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Statistical performance analysis of a fast

super-resolution technique using noisy translations
Pierre Chainais, Member, IEEE, Aymeric Leray,

Abstract—The registration process is a key step for super-
resolution (SR) reconstruction. More and more devices permit
to overcome this bottleneck by using a controlled positioning
system, e.g. sensor shifting using a piezoelectric stage. This makes
possible to acquire multiple images of the same scene at different
controlled positions. Then a fast SR algorithm [1] can be used
for efficient SR reconstruction. In this case, the optimal use of
r
2 images for a resolution enhancement factor r is generally not

enough to obtain satisfying results due to the random inaccuracy
of the positioning system. Thus we propose to take several images
around each reference position. We study the error produced by
the SR algorithm due to spatial uncertainty as a function of the
number of images per position. We obtain a lower bound on the
number of images that is necessary to ensure a given error upper
bound with probability higher than some desired confidence level.
Such results give precious hints to the design of SR systems.

Index Terms—high-resolution imaging; reconstruction algo-
rithms ; super-resolution; performance evaluation ; error analysis

I. INTRODUCTION

S
UPER-RESOLUTION (SR) will likely be implemented

soon on every kind of camera from smartphones to

DSLRs, compact system cameras or even microscopes and

telescopes... This is made always easier thanks to many

recent devices which facilitate multiframe acquisition and

SR software. In particular, piezoelectric actuators which now

achieve a positioning accuracy of fractions of nanometers

[2] enable sensor shifting or moving platforms permitting to

take several low-resolution (LR) pictures at slightly different

globally translated positions. DSLR sellers (e.g. Ricoh/Pentax)

recently announced new SR camera that will create high reso-

lution (HR) images from sensor shift technology, as Hasselblad

H5D-200MS and Olympus E-M5 Mark II are already doing.

Numerous SR methods combining several low-resolution (LR)

images to compute one high-resolution (HR) image have been

developed, see [3] for a review. The registration step is often

the bottleneck in terms of SR performance. Sensor shifting

devices permit to reduce its impact thanks to the use of

some controlled positioning system. To reach a given integer

resolution enhancement factor r (2, 3...), the optimal solution

is to perform r2 translations corresponding to displacements

of (k/r, ℓ/r) in LR pixel units (1 LR pixel = r HR pixels)

for integers (k, ℓ) ∈ (0, r − 1)2. The typical pixel size is of a

few µm nowadays.
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However, the positioning system (or any registration

method) only approximately reaches the targeted positions

with some small random error. Based on a statistical perfor-

mance analysis, we study the influence of this error on the

quality of the SR images reconstructed with a simple and

fast SR algorithm [1] which assumes that displacements are

exactly known. We also study the importance of using several

acquisitions of the same targeted positions to compensate for

postioning errors in order to optimize the number of images

required to ensure a given quality of the SR image. While

the chosen SR method is a priori not as efficient as state of

the art methods [4], the theoretical analysis of its statistical

performance is possible, which would not likely be the case

for other methods. Therefore, in addition to its rapidity, this

method would come with theoretical guarantees on the quality

of reconstruction. Moreover the adopted methodology paves

the way to the analysis of more sophisticated SR methods,

which is of great importance to give hints on the optimal co-

conception of integrated SR imaging sytems.

Over the last 30 years, several works have dealt with

mathematical analysis of SR algorithms, e.g. [5]–[13]. The

works described in [5]–[7] essentially study the convergence

of iterative methods for SR (e.g., conjugate gradient) including

registration and deconvolution steps. They show that the

reconstruction error decreases as the inverse of the number

of LR images. In [8], the difficulty of the inverse problem is

characterized by the conditioning number of a matrix defined

from the direct model which is proportional to r2s2 (s = width

of sensor pixels). When translations are uniformly distributed

in (0, r)2, this conditioning number tends to 1 and a direct

inversion is possible with high probability when a large num-

ber of images is used [9]. In [10], the analysis was performed

in the Fourier domain and showed that the mean square error

decreases as the number of images increases when random

translations are used. Ref. [11] quantifies the limitations of

SR methods by computing Cramer-Rao lower bounds, also

working in the Fourier domain. In the most favourable case

where translations are known (no registration is needed), this

bound is proportional to r/n if n is the number of images. All

these works back to the 1980s [12] explain what makes SR

difficult and how far more images can make it simpler. How-

ever, they have only expressed limited quantitative prediction

beyond the qualitative 1/n behaviour of the reconstruction

error. Our purpose is a detailed quantitative statistical error

analysis of the simple Shift & Add method described in [1].

We obtain a lower bound on the number of images that is

necessary to achieve a given error bound with high probability.

The control of errors is crucial to produce nice looking results
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but also to ensure reliable scientific observations. The present

study is performed in the Fourier domain. The error at each

frequency component is quantitatively evaluated. The use of

Hoeffding’s inequality permits to compute upper bounds and

confidence intervals of practical use are obtained.

A preliminary work was presented at ICASSP 2014 in [14]

with less general results because the assumptions were more

restrictive (special uniform distribution). In this work, we use

a more general and realistic assumption of bounded error on

displacements. Furthermore, the potential presence of bias is

taken into account and all mathematical proofs are given. The

present results are tighter thanks to the use of Hoeffding’s con-

centration inequality in place of the lose Bienaymé-Cebycev

inequality. This article includes a numerical study and more

detailed illustrations ; all useful Matlab codes are available.

