl,p, p = 1, . . . , i
(4.24)

the sequence (bl,p)p=0,...,l+1 being defined in (4.22) and SSl(i− 1) being given in (4.21).

Proof. Since T n
t =

∑n
k=1Ψ

(k)
t , we get

T n
t =

[t/3]∑

i=1

n∑

k=1

Qi−1(k)Ai
t

so that Pi(n) =
∑n

k=1Qi−1(k) =
∑n+1

j=2 Qi−1(j − 1) = Qi(n + 1). As a consequence, Pi(n) = 0 if
n+ 1 ≤ i, that is n < i. So, let n ≥ i. We have P1(n) =

∑n
k=1Q0(k) = n and for i ≥ 2,

Pi(n) = Qi(n + 1) =

n+1∑

j=2

Qi−1(j − 1)1j−1≥i =

n−1∑

k=i−1

Qi−1(k + 1) =

n−1∑

k=i−1

Pi−1(k). (4.25)

Since P1(n) = n, we get a1,0 = 0 and a1,1 = 1. In order to compute the sequence (ai,l)l=0,...,i, we use
a recurrence argument. For i ≥ 1, one has

Pi+1(n) =

n−1∑

k=i

Pi(k) =

n−1∑

k=i

i∑

l=0

ai,lk
l =

i∑

l=0

ai,l

n−1∑

k=i

kl =

i∑

l=0

ai,l
(
SSl(n− 1)− SSl(i− 1)

)

=

i∑

l=0

ai,lSSl(n− 1)−
i∑

l=0

ai,lSSl(i− 1) =

i∑

l=0

ai,l

l+1∑

p=0

bl,pn
p −

i∑

l=0

ai,lSSl(i− 1)

=

i+1∑

p=0

np
i∑

l=0∨(p−1)

ai,lbl,p −
i∑

l=0

ai,lSSl(i− 1)

and (4.24) follows. �

We are now ready to prove our result on the asymptotic expansion for smooth functions. We set:

• for m ≥ 1 and f ∈ Cm
b (RN ),

Dmf =

3m∑

t = 3 ∨m
t−m even

[t/3]∑

i=1∨ t−m
2

ai, t−m
2

E
(
Ai

tf(G)
)
; (4.26)

• for r ≥ 2 and f ∈ Cr+1
b (RN ),

En
r f = n

[r/3]+1
2 ×

[ r∑

m=[ r
3
]+1

1

n
m
2

(3m)∧r∑

t = 3 ∨m
t−m even

[t/3]∑

i=1∨ t−m
2

ai, t−m
2

E
(
Ai

tf(G)
)
+

1

n
r+1
2

Un
r f

]
. (4.27)

Then we have
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Theorem 4.8. Let r ≥ 2. If F ∈ Lr+1(Ω) then for every f ∈ Cr+3
b (RN ) one has

E
(
f(Sn)

)
− E

(
f(G)

)
=

[r/3]∑

m=1

1

n
m
2

Dmf +
1

n
[r/3]+1

2

En
r f

where Dmf and En
r f are defined in (4.26) and (4.27) respectively.

Remark 4.9. At this stage, we could prove that

|En
r f | ≤ C(1 + E(|F |r+1))[r/3]∨1

[
‖f‖r+3,∞ sup

|α|≤r
|∆α|+ ‖f‖r+1,∞

1

n
r−[r/3]−2

2

]
, (4.28)

C denoting a suitable constant depending on r and N only. But since we aim to deal with the distance
in total variation, we need a representation and an estimate of the reminder in terms of f and not of
its derivatives. So, we skip this point and we postpone the problem to next section.

Proof. Take r ≥ 2. We use Proposition 4.5: for every n ∈ N and f ∈ Cr+1
b (RN ) we have

E
(
f(Sn

n)
)
− E

(
f(S0

n)
)
=

r∑

t=3

1

n
t
2

[t/3]∑

i=1

Pi(n)E
(
Ai

tf(G)
)
+

1

n(r+1)/2
Un
r f

=

r∑

t=3

1

n
t
2

[t/3]∑

i=1

i∑

p=0

ai,pn
p
E
(
Ai

tf(G)
)
+

1

n(r+1)/2
Un
r f

=
r∑

t=3

[t/3]∑

p=0

1

n
t
2
−p

[t/3]∑

i=1∨p
ai,pE

(
Ai

tf(G)
)
+

1

n(r+1)/2
Un
r f.

So, by recalling that Sn = Sn
n and G

L
= S0

n we obtain

E
(
f(Sn)

)
− E

(
f(G)

)
=

r∑

t=3

[t/3]∑

p=0

1

n
t
2
−p

[t/3]∑

i=1∨p
ai,pE

(
Ai

tf(G)
)
+

1

n(r+1)/2
Un
r f

We set now t−2p = m, so t−m is an even number. Now, p ≥ 0 gives that t ≥ m and since t ≥ 3 then
t ≥ 3 ∨m and m ≤ r; p ≤ [t/3] gives that (t−m)/2 ≤ [t/3]. Therefore, the sum over t ≤ r must be
done on the set {t : 3 ∨m ≤ t ≤ r, t −m even, t− 2[t/3] ≤ m}. It is easy to see that this set equals
to {t : 3 ∨m ≤ t ≤ (3m) ∧ r, t−m even}. So, we obtain

E
(
f(Sn)

)
− E

(
f(G)

)
=

r∑

m=1

1

n
m
2

(3m)∧r∑

t = 3 ∨m
t−m even

[t/3]∑

i=1∨ t−m
2

ai, t−m
2

E
(
Ai

tf(G)
)
+

1

n(r+1)/2
Un
r f.

