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Abstract—Open and large-scale systems do not encourage their
users to behave trustworthily, which may entail non-negligible
risks when interacting with unknown users, for instance when
buying an item on an e-commerce platform. Reputation mech-
anisms reduce these risks by associating a reputation score to
each user, summarizing their past behavior. To be useful to users,
reputation mechanisms need to guarantee two main properties:
the non-monotonicity of reputation scores, in order to exactly
reflect the users’ behavior, and the privacy of their users, so that
the history of their transactions is not publicly available. We
propose a distributed privacy-preserving reputation mechanism
handling non-monotonic ratings. Our proposition relies on two
distinct distributed third parties and on cryptographic tools,
including zero-knowledge proofs of knowledge, anonymous proxy
signatures, and verifiable secret sharing. We show that this
proposal is computationally efficient, and thus practical. To the
best of our knowledge, this solution is the first one that preserves
users’ privacy and handles both positive and negative ratings
without relying on a central authority.

Index Terms—Reputation Mechanisms, Security, Privacy, Dis-
tributed Systems

I. INTRODUCTION

Reputation mechanisms have come out as an effective tool

to encourage trust and cooperation in electronic environments,

e.g. e-commerce applications or web-based communities. A

reputation mechanism enables users to rate services or people

based on their experience [16]. These ratings or feedback are

aggregated to derive reputation scores. Scores are publicly

available, which allows any user to evaluate the trustworthiness

of target entities (the ratees). Thus, reputation mechanisms

identify capable entities and discourage others from behaving

incorrectly [10]. Some reputation mechanisms require a central

authority to correctly process ratings and compute reputation

scores, while others rely on distributed components. The for-

mer design introduces a single point of vulnerability, allowing

a single entity to fully control all reputation scores. As will

be shown in the following, our reputation mechanism meets

security and trust exigences through distributed computations.

While aggregating ratings is necessary to derive reputation

scores, identifiers and ratings are personal data, whose collect

and use may fall under legislation [12]. Furthermore, as shown

by recent works [25], solely relying on pseudonyms to interact

is not sufficient to guarantee user privacy [30]. This has given

rise to the proposition of a series of reputation mechanisms

which address either the non-exposure of the history of

raters [6], the non-disclosure of individual feedback [17], [22],

[27], the secrecy of ratings and the k-anonymity of ratees [9],

or the anonymity and unlinkability of both raters and ratees [3],

[6].

Regrettably, the search for privacy has led to restrictions

in the computation of the reputation score: clients cannot

issue negative ratings anymore [3], [6]. This restriction comes

from the management of ratings. In existing privacy-preserving

mechanisms, the ratees have the opportunity to skip some

of the received ratings to increase their privacy. This is not

conceivable in a non-monotonic reputation mechanism: ratees

could skip negative ratings to increase their reputation scores.

This is a problem because a ratee that received a thousand

positive ratings and no negative ratings is indistinguishable

from a ratee that received a thousand positive ratings and a

thousand negative ratings. This clearly does not encourage

ratees to behave correctly. Furthermore, Baumeister et al.



explain that “bad feedback has stronger effects than good

feedback” on our opinions [5]. Negative ratings are thus

essential to reputation mechanisms. So far, preserving the

privacy of both raters and ratees and handling both positive and

negative ratings has been recognized as a complex challenge.

Quoting Bethencourt et al., “Most importantly, how can we

support non-monotonic reputation systems, which can express

and enforce bad reputation as well as good? Answering

this question will require innovative definitions as well as

cryptographic constructions” [6].

The design of privacy-preserving non-monotonic reputation

mechanisms is highly desirable in many applications, where

both quality of service and privacy are very important. This

is particularly true in all audit processes, and web-based

community applications. As an example, let us focus on an

application concerning all of us, the scientific peer review

process.

This process is at the core of many scientific committees,

including those of conferences, journals, and grant applica-

tions. Its goal is to assess the quality of research through

experts, the peer reviewers, that evaluate manuscripts and

proposals based on their scientific quality, significance, and

originality. Peer reviewing is an activity that requires to spend

considerable effort and time for doing legitimate, rigorous and

ethical reviews. Reviewers are chosen by committee members

among all their colleagues and peers. In order to remove

any bias, several reviewers are assigned to each manuscript,

and the reviews are double-blind. The increasing number of

solicitations makes the reviewing task even more challenging

and, by force of circumstances, may lower the quality of

reviews.

Imagine now a privacy-preserving reputation mechanism

whose goal would be to assess reviews according to their

helpfulness and fairness. Authors would anonymously rate

each received review according to both criteria. Journal editors

or committee chairs would collect these ratings to update the

reputation score of the concerned reviewers. Those reputations

would be maintained in a very large shared anonymous repos-

itory organized according to the thematic of the anonymized

reviewers. Editors and chairs would then have the opportunity

to choose anonymous reviewers from this repository according

to their reputation to build their reviewing committee. The

rationale of such a repository is three-fold. Authors would have

an incentive to honestly and carefully rate each received review

as their goal would be to contribute to the creation of a pool

of helpful and fair reviewers. Committee chairs would take

advantage of using such a repository as they could decrease

the load imposed to each selected reviewer by soliciting a

very large number of them. Consequently, each reviewer could

devote more time to their few reviews, and would thus provide

highly helpful reviews, increasing accordingly the quality of

published articles or granted applications. Finally, it would

be at reviewers’ advantage to provide helpful reviews to have

a high reputation, which would be a unanimous acknowledg-

ment of their expertise. As a consequence, such an anonymous

repository would increase the quality of accepted manuscripts

and proposals in a fully privacy-preserving way.

In the remaining of the paper, we present the design and

evaluation of a non-monotonic distributed reputation mech-

anism preserving the privacy of both parties. After having

presented the state of art in Section II, we motivate and present

the properties that should be met by a reputation mechanism to

be secure, to respect the privacy of all its parties, and to handle

non-monotonic ratings in Section III. Section IV then provides

a description of the main principles of our approach to build

such a mechanism. As detailed in Section V, it relies on two

distinct distributed third-parties and cryptographic tools. The

orchestration of these tools is presented in Section VI. We

finally show in Section VII that this unprecedented mechanism

is computationally efficient, and thus implementable in large-

scale applications. Section VIII concludes.

II. STATE OF THE ART

One of the first examples of reputation mechanisms has

been set up by eBay. In this mechanism, clients and service

providers rate each other after each transaction: ratings are

either +1, 0, or −1 according to the (dis)satisfaction of users.

The reputation score of a user is simply the sum of the

received ratings. Resnick and Zeckhauser have analyzed this

mechanism and the effects of reputation on eBay [29], and

have highlighted a strong bias toward positive ratings. More

elaborated reputations mechanisms have been proposed, such

as the Beta Reputation System [19], methods based on the

Dempster-Shafer theory of belief [32], or using Distributed

Hash Tables to collect ratings or manage reputation scores [2],

[18], [21]. Jøsang et al. propose a broad survey of reputation

mechanisms and reputation score functions [20], while Marti

and Garcia-Molina focus on their implementation in P2P

systems [24]. Indubitably, the nature of ratings and the com-

putation of reputation scores have been thoroughly researched.

In this work, we do not make any assumptions regarding the

function that computes reputation scores. Indeed, our solution

handles both positive and negative ratings, and may thus use

any computation function.

One of the first known reputation mechanism taking the

privacy of users into account has been proposed by Pavlov et

al. [27]. Their solution presents a series of distributed algo-

rithms for computing the reputation score of service providers

without divulging the ratings issued by clients. Their solution

has been improved by Hasan et al. [17], [18] for different

adversary models, and stronger privacy guarantees. Similarly,

Kerschbaum proposes a centralized mechanism computing the

reputation scores of service providers, without disclosing the

individual ratings of the clients [22].

The secrecy of ratings contributes to the privacy of users,

but is clearly insufficient: service providers can still discrimi-

nate their clients according to their identity or to additional

information unrelated to the transaction. As we previously

mentioned, identifiers and ratings are data that can be con-

sidered personal. Specifically, as pointed out by Mahler and

Olsen [23], the European Directive 95/46/EC on data protec-

tion states that “the data [must not] be excessive in relation



to the purposes for which they are processed” [12]. A priori,

the identity of users have no relation to their behavior. Thus,

identities have no added utility for reputation mechanisms and

are not necessary. Steinbrecher argues that reputation mecha-

nisms must guarantee both the anonymity of their users, and

the unlinkability of their transactions to be fully adopted [30].

Both properties have been lately formalized by Pfitzmann and

Hansen [28]. Namely, a user is anonymous if this user is not

identifiable within a set of users, called the anonymity set. The

transactions of a user are unlinkable if the participants in two

different transactions cannot be distinguished.