Section II presents the setting and the model. Section III

presents our main theoretical results which predict the required

number of image acquisitions at each position to ensure some

given confidence level in the reconstructed image. Sections

III-A & III-B present the most technical aspects; proofs are in

Appendix. Section III-C sums up our main theoretical results.

Section IV presents numerical results. Section V discusses our

contributions and some prospects.

II. A FAST AND CONTROLLED SUPER-RESOLUTION

TECHNIQUE

A. The super-resolution problem

For a given SR factor r, the most common linear formula-

tion of the general SR problem in the pixel domain is [1]:

Yk = DkHkFkYHR + nk k = 1, ..,K, (1)

where YHR is the (desired) high resolution image to estimate

from the K LR images {Yk, 1 ≤ k ≤ K}. We assume the

unknown HR image YHR is a periodic bandlimited image

sampled above the Nyquist rate. Each image Yk is a LR

observation of the same underlying scene translated by Fk.

The blur matrices Hk model the point spread function (PSF)

of the acquisition system and matrices Dk are the decimation

operator by a factor r. If YHR is of size r2N2×1 and Yk of size

N2×1, matrices Fk and Hk are of size (rN)2× (rN)2 while

Dk are N2× (rN)2; nk is the noise, generally assumed to be

Gaussian white noise so that E(nkn
t
k) = σ2I . Images YHR,

Yk and nk are rearranged in lexicographic ordered vectors.

The least squares optimization problem can be formulated as:

ŶHR = argminY

K∑

k=1

‖Yk −DkHkFkY ‖22. (2)

Other formulations based on the L1-norm or adding some

regularization have also been proposed [15]. We focus on the

method described in [1]: its simplicity makes it possible to

quantitatively analyze its performances. Such a guarantee may

be crucial for scientific imaging or the design of devices.

B. Super-resolution algorithm

Several usual assumptions are used in [1]. The PSF of the

acquisition system is known and spatially homogeneous so

Ỹ de(j)
aliasing

(a) (b)

Fig. 1. (a) Spatial domain: black disks and thick grid are the original LR
sampling grid, the thin grid is the target HR grid. Other symbols are positions
of 3 translated LR images of 1/2 LR pixel (r = 2); (b) Fourier domain: the
inner (red) square contains LR frequencies (−N/2, N/2)2, the outer square
is for HR frequencies (−rN/2, rN/2)2. Arrows represent aliasing, see (10).

r super-resolution factor, typically r = 2, 3...

YHR High Resolution (HR) image ∈ R
(rN)2

Yk Low Resolution (LR) image ∈ R
N2

nk noise in low resolution image Yk

Fk translation operator on HR images
Hk convolution blur operator on HR images

Dk decimation operator N2 × (rN)2

d target position of one LR image

Y d HR image Y translated by d = (dx, dy)
bdj error on displacement de(j) = d+ bdj

nd number of LR images around position d

ǫ maximum positioning error in LR pixel units
η exponent of the spectrum of natural images
k, k′ spatial frequency vectors resp. at LR and HR

X̃(k′) = [FHRX](k′) Discrete Fourier Transform of HR image X

Ỹ (k) = [FLRY ](k) Discrete Fourier Transform of LR image Y
DHR the set of spatial HR frequencies k′

DLR the set of spatial LR frequencies k

α, γ vectors of 2D integer translations
qα, qγ normalized frequencies
p, p1, p2 relative absolute errors in (0, 1)
P1, P2 probabilities in (0, 1)
F t transpose of matrix F
IE[ · ] mathematical expectation
〈 · 〉d averging operator over d

TABLE I
SUMMARY OF NOTATIONS.

that ∀k,Hk = H . Decimation is the same for all images

so that ∀k,Dk = D in (1) & (2). We will also assume

that the r2 possible translated images at integer multiples

(k, ℓ) ∈ (0, r − 1)2 of the HR scale are available to provide

an optimal setting for SR [11]. Then the solution to the least-

square error SR problem (2) consists of two steps. A blurred

image Z = HYHR can be estimated by [1]:

Z := HYHR =

r2∑

k=1

F t
kD

tYk (3)

The operation in (3) is equivalent to a simple interlacing of LR

images, see Fig. 1. Then the final HR image results from the

deconvolution of Z, which can be done using any algorithm

such as Wiener or Lucy [16]. Such an approach separates

the problem of SR into two steps of fusion (estimating Z)

and deconvolution (deblurring to estimate YHR). This work

focuses on the performance analysis of the fusion step only.

Recall that high frequency terms at some k′ are preserved if
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(a) (b) (c) (d)

Fig. 2. (a) Barbara, (b) Results from Algorithm [1] with r = 2, ǫ = 0.1,
nd = 32 im./pos. ; HF reconstruction error (zoom on screen), (c) nd = 32 ⇒
SNRHF =25.0dB, (d) nd = 1 ⇒ SNRHF =10.0dB.

and only if the PSF H̃(k′) is not zero. Some prior information

might be used to reconstruct missing frequencies [11].

