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Abstract— We consider the problem of a set of nodes which

is required to collectively learn a common dictionary from noisy

measurements. This distributed dictionary learning approach

may be useful in several contexts including sensor networks. Dif-

fusion cooperation schemes have been proposed to estimate a

consensus solution to distributed linear regression. This work

proposes a diffusion-based adaptive dictionary learning strategy.

Each node receives measurements which may be shared or not

with its neighbors. All nodes cooperate with their neighbors by

sharing their local dictionary to estimate a common representa-

tion. In a diffusion approach, the resulting algorithm corresponds

to a distributed alternate optimization. Beyond dictionary learn-

ing, this strategy could be adapted to many matrix factorization

problems in various settings. We illustrate its efficiency on some

numerical experiments, including the difficult problem of blind

hyperspectral images unmixing.

1 Introduction

In a variety of contexts, huge amounts of high dimensional data

are recorded from multiple sensors. When sensor networks are

considered, it is desirable that computations be distributed over

the network rather than centralized in some fusion unit. Indeed,

centralizing all measurements lacks robustness - a failure of the

central node is fatal - and scalability due to the needed energy

and communication resources. In distributed computing, every

node communicates with its neighbors only and processing is

carried out by every node in the network. Another important

remark is that relevant information from the data usually lives

in a space of much reduced dimension compared to the physical

space. The extraction of this relevant information calls for the

identification of some adapted sparse representation of the data.

Learning an adaptive sparse representation of the data using a

redundant dictionary is useful for many tasks such as storing,

transmitting or analyzing the data to understand its content, see

[1] for an up-to-date review. Furthermore, the problem of dic-

tionary learning belongs to the more general family of matrix

factorization problems that appears in a host of applications.

We study the problem of dictionary learning distributed over

a sensor network in a setting where a set of nodes is required

to collectively learn an adaptive sparse representation from in-

dependent observations. We consider the situation where a set

of connected nodes records data from observations of the same

kind of physical system: each observation is assumed to be de-

scribed by a sparse representation using a common dictionary

over all sensors. For instance, a set of cameras observe the

same kind of scenes or a set of microphones records the same

kind of sound environment.

The dictionary learning and the matrix factorization prob-

lems are connected to the linear regression problem. Indeed,

the classical approach based on alternate minimization on the

coefficients X and the dictionary D solves two linear regres-

sion problems knowing respectively D or X. Several recent

works have proposed efficient solutions to the problem of least

mean square (LMS) distributed linear regression, see [2] and

references therein. The main idea is to use a so-called diffusion

strategy: each node n carries out its own estimation Dn of the

same underlying linear regression vector D but can communi-

cate with its neighbors as well. The information provided to

some node by its neighbors is taken into account according to

weights interpreted as diffusion coefficients. Under some mild

conditions, the performance of such an approach in terms of

mean squared error is similar to that of a centralized approach

[3]. Let Dc the centralized estimate which uses all the obser-

vations at once. It can be shown that the error IE‖Dn −D‖2 of

the distributed estimate is of the same order as IE‖Dc −D‖2:

diffusion networks match the performance of the centralized

solution.

Our work [4] gives strong indication that the classical dictio-

nary learning technique based on block coordinate descent on

the dictionary D and the coefficients X can be adapted to the

distributed framework by adapting the diffusion strategy men-

tionned above. Our numerical experiments also strongly sup-

port this idea. Note that solving this type of matrix factorization

problems is really at stake since it corresponds to many inverse

problems: denoising, adaptive compression, recommendation

systems... A distributed approach is highly desirable both for

use in sensor networks and for parallelization of numerically

expensive learning algorithms. In a second step, we may con-

sider the more general situation where observations may also

be shared between connected nodes.

2 Problem formulation

Many nodes, one dictionary. Consider N nodes over some

region. In the following, boldfaced letters denote column vec-

tors, and capital letters denote matrices. The node n takes qn
measurements yn(i), 1 ≤ i ≤ qn from some physical system.

All the observations are assumed to originate from independent

realizations sn(i) of the same underlying stochastic source pro-

cess s. Each measurement is a noisy measurement

yn(i) = sn(i) + zn(i) (1)

where z denotes the usual i.i.d. Gaussian noise with covariance

matrix Σn = σ2
nI. Our purpose is to learn a common redundant

dictionary D which carries the characteristic properties of the

data. This dictionary must yield a sparse representation of s so

that:

∀n, yn(i) = Dxn(i)
︸ ︷︷ ︸

sn(i)

+zn(i) (2)

where xn(i) features the coefficients xnk(i) associated to the

contribution of atom dk, the k-th column in the dictionary ma-



trix D, to sn(i). The sparsity of xn(i) means that only few

components of xn(i) are non zero.

We consider the situation where a unique dictionary D gen-

erates the observations at all nodes. On the contrary, observa-

tions will first not be shared between nodes (this is one poten-

tial generalization). Our purpose is to learn this dictionary in a

distributed manner thanks to in-network computing only. As a

consequence, each node will locally estimate a local dictionary

Dn thanks to i) its observations yn and ii) communication with

its neighbors. The neighborhood of node n will be denoted by

Nn, including node n itself.