The statement now follows by using (4.26) (notice that 3m ≤ r if m ≤ [r/3]) and (4.27). �

4.2 Regularized functions and estimate of the reminder

Our problem is now to prove an estimate for the reminder in the development for a function f in
terms of ‖f‖∞ instead of ‖f‖r+1,∞. To this purpose, we need some preliminary results.

For δ > 0 we denote by γδ the density of the centred Gaussian law of variance δI and for f : Rd → R

we denote fδ = f ∗ γδ. Using standard integration by parts on R
N one may prove that for each r ∈ N
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there exists an universal constant C (depending on N and r only) such that for every multi index α
with |α| = r one has

‖∂αfδ‖∞ ≤ C

δr/2
‖f‖∞ . (4.29)

We give now some estimates following from Lemma 2.4 in [2].

Lemma 4.10. Suppose that µF � LebN . There exist universal constants C > 0 and b > 4, depending
on N only, such that for every δ > 0, n ∈ N and for every bounded and measurable function f : RN → R

one has
|E(f(Sn))− E(fδ(Sn))| ≤ C ‖f‖∞ (1 + E(|F |))

(
e−n/C + δ1/bn(b−2)/(2b)

)
. (4.30)

Proof. Let K ≥ 1 and ΨK ∈ C∞(RN ) be such that 1BK (0) ≤ ΨK ≤ 1BK+1(0) and such that, for some
L > 0, ‖∂αΨK‖∞ ≤ L for every multi index α. Then we have

|E(f(Sn))− E(f(ΨK(Sn)Sn))| ≤ ‖f‖∞ P(|S| ≥ K) ≤ ‖f‖∞
E(|Sn|)
K

≤ ‖f‖∞
√
n

K
E(|F |)

and in a similar way |E(fδ(Sn))− E(fδ(ΨK(Sn)Sn))| ≤ ‖f‖E(|F |)√n/K. So we can write

|E(f(Sn))− E(fδ(Sn))| ≤|E(f(Sn))− E(f(ΨK(Sn)Sn))|+ |E(fδ(Sn))− E(fδ(ΨK(Sn)Sn))|
+ |E(f(ΨK(Sn)Sn))− E(fδ(ΨK(Sn)Sn))|

≤2E(|F |) ‖f‖∞
√
n

K
+ |E(f(ΨK(Sn)Sn))− E(fδ(ΨK(Sn)Sn))|.

As for the last term in the above r.h.s. we apply Lemma 2.5 from [2] to S̄n = ΨK(Sn)Sn: there exist
some universal constants C, p, a > 1 depending only on N such that for every ε > 0, δ > 0 and every
f ∈ L∞(RN ) then

|E(f(ΨK(Sn)Sn))− E(fδ(ΨK(Sn)Sn))| ≤ C ‖f‖∞×

×
(
P(detσΨK(Sn)Sn

< ε) +

√
δ

εp
(1 + ‖ΨK(Sn)Sn‖3,p + ‖L(ΨK(Sn)Sn)‖1,p)a

)
.

We note that we are forced to introduce the localization inside ΨK because in the above estimate it
appears ‖ΨK(Sn)Sn)‖p with p > 1: since the r.v.’s are only square integrable, if we take ΨK ≡ 1 then
in principle we do not know if such norm is finite.
Now, on the set {|Sn| ≤ K} we have detσΨK(Sn)Sn

= detσSn , so that

P(detσΨK(Sn)Sn
< ε) ≤ P(detσSn < ε) + P(|Sn| > K) ≤ P(det σSn < ε) +

E(|Sn|)
K

≤ P(detσSn < ε) + E(|F |)
√
n

K
.

By taking ε = ε∗/2 as in Lemma 3.3, (3.20) gives

P(detσΨK(Sn)Sn
< ε) ≤ Ce−n/C + E(|F |)

√
n

K
.

Therefore, we can write

|E(f(Sn))− E(fδ(Sn))| ≤ C ‖f‖∞×

×
(
e−n/C + E(|F |)

√
n

K
+

√
δ
(
1 + ‖ΨK(Sn)Sn‖3,p + ‖L(ΨK(Sn)Sn)‖1,p

)a)
.
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We use now Lemma B.1 in Appendix B: inequalities (B.1) and (B.2) give

‖ΨK(Sn)Sn‖3,p + ‖L(ΨK(Sn)Sn)‖1,p ≤ CK
(
1 + ‖Sn‖1,3,4p

)6
+ CK

(
1 + ‖Sn‖1,2,8p

)5(
1 + ‖LSn‖1,4p

)

≤ CK
(
1 + ‖Sn‖1,3,8p + ‖LSn‖1,4p

)6
.