Hence, Clauß et al. [9] propose a centralized mechanism

guaranteeing both the secrecy of ratings and the k-anonymity

of service providers. However, this mechanism does not pre-

serve the privacy of clients. Androulaki et al. [3] propose

a centralized reputation mechanism guaranteeing both the

anonymity and unlinkability of both parties. However, since

providers send a request to the central bank for their ratings

to be taken into account, only positive ratings are handled.

In addition, this mechanism is vulnerable to ballot-stuffing

attacks [10], that is, a single client can issue many ratings

on a provider to bias her reputation. Hence, a provider with

thousands of positive ratings from a single client is indistin-

guishable from a provider with positive ratings from thousands

of different users, which is problematic.

Whitby et al. [31] propose a technique mitigating ballot-

stuffing attacks, however, such a technique requires the ability

to link the ratings concerning the same provider. Bethencourt

et al. [6] propose to compute such a link. That is, they propose

a mechanism linking all the transactions that have occurred

with the same partners (client and service provider), while

preserving their privacy. However, their reputation mechanism

requires high computational power, bandwidth and storage

capacity. For instance, when proving their reputation score,

providers must send about 500 kB per received rating, which is

from a practical point of view unbearable. Furthermore, clients

cannot issue negative ratings.

We are not aware of any reputation mechanism preserving

the privacy of its users and allowing clients to issue negative

ratings. So far, achieving both at the same time has been

recognized as a complex challenge. This is the objective of

this paper.

III. MODEL AND PROPERTIES

A. Terminology

In the following, we differentiate transactions from in-

teractions. More precisely, a transaction corresponds to the

exchange of a service between a client and a service provider.

An interaction corresponds to the whole protocol followed

by the client and the provider, during which the clients gets

the provider’s reputation and the client issues a rating on the

provider. Note that we make no assumption about the nature

of transactions: they can be reviews, web-based community

applications, or the purchase and delivery of physical goods.

Once a transaction is over, the client is expected to issue

a rating representative of the provider’s behavior during the

transaction. Nevertheless, clients can omit to issue such a

rating, deliberately or not. While dissatisfied clients almost

always issue a rating, this is not the case of satisfied clients.

To cope with this asymmetry, we introduce the notion of proofs

of transaction: a proof of transaction is a token delivered to

providers for transactions when the client did not issue a rating.

Such proofs of transaction allow clients to distinguish between

multiple providers that have the same reputation. We denote

by report the proof of transaction associated with the client’s

rating, if any. These reports serve as the basis to compute

reputation scores.

Finally, we say that a user is honest if this user follows the

protocol of the reputation mechanism. Otherwise, this user is

malicious. Finally, a report or a reputation score is valid if an

honest user accepts it. A more rigorous definition is given in

Section VI.

B. Model of the System

We consider an open system populated by a large number of

users, who can be malicious. Before entering the system, users

register to a central authority C, that gives them identifiers and

certificates. Once registered, users do not need to interact with

C anymore. A user can act as a client, as a service provider,

or as both, and obtains credentials for both roles. We assume

that users communicate over an anonymous communication

network, e.g. Tor [11], to prevent the tracking of their IP

addresses.

C. Properties of Reputation Mechanisms

Our reputation mechanism aims at offering three main

guarantees to users. First and foremost, the privacy of users

must be preserved. Second, the issuing of reports must take

place without any problems. Finally, every data needed for

the computation of reputation scores must be available and

unfalsifiable. Note that we only give intuitive views of the

properties; we defer their formal statements and their proofs

in Appendix B.

Privacy properties are detailed by Property 1 and 2. Prop-

erty 1 stipulates that clients do not know the service providers

they interacted with when they rate them. Property 2 claims

that any two clients have to remain indistinguishable. Proper-

ties 3 and 4 are related to the undeniability of reports. These

properties expect that providers obtain proofs of transaction,

and that clients are able to issue ratings. Property 5 tackles

with the unforgeability of reports. Finally, Properties 6 and 7

respectively stipulate that computation of the reputation scores

cannot be biased by ballot-stuffing attacks, and that reputation

scores are unforgeable.

Property 1: Privacy of service providers. When a client rates

an honest service provider, this service provider is anonymous

among all honest service providers with an equivalent reputa-

tion.

Property 2: Privacy of clients. When a service provider

conducts a transaction with an honest client, this client is

anonymous among all honest clients. Furthermore, the inter-

actions of honest clients with different service providers are

unlinkable.



Property 3: Undeniability of ratings. At the end of a

transaction between a client and a service provider, the client

can issue a valid rating, which will be taken into account in

the reputation score of the provider.

Property 4: Undeniability of proofs of transaction. At the

end of a transaction between a client and a service provider,

the provider can obtain a valid proof of transaction.

Property 5: Unforgeability of reports. Let r be a report

involving a client and a service provider. If r is valid and

either the client or the provider is honest, then r was issued

at the end of an interaction between both users.

Property 6: Linkability of reports. Two valid reports emitted

by the same client on the same service provider are publicly

linkable.

Property 7: Unforgeability of reputation scores. A service

provider cannot forge a valid reputation score different from

the one computed from all her reports.

IV. PRINCIPLES OF THE SOLUTION

A. Distributed Trusted Third-Parties

We explained in Section I that service providers must not

manage themselves their reputation score to guarantee their

reliability. To solve this issue, we propose to construct a dis-

tributed trusted authority in charge of updating and certifying

reputation scores. We call accredited signers the entities con-

stituting this authority. This first distributed authority has two

main features. Firstly, this authority must involve fairly trusted

entities or enough entities to guarantee that the malicious

behavior of some of them never compromises the computation

of reputation scores. Secondly, this authority must ensure that

providers remain indistinguishable from each others.

Moreover, to ensure the undeniability of ratings (Prop-

erty 3), a client must be able to issue his report, even if the

service provider does not complete the interaction. However,

the precautions taken for that purpose must not imply sending

identifying data before the transaction. In the same way, data

identifying the client must not be sent before the transaction to

ensure the undeniability of proof of transactions (Property 4).

To solve this issue, we propose a distributed trusted au-

thority in charge of guaranteeing that reports can be built.

This distributed authority must collect information before

the transaction, and potentially help one of the two parties

afterwards: it must thus be online. We call share carriers the

entities constituting this authority.

Both distributed authorities could be gathered in a single

one. The drawback of this approach is that this distributed

trusted authority should be simultaneously online, unique, and

fairly trusted or reasonably large. The uniqueness and the

participation in each interaction would induce an excessive

load on each entity of this distributed authority. We thus

suggest distinct authorities, for efficiency reasons. Accredited

signers are then a unique set of fairly trusted or numerous

entities, periodically updating the reputation scores of all

providers. On the other hand, share carriers are chosen dy-

namically during each interaction among all service providers.

Accredited signers manage every reputation score, and are thus

critical in our mechanism. On the other side, share carriers are

responsible for the issuing of a single report. Hence, they do

not need to be as trustworthy as the accredited signers.

To deal with the privacy of both clients and providers,

share carriers use verifiable secret sharing [13]. This basically

consists in disseminating shares of a secret to the share

carriers, so that they cannot individually recover the secret,

but allow the collaborative reconstruction of this secret.

B. Sketch of the Protocol

The ultimate goal of our solution is to provide clients with

an access to a shared repository, in which a list of services are

recorded together with the reputation scores of the anonymous

providers that supply those services. Clients can select services

based on the displayed reputation score, which automatically

sends an anonymous invitation to the associated providers.

The service provider replies by sending her pseudonym, and

proofs that both the pseudonym and the displayed reputation

are valid. Since providers and clients must not reveal any

personal information, they both use zero-knowledge proofs of

knowledge [15] to prove the validity of their pseudonyms. Note

that both clients and providers compute their own pseudonyms,

which they are free to renew at each interaction. Providers

and clients also need to sign their messages to guarantee

their integrity, without revealing their identity. They thus use

anonymous proxy signatures [1]. Meanwhile, they agree on

the set of share carriers they will rely on.

The next step of the protocol guarantees the undeniability

of ratings and proofs of transaction. As aforementioned, a

provider uses verifiable secret sharing to split her identifier

among all share carriers. Thanks to the zero-knowledge proof

system, the provider is also able to prove that the secret was

correctly shared. Similarly, the client uses verifiable secret

sharing and zero-knowledge proofs of knowledge to guarantee

that the provider will obtain a proof of transaction. Once this

step is over, both parties engage in their transaction.

At the end of the transaction, both parties issue their report

through an interactive process. As will be detailed in the

following, a report contains the rating of the client as well

as the identifier of the provider. Note that the presence of

the provider identifier does not violate Property 1 since the

rating of the client is signed before the service provider reveals

her identifier. If the client does not want to rate the service,

then the provider obtains a proof of transaction from the share

carriers. On the other hand, if the provider does not want to

help in the construction of the report, then the client signs the

rating and obtains the identifier of the provider from the share

carriers.