This algorithm requires one idealized assumption: displace-

ments (matrices Fk) are assumed to be exact integer multiples

of HR pixels. In practice, this is only approximately true due to

the finite precision of the positioning system. Our purpose is to

study the influence of this approximation. One solution would

be to carry out accurate sub-pixel registration. This would

remain insufficient since state of the art techniques cannot

ensure a precision much better than 0.1-0.01 pixel [17], [18].

Another possibility is to take nd ≥ 1 images for each required

position so that the true Z will be replaced by the estimate:

X = Ẑ =
∑

d

1

nd

nd∑

j=1

(Fd)tDtY de(j) (4)

Y d is the image of a scene Y translated by d where

d = (dx, dy) denotes the targeted displacement vector;

de(j) = d + bdj the real experimental displacement; bdj

is the noise on the platform position. Note that in general

(Fd)tFde(j) 6= IrN . One can hope to compensate from

displacement inaccuracies by using multiple acquisitions at

the same targeted position with some random error bdj around

the expected value d. A realistic assumption [2], [13], [19] is

that the position error is bounded by ǫ > 0 in LR pixel units

or ǫr = ǫr in HR pixel units. For a given targeted position,

the positioning system will be reset between each acquisition

so that positions are randomly distributed around the average

position (which may be biased due to miscalibration). This

averaging process is expected to enhance the SR quality. Fig. 2

illustrates typical results from this approach applied to a detail

of Barbara for r = 2, ǫ = 0.1. The error on reconstructed high

frequency components are compared for nd = 1 and nd = 32
images/position. A SNR gain of about 15dB is observed when

using 32 images (note for later use that 10log10(32) = 15).

Our aim is to reconstruct probably approximately correct

(PAC) images by quantifying the number of images that

should be taken per reference position to respect some given

upper relative error bound of p (e.g. 0.10) with probability

(confidence) higher than P (e.g. 0.90).

C. Aliasing effects and notations

To detail the effect of aliasing, we consider the relation

between the estimated blurred HR image X defined by (4) and

the LR images Y de(j) in the Fourier domain, see Fig. 1(b).

For some integer n, the interval (−n : n) denotes the set of

integers between −n and n (Matlab notations). When using

the Discrete Fourier Transform (DFT), we denote by k the

LR frequencies in DLR = (−N/2 : N/2− 1)2 and k′ the HR

frequencies in DHR = (−rN/2 : rN/2 − 1)2. Given some

HR frequency k′, we need to deal with corresponding aliased

terms in the LR image. The integer vector γ ∈ (−r : r)2 is

such that k = k′ − γN ∈ DLR. We denote by α the integer

vectors such that k+αN ∈ DHR. Sums
∑

d are over all the

r2 ideal displacements d ∈ (0 : r − 1)2 and sums over α are

sums over all possible HR frequencies kα = k+ αN (up to

rN/2). The DFT of image Z is Z̃. To alleviate formulas, we

introduce the normalized frequencies:




qγ =
2π

rN
k′ =

2π

rN
(k+ γN) = q+ γ

2π

r

qα =
2π

rN
(k+αN) = q+α

2π

r

(5)

where α,γ ∈ Z
2. Note that qα ∈ (−π, π)2 so that ‖qα‖1 ≤

2π and ‖qα‖2 ≤
√
2π.

Back to (4), note that when D is the decimation operator, Dt

is an upsampling operation (inserting zeros between samples)

that produces aliasing. If FHR is the HR DFT, for k′ ∈ DHR:

[FHRD
tY de(j)](k′) = Ỹ de(j)(k = k′ − γN) (6)

Taking phase shifts due to translations of (−d) associated to

(Fd)t into account in the DFT of (4) yields:

X̃(k′) =
∑

d

1

nd

nd∑

j=1

Ỹ de(j)(k′ − γN) e
2iπ
rN

d·k′

(7)

Since each observation is a decimated version of the blurred

translated scene, one has in the spatial domain:

Y de(j) = DHFde(j)YHR = DZde(j) (8)

In the Fourier domain:

Ỹ de(j)(k) = [FLRDF t
HRZ̃

de(j)](k) (9)

and thanks to usual properties of the sum of roots of unity

(see Appendix E):

Ỹ de(j)(k) =
1

r2

∑

α

Z̃(kα) e
− 2iπ

rN
kα·de(j) (10)

where we have used the fact that the homogeneous blur

operator (convolution) is diagonal in Fourier domain. One can

explicitly see in (10) how the information at high frequencies

kα = k+αN from the HR image is aliased at low frequency

k in each LR image Y de(j). By separating the desired main

contribution at k′ = k + γN and aliasing terms at k + αN
for α 6= γ, one gets by reporting (10) in (7):

X̃(k′) = Z̃(k′)Gγ(k
′) +B(k′) (11)

B(k′) =
∑

α 6=γ

Z̃(k+αN)Gα(k
′) (12)

where

Gα(k
′) =

1

r2nd

∑

d,j

e−i 2π
r
(α−γ)deiqα·bdj (13)

(except when k′x or k′y is equal to −rN/2). In the ideal case

where bdj = 0 translations are exact multiples of HR pixels
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and one retrieves X̃ = Z̃ = H̃ỸHR since Gγ = 1 and Gα = 0
for α 6= γ. The first term in (11) is the main approximation

term, which should be as close as possible to Z̃(k′). The

second term B(k′) in (11) is the aliasing term and should

be as small as possible compared to the approximation term.