By using (3.17) and (3.18) we have

‖ΨK(Sn)Sn‖3,p + ‖L(ΨK(Sn)Sn)‖1,p ≤ CK,

so that

|E(f(Sn))− E(fδ(Sn))| ≤ C ‖f‖∞
(
e−n/C + E(|F |)

√
n

K
+

√
δ Ka

)

≤ C ‖f‖∞ (1 + E(|F |))
(
e−n/C +

√
n

K
+

√
δ Ka

)
.

We now optimize on K by taking it in order that
√
n/K =

√
δ Ka. Straightforward computations give

now (4.30), with 1
b = 1

2(1− a
a+1) <

1
4 . �

Remark 4.11. We stress that when C(F ) 6= Id then the constant in (3.20) depends on λ(F ). As a
consequence, this dependence holds for the constant C appearing in (4.30) as well.

We now propose the following key result, allowing us to deal with the remaining terms.

Lemma 4.12. Suppose that µF � LebN . Let α and β denote multi-indexes, with |α| = r and
|β| = m. If F ∈ Lm(Ω) then there exists a constant C (which depends on N , r and m) such that for
every f ∈ L∞(RN ), δ > 0, n ≥ 1 and λ ∈ R then

∣∣∣E
(
∂αfδ

(
Ŝk
n + λ

Fk

n1/2

)
F β
k

)∣∣∣ ≤ C‖f‖∞E(|F |m)
(
1 + δ−r/2e−n/C

)
,

∣∣∣E
(
∂αfδ

(
Ŝk
n + λ

Gk

n1/2

)
Gβ

k

)∣∣∣ ≤ C‖f‖∞E(|G|m)
(
1 + δ−r/2e−n/C

)
,

in which fδ = f ∗ γδ, γδ being the centred normal density in R
N with covariance matrix δI.

Proof. Without loss of generality, we suppose that n is even and we study separately the cases k ≤ n/2
and k ≥ n/2 + 1 - if n was odd, it would be sufficient to study k ≤ (n− 1)/2 and k ≥ (n− 1)/2 + 1.

Case 1: k ≤ n/2. We denote

Ak =
1

n1/2

( k−1∑

i=1

Fi +

n/2∑

i=k+1

Gi

)
+ λ

Fk

n1/2
, B =

1

n1/2

n∑

i=n/2+1

Gi

so that

Ŝk
n + λ

Fk

n1/2
= Ak +B.

Notice that B is a Gaussian random variable with covariance 1
2I which is independent of Ak and of Fk.

Using integration by parts with respect to B we may find a random variable Hα having all moments
and

E

(
∂αfδ

(
Ŝk
n + λ

Fk

n1/2

)
F β
k

)
= E

(
∂αfδ(Ak +B)F β

k

)
= E(fδ(Ak +B)F β

k Hα).

Since Fk and Hα are independent, Hα being a suitable function of Gn/2, . . . , Gn, it follows that

∣∣∣E
(
∂αfδ

(
Ŝk
n + λ

Fk

n1/2
)F β

k

)∣∣∣ ≤ C ‖fδ‖∞ E(|Fk|m)E(|Hα|) ≤ C ‖f‖∞ E(|F |m)
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Similarly, we obtain ∣∣∣E
(
∂αfδ

(
Ŝk
n + λ

Gk

n1/2
)Gβ

k

)∣∣∣ ≤ C ‖f‖∞ E(|G|m).

Case 2: k > n/2. We denote

A =
1

n1/2

n/2∑

i=1

Fi, Bk =
1

n1/2
(

k−1∑

i=n/2+1

Fi +
n∑

i=k+1

Gi) + λ
Fk

n1/2

so that

Ŝk
n + λ

Fk

n1/2
= A+Bk.

We notice that

A =
1√
2
Sn/2,

so we can use the noise from the absolutely continuous r.v.’s V1, . . . , Vn/2 “inside” Sn/2, as already
seen in Section 3. We then proceed to use integration by parts w.r.t. the noise from A.
We notice that σA = 1

2σSn/2
and that the covariance matrix σSn/2

of Sn/2 may degenerate. So, we use a

localization: we consider a function φ ∈ C1(R+) such that 1(ε∗/2,∞) ≤ φ ≤ 1(ε∗,∞) and ‖∇φ‖∞ ≤ 2/ε∗
with ε∗ given in (3.19). Then we write

E

(
∂αfδ

(
Ŝk
n + λ

Fk

n1/2

)
F β
k

)
= E

(
∂αfδ(A+Bk)F

β
k

)
= I + J

with

I = E
(
∂αfδ(A+Bk)F

β
k φ(det σA)

)
,

J = E
(
∂αfδ(A+Bk)F

β
k (1− φ(det σA))

)
.

We estimate I. Notice that φ(det σA) 6= 0 implies that detσA ≥ ε∗/2. We use the integration by parts
with respect to A, as developed in [2], and we obtain

I = E
(
fδ(A+Bk)F

α
k H

r
α(A,φ(det σA))

)
.

By using the estimates in Theorem 3.4 from [2], we may find some universal constants C, q such that

E
(
|Hr

α(A,φ(det σA))|2
)
≤ C

εq∗

(
1 + ‖A‖1,r+1,p + ‖LA‖r−1,p

)q ≤ C ′

the second inequality following from (3.17) and (3.18). Now, Fk andH
r
α(A,φ(det σA)) are independent,

so that
|I| ≤ C ‖f‖∞ E(|F |m).