Periodically, the accredited signers gather all the issued

reports, and verify them. They then update and sign the

reputation scores of all service providers. Thanks to these

signatures, service providers will be able to prove their updated

reputation score during their subsequent interactions. More

details are given in Sections V and VI.



V. BUILDING BLOCKS

This section describes the tools used during interactions to

guarantee both privacy and security of the users.

A. Building Trust

1) Share Carriers: As previously explained, at the be-

ginning of the interaction, both the client and the provider

randomly choose sufficiently many users to constitute the

share carriers. Specifically, both parties independently draw

their own nonces, i.e. random numbers, and combine them

to deterministically select the share carriers. The independent

choice of the nonces guarantees that neither the client nor

the service provider are able to choose the share carriers

by themselves. Let seed be the combination of the drawn

nonces, {0, 1, . . . , N−1} be the set of potential share carriers

(i.e. the set of service providers), and nSC be the number of

share carriers to be selected. The function ChooseSC(seed, N)
returns a set of nSC share carriers randomly chosen in the

system. We have

ChooseSC(seed, N) ={⌊
H(01 ‖ seed ‖ i)×

N

2h

⌋
, i ∈ {0, . . . , n′ − 1}

}
,

where H is a hash function, e.g. SHA-256 [26], with h-bits

output and n′ is chosen so that the resulting set contains nSC

different share carriers. The idea behind this function is to

divide the set {0, 1, . . . , 2h − 1} into N intervals of similar

sizes, and to compute a sequence of pseudo-random elements

in {0, 1, . . . , 2h − 1} from the seed. Each element points out

an interval, and the first nSC different intervals corresponding

to the first elements in the sequence are selected. We obtain

the nSC corresponding share carriers. Appendix A discusses

the number of share carriers that must be chosen to prevent

collusions.

2) Accredited Signers: Accredited signers are users chosen

in the system. There are no restrictive requisites for the

selection of these users within the system, but choosing them

among reasonably available users will have less impact on

the latency of the reputation score updates. For instance,

the central authority C (see Section III-B) can be in charge

of choosing the accredited signers. These accredited signers

obtain from C a delegation for the verification of reports,

and the signature of reputation scores. In the following, nAS

represents the number of accredited signers. We assume that

at least a majority of the accredited signers are honest.

As previously described, the aggregation of the reports and

the computation of reputation scores is done off-line, without

any direct impact on the interactions. Therefore, the accredited

signers do not sign reputation scores after each interaction.

Rather, they sign scores at fixed intervals of time, that we call

rounds in the following. Both the duration and start time of

each round are public parameters. A reasonable trade-off is to

sign reports every day. To prove their reputation score, service

providers use signatures on the current round from a majority

of the accredited signers, i.e. at least tAS = (nAS + 1)/2
signatures.

B. Cryptographic Tools

We now present the cryptographic tools used by our reputa-

tion protocol, that is, the invariant to prevent ballot stuffing; the

non-interactive zero-knowledge proof system; an anonymous

proxy signature scheme that preserves the privacy of users;

finally, a verifiable secret sharing scheme that guarantees the

undeniability of reports.

1) Setting: The underlying structure for our cryptographic

tools is a bilinear group Λ = (p, G1, G2, GT , e, G1, G2)
in which G1,G2,GT are three groups of prime order p that

we write multiplicatively. The map e : G1×G2 → GT is

non-degenerate and bilinear. G1 ∈ G1 (and resp. G2 ∈ G2)

is a group generator of G1 (resp. G2). The security of the

presented tools relies on the intractability of the Symmetric

eXternal Diffie-Hellman (SXDH) assumption in Λ, and on a

specific assumption along the same lines as the Strong Diffie

Hellman (SDH) assumption [1]. In the following, if X is a

tuple then Xk represents the k-th term of X .

2) Invariant: As detailed in Section II, reputation mecha-

nisms are potential targets of ballot-stuffing attacks, in which

a single client rates a service provider multiple times, in order

to heavily bias the reputation of the provider. We protect

our system against such attacks by strongly linking each

interaction through an invariant jointly computed by both

interacting parties. Note that Bethencourt et al. proposed a

similar approach, though more complex [6]. We build the

invariant as follows. It is derived from the identifiers of both

parties, namely IdSP ∈ G1 for the service provider, and

idCl ∈ Zp for the client. We define the invariant as

Inv(IdSP, idCl) = (IdSP)
idCl .

To preserve the privacy of both interacting parties, the invariant

cannot be directly computed before the transaction. Indeed, in

order to compute it directly, a user must know the identifiers

of both the provider and the client. Thus, we propose to

compute the invariant in three steps, which require a fixed

group element Y1 ∈ G1 randomly generated. First, the service

provider computes a pre-invariant by masking her identifier

IdSP with randomness r ∈ Zp (G1 and Y1 are public elements).

We have

pre_inv = Pre_inv(IdSP, r) = (G1
r, IdSP ·Y1

r).

Then, the client injects his identifier idCl ∈ Zp and randomness

s ∈ Zp in the previous result to compute a masked invariant

defined as

masked_inv = Mask(pre_inv, idCl, s)

= (G1
s · Y1

idCl , pre_inv
1

s · pre_inv
2

idCl)

=
(
G1

s · Y1
idCl , IdSP

idCl · (G1
s · Y1

idCl)r
)
.

Finally, the provider obtains the invariant from masked_inv by

computing

Unmask(masked_inv, r) = masked_inv2 ·masked_inv1
−r

= (IdSP)
idCl = Inv(IdSP, idCl).



3) SXDH Commitments: SXDH commitments [15] in a

multiplicative group G1 (resp. G2) generated by G1 (resp. G2)

permit to commit to values X in this group without revealing

them. Note that it is also possible to commit to scalars m ∈ Zp,

by taking X = G1
m.

Committing to X ∈ G1 requires a commitment key (a tuple

of group elements), and two random elements r, r′ ∈ Zp. The

commitment is denoted by CX = Com
(
X, (r, r′)

)
. Opening

a commitment C requires an opening key, that is a scalar α
associated to the commitment key. The opening is denoted by

X = Open(CX , α).
In the remainder of the paper, whenever we write that x is

the value committed in Cx, we mean that Cx is a commitment

to x. For simplicity reasons, we use Com to denote the

commitment to an element which may be in G1, G2 or Zp.

Furthermore, when randomnesses used in a commitment are

not essential, we simply write Com(X, _).
4) Non-Interactive Zero-Knowledge Proofs: To prove their

possession of secret values satisfying given statements without

revealing them, both clients and service providers use the proof

system proposed by Groth and Sahai [15]. This system allows

users to compute Non-Interactive Zero-Knowledge proofs of

knowledge (NIZK) on four kinds of statements, including

pairing product equations

(
n∏

i=1

e(Ai, Yi)

)


m∏

j=1

e(Xj , Bj)






n∏

i=1

m∏

j=1

e(Xj , Yi)
γij


 = RT ,

and multi-scalar multiplication equations in G1

(
n∏

i=1

Ai
yi

)


m∏

j=1

Xj
bj






n∏

i=1

m∏

j=1

Xj
γij yi


 = R1,

where capital letters denote group elements and lower-case

letters denote scalars, i.e. elements of Zp. In these equations,

Ai, Bj , bj , γij , RT , and R1 are public elements, while Xj ,

Yi, and yi are secret values.

The proofs are based on SXDH commitments to the secret

values. From the randomnesses used in the commitments,

a prover computes specific group elements (the proof). The

verifier can check the validity of the equation using the proof

and the committed secrets, without any access to the secrets.

A prover can moreover combine multiple statements to prove

that secret values simultaneously satisfy different equations.

According to the notations introduced by Camenish et al. [8],

we denote a proof of knowledge of secret values (x1, . . . , xk)
following equations (E1, . . . , Eℓ) by NIZK{x1, . . . , xk : E1∧
· · · ∧ Eℓ}.

5) Anonymous Proxy Signatures: Throughout their interac-

tion, both parties must sign messages. However, verifying a

signature requires to have access to the verification key of

the signer, which is incompatible with the privacy properties

since verification keys identify signers. An anonymous proxy

signature scheme [14] allows receivers to check the validity

of signed messages without having access to the identity of

the signer. The only obtained information is that the signer

received a delegation from an identified authority. To achieve

such a property, a signer uses NIZKs to hide all elements

related to their identity in the signature. An efficient anony-

mous proxy signature scheme can be obtained by combining

the structure-preserving signature scheme proposed by Abe et

al. [1] and the proof system proposed by Groth and Sahai [15].

Let (vkU , skU ) be the verification and signing key of user U .