Our purpose is to establish conditions for which X is a good

approximation of Z within quantitative probabilistic bounds.

III. BOUNDS ON RECONSTRUCTION ERRORS

This section proves concentration inequalities that guarantee

PAC SR. In this study, we make the general and realistic

assumption that position errors are bounded so that bdj ∈
(−ǫr, ǫr)

2 HR pixel units. We do not assume that IE[bdj ] = 0:

the positioning system might be biased. In section III-A &

III-B we deal with the coefficient Gγ of Z in the main

approximation term of (11) and then turn to the contribution

of the aliasing term B(k′). The reader interested in our main

results only can directly move to sections III-C & III-D. Proofs

are in Appendices B & C.

A. Bound on the approximation term Gγ(k
′)

Since one expects that 1
r2 IEGγ ≃ 1, we start from

|Gγ(k
′)− 1| ≤ (14)

|Gγ(k
′)− IE[Gγ(k

′)]|+ |IE[Gγ(k
′)]− 1|

Noting that IE[Gγ(k
′)] = IE[eiqγ ·bdj ], the Taylor development

of the complex exponential function yields1

∣∣∣IE[eiqγ ·bdj ]− 1
∣∣∣ ≤ |qγ .IE[bdj ]|+ IE

[
(qγ .bdj

)2

2

]

≤ ‖qγ‖2 ‖IE[bdj ]‖2 +
‖qγ‖21 ǫ2r

2︸ ︷︷ ︸
B1

(15)

since bdj ∈ (−ǫr, ǫr)
2. Then we deal with the first term

in (14) by introducing:

BG =
1

r2nd

∑

d,j

(eiqγ ·bdj − IEeiqγ ·bdj ) (16)

To obtain concentration inequalities on |BG|, our approach

goes in 3 steps: i) bound the real and imaginary parts thanks

to properties of their power series expansions, ii) prove

concentration inequalities by using Hoeffding’s inequality for

the sum of differences between random variables and their

expectations, iii) bound |BG| by using Lemma 1 below to

combine bounds on the real and imaginary parts.

Lemma 1: (see proof in Appendix A) Let x1 and x2 two

random variables in R. Let a1, a2 > 0 and P1, P2 ∈ (0, 1)
such that P (|xi| ≥ ai) ≤ Pi, i = 1, 2. Then

P (
√
x2
1 + x2

2 ≥
√
a21 + a22) ≤ P1 + P2 (17)

P (|x1|+ |x2| ≥ a1 + a2) ≤ P1 + P2 (18)

Let us recall Hoeffding’s inequality. Hoeffding’s inequality

[21]. Let {Xi, 1 ≤ i ≤ n} a set of independent random

1See Lemma 1 p. 512 in Feller (vol. 2) [20] on the Taylor development of
exp(it) for t > 0.

variables distributed over finite intervals [ai, bi]. Let S =∑n
i=1 (Xi − IE[Xi]). For all t > 0,

P (|S| ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
(19)

This permits to prove that, see Appendix B:

P


|BG| ≥

√
2

(
δγ +

‖qγ‖31ǫ3r
3

)

︸ ︷︷ ︸
B2


 ≤ 4e−c2nd/8 (20)

We obtain the final concentration inequality for the main

approximation term by combining (15) and (20) and going

back to (14):

P (|Gγ(k
′)− 1| ≥ B1 +B2) ≤ 4e−c2nd/8 (21)

for ǫr ≤ 1/πr, where B1 and B2 are defined in (15) & (20).

Let p ∈ (0, 1) the maximum relative error constraint, e.g.,

p = 0.1, and P1 ∈ (0, 1) such that 1−P1 is the corresponding

concentration probability. For sufficiently large p, one can

define ∀k′ ∈ DHR or qγ ∈ 2π
rNDHR the adequate maximum

coefficient c(qγ) > 0 such that, neglecting the cubic term,

√
2c(qγ)‖qγ‖1ǫ+‖qγ‖2〈‖IE[bd,j ]‖2〉d+

‖qγ‖21ǫ2r
2

≤ p (22)

c(qγ) is a decreasing function of ‖qγ‖1, which is minimum

for maximal frequencies such that ‖qγ‖1 = 2π. For p large

enough, one can define

c1(p) = min
qγ

c(qγ) = c(π, π) (23)

=
1

2
√
2πǫ

(
p−

√
2π〈‖IE[bd,j ]‖2〉d − 2π2ǫ2r2

)

Then (22) with c(qγ) replaced by c1(p) is true for all qγ ∈
2π
rNDHR. When the averaged bias 〈IE[eiqγ ·bdj ]〉d is zero or

remains negligible (≪ p/
√
2π),

c1(p) ≃
p− 2π2ǫ2r2

2
√
2πǫ

(24)

If ǫ ≤ 1/πr and c1(p) is well defined, (21) becomes:

P (|Gγ(k
′)− 1| ≥ p) ≤ 4 exp

(
−c1(p)