We estimate now J. By recalling again that Fk and σA are independent and by using (4.29) and (3.20),
we obtain

|J | ≤ ‖∂αfδ‖∞E(|F β
k (1− φ(det σA)|) ≤ δ−r/2‖f‖∞E(|Fk|m)P(σSn/2

≤ ε∗))

≤ Cδ−r/2‖f‖∞E(|F |m)× e−n/C .

By resuming, we get

∣∣∣E
(
∂αfδ

(
Ŝk
n + λ

Fk

n1/2

)
F β
k

)∣∣∣ ≤ C‖f‖∞E(|F |m)
(
1 + δ−r/2e−n/C

)
.
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And similarly, we prove that

∣∣∣E
(
∂αfδ

(
Ŝk
n + λ

Gk

n1/2

)
Gβ

k

)∣∣∣ ≤ C‖f‖∞E(|G|m)
(
1 + δ−r/2e−n/C

)
.

�

We can now give a nice estimate for Un
r fδ in terms of ‖f‖∞. And this is enough for the moment.

Lemma 4.13. Suppose that µF � LebN . Let r ≥ 2 and F ∈ Lr+1(Ω). For f ∈ L∞(RN ) and δ > 0,
set fδ = f ∗ γδ, γδ being the centred normal density in R

N with covariance matrix δI. Then there
exists C > 0 depending on r and N only such that for every f ∈ L∞(RN ) one has

|Un
r fδ| ≤ C(1 + E(|F |r+1))[r/3]∨1‖f‖∞(1 + δ−

r+3
2 e−n/C)

(
sup
|α|≤r

|∆α| × n
r−[r/3]

2 + n
)
. (4.31)

Proof. By using (4.15) and (4.14), we can write

Un
r f =

n∑

k=1

[ k−1∑

j=1

r∑

t=3

Rk−j
r−t,nΨ

(j)
t f +Rk

r,nf
]
.

Since g 7→ Rl
t,ng is linear, by using the expansion of Ψ(k) in Lemma 4.6 and by recalling that Qi−1(k) ≥

0, we get

|Un
r f | ≤

n∑

k=2

k−1∑

j=1

r∑

t=3

[t/3]∑

i=1

Qi−1(j)|Rk−j
r−t,nAi

tf |+
n∑

k=1

|Rk
r,nf |.

Since r ≥ 2, (4.10) gives Rℓ
0,n = 1

nRℓ
2,n and Rℓ

1,n = 1√
n
Rℓ

2,n. So, we isolate in the sum the terms with

t = r − 1, r and we obtain

|Un
r fδ| ≤

n∑

k=2

k−1∑

j=1

[
1r≥5

r−2∑

t=3

[t/3]∑

i=1

Qi−1(j)|Rk−j
r−t,nAi

tfδ|+ 1r≥4
1√
n

[(r−1)/3]∑

i=1

Qi−1(j)|Rk−j
2,n Ai

r−1fδ|

+1r≥3
1

n

[r/3]∑

i=1

Qi−1(j)|Rk−j
2,n Ai

rfδ|
]
+

n∑

k=1

|Rk
r,nfδ|.

(4.32)
We have (recall formula (4.9))

|Rk
r,nfδ| ≤

r∑

p=3

1

p!

∑

|α|=p

|∆α|n
r−p+1

2

∣∣∣E
(
Ur−p∂αfδ

(
Ŝk
n,

−Gk√
n

))∣∣∣+

+ n
r+1
2

[∣∣∣E
(
Urfδ

(
Ŝk
n,
Fk√
n

))∣∣∣+
∣∣∣E

(
Urfδ

(
Ŝk
n,
Gk√
n

))∣∣∣
]

and by using Lemma 4.12 we get

|Rk
r,nfδ| ≤ C(1 + E(|F |r+1))‖f‖∞(1 + δ−

r+1
2 e−n/C). (4.33)

As for the other sums in the r.h.s. of (4.32), for s ≥ 2 we have

|Rk−j
s,n Ai

tfδ| ≤
∑

|γ|=t

|ciγ | × |Rk−j
s,n ∂γfδ| ≤ C sup

|α|≤t
|∆α|(1 + E(|F |t))i−1

∑

|γ|=t

|Rk−j
s,n ∂γfδ|,
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last inequality following from (4.19). We use again Lemma 4.12: for |γ| = t,

|Rk−j
s,n ∂γfδ| ≤ C(1 + E(|F |s+1))‖f‖∞(1 + δ−

s+t+1
2 e−n/C).