Then, the signature of message m is σ = Sign(m, skU ). The

verification consists in the computation of Verify(σ,m, vkU ):
the result is True iff signature σ is valid for the pair (m, vkU ).
We now consider a signing key skC and the corresponding

verification key vkC of a certification authority C. A certificate

for user U is certU = Sign(vkU , skC). Such a certificate is valid

if and only if Verify(certU , vkU , vkC) = True.

Using the structure-preserving property of the signature

scheme, an anonymous proxy signature of message m, from an

anonymous signer U certified by the authority C, contains the

SXDH commitments to certU , vkU and σ, and a Groth-Sahai

proof,

NIZK
{
certU , vkU , σ :

(
Verify(certU , vkU , vkC) = True

)

∧
(
Verify(σ,m, vkU ) = True

)}
.

In our context, both clients and service providers compute

anonymous proxy signatures to authenticate messages without

disclosing their identity. More precisely, they first send com-

mitments to their public key vkU and their certificate certU
together with the proof of registration ΠcertU given by

ΠcertU = NIZK
{
certU , vkU :(

Verify(certU , vkU , vkC) = True
)}

.

For each message m to be signed, both clients and providers

compute a signature σ, and send a commitment to this signa-

ture, and a proof of validity Πσ , that is

Πσ = NIZK
{
vkU , σ :

(
Verify(σ,m, vkU ) = True

)}
.

The use of the same commitment to vkU is of primary

interest here, as the verifier has to check only one proof

of registration. Moreover, this commitment establishes a link

between the anonymous proxy signatures sent during an in-

teraction: the signer is the same. For convenience reasons, we

denote by APSign(m, skU ) the proof Πσ with the commitment

to the signature of m.

6) Verifiable Secret Sharing: Verifiable secret sharing [13]

is a threshold cryptographic scheme allowing to split a secret

into n different shares. As in a secret sharing scheme, the

secret can be recomputed from a predefined number t of shares

(with t 6 n), while giving no information to whoever knows

strictly less than t shares. The extra-property consists in the

proven consistency of distributed shares: the prover guarantees

that the expected secret was shared, and that any set of t shares

allows the computation of this unique secret. We now present

a verifiable secret sharing scheme for group elements, using

both SXDH commitments and NIZKs.

Let X ∈ G1 be the secret of the prover, on which this prover

has certificate certX such that Verify(certX , X, vkC) = True.



To share X , the prover chooses a t − 1 degree polynomial

Q : z ∈ Zp 7→ (X ·
∏t−1

j=1(Aj)
zj

) ∈ G1, in which the (Aj) are

randomly chosen in G1. The shares are (i, Qi = Q(i))16i6n.

Lagrange interpolation with t distinct shares (i1, Qi1), . . . ,

(it, Qit) allows the reconstruction of secret X = Q(0), as

follows

X = Interp
(
(ij , Qij )16j6t

)
=

t∏

j=1

Qij

(∏
k 6=j

(ik/(ik−ij))
)
.

To prove the consistency of the shares, the prover shows

that the same polynomial Q is used for the computation of

all shares. Thus, the prover commits to the secret X and to

the coefficients (Aj), that is, CX = Com(X, _) and CAj
=

Com(Aj , _) for 1 6 j < t. The prover then computes NIZKs

assessing both the consistency of the shares, i.e. a proof ΠQi

that Qi = Q(i), and the correctness of the secret, using a proof

of correctness ΠX including a commitment to the certificate

(see details in Section VI). Afterwards, the prover sends i, Qi,

CX , (CAj
), and ΠQi

to each share carrier, and CX , (CAj
),

CcertX and ΠX to the verifier. Each share carrier verifies ΠQi

and sends a confirmation to the verifier, that is i, CX , and

(CAj
). If the commitments received from the share carriers

and from the prover are the same, then the consistency of

the shares is proven. In the meantime, the verifier checks the

validity of ΠX .

The verifiable secret sharing is useful iff (i) the verifier will

eventually receive enough valid signatures, (ii) the malicious

share carriers cannot recover the secret, and (iii) the honest

share carriers can recover the secret. By noting b the number

of malicious share carriers and ℓ the number of responses that

the verifier is waiting for, these conditions translate to b < t,
ℓ 6 n− b, and t 6 ℓ− b. An optimal choice for t is

t = ⌈n/3⌉ and ℓ = 2t− 1,

which tolerates up to b = t− 1 malicious share carriers.

Remark 1: Such a sharing can be made offline, that is

without any interaction with the share carriers before the

reconstruction of the secret. In this case, the prover encrypts

the shares with the keys of the share carriers to prevent

the verifier from reconstructing the secret. To guarantee the

correctness of the shares, the prover computes NIZK proofs

of their encryption and of their reconstruction. To prevent

the verifier from asking the decryption of arbitrary encrypted

shares, the prover also signs each share, and computes a NIZK

proving the validity of each signature, while masking the share,

the signature, and the verification key.

VI. REPUTATION PROTOCOL

A. System Setup

Throughout the reputation protocol, users need the crypto-

graphic keys and identifiers presented in Table I. Specifically,

the central authority C uses a structure-preserving signature

key pair (vkC , skC) to generate certificates on users’ creden-

tials. To enter the system, users register to this authority, which

may require a computational or monetary cost [7] to mitigate

Sybil attacks. Note that the central authority is required only

for the registration of users, and possibly for the choice of

accredited signers (see Section V-A2).

Clients have a structure-preserving signature key pair, con-

sisting of a verification key vkCl and a signing key skCl. When

clients enter the system, they register to the central authority

C to get a random identifier idCl ∈ Zp, and a certificate certCl

on idCl and vkCl. Similarly, service providers have a structure-

preserving signature key pair (vkSP, skSP), and register to C to

obtain a random identifier IdSP ∈ G1, and a certificate certSP
on IdSP and vkSP.

Accredited signers have a structure-preserving signature key

pair (vkAS, skAS) and a classical certificate certAS on vkAS.

They use these keys to sign the reputation score of service

providers. We denote by σi the signature of the i-th accredited

signer on the reputation score repSP of the provider, for current

round rnd (see Section V-A):

σi = Sign
(
〈vkSP, repSP, rnd〉, skASi

)
.

Share carriers possess two key pairs, namely a classical

encryption key pair (ekSC, dkSC), and a classical signature key

pair (skSC, vkSC), each of them used to protect their commu-

nications (encryption of received messages, and signature of

sent messages). They also have a certificate certSC on ekSC
and vkSC, issued by the central authority C.

Both clients and providers compute by themselves their own

pseudonyms. They renew them at each interaction. Pseudo-

nyms are SXDH commitments to their verification keys. Simi-

larly, both clients and service providers compute commitments

CidCl
and CIdSP to their identifiers idCl and IdSP, leading to

{
nymCl = Com(vkCl, _)

CidCl
= Com(idCl, _),

{
nymSP = Com

(
vkSP, (rSP, r

′
SP)
)

CIdSP = Com(IdSP, (rIdSP , r
′
IdSP

)).

Clients compute commitments CcertCl
to their certificate, and

NIZK proofs of their validity ΠcertCl
(see Section V-B5).

Similarly, service providers compute commitments CcertSP

and proofs ΠcertCl
. Finally, service providers compute a pre-

invariant pre_inv from IdSP and a randomly chosen scalar

rpre_inv: pre_inv = Pre_inv(IdSP, rpre_inv) (see Section V-B2).

B. Proof of the Reputation Score

When a client wishes to interact with a service provider,

he sends a pseudonym nymCl and a proof of its validity

CidCl
, CcertCl

, and ΠcertCl
to the provider (see Figure 1).

Once the provider has verified this proof, she sends back her

pseudonym, reputation, pre-invariant and respective proofs of

validity. That is, she sends nymSP, CIdSP , CcertSP , ΠcertSP ,

repSP, a proof of reputation Πrep, pre_inv, and a proof Πpre_inv

of its computation. These proofs are defined by

Πrep =NIZK
{
vkSP, σi1 , . . . , σitAS

:

∧tAS

j=1

(
Verify(σij , 〈vkSP, repSP, rnd〉, vkASij

)
)}

,

Πpre_inv =NIZK
{
IdSP, rpre_inv :

pre_inv = Pre_inv(IdSP, rpre_inv)
}
.