2nd

8

)
(25)

∀k′ ∈ DHR. Then the relative error remains bounded by p
with probability larger than some P1 ∈ (0, 1) if

nd ≥ 8

c1(p)2
log

(
4

1− P1

)
(26)

The larger c1(p), the smaller the lower bound. This bound does

not depend on the image content. In practice, it tells that, for

nd large enough, the main approximation term in (11) is less

than 100p% away from the targeted Z̃(k′) with probability

larger than P1. In ideal experimental conditions, with no bias

and ǫr ≤
√
p/2π2,

nd ≥
(

8πǫ

p− 2π2ǫ2r2

)2

log

(
4

1− P1

)
(27)
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For instance, see Tab. II, for ǫ = 0.01, r = 2, p = 0.1 and

P1 = 0.90 (error ≤ 10% with ≥ 90% confidence level) this

bound is nd ≥ 28. The concentration level (1 − P1) can be

very tight due to the logarithmic dependence of nd on (1 −
P1). At the same error level p = 0.1, the criterion becomes

nd ≥ 45 for P1 = 0.99. In contrast, a much larger nd ≥
5.3 104 is necessary to guarantee an accuracy of 1% (p =
0.01) at P1 = 0.90 confidence level. In summary, confidence

is cheap while accuracy is expensive. Note that the position

accuracy ǫ should essentially decrease proportionally to p as a

finer reconstruction is desired. Moreover, given a desired SR

factor r and a position accuracy ǫ, the relative error p is lower

bounded by 2π2ǫ2r2. For r = 2 and ǫ = 0.01, the smallest

relative error p that can be guaranteed is pbest = 0.008.

B. Bound on the aliasing terms (Gα,α 6= γ)

The ideal situation in (11) occurs when the translations d

are exactly the r2 possible multiples of HR pixels. Due to

properties of complex roots of unity, all the aliasing terms

Gα(k
′) in (11) cancel for α 6= γ. Our aim is to bound

the contribution of aliasing error terms when translations are

noisy due to approximate control only. The adopted strategy is

similar to that of previous section, see proof in Appendix C.

We also use the properties of roots of unity and a standard

assumption on the spectral content of the target image. We

start from (13):

Gα(k
′) =

1

r2nd

∑

d,j

e−i 2π
r
(α−γ)deiqα·bdj (28)

Let

θαd =
2π

r
(α− γ)d, d ∈ (0 : r − 1)2 (29)

Note that the set of the eiθαd matches the set of products

of complex roots of unity, see eq. (95)-(98) in Appendix E.

The sum over translations
∑

d involves the sum of roots of

unity, which is zero, in the computation of the aliasing term. In

Appendix C, assuming that the variations of the bias IE[qα ·
bdj ] around 〈IE[qα · bdj ]〉d for fixed d are negligible, we

prove the following concentration inequalities. For α − γ /∈
{0, r/2}2 :

P
(
|Gα(k

′)| ≥
√
2δ′α

)
≤ 4e−c2nd (30)

For α − γ ∈ {0, r/2}2, (79) in Appendix C gives a

deterministic bound on the real part. Moreover sin(θαd) = 0
in (80) so that one gets from (18) in Lemma 1:

P (|Gα(k
′)| ≥ δ′α) ≤ 2e−c2nd (31)

which is even tighter than (30). In the special case r = 2, all

α− γ are in {0, r/2}2 = {0, 1}2 so that we need (31) only

and tighter bounds are obtained.

We aim at taking into account the contribution of all terms

Z̃αGα(k
′) for α 6= γ in (12). Let assume that they are

independent. This is at least approximately true for two main

reasons. First one can show that the Gα(k
′) are uncorrelated,

see (111) in Appendix G and second the Z̃α carry information

about very distinct frequencies in the image. Then we can use

Lemma 2 (see proof in Appendix A):

Lemma 2: Let xi, i = 1, ..., n, n independent random

variables. Let ai > 0 and Pi ∈ (0, 1) i = 1, ..., n, such that

∀i, P (|xi| ≥ ai) ≤ Pi. Then

P

(∑

i

|xi| ≤
∑

i

ai

)
≥

n∏

i=1

(1− Pi) (32)

Applying Lemma 2 to the set of (r2 − 1) possible α 6= γ

from (30) yields a probabilistic bound on the relative aliasing

error when Zγ 6= 02:

P



∣∣∣∣∣∣
∑

α 6=γ

Z̃α

Z̃γ

Gα(k
′)

∣∣∣∣∣∣
≤

√
2
∑

α 6=γ

∣∣∣∣∣
Z̃α

Z̃γ

∣∣∣∣∣ δ
′
α




≥
(
1− 4e−c2nd

)r2−1

(33)

Given some desired relative error p ∈ (0, 1) and lower

probability P2 ∈ (0, 1), one needs to find whether there exists

c = c2(p) > 0 such that ∀k′ ∈ DHR

√
2
∑

α 6=γ

∣∣∣∣∣
Z̃α

Z̃γ

∣∣∣∣∣ (c‖qα‖1ǫ+ f(qα, ǫr))︸ ︷︷ ︸
δ′
α

≤ p, (34)