We apply such inequality with: t ≤ r − 2 and s = r − t, t = r − 1 and s = 2, t = r and s = 2. Then,

|Rk−j
r−t,nAi

tfδ| ≤C sup
|α|≤r

|∆α|(1 + E(|F |r+1))[r/3]∨1‖f‖∞(1 + δ−
r+1
2 e−n/C)

|Rk−j
2,n Ai

r−1fδ| ≤C sup
|α|≤r

|∆α|(1 + E(|F |r+1))[r/3]∨1‖f‖∞(1 + δ−
r+2
2 e−n/C)

|Rk−j
2,n Ai

rfδ| ≤C sup
|α|≤r

|∆α|(1 + E(|F |r+1))[r/3]∨1‖f‖∞(1 + δ−
r+3
2 e−n/C)

By inserting such estimates and (4.33) in (4.32), we get

|Un
r fδ| ≤

n∑

k=2

k−1∑

j=1

[
1r≥5

r−2∑

t=3

[t/3]∑

i=1

Qi−1(j)|Rk−j
r−t,nAi

tfδ|+ 1r≥4
1√
n

[(r−1)/3]∑

i=1

Qi−1(j)|Rk−j
2,n Ai

r−1fδ|

+ 1r≥3
1

n

[r/3]∑

i=1

Qi−1(j)|Rk−j
2,n Ai

rfδ|
]
+

n∑

k=1

|Rk
r,nfδ|

≤C(1 + E(|F |r+1))[r/3]∨1‖f‖∞(1 + δ−
r+3
2 e−n/C)×

×
(
sup
|α|≤r

|∆α|
n∑

k=2

k−1∑

j=1

[
1r≥5

[(r−2)/3]∑

i=1

Qi−1(j) + 1r≥4
1√
n

[(r−1)/3]∑

i=1

Qi−1(j)+

+ 1r≥3
1

n

[r/3]∑

i=1

Qi−1(j)
]
+ n

)

Since
∑n

k=2

∑k−1
j=1

∑L
i=1Qi−1(j) =

∑L
i=1 Pi+1(n− 1) is a polynomial of order L+ 1 we obtain

|Un
r fδ| ≤C(1 + E(|F |r+1))[r/3]∨1‖f‖∞(1 + δ−

r+3
2 e−n/C)×

×
(
sup
|α|≤r

|∆α|
[
1r≥5n

[(r−2)/3]+1 + 1r≥4n
[(r−1)/3]+ 1

2 + 1r≥3n
[r/3]

]
+ n

)

and the statement follows by noticing that

n[(r−2)/3]+11r≥5 + n[(r−1)/3]+1/21r≥4 + n[r/3]1r≥3 ≤ Cn[r/3]+
r−3[r/3]

2 .

�

4.3 Estimate of the error in total variation distance

We want to get rid of the derivatives of f which appear in the coefficients Dmf . In order to do it
we will use integration by parts w.r.t. the Gaussian law and then the Hermite polynomials come on.
Again, we assume µF � LebN and F has null mean and identical covariance matrix.
We denote by Hm the Hermite polynomial of order m on R that is

Hm(x) = (−1)me
1
2
x2 dm

xm
e−

1
2
x2
. (4.34)
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For a multi index α = (α1, ..., αr) ∈ {1, ..., N}r we denote βi(α) = card{j : αj = i} so that ∂α =

∂
β1(α)
x1 . . . ∂

βd(α)

xN . And we define the Hermite polynomial on R
N corresponding to the multi index α by

Hα(x) =

N∏

i=1

Hβi(α)(xi) for x = (x1, ..., xN ). (4.35)

With this definition we have

∂αe
− 1

2
|x|2 = (−1)|α|Hα(x)e

− 1
2
|x|2

and using integration by parts, for a centred Gaussian random variable G ∈ R
N

E(∂αf(G)) = E(f(G)Hα(G)). (4.36)

This means that we can compute E(Ai
tf(G)) by means of f and not of its derivatives. In fact, for

i ≥ 1 and t ≥ 0, we define the polynomials Hi
t(x) as follows:

Hi
t(x) =

∑

γ:|γ|=t

ciγHγ(x), ciγ defined in (4.17) and Hγ given in (4.35). (4.37)

Since Ai
tf =

∑
γ : |γ|=t c

i
γ∂γ , (4.36) gives

E(Ai
tf(G)) =

∑

γ : |γ|=t

ciγE(∂γf(G)) =
∑

γ : |γ|=t

ciγE(f(G)Hγ(G)) = E(f(G)Hi
t(G)).

Therefore, for every f ∈ Cm
b (RN ) the coefficients Dmf , m ≥ 1, in (4.26) can be written as

Dmf = E(f(G)Km(G)), m ≥ 1, where

Km(x) =

3m∑

t = 3 ∨m
t−m even

[t/3]∑

i=1∨ t−m
2

ai, t−m
2

Hi
t(x), ai,l given in (4.24) and Hi

t given in (4.37). (4.38)

We are now ready to tackle our original problem: the exact expansion in total variation distance of
the law µn of Sn. To this purpose, for r ≥ 2 and n ≥ 1 we define the following measure in R

N :

Γn,r(dx) = γ(x)
(
1 +

[r/3]∑

m=1

1

n
m
2

Km(x)
)
dx, Km(x) given in (4.38), (4.39)

where γ denotes the probability density function of a standard normal random variable in R
N . We

stress that for r = 2 then Γn,r(dx) = γ(x)dx =: Γ(dx).