Dictionary learning. Various approaches to dictionary learn-

ing have been proposed [1]. Usually, in the centralized set-

ting, the q observations are denoted by y(i) ∈ R
p and grouped

in a matrix Y = [y(1), ...,y(q)]. As a consequence, Y ∈
R

p×q . The dictionary (associated to some linear transform)

is denoted by D ∈ R
p×K : each column is one atom dk of

the dictionary. The coefficients associated to observations are

X = [x(1), ...,x(q)]. We will consider learning methods based

on block coordinate descent or alternate optimization on D and

X with a sparsity constraint on X [5, 1, 6]. The data is repre-

sented as the sum of a linear combination of atoms and a noise

term Z ∈ R
p×q:

Y = DX+ Z (3)

In the most usual setting featuring white Gaussian noise, one

wants to solve:

(D,X) = argmin(D,X)

1

2
||Y −DX||22 + λ||X||1 (4)

Under some mild conditions, this problem is known to provide

a solution to the underlying L0-penalized problem [7].

3 Distributed alternate optimization for

dictionary learning

Algorithm. The Adapt Then Combine diffusion strategy [2]

for distributed estimation originates the following approach to

distributed alternate optimization for dictionary learning. Dif-

fusion is ensured by the communication between nodes sharing

their dictionary estimate with neighbors in Nn. Observations

are taken simultaneously at each node so that a whole data ma-

trix Yn is assumed to be available at node n. Here index i

stands for iterations. The case where data arrive sequentially at

each node can also be dealt with at the price of a natural adap-

tation of the present approach. Each node must estimate both

its local dictionary Dn and the coefficients Xn which describe

observations Yn = DnXn + Zn. At each iteration i, only

the local dictionary estimates Dn,i are assumed to be shared

between neighbors, not observations. In summary, sparse rep-

resentations are computed locally. Then each node updates its

dictionary as a function of its local observations Yn (Adapt

step) and its neighbors’ dictionaries (Combine step). Based on

known results for the ATC strategy in its usual setting, we ex-

pect that Algorithm 1 below converges to an accurate estimate

of the common underlying dictionary D. Various choices can

be considered for A such as some a priori fixed matrix A or

with the relative degree variance (νℓ = degree of node ℓ):

aℓ,n =
νℓσ

2
ℓ∑

m∈Nn
νmσ2

m

(5)

Initialize Dn,0, ∀n (random subset of K observations yn(i)).
Given a matrix A satisfying 1TA = 1T , i = 0,

Repeat until convergence of (Dn,i,Xn,i)n=1:N

For each node n repeat:

1) Optimization w.r.t. Xn,i (sparse coding):

Given the dictionary Dn,i, the coefficients Xn,i are estimated

using a sparse coding method (Basis Pursuit, OMP, FOCUSS,...)

2) Optimization w.r.t. Dn,i (dictionary) e.g. by gradient descent:
{
ψn,i+1 = Dn,i + µD

n (Yn −Dn,iXn,i)X
T
n,i

Dn,i+1 =
∑

ℓ∈Nk
aDℓ,nψℓ,i (diffusion)

and ∀1 ≤ k ≤ K,dk ←
dk

‖dk‖2

(normalization)

ψn,i+1 can also be updated by MOD or K-SVD,...at node n.

EndFor (n)

i← i+ 1
EndRepeat

Numerical experiments. We present some numerical experi-

ments to illustrate the relevance and efficiency of our approach.

For instance we show the results obtained on a dataset built

from a redundant random dictionary of 48 atoms of dimension

16 corresponding to image patches of size 4 × 4. Each data

yn(i) is the linear combination of 3 atoms with i.i.d. coeffi-

cients uniformly distributed over [−0.5, 0.5] ; various Gaus-

sian noise levels are considered. We show that a set of 4

nodes in a symmetrically connected network consistently learn

the same dictionary of 4 × 4 patches with good accuracy (45

atoms of the initial dictionary of 48 atoms are recovered with

〈dj ,d
(o)
j 〉 ≥ 0.99).

We will also show the results of an application to the prob-

lem of blind unmixing of hyperspectral images. In this applica-

tion, the network is simply made of connections between pixels

which are spatially close or which carry similar spectral infor-

mation. The graph underlying (hyper-)pixels makes them col-

laborate to learn spectral endmembers.

4 Conclusion

We present an original algorithm which solves the problem of

distributed dictionary learning over a sensor network. This is

made possible thanks to a diffusion strategy which permits lo-

cal communication between neighbors. Connected nodes ex-

change their local dictionaries estimated from disjoint subsets

of data. This algorithm adapts usual dictionary learning tech-

niques for sparse representation to the context of in-network

computing. This approach to the general problem of distributed

matrix factorization paves the way towards many prospects and

applications. Moreover, as far as computational complexity is

concerned, distributed parallel implementations are a poten-

tially interesting alternative to online learning techniques [8].

We may even consider a dynamical context where observations

arrive over time so that the dictionary would also be learnt dy-

namically.
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