A necessary condition appears as

p > p0(ǫ, r, Z) =
√
2
∑

α 6=γ

∣∣∣∣∣
Z̃α

Z̃γ

∣∣∣∣∣ f(qα, ǫr) (35)

Then one can define

c2(p) = inf
qγ

sup
c

{c : qγ obeys ineq.(34)} (36)

If c2(p) > 0 is well defined, then there exists a minimum

number of images per position nd such that

(
1− 4e−c2(p)

2nd

)r2−1

≥ P2, (37)

that is

nmin
d =

1

c2(p)2
log


 4

1− P
1

r2−1

2


 (38)

(39)

In the special case r = 2, (31) yields the even tighter bound:

nmin
d =

1

c2(
√
2p)2

log

(
2

1− P
1

3

2

)
. (40)

One obtains a bound on the aliasing error relative to |Z̃(qγ)|:

P



∣∣∣∣∣∣
∑

α 6=γ

Z̃α

Z̃γ

Gα(k
′)

∣∣∣∣∣∣
≤ p


 ≥ P2 (41)

This relative error provides a good estimate of the relative error

on the HR image before deconvolution. It permits to evaluate

the contribution of aliasing errors to the reconstructed blurred

HR image Z. This necessitates the knowledge of the true HR

2Note that one should first check that every term in the products are positive
to ensure that the inequality above be relevant, which will be guaranteed by
the final criterion.
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image : one can also use the reconstructed image a posteriori

to indicate which frequencies are most suspected to contribute

to aliasing effects. Each specific image has a specific Fourier

spectrum so that special aliasing effects may appear and make

SR difficult, at least for a small set of frequencies for which

the sum of aliasing terms in (41) may be particularly large. To

propose a generic a priori estimate of the order of magnitude

of this aliasing error, we need to make some assumptions on

the content of images. It is well accepted that natural images

often exhibit a power law energy spectrum ∝ 1/‖k′‖2(1+η)
2

where usually |η| ≪ 1 [22]–[24]. Then
∣∣∣∣∣
Z̃α

Z̃γ

∣∣∣∣∣ =
|H̃(qα)|
|H̃(qγ)|

( ‖qγ‖2
‖qα‖2

)1+η

(42)

Therefore the strongest constraints are due to high frequencies

(large k′ or qγ ). Note the dependence on the blur kernel

which acts as a low-pass filter: the presence of H̃ in (42) will

have adverse effects. Searching for lower-bounds, forthcoming

computations consider the most favourable case when H̃ = 1.

See section IV for a numerical illustration of the effect of a

realistic Gaussian blur kernel. An approximate computation in

App. D shows that the highest frequencies define c∗2(p) as

c∗2(p) =
p− p∗0(ǫ, r)

a∗(ǫ,H)
(43)

where

p∗0(ǫ, r) ≃ b0
√
2
η
π2ǫ2r2(r2 − 1) (44)

a∗(ǫ,H) =
√
2
∑

α 6=γ

|H̃(qα)|
|H̃(qγ)|

( ‖qγ‖2
‖qα‖2

)1+η

‖qα‖1ǫ

≃ a02
1+η/2ǫ(r2 − 1) (if H̃ = 1) (45)

where the factor (r2−1) corresponds to the number of aliasing

terms; the coefficient b0 ≃ 2/3 for r = 2 and b0 ≃ 1.2 for

r ≥ 3 and it is almost independent of the size N of the image

for N ≥ 32; a0 ≃ 0.63 for r = 2 and a0 ≃ 1.3 for r ≥ 3 (see

Appendix D). In the general case, (44) & (45) interestingly

permit to make explicit the dependence on r, ǫ and η. Thus, for

a power-law spectrum image, the required minimum number

nmin
d of images/position is:

nmin
d =

a∗2(ǫ,H)

(p− p∗0(ǫ, r))
2
log


 4

1− P
1

r2−1

2


 (46)

One observes that p0/ǫ
2r2 essentially depends on r as soon

as ǫ is small enough. Figure 3 illustrates numerical orders of

magnitude of reachable (p, ǫ) such that p > p∗0(ǫ, r) for given

r under the assumption of a power law spectrum. Pairs of

acceptable parameters (p, ǫ) for which guaranteed error bounds

exist are at the bottom right of each curve. Typical values can

be evaluated numerically. For instance assuming η = 0, to

guarantee an error smaller than 10%, r = 2, p = 0.1 ⇒ ǫ ≤
0.036 or r = 6, p = 0.1 ⇒ ǫ ≤ 0.0035. Observe that ǫ should

rapidly decrease as r becomes larger when some given error

level p with high probability is desired. Note the logarithmic

dependence on (1−P
1

r2−1

2 ) which permits to choose P2 close

to 1 without increasing nmin
d a lot.

Fig. 3. Pairs of parameters (p, ǫ) for which SR with guaranteed error bounds
is feasible are at the bottom right of the curve for each SR factor r indicated
on the right margin, see (44).

By using our results in the other way, one can also deduce

a map of confidence intervals p(q) for fixed nd. In practice,

the acquisition protocole may impose some fixed nd. Then

one can set the value of c2(p) in (34) and compute a map of

confidence intervals p(q) in the Fourier domain, taking into

account the spectrum of the true HR image. Since it is not

known, the Fourier transform may be replaced by its estimate.