Theorem 4.14. Suppose µF � LebN . Let r ≥ 2 and F ∈ Lr+1(Ω). For n ≥ 1, let µn denote the law
of Sn and Γn,r stand for the measure in (4.39). Then there exists a constant C > 0 depending on r
and N only such that for every n ∈ N,

dTV (µn,Γn,r) ≤ C
(
1 + E(|F |r+1)

)[r/3]∨1[
sup
|α|≤r

|∆α| ×
1

n
[r/3]+1

2

+
1

n
r−1
2

]
.
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Proof. We study |
∫
fdµn −

∫
fdΓn,r| for f ∈ L∞(RN ). From now on, C will denote a constant,

possibly varying from line to line, that may depend only on N and r.

We take δ > 0 and we consider the regularized function fδ = f ∗ γδ where γδ is the centred Gaussian
density of covariance matrix δI. We have

∣∣∣
∫
fdµn −

∫
fdΓn,r

∣∣∣ ≤ In,δ + I ′n,δ + Jn,δ

with

In,δ =
∣∣∣
∫

(f − fδ)dµn

∣∣∣, I ′n,δ =
∣∣∣
∫

(f − fδ)dΓn,r

∣∣∣, Jn,δ =
∣∣∣
∫
fδdµn −

∫
fδdΓn,r

∣∣∣

By (4.30)
In,δ ≤ C ‖f‖∞ (1 + E(|F |))

(
e−n/C + δ1/bn(b−2)/(2b)

)
,

where b > 4 is a suitable constant, independent of F and f . And using standard integration by parts
on R

N ,
I ′n,δ ≤ C ‖f‖∞ δ1/2.

Moreover, since
∫
fδdΓn,r = E(fδ(G)) +

[r/3]∑

m=1

1

n
m
2

Dmfδ,

Theorem 4.8 gives

Jn,δ =
1

n
[r/3]+1

2

|En
r fδ|

with

|En
r fδ| ≤n

[r/3]+1
2

[ r∑

m=[r/3]+1

1

n
m
2

(3m)∧r∑

t=3∨m

[t/3]∑

i=1∨ t−m
2

|ai, t−m
2

| × |E(Ai
tfδ(G))| +

1

n
r+1
2

|Un
r fδ|

]

But since E(Ai
tfδ(G)) = E(fδ(G)Hi

t(G)), then

|E(Ai
tfδ(G))| ≤ ‖fδ‖∞E(|Hi

t(G)|) ≤ C‖f‖∞(1 + E(|F |t−1)) sup
|α|≤t

|∆α|.

We use now Lemma 4.13: for r ≥ 2, we apply (4.31) and we get

|En
r fδ| ≤ C(1 + E(|F |r+1)[r/3]∨1‖f‖∞(1 + δ−

r+3
2 e−n/C)

[
sup
|α|≤r

|∆α|+
1

n
r−[r/3]−2

2

]
.

By replacing, we get

Jn,δ ≤ C (1 + E(|F |r+1)[r/3]∨1‖f‖∞(1 + δ−
r+3
2 e−n/C)

[
sup
|α|≤r

|∆α| ×
1

n
[r/3]+1

2

+
1

n
r−1
2

]
.

By resuming, we can write

∣∣∣
∫
fdµn −

∫
fdΓn,r

∣∣∣ ≤C ‖f‖∞ (1 + E(|F |r+1)[r/3]∨1
[
e−

n
C + δ1/2 + δ1/bn(b−2)/(2b)+

+ (1 + δ−
r+3
2 e−n/C)

(
sup
|α|≤r

|∆α| ×
1

n
[r/3]+1

2

+
1

n
r−1
2

)]
.
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Now, we choose δ = δn such that δ
1/b
n n(b−2)/(2b) = 1

n
r−1
2

. By observing that n 7→ δ
− r+3

2
n e−n/C is

bounded and δ
1/2
n ≤ 1

n
r−1
2

, we get

∣∣∣
∫
fdµn −

∫
fdΓn,r

∣∣∣ ≤ C ‖f‖∞ (1 + E(|F |r+1)[r/3]∨1
[
sup
|α|≤r

|∆α| ×
1

n
[r/3]+1

2

+
1

n
r−1
2

]

and the result follows. �

We can now pass to the

Proof of Theorem 2.6 and 2.7. We apply Theorem 4.14 with F replaced by A(F )F , where A(F )
is the inverse of C(F )1/2, C(F ) denoting the covariance matrix. And it is clear that now the constants
appearing in the estimates will depend on C(F ) as well, through its most significant eigenvalues (the
smallest and the largest one, see e.g. in Remark 3.4 and 4.11). �

We conclude by explicitly writing Km(x) for m = 1, 2, 3. From (4.38) we have:

K1(x) = a1,1H1
3(x)

K2(x) = a1,1H1
4(x) + a2,2H2

6(x)

K3(x) = a1,0H1
3(x) + a1,1H1

5(x) + a2,2H2
7(x) + a3,3H3

9(x),

where Hi
t(x) =

∑
|γ|=t c

i
γHγ(x). Now, from (4.17) it is easy to see that

c1γ =





1

3!
∆γ if |γ| = 3

1

4!
∆γ if |γ| = 4

1

3!2!
∆(γ1,γ2,γ3)1γ4=γ5 +

1

5!
∆γ if |γ| = 5,

c2γ =





1

(3!)2
∆(γ1,γ2,γ3)∆(γ4,γ5,γ6) if |γ| = 6

1

3!4!