Table I
USERS’ CREDENTIALS (BOLD KEYS ARE SECRET)

Client Provider SC AS

Element Commitment Element Commitment

Signature key skCl skSP skSC skAS

Verification key vkCl nymCl vkSP nymSP vkSC vkAS

Decryption key dkSC

Encryption key ekSC

Invariant idCl CidCl
IdSP CIdSP

Certificate certCl CcertCl
certSP CcertSP certSC certAS

(verified with) (vkCl, idCl) (ΠcertCl
, nymCl, CidCl

) (vkSP, IdSP) (ΠcertSP , nymSP, CIdSP
)

Reputation repSP
Cert. of reputation {σ1, . . . , σtAS

} ΠrepSP
(verified with) (vkSP, repSP) (nymSP, repSP)

Client SP

nymCl, CidCl
, CcertCl

,ΠcertCl

nymSP, CIdSP
, CcertSP

,ΠcertSP
, repSP,Πrep,

pre_inv,Πpre_inv, CSC

rSC, σCl

sSC, σSP

Figure 1. Proof of the reputation score

In the meantime, the provider chooses a nonce sSC and

commits to it by sending CSC = H(00‖sSC).
1 If the reputa-

tion of the provider suits the client, and if all the proofs are

valid, the client computes the masked invariant masked_inv =
Mask(pre_inv, idCl, rmasked_inv), chooses a nonce rSC, signs a

hash of (CSC, rSC, nymSP), and sends rSC and the signature

σCl to the provider with

σCl = APSign
(
H(CSC, rSC, nymSP), skCl

)
.

If σCl is valid, the provider signs a hash of (sSC, rSC, nymCl),
and sends sSC and the signature σSP to the client with

σSP = APSign
(
H(sSC, rSC, nymCl), skSP

)
.

Note that the signatures guarantee that the client agreed to

conduct a transaction with provider nymSP, who uses the

randomness hidden in CSC, and that the provider agreed to

conduct a transaction with client nymCl, who uses random-

ness rSC. Once the client and the provider have exchanged

their nonces, they choose the share carriers as described in

Section V-A1, using (sSC‖rSC‖ nymCl ‖ nymSP) as a seed.

In the remainder, this element serves as an identifier of the

transaction, and we note it idtrans.

C. Sharing Ingredients of the Report

Once both the client and the service provider have agreed

to engage in the transaction, they rely on the verifiable

secret sharing scheme described in Section V-B6 to guarantee

1This concatenation guarantees that sSC and rSC are chosen independently.

the undeniability properties. The service provider shares her

identifier IdSP, that is, she chooses a polynomial Q of degree

tSC−1, with coefficients IdSP, A1, . . . , AtSC−1, where the Aj

are randomly chosen in G1. The shares are the
(
i, Qi = Q(i)

)

for 1 ≤ i ≤ nSC. To prove the sharing, the provider computes

commitments CAj
to the Aj , and NIZK proofs ΠQi

defined

by

ΠQi
= NIZK

{
IdSP, (Aj)j : Qi = IdSP

tSC−1∏

j=1

Aj
(ij)
}
,

for 1 ≤ i ≤ nSC. Note that nymSP, CIdSP , CcertSP and ΠcertSP

have already proven the correctness of the secret. Finally,

the provider sends the (CAj
) to the client, and encrypts and

sends idtrans, (i, Qi), CIdSP , (CAj
)1≤j<tSC , and ΠQi

to the i-th
share-carrier. If the received proof is valid, the share carriers

send a confirmation to the client, that is idtrans, i, CIdSP ,

and (CAj
), together with a signature. If these commitments

are the same as the one received from the provider, the

client accepts this confirmation. Once the client has received

ℓ = 2⌈nSC/3⌉− 1 valid shares, he accepts the sharing (as the

validity of the shares guarantees the undeniability properties).

Figure 2 describes this exchange.

SP SCi Client

idtrans, (i, Qi), CIdSP
,

(CAj
)j ,ΠQi

idtrans, i, CIdSP
, (CAj

)j

(CAj
)j

Figure 2. Secretly Sharing the Provider’s Identifier

In the meantime, the client shares his secret, that is the

masked invariant masked_inv. Since masked_inv consists of

two elements, he must double the sharing. That is, the client

chooses two polynomial R1, R2 of degree tSC − 1 with

coefficients masked_invk, B1,k, . . . , BtSC−1,k for k ∈ {1,2},
and the shares are

(
i, Ri =

(
R1(i), R2(i)

))
for 1 ≤ i ≤

nSC. To prove the sharing, the client computes commitments

Cmasked_inv and CBj,k
to masked_inv and to the Bj,k, and



NIZK proofs ΠRi
defined by

ΠRi
=NIZK

{
masked_inv, (Bj,k) :

Ri,k = masked_invk ·

tSC−1∏

j=1

Bj,k
(ij),k ∈ {1,2}

}
,

for 1 ≤ i ≤ nSC. To prove the correctness of the secret, the

client also computes a proof ΠCmasked_inv
defined by

ΠCmasked_inv
=NIZK

{
idCl,masked_inv, rmasked_inv :

masked_inv = Mask(pre_inv, idCl, rmasked_inv)
}
.

Thus, the client sends Cmasked_inv, (CBj,k
), and ΠCmasked_inv

to the provider, and encrypts and sends idtrans, (i, Ri),
Cmasked_inv, (CBj,k

), and ΠRi
to the i-th share carrier. As

previously, the i-th share carrier sends a confirmation con-

sisting of idtrans, i, Cmasked_inv, (CBj,k
), and a signature to

the provider if the share is valid. The provider accepts such a

confirmation if the commitments are identical to the ones she

received, and accepts the sharing as soon as she has received

ℓ valid confirmations. Figure 3 describes this exchange. Once

both sharings have been accepted, both parties can conduct

their transaction.

Client SCi SP

idtrans, (i, Ri), Cmasked_inv,

(CBj,k
)j,k,ΠRi

idtrans, i, Cmasked_inv
k
, (CBj,k

)j,k

Cmasked_inv, (CBj,k
)j,k,

ΠCmasked_inv

Figure 3. Secretly Sharing the Masked Invariant

D. Issuing Reports

Once the transaction is over, the client can issue a rating

and the provider can obtain a proof of transaction. Scenario

A describes their interactions.

a) Scenario A – Standard case.: The client chooses a

rating ρ and computes both a signature σρ,Cl to prevent any

modification on ρ, and a proof Πmasked_inv of masked_inv

computation. We have

σρ,Cl = APSign
(
〈idtrans, ρ〉, skCl

)
,

Πmasked_inv = NIZK
{
rmasked_inv, idCl :

masked_inv = Mask(pre_inv, idCl, rmasked_inv)
}
.

Since masked_inv no longer needs to be hidden, this proof

is simpler than ΠCmasked_inv
. As described in Figure 4, the

client sends message m1 to the provider, with m1 = (idtrans,
ρ, masked_inv, Πmasked_inv, σρ,Cl). If both the proof and

signature are valid, the provider computes the invariant inv =
Unmask(masked_inv, rpre_inv), and a signature σρ,SP with

σρ,SP =Sign
(
〈idtrans, σρ,Cl〉, skSP

)
.

Note that σρ,SP guarantees that the client chose his rating

before knowing the identifier of the provider, which guarantees

his objectivity. The provider then reveals her identifier and

the randomnesses used in nymSP, CIdSP , and pre_inv, that is

ΠSP = (rSP, r′SP, rIdSP , r′IdSP , rpre_inv). The provider sends

message m2 to the client, with m2 = (IdSP, vkSP, certSP, inv,

ΠSP, σρ,SP). The client verifies that




nymSP = Com
(
vkSP, (rSP, r

′
SP)
)

CIdSP = Com(IdSP, (rIdSP , r
′
IdSP

))
pre_inv = Pre_inv(IdSP, rpre_inv

inv = Unmask(masked_inv, rpre_inv).

Finally, both the client and the provider are able to issue the

report by sending the elements given in the first column of Ta-

ble II to the share carriers (where the first four lines represent

the proof of transaction and the last one the rating together

with the signatures of both parties). If all the signatures and

proofs are valid, the report itself is considered valid by the

share carriers. This scenario completes successfully if both

parties are honest. If the client does not send message m1

(resp. the provider does not send message m2) then scenario B

(resp. scenario C) is run.

Client SP

m1 = (idtrans, ρ,masked_inv,Πmasked_inv, σρ,Cl)

m2 = (IdSP, vkSP, certSP, inv,ΠSP, σρ,SP)

Broadcast of the report

Figure 4. Interactions between the client and the provider to jointly issue
their report

b) Scenario B – Dishonest client/honest provider: If

the provider does not receive message m1 from the client,

she queries the share carriers for their share. On their turn,

they query the client to get his rating and, in absence of

his answer, send their shares and associated proofs to the

provider. The provider is able to reconstruct the masked

invariant as masked_inv = Interp
(
(ij , Rij )16j6tSC

)
from t

valid received shares. From that point, the service provider

computes inv = Unmask(masked_inv, rpre_inv), and issues the

report, which only contains the proof of transaction (i.e., the

elements in the second column of Table II). Figure 5 describes

this interaction.