This procedure helps identifying which frequencies are more

likely to contribute to aliasing errors.

C. Main results

The analysis of the estimate X of the blurred image Z =
HYHR by the proposed algorithm gives in the spectral domain,

see (11) & (12):

X̃(k′) = Z̃(k′)Gγ(k
′) +B(k′) (47)

B(k′) =
∑

α 6=γ

Z̃(k+αN)Gα(k
′) (48)

Theorem 3 below gathers the necessary assumptions on the

acquisition system (r, ǫ, IE[bdj ]), the scenes (spectrum expo-

nent η in (42)) and the desired confidence level (p1 & P1, p2
& P2) to obtain two fundamental concentration inequalities

for the approximation and the aliasing terms respectively.

Theorem 3:

Acquisition system - Let r be the SR factor. Let 0 < ǫ < 1/πr
be the maximum error of the positioning system (in LR

pixel units). Assume bounded errors bdj on positions within

(−ǫr, ǫr) in both x and y directions with a possible constant

bias IE[bdj ] (in HR pixel units). Assume that nd images are

taken for each one of the r necessary reference positions

corresponding to d ∈ (0, r − 1)2 HR pixel units.

Confidence intervals - Let p1 ∈ (0, 1), resp. p2 ∈ (0, 1) be

the desired maximum relative error on the main approximation

term, resp. the sum of aliasing terms, of the reconstructed

image (p1 & p2 will generally be close to 0).

Let P1 ∈ (0, 1) be the desired level of confidence in the

relative error p1 due to the main approximation term. Let

P2 ∈ (0, 1) be the level of confidence in the relative error

p2 due to the aliasing term (P1 and P2 will be close to 1).

Technical assumptions - Assume that one can define c1 > 0
and c2 > 0 by (dependences are omitted)

c1 =
1

2
√
2πǫ

(
p1 −

√
2π〈‖IE[bd,j ]‖2〉d − 2π2ǫ2r2

)
(49)
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c2(p2) = inf
qγ

sup
c

{c : Lγ(c) ≤ p2} (50)

where function f is defined by (77) and

Lγ(c) =
√
2
∑

α 6=γ

∣∣∣∣∣
Z̃α

Z̃γ

∣∣∣∣∣ (c‖qα‖1ǫ+ f(qα, ǫr)) (51)

If

nd ≥ 8

c1(p1)2
log

(
4

1− P1

)
(52)

then the following probabilistic inequality holds:

P

({
∀k′ ∈ DHR,

∣∣∣∣
Gγ(k

′, nd)

r2
− 1

∣∣∣∣ ≤ p1

})
≥ P1 (53)

If

nd ≥





1

c2(
√
2p)2

log

(
2

1− P
1

3

2

)
if r = 2,

1

c2(p)2
log


 4

1− P
1

r2−1

2


 if r ≥ 3.

(54)

then the following concentration inequality holds:

P

({
∀k′ ∈ DHR,

∣∣∣∣∣
B(k′, nd)

Z̃(k′)

∣∣∣∣∣ ≤ p2

})
≥ P2 (55)

Let us comment on Theorem 3. In ideal experimental condi-

tions, with no positioning bias and ǫr ≤
√
p/2π2,

c1(p) ≃
p− 2π2ǫ2r2

2
√
2πǫ

(56)

The quantity c2(p2) can be computed numerically for some

given specific image. A necessary condition to the existence

of c2(p2) is

p2 > p0(ǫ, r, Z) =
√
2 sup

qγ

∑

α 6=γ

∣∣∣∣∣
Z̃α

Z̃γ

∣∣∣∣∣ f(qα, ǫr) (57)

In the most favourable case when H̃ = 1 (no blur) and the

image has a power law Fourier spectrum ∝ ‖k′‖−2(1+η)
2 , (44)

permits to estimate p0(ǫ, r, Z). Then c2(p2) can be computed

from (43) which is easy to use and gives quantitative indica-

tions about nd.

Corollary 4: Under the assumptions of Theorem 3 and

denoting c1 = c1(p1) and c2 = c2(p2), if a sufficient number

nd of images per position is used, one has the following

concentration inequality which guarantees a small relative

error with high probability:

P

({
∀k′ ∈ DHR,

∣∣∣∣∣
X̃(k′)− Z̃(k′)

Z̃(k′)

∣∣∣∣∣ ≤ p1 + p2

})

≥ P2 − (1− P1)

≥
(
1− 4e−c2

2
nd

)r2−1

− 4e−
c2
1
nd

8 (58)

Proof : this is a direct consequence of Lemma 1 p. 4 applied

to the sum of the approximation term |Gγ/r
2 − 1| and the

aliasing term |B/Z̃|.

Fig. 4. SNR for high frequencies only is proportional to log10 nd. Results
from 100 Monte-Carlo simulations with uniform distribution of positions with
ǫ = 0.01 for 11 images (Lena, Barbara, Boat...).