(
∆(γ1,γ2,γ3)∆(γ4,γ5γ6,γ7) +∆(γ1,γ2,γ3,γ4)∆(γ5,γ6,γ7)

)
if |γ| = 7,

c3γ =
1

(3!)3
∆(γ1,γ2,γ3)∆(γ4,γ5,γ6)∆(γ7,γ8,γ9) if |γ| = 9.

Moreover, a1,0 = 0, a1,1 = 1, a2,2 = b1,2 =
1
2B0 =

1
2 and a3,3 = a2,2b2,3 =

1
2 · 13B0 =

1
6 . So, we can write

K1(x) =
1

3!

∑

|γ|=3

∆γHγ(x)

K2(x) =
1

4!

∑

|γ|=4

∆γHγ(x) +
1

2(3!)2

∑

|γ|=6

∆(γ1,γ2,γ3)∆(γ4,γ5,γ6)Hγ(x)

K3(x) =
∑

|γ|=5

( 1

3!2!
∆(γ1,γ2,γ3)1γ4=γ5 +

1

5!
∆γ

)
Hγ(x)+

+
1

2× 3!4!

∑

|γ|=7

(
∆(γ1,γ2,γ3)∆(γ4,γ5,γ6,γ7) +∆(γ1,γ2,γ3,γ4)∆(γ5,γ6,γ7)

)
Hγ(x)+

+
1

6× (3!)3

∑

|γ|=9

∆(γ1,γ2,γ3)∆(γ4,γ5,γ6)∆(γ7,γ8,γ9)Hγ(x)
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In the case N = 1, for t ∈ N set

ℓt =
E(F t)

Var(F )t/2
.

Note that ℓt is strictly connected to the Lyapunov ratio Lt =
E(|F |t)

Var(F )t/2
. By recalling that forG ∼ N(0, 1)

then E(Gt) = 0 if t is odd and E(Gt) = (t−1)!! if t is even (with the convention (−1)!! = 1), we obtain
∆t = ℓt if t is odd and ∆t = ℓt − (t− 1)!! if t is even. Remark that ∆3 = ℓ3 and ∆4 = ℓ4 − 3 are the
skewness and the kurtosis respectively. Hence, we obtain the polynomials in the classical Edgeworth
expansion:

K1(x) =
ℓ3
6
H3(x), K2(x) =

(ℓ4 − 3)

24
H4(x) +

ℓ23
72
H6(x)

K3(x) =
( ℓ3
3!2!

+
ℓ5
5!

)
H5(x) +

ℓ3(ℓ4 − 3)

3!4!
H7(x) +

ℓ33
6(3!)3

H9(x).

A Probability measures locally lower bounded by the Lebesgue me-

asure

We discuss here the proof of Proposition 2.4. For a random variable F ∈ R
N with law µF , we recall

that µF � LebN if there exists an open set D ⊂ R
N and ε > 0 such that

µF (A) := P(F ∈ A) ≥ εLebN (A ∩D) ∀A ∈ B(RN). (A.1)

Remark that we have already proved that if µF � LebN then (2.3) holds (see Proposition 3.1).
We first prove the equivalence (i) ⇔ (ii):

Lemma A.1. µF � LebN if and only if there exists a non negative measure µ with µ(RN ) < 1 and a
non negative lower semi-continuous function p with

∫
RN p(v)dv = 1− µ(RN ) such that

µF (dv) = µ(dv) + p(v)dv. (A.2)

Proof. If (A.1) holds we take v0 ∈ D and r > 0 such that Br(v0) ⊂ D. Then, it suffices to take
p(x) = ε1Br(v0)(x) and µ(A) = P(F ∈ A)−

∫
A p(v)dv, which turns out to be a non negative measure.

Suppose now that (A.2) holds. Since p is non negative and lower semicontinuous we may find an
increasing sequence of non negative and continuous functions pn, n ∈ N such that pn ↑ p. It follows
that

∫
pn ↑

∫
p = 1− µ(RN ) > 0, and we may find n such that

∫
pn > 0. So there exists v0 such that

pn(v0) > 0. Since pn is continuous this implies that p(v) ≥ pn(v) ≥ 1
2pn(v0) for |v − v0| < r for some

small r. �

As a consequence we get the final property in Proposition 2.4:

Lemma A.2. If µF � LebN then the covariance matrix of F is invertible.

Proof. We fix v0 ∈ R
N and ε > 0 such that (A.1) holds with D = Br(v0). We assume that E(F i) = 0

so that the covariance matrix is given by Ci,j(F ) = E(F iF j). Then, for ξ ∈ R
N we write

〈C(F )ξ, ξ〉 = E(〈F, ξ〉2) ≥ ε

∫

Br(v0)
〈v, ξ〉2 dv.

We denote Aδ(ξ) = {v : 〈v, ξ〉2 ≥ δ |ξ|2} and we note that we may choose δ(v0, r) such that

inf
|ξ|=1

LebN (Aδ(v0,r)(ξ)) =: η(v0, r) > 0.
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Then
inf
|ξ|=1

〈C(F )ξ, ξ〉 ≥ εη(v0, r)LebN (Br(v0)).