Client SCi SP

“Nothing received for idtrans”

“What is your rating

about idtrans ?”

i, Ri,ΠRi

Broadcast of the report

timeout

Figure 5. Interactions between the provider and the share carriers to issue
the report



Table II
COMPONENTS OF THE REPORT IN THE THREE SCENARII

Scenario A (honest users) Scenario B (dishonest client) Scenario C (dishonest provider)

Service provider IdSP, vkSP, certSP, nymSP, CIdSP
,

ΠSP

IdSP, vkSP, certSP, nymSP, CIdSP
,

ΠSP

CIdSP
, nymSP, PCertSP, IdSP,

(CAj
)j , {ij , Qij , ΠQij

}j

Client CidCl
, nymCl, PCertCl CidCl

, nymCl, PCertCl CidCl
, nymCl, PCertCl

Transaction identifier idtrans, σSP, σCl idtrans, σSP, σCl idtrans, σSP, σCl

Invariant pre_inv, masked_inv, inv, rpre_inv,
Πmasked_inv

pre_inv, masked_inv, inv, rpre_inv,
(CBj,k

), {ij , Rij , ΠRij
}j ,

Cmasked_inv, ΠCmasked_inv

inv, Πinv

Rating ρ, σρ,Cl, σρ,SP ρ, {σρ,SCij
}j

c) Scenario C – Dishonest provider/honest client: If

the client does not receive message m2 from the provider,

he informs the share carriers by sending them the masked

invariant and his rating together with the associated proofs and

signatures as shown in Figure 6. If the proofs and signatures

are valid, the share carriers forward them to the provider to

give her the opportunity to reveal IdSP and the invariant. In

absence of any response, the share carriers send their shares

to the client. Note that they also sign the rating of the client

to validate the fact that the client has chosen his rating before

knowing the provider’s identity. We have

σρ,SCi
= Sign

(
〈idtrans, σρ,Cl〉, skSCi

)
.

Once the client has received t valid shares, he computes

IdSP = Interp
(
(ij , Qij )16j6tSC

)
, inv = Inv(IdSP, idCl), and

a proof Πinv of its computation, with

Πinv =NIZK
{
idCl : inv = IdSP

idCl

}
.

Finally, the client issues the report by sending the elements

presented on the third column of Table II to the share carriers.

Client SCi SP

m1

idtrans, nymCl, CidCl
, CcertCl

,

ΠcertCl
, nymSP, CIdSP , CcertSP ,

ΠcertSP , pre_inv,Πpre_inv,
masked_inv,Πmasked_inv, ρ, σρ,Cl

idtrans, ρ,masked_inv,

Πmasked_inv, σρ,Cl

(i, Qi),ΠQi
, σρ,SCi

Broadcast of the report

timeout

Figure 6. Interactions between the client and the share carriers to issue the
report

Note that if neither the client nor the service provider issue

the report, then the transaction is not taken into account in the

reputation score of the service provider.

Remark 2: One may argue that both parties can collude by

jointly issuing reports as soon as the preparation is over, that

is, without having actually conducted a transaction. Similarly,

clients may choose arbitrary ratings regardless of the behavior

of providers. The only way to prevent such behaviors would be

to have an omniscient and trusted third party capable of telling

whether the transaction really occurred, or whether the effort

exerted by the provider during her transaction was bad or good

enough to deserve such a rating, which is clearly impossible.

E. Computation of the Reputation Scores

At the end of round rnd, each share carrier gathers all the

reports received since round rnd−1, and sends them to the

accredited signers. This allows the accredited signers to update

the reputation scores of all the service providers concerned

by valid reports. Once accredited signers have checked the

validity of a report, they only keep the identifier of the

provider, identifier of the transaction, the invariant inv, and

the rating of the client, if any, and sign them. Note that if two

(or more) reports have the same identifier of transaction and

invariant, they keep a single one. Beyond handling negative

ratings, the accredited signers know the rounds during which

reports have been cast. Thus, as motivated in Section II,

any reputation score function can be used, e.g. to lower the

influence of old ratings [19] or to limit the impact of ballot-

stuffing attacks [31]. In addition, the accredited signers approx-

imate the reputation score of service providers to extend their

anonymity set. Once the accredited signers have computed

the reputation score of a provider, they sign it along with the

round, rnd, and send it to the service provider:

σi = Sign
(
〈vkSP, repSP, rnd〉, skASi

)
.

Service providers can then use these signatures to prove their

reputation to their clients during round rnd+1.

VII. PERFORMANCE EVALUATION

The most expensive step during the verification of NIZK

proofs is the computation of pairings by the verifier. Aranha

et al. [4] propose prime-order elliptic curves, where the

computation of pairings is efficient. Therefore, we consider

elliptic curves in a subclass of the Barreto-Naehrig family,

and we use the computation costs given by Aranha et al. [4]:

the four cores of a 3.0GHz AMD Phenom II X4 940 processor

– a top-level processor of 2010 – can compute 8 pairings in

a millisecond, 16 exponentiations in G2, or 48 in G1.



The sizes of messages exchanged and the computation times

depend on the number of share carriers and the number of ac-

credited signers. Appendix A explains how many share carriers

must be chosen to tolerate collusions among them. Table III

describes the sizes and computation times for nSC = 54 and

nAS = 25. This dimensioning suffices to prevent collusions of

nSC/3 or more share carriers with probability 2−20 in a system

comprising 108 service providers, including 107 malicious

ones. The “Preparation” phase corresponds to the first two

phases of an interaction, namely the proof of reputation and

the sharing of the ingredients for the report. The other phases

correspond to the three alternative scenarii that may occur

during the report issuing.

Table III
COMPUTATION TIMES AND SIZES OF THE MESSAGES EXCHANGED FOR

nSC = 54 AND nAS = 25

Phase Computation times (ms) Sizes (KiB)

Client SP SC Report Messages Report

Preparation 525 335 5 − 540 −

Issuing, A 5 5 0 45 5 10
Issuing, B ✗ 85 0 130 15 25
Issuing, C 45 ✗ 65 110 325 25

As can be seen, the computation times and sizes of mes-

sages exchanged are reasonable. Indeed, each user needs less

than half a second for their computations, and the messages

exchanged do not exceed 900 KiB. Furthermore, the share

carriers need less than 5 ms if both the client and the provider

are honest. There are three demanding costs in our protocol,

that apply to both the size of messages exchanged and the

computational costs. The first one is the proof of reputation

of the service provider, consisting of the construction and

verification of a NIZK on tAS structure-preserving signatures.

The second one is the sharing of ingredients for the report,

by both the client and the service provider: each of them

must compute large NIZKs for all share carriers. Finally,

the heaviest cost is the reconstruction of the secret, when

either the client or the provider is dishonest. The first two

costs are not avoidable, but they weigh upon the client and

the service provider. The last one is supported by the share

carriers and accredited signers. We could minimize this last

cost by penalizing dishonest users. For instance, by revoking

the anonymity of misbehaving users or by preventing them

from interacting during a given period of time, this could

encourage users to behave honestly and to participate in the

issuing of the rating.

Remark 3: We mentioned in Section V-B6 that the secret

sharing can be made offline, that is without any interaction

with the share carriers before the reconstruction. Unfortu-

nately, such a variant largely impacts the performances of our

protocol. Indeed, the preparation phase requires approximately

thrice as much time as needed in the online version. Fur-

thermore, the verification of one report in Scenario C takes

between 500ms and 800ms. Therefore, the offline verifiable

secret sharing is a possible variant in our reputation mecha-

nism, but should be reserved to situations where interacting

with the share carriers is costly.

VIII. CONCLUSION

In this article, we have presented a practical distributed

reputation mechanism addressing two main issues of reputa-

tion mechanisms: preserving all users’ privacy and computing

reputation scores based on both positive and negative ratings.

This has been achieved by combining distributed algorithms

with cryptographic schemes. Furthermore, our proposition is

independent of the reputation model, that is, our system can

integrate any reputation model [19], preferably one using both

positive and negative ratings.

As future works, we plan to study more deeply the off-

line version of the secret sharing, in particular to improve the

report verification when the service provider does not want to

collaborate. We also plan to study whether the presence of a

unique trusted entity is a necessary condition to handle both

non monotonic reputation scores and the permanent anonymity

of providers.
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APPENDIX

A. Number of Share Carriers

The share carriers are users that guarantee the undeniability

of reports. They are jointly chosen by clients and service pro-

viders for a single interaction. As explained in Section V-A1,

they are randomly chosen among all service providers. Hence,

the choice of the share carriers is equivalent to a draw without

replacement, which can be modeled by the hypergeometric

distribution. Let N be the number of potential share carriers

and m the number of malicious users. Then, the probability

of having chosen less than a third of malicious share carriers

corresponds to 1 − cdfN,m,nSC
(tSC − 1), where cdfN,m,nSC

is the cumulative distribution function of the hypergeometric

distribution with parameters (N,m, nSC).
2 Therefore, if we

wish to achieve a given maximal probability of collusion pmax,

we must choose

nSC = min
{
n
∣∣∣ 1− cdfN,m,n

(⌈n
3

⌉
− 1
)
< pmax

}
.

Figure 7 represents nSC for N varying between 100 and

1015, for fixed percentages m of malicious users, and for

pmax = 2−20.
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Figure 7. Dependance of nSC in N and m (pmax = 2−20)

As we can see, the number of required share carriers does

not grow after the number of users has reached 1,000,000.

This means that whatever the size of the system, the number

of required share carriers does not grow and our mechanism

scales. Figure 8 represents nSC for pmax varying between

2−10 and 2−70, and N = 108. As we can see, the number

of required share carriers is logarithmic in the maximal prob-

ability of collusion targeted. For instance, with nSC = 100,

we can either either prevent collusions representing 15% of

total users from obtaining a third of malicious share carriers

with probability 2−20, or prevent collusions representing 10%
of total users with probability 2−35. Since the share carriers

are renewed for each transaction, it is acceptable that a report

in a million is either falsified or denied. We can thus take

pmax = 2−20.

Finally, Figure 9 presents the number of required share

carriers for N = 108 and pmax = 2−20, for varying m. As

2We showed in Section V-B6 that tSC = ⌈nSC/3⌉.
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we can see, to keep a reasonable number of share carriers,

our mechanism can tolerate up to 10% colluding users, which

requires 54 share carriers. That is, the probability that enough

share carriers are chosen among the 107 colluding ones is

lower than 2−20.
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Figure 9. Dependance of nSC in m (pmax = 2−20 and N = 108)

B. Cryptographic Proofs

In this appendix, we present proofs that our reputation

mechanism guarantees the properties presented in Section III.

Note that these proofs are not the most formal. In particular,

we do not present the setups of the underlying schemes. To

prevent interferences, each cryptographic tool should be setup

independently. Furthermore, each cryptographic tool should

have different setups for each role. That is, there should be

one setup for NIZKs constructed by clients and another one

for those constructed by providers, and similarly for every

cryptographic tool.

Before presenting the formal definitions and proofs of our

properties, we must discuss the model of the adversary, that

we call A. First, we consider A to be probabilistic polynomial-

time Turing machine. We want the adversary to be able

to: (i) make two users interact; (ii) corrupt users, since the

adversary might be a collusion of users; and (iii) know which

client was involved in a transaction. Hence, we consider three

oracles that A might query during the games:

(i) Ointer that, given a client and a provider, makes them

interact;

(ii) Ocorr that, given a user, returns all this user’s credentials;

(iii) Oinv that, given an invariant, returns the client involved.

Note that the winning conditions of each game will depend

on the oracles queried by the adversary. For instance, the

adversary must not corrupt a user to compromise this user’s

privacy.

C. Privacy of Service Providers

Privacy of service providers – Property 1 – is guaranteed if

the following experiment returns 1 with probability 1
2+neg(λ),

where neg is a negligible function:

1) (state)← Setup(1λ)
2) (state, SP0, SP1)← A

Ointer(·),Ocorr(·),Oinv(·)(state)
3) b← {0, 1}
4) b′ ← AOinter(·),Ocorr(·),Oinv(·)(state, SPb, SPb̄)
5) Return 1 if b′ = b; 0 otherwise.

In Step 2 of this game, A can make any two users interact.

A can also corrupt any users, but strictly less than a majority

of nAS accredited signers. Service providers SP0 and SP1

are service providers of equivalent reputation that were not

corrupted by A. In Step 4, A cannot corrupt SP0, SP1, SPb,

SPb̄ or more than tSC share carriers involved in one of SPb’s

or SPb̄’s interactions. A also cannot make SPb or SPb̄ interact

with a client and go beyond the report; thus, there is no

invariant computed by SPb or SPb̄, and SPb and SPb̄ have

not revealed their identity to any client.

Proof: The only way for A to obtain information re-

garding b is to have clients interact with SPb. However,

A does not see neither the invariant nor the identity of

SPb. Furthermore, making SPb interact simultaneously with

many different clients does not give more information to A
than just one interaction: all the elements shown by SPb

are randomized. Therefore, we consider a single interaction

between SPb and a client chosen by A, and we assume that

the last phase of the transaction has not started yet.

During this interaction, A sees nymSPb
, CIdSPb

, repSPb
,

pre_invb, {vkASik
}16k6tAS

, CcertSPb
, ΠcertSPb

, Πrepb
,

Πpre_inv,b, sSC,b, σSP,b, {CAj,b
}16j6tSC−1, {Qi,b,Πc,i,b}i∈I ,

where I is a set of cardinal lower than tSC. Since A has

corrupted less than tSC share carriers, the Qi,b give no

information about IdSPb
and can be considered as random

elements.

Among those elements, sSC,b and the Qi,b are random ele-

ments, hence they give no information about the service pro-

vider. Using the hiding property of commitments and NIZKs,



new games can be defined, in which all commitments and

NIZKs – hence anonymous proxy signatures – are replaced by

random elements. The indistinguishability of these games with

the original ones is related to the security assumption of the

commitment and NIZK schemes. The only element that might

leak information is pre_invb, that is (G1
r, IdSPb

Y1
r), where

r is randomly chosen by SPb. From the DDH assumption

in G1 on the tuple (G1, G1
r, Y1 = G1

α1), it follows that

Y1
r is indistinguishable from a random element R ∈ G1. By

taking R′ = IdSP1

−1 · IdSP0
·R, we have IdSP0

·R = IdSP1
·R′,

where R′ is also indistinguishable from Y r
2 . Thus, IdSP0

·Y1
r

is indistinguishable from IdSP1
·Y1

r, and the advantage of the

adversary in this game is lower than two times the DDH

advantage.

The same reasoning can be applied to SPb̄.

D. Privacy of Clients

Privacy of clients (Property 2) relies on two parts. First,

during a transaction, the provider does not know whom they

are interacting with. Secondly, the transactions between a

client and different service providers are unlinkable. The

following two experiments capture these notions. This property

is guaranteed if both return 1 with probability 1
2 + neg(λ).

1) (state)← Setup(1λ)
2) (state,Cl0,Cl1, {SPi}16i6n) ←
AOinter(·),Ocorr(·),Oinv(·)(state)

3) b← {0, 1}
4) b′ ← AOinter(·),Ocorr(·),Oinv(·)(state,Clb,Clb̄, {SPi}16i6n)
5) Return 1 if b′ = b; 0 otherwise.

In Step 2 of this experiment, Cl0 and Cl1 are clients who

have not been corrupted by A. In Step 4, A cannot corrupt

Cl0, Cl1, Clb, or Clb̄. Furthermore, the set of service providers

having interacted (and gone beyond the transaction) with Cl0
or Cl1 is disjoint from the set of providers having interacted

(and gone beyond the transaction) with Clb or Clb̄. That is,

no service provider has interacted with (Cl0 or Cl1) and (Clb
or Clb̄).

Proof: The proof of this property contains two parts.

Firstly, can the adversary obtain any information about b with-

out having the clients go beyond the transaction? Secondly, can

the adversary link the clients of different providers?

Similarly to the previous proof, if the clients do not go

beyond the transaction, A sees only commitments, NIZK

proofs, anonymous proxy signatures, and randomnesses. As

explained previously, these elements give no information about

b or b̄.
After the transaction, the only different elements are the

masked invariants, and the invariants:

masked_inv = (G1
sY1

idCl , IdSP
idClG1

rsY1
r idCl)

inv0 = IdSP
idCl

Note that since the provider proves the computation of pre_inv,

an honest client will not compute anything more than this

masked invariant. Furthermore, we remark that the masked

invariant is based on the invariant, and G1
sY1

idCl . Since

s is chosen randomly by the client, this last element is

indistinguishable from a random element, and only the final

invariant is useful to A.

Now, the adversary A only has access to the invariants

involving Cl0, Cl1, Clb, or Clb̄ with the SPi, with the

restriction that a given service provider cannot produce an

invariant with (Cl0 or Cl1) and (Clb or Clb̄). Thus, we consider

a hybrid sequence composed of k service providers involved

only with Cl0 and Cl1, and n − k other providers involved

only with Clb and Clb̄:

Game G0:
(
Inv(SPi,Clb), Inv(SPi,Clb̄)

)
, 1 6 i 6 n

Game G1:
(
Inv(SPi,Cl0), Inv(SPi,Cl1)

)
, 1 6 i 6 n

Game G̃1
k

{(
Inv(SPi,Cl0), Inv(SPi,Cl1)

)
1 6 i 6 k(

Inv(SPi,Clb), Inv(SPi,Clb̄)
)

k < i 6 n,

Game G̃2
k





(
Inv(SPi,Cl0), Inv(SPi,Cl1)

)
1 6 i < k(

R← G1, Inv(SPi,Clb̄)
)

i = k(
Inv(SPi,Clb), Inv(SPi,Clb̄)

)
k < i 6 n,

Game G̃3
k





(
Inv(SPi,Cl0), Inv(SPi,Cl1)

)
1 6 i < k(

R← G1, R
′ ← G1

)
i = k(

Inv(SPi,Clb), Inv(SPi,Clb̄)
)

k < i 6 n,

Game G̃4
k





(
Inv(SPi,Cl0), Inv(SPi,Cl1)

)
1 6 i < k(

Inv(SPi,Cl0), R
′ ← G1

)
i = k(

Inv(SPi,Clb), Inv(SPi,Clb̄)
)

k < i 6 n,

for 1 6 k 6 n, where R and R′ are taken uniformly at random.