�

We have already proved in Proposition 3.1 the implication (i) ⇒ (iii). Last implication (iii) ⇒ (ii) is
trivial. In fact, let

P(χV + (1− χ)W ∈ dv) = P(F ∈ dv)

where χ is a Bernoulli r.v. with parameter p > 0, V in R
N is absolutely continuous and W is a r.v.

in R
N . Setting µF , µV and µW the law of F , V and W respectively, then

µF (dv) = pµV (v)dv + (1− p)µW (dv),

so F has an absolutely continuous component.

B Estimates for the Sobolev norms in Lemma 4.10

This section is devoted to the proof the estimates used in Lemma 4.10, that is

Lemma B.1. Let d ≥ 1, m ∈ N, p ≥ 1. Then there exists C > 0 such that for every K > 1 and
X = (X1, . . . ,Xd) the following estimates holds:

‖ΨK(X)X‖m,p ≤ CK
(
1 + ‖X‖1,m,(m+1)p

)m+1
, (B.1)

‖L(ΨK(X)X)‖m,p ≤ CK
(
1 + ‖X‖1,m+1,4(m∨2)p

)2m+3(
1 + ‖LX‖m,4p

)
(B.2)

where ΨK(X) denote any function in C∞(Rd) such that 1BK (0) ≤ ΨK ≤ 1BK+1(0) and whose derivatives
are uniformly bounded, that is there exists L > 0 such that |∂αΨK | ≤ L for every multi index α.

Proof. For a multi index α, one has

Dα(ΨK(X)Xi) = DαΨK(X)Xi +
∑

β,γ∈Aα,|β|≥1

DγΨK(X)DβX
i

where the condition “β, γ ∈ Aα” means that β, γ is a partition of α. Moreover, one has

DγΨK(X) =

|γ|∑

ℓ=1

∑

|ρ|=ℓ

∂ρΨK(X)
∑

β1,...,βℓ∈Bγ

Dβ1X
ρ1 · · ·Dβℓ

Xρℓ

where “β1, . . . , βℓ ∈ Bγ” means that β1, . . . , βℓ are non empty multi indexes of γ running through the
list of all of the (non empty) “blocks” of γ. Then, for |γ| ≤ m we obtain

|DγΨK(X)| ≤ C 1|X|≤K+1

(
1 +

∑

1≤|ρ|≤m

|DρX|
)m

(B.3)

So, for |α| = m we have

|Dα(ΨK(X)X)| ≤ CK
(
1 + |X|1,m

)m+1

and (B.1) follows. Consider now L(ΨK(X)X l). We have

−L(ΨK(X)X l) = −LΨK(X)X l −ΨK(X)LX l +

n∑

k=1

d∑

i=1

D(k,i)ΨK(X)D(k,i)X
l.
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We use now the inequality ‖XY ‖m,p ≤ C‖X‖m,2p‖Y ‖m,2p. But concerning the first term of r.h.s. of
the equality above, we take care of the derivatives of ΨK as done to obtain formula (B.3) and we get

‖L(ΨK(X)X)‖m,p ≤ C‖LΨK(X)‖m,2p(‖X1|X|<K+1‖2p + ‖X‖1,m,2p)

≤ CK‖LΨK(X)‖m,2p(1 + ‖X‖1,m,2p).

So, we obtain

‖L(ΨK(X)X)‖m,p ≤C
(
K‖LΨK(X)‖m,2p(1 + ‖X‖1,m,2p)+

+ ‖ΨK(X)‖m,2p‖LX‖m,2p + ‖ΨK(X)‖1,m,2p‖X‖1,m,2p

)
.

(B.3) gives that
‖ΨK(X)‖m,2p ≤ C(1 + ‖X‖1,m,2mp)

m, (B.4)

so we can write

‖L(ΨK(X)X)‖m,p ≤CK
(
1 + ‖X‖1,m,2mp

)m+1(
1 + ‖LΨK(X)‖m,2p + ‖LX‖m,2p

)

It remains to estimate ‖LΨK(X)‖m,2p. Since

LΨK(X) =

d∑

j=1

∂jΨK(X)LXj − 1

2

d∑

i,j=1

∂i∂jΨK(X)〈DXi,DXj〉

we have

‖LΨK(X)‖m,2p ≤ C
(
‖∇ΨK(X)‖m,4p‖LX‖m,4p + ‖∇2ΨK(X)‖m,4p‖DX‖2m,8p

)
.

An inequality analogous to (B.4) can be proved for ∇ΨK and ∇2ΨK , so we obtain

‖LΨK(X)‖m,2p ≤ C
(
(1 + ‖X‖1,m,4mp)

m‖LX‖m,4p + (1 + ‖X‖1,m,4mp)
m‖X‖21,m+1,8p

)

≤ C(1 + ‖X‖1,m+1,4(m∨2)p)
m+2

(
1 + ‖LX‖m,4p

)
.

Therefore, we can write

‖L(ΨK(X)X)‖m,p ≤CK
(
1 + ‖X‖1,m,2mp

)m+1
(1 + ‖X‖1,m+1,4(m∨2)p)

m+2×
×

(
1 + ‖LX‖m,4p + ‖LX‖m,2p

)

≤CK
(
1 + ‖X‖1,m+1,4(m∨2)p

)2m+3(
1 + ‖LX‖m,4p

)

and the statement holds. �
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