Note that G0 and G̃1
0 are the same, as well as G1 and G̃1

n. We

prove that for k ∈ {0, . . . , n}, for i ∈ {1, 2, 3}, G̃i
k and G̃i+1

k

are indistinguishable, as well as G̃4
k and G̃1

k+1. Hence, games

G0 and G1 are indistinguishable.

First, let us prove that games G̃1
k and G̃2

k are indistin-

guishable. The only difference between those two two games

concerns SPk: the adversary has access to either inv(SPk,Cl0)
or to a random element R.

Let us consider a DDH tuple (A = Ga, B = Gb, Z). We

fix IdSPk
= B and idCl0 = a. If the adversary A is able

to distinguish these two games, A is also able to distinguish

Gab from a random element R. That is, the adversary can tell

whether Z is Gab or a random element, knowing only G, Ga,

and Gb.

Hence, G̃1
k and G̃2

k are indistinguishable for A. With the

same reasoning, we can show that all the successive games

are indistinguishable for A. Therefore, the advantage of the

adversary in this hybrid sequence is lower than 4n times the

DDH advantage, and games G0 and G1 are indistinguishable.

E. Undeniability of Reports

The undeniability of ratings (see Property 3), captures the

notion that a service provider cannot prevent a client from

rating her, and that the client’s rating will be taken into account

in the provider reputation score. Property 3 is guaranteed if

the following game returns 1 with probability neg(λ):

1) (state)← Setup(1λ)
2) (Cl0)← A

Ointer(·),Ocorr(·),Oinv(·)(state)



3) A makes Cl0 interact with SP0, and Cl0 issues a report

rpt0
4) Return 1 if Cl0 has not been corrupted by A, and either

rpt0 is not valid or rpt0 was not issued on SP0

Proof: A game-based approach can formally prove the

undeniability of reports, however we only give hints for such

a proof. First, we consider the elements received by the client

before the transaction. Under the robustness of the signature

scheme, and the binding property of the commitment scheme

and NIZK proof system, the adversary is not able to imper-

sonate an uncorrupted service provider. Thus, the adversary

necessarily uses the credentials of one of the corrupted pro-

viders, and must share this provider’s identity with the share

carriers. After the transaction, when the adversary completes

the protocol, the binding property once more guarantees that

the revealed identity is the one used before the transaction,

which correspond to one of the corrupted service providers.

In the other case, the adversary cannot prevent the client from

obtaining the share carriers’ shares, and then reconstructing the

secret. In both cases, the client can construct a valid report.

Similar experiment and reasoning can be used to prove

Property 4.

F. Unforgeability of Reports

An adversary has two options to forge a report. First, by

forging signatures from a majority of the accredited signers.

By assumption, less than nAS

2 accredited signers are malicious,

thus such a case is not possible. Secondly, the adversary

may forge a valid report. The unforgeability of reports –

Property 5 – is guaranteed if the following experiment returns

1 with probability neg(λ):

1) (state)← Setup(1λ)
2) rpt0 ← A

Ointer(·),Ocorr(·),Oinv(·)(state)
3) Return 1 if

a) rpt0 is valid

b) vkCl0 = Open(nymCl,0)
c) either Cl0 or SP0 has not been corrupted by A
d) rpt0 is different from any other report between Cl0

and SP0

where rpt0 is a report issued by nymCl,0 on provider SP0.

Proof: The report rpt0 consists of the following four

elements:

• the identity of the service provider, represented by IdSP0

and vkSP0
, and their pseudonym for the transaction, that

is CIdSP0
and nymSP0

;

• the pseudonym of the client, nymCl0 and CidCl0
;

• the identifier of the transaction, idtrans,0;

• the invariant, inv0

And, if the client is correct, the report also comprises their

rating ρ0. Each of these elements is either signed by both

the client and the provider – like idtrans0 – or proven thanks

to proofs that may be non-interactive and zero-knowledge, or

not – like inv0. We show that to change any of these elements,

A must break one of the underlying primitives.

a) Changing the identity of the service provider: Sup-

pose that A has modified IdSP, vkSP and certSP. Thus,

either A has forged ΠSP, or modified nymSP0
and CIdSP0

,

and computed a correct proof ΠSP. The security of NIZKs

prevents A from doing the former. Furthermore, σSP and

σCl are two signatures from both the provider and the client

on idtrans0 = sSC‖rSC‖ nymCl ‖ nymSP. The security of the

anonymous proxy signatures hence prevents A from forging

such signatures. If the service provider did not participate in

the report emission, the client proves the reconstruction of

IdSP0
thanks to the shares of the share carriers. Each of these

shares is signed by the service provider, which prevents A
from forging them. Therefore, A cannot modify the provider’s

identity. The same reasoning shows that A cannot modify the

identity of the client or the identifier of the transaction either.

b) Changing the invariant: If the service provider did

not participate in the report emission, changing the invariant

comes down to modifying IdSP0
or idCl0 – which is hard, as

shown previously – or forging Πinv0 , which is hard as well.

If the service provider did participate, inv0 depends directly

from masked_inv0. Modifying inv0 thus means modifying

masked_inv0. masked_inv0 is computed from pre_inv0, which

depends directly on IdSP0
. As shown previously, IdSP0

cannot

be modified. Thus, to modify masked_inv0, A must forge

Πmasked_inv0 , which is hard. Therefore, A cannot modify the

invariant.

c) Changing the rating: To modify the rating, A must

either forge signatures σd,Cl0 and σd,SP0
if both the client

and the provider are correct, or forge t signatures from the

share carriers. Since A cannot corrupt both Cl0 and SP0, the

security of the anonymous proxy signature scheme prevents

them to do so.

Since the adversary must break the NIZK proofs or the

anonymous proxy signatures to win this game, their advantage

is negligible and the unforgeability of reports is guaranteed.

G. Linkability of Reports

The linkability of reports (Property 6) is guaranteed if the

following experiment returns 1 with probability neg(λ):

1) (state)← Setup(1λ)
2) (rpt0, rpt1)← A

Ointer(·),Ocorr(·),Oinv(·)(state)
3) Return 1 if:

a) rpt0, rpt1 are valid, and

b) rpt0 and rpt1 concern the same provider, and

c) Open(nymCl,0) = Open(nymCl,1) and inv0 6= inv1,

or

d) Open(nymCl,0) 6= Open(nymCl,1) and inv0 = inv1

Proof: We previously proved that reports are unforge-

able. Thus, if rpt0 (resp. rpt1) is valid, rpt0 contains

inv0 = IdSP0

idCl0 (resp. inv1 = IdSP0

idCl1 ), where Cl0 =
Open(nymCl,0) (resp. Cl1 = Open(nymCl,1)). Therefore,

inv0 = inv1 if and only if Cl0 = Cl1, and reports are linkable.



H. Representativeness of Reputation Scores

The representativeness of reputation scores (Property 7),

captures the notion that an adversary cannot prove another

reputation than their own one. This property is guaranteed if

the following game returns 1 with probability neg(λ):

1) (state)← Setup(1λ)
2) (nymSP,0, CIdSP,0

, repSP,0, CcertSP,0
,ΠcertSP,0

,Πrep,0)

← AOinter(·),Ocorr(·),Oinv(·)(state)
3) Return 1 if:

a) ΠcertSP,0
and Πrep,0 are valid for nymSP,0, CIdSP,0

,

CcertSP,0
and repSP,0, and

b) SP′
0 = Open(nymSP,0) and repSP′

0

6= repSP,0

Proof: As proven previously, reports cannot be forged,

and thus the reports signed by the accredited signers are

legitimate reports. Hence, honest accredited signers compute

and sign a representative reputation score. Since we made

the assumption that less than nAS/2 accredited signers are

malicious, a service provider cannot receive enough signatures

from accredited signers to prove a different reputation score.

Furthermore, the security of NIZKs and anonymous proxy

signatures prevent A from forging valid proofs of reputation.

Therefore, the representativeness of reputation scores holds.
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