Corollary 4 gives a probabilistic bound to the total rela-

tive error on each frequency component of the reconstructed

blurred image Z using the algorithm from [1] before the

deconvolution step. Note that the bound in probability in (58)

tends to 1 exponentially fast when nd → ∞. In practice, one

can guarantee a global relative error ≤ 10% with probability

≥ 0.90 by choosing (pi, Pi) = (0.05, 0.95), i=1,2. This result

provides a precise quantitative analysis of the reconstruction

error. One limitation of the present study is that Z̃(k′) =
H(k′)YHR(k

′) is the blurred super-resolved image resulting

from the fusion of LR images. However the deconvolution

step is common to every acquisition system and remains a

limitation of any SR approach. Of course, the most favourable

situation is when H(k′) is close to 1, corresponding to a Dirac

PSF in the spatial domain. Then Corollary 4 gives a good

indication of the quality of high resolution imaging by using

multiple acquisitions per positions.

In summary, we propose a detailed analysis of the recon-

struction error of a fast method in the Fourier domain. It

provides an a priori estimate of the number of images/position

necessary to guarantee a given quality of reconstruction of

each frequency (Fourier mode) with high probability. Based

on Monte Carlo simulations, it also allows to estimate a

posteriori a map of confidence levels in the frequency domain.

Section IV will show numerically that these bounds are tight.

We have worked on the intermediate reconstructed image

Z before the deconvolution step that is common to most

SR methods. Theorem 3 can be used based on the generic

assumption of a power-law spectrum that is usual for natural

images or more specifically for one specific image.

D. What about the SNR ?

We have demonstrated theoretical bounds to control the

quality of the super resolved image in the Fourier domain.

However this result deals with each frequency separately. Now

we aim at identifying the dependence of the SNR between the

reconstructed image and the ground truth. Again, this SNR

deals with Z not YHR and it measures the quality of the fusion

step and does not consider the posterior deconvolution effects.
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We consider the mean square error :

∥∥∥X̃ − Z̃
∥∥∥
2

2
=
∑

k

∣∣∣∣∣
X̃(k′)− Z̃(k′)

Z̃(k′)

∣∣∣∣∣

2

︸ ︷︷ ︸
α2

k′

·|Z̃(k′)|2 (59)

and compare it to the energy of the original HR image. The

|Z̃(k′)| are considered as fixed (the ground truth) while the

αk′ are random variables here (relative error estimates). Now

we show that IEα2
k′ is of the order of 1/nd for all k′ so that

SNR ∝ log nd. From (58) in Corollary 4,

P (|αk′ | ≤ p) ≥ 1− 4r2e−c2nd (60)

where c2(p) = min(c22(p), c
2
1(p)/8). Note from (43) & (56)

that the typical order of magnitude of c1(p) and c2(p) is p/ǫ
so that we can consider that there exists λ > 0 such that

c2 ≥ λp2/ǫ2. Then

IE[α2
k′ ] ≤

∫

|α
k′ |≤p

α2
k′p(αk′)dαk′ +

∫

|α
k′ |≥p

α2
k′p(αk′)dαk′

≤ p2 + 2

∞∑

n=1

∫ (n+1)p

np

α2
k′p(αk′)dαk′

≤ p2 + 4r2
∞∑

n=1

e−λn2p2nd/ǫ
2

(n+ 1)2p2

≤ p2(1 + e−λp2nd/ǫ
2

K(nd)) (61)

where K(nd) is finite, decreasing with nd and independent

of k′. Choosing p2 = 1/nd, one obtains for all k′ ∈ DHR,

IE[α2
k′ ] ≤ 1

nd

(1 + e−λ/ǫ2K(nd)) (62)

and consequently taking the expectation of (59),

IE

[∥∥∥X̃ − Z̃
∥∥∥
2

2

]
=
∑

k′

IE[α2
k′ ]|Z̃(k′)|2

≤ 1

nd

(1 + e−λ/ǫ2K(nd))‖Z̃‖22 (63)

Finally, using Parceval’s equality we get:

SNR(X̃, Z̃) ≥ 10 log10 nd +K (64)

where K is a constant depending on the energy of the original

image. As a function of the number of images per position

nd, the SNR is improved with a magnitude of 10dB/decade.

We can compare this result with the weak Cramer-Rao lower

bound on the reconstruction error Tweak ∝ 1/
√
K + 1 where

K + 1 is the number of images in [11] : at best, the SNR

can grow as log(number of images) as predicted by (64).

This indicates that the proposed method is efficient at the best

expected level [5]–[12]. Fig. 4 shows SNR computed for high

frequencies only (the reconstructed HR part of the spectrum).

Results were computed from 100 Monte-Carlo simulations

with uniform distribution of position errors with ǫ = 0.01
for 11 images (Lena, Barbara, Boat...). This global indication

that the SNR is ∝ log nd completes previous detailed bounds

for each Fourier component.

Fig. 5. Minimum number nd(k
′) to guarantee an aliasing error ≤ 5% with

probability ≥ 0.95 for all k′ ; ǫ = 0.001, r = 4.

IV. NUMERICAL RESULTS

To illuminate the complex interplay between the many

parameters involved, we study the problem from various view-

points. Section IV-A studies the lower-bound on the number

nd of images per position to guarantee a given maximum

errror level. Section IV-B compares our theoretical results to

numerical estimates of probabilities from Monte-Carlo simu-

lations. Section IV-C studies the connection between results

in the Fourier domain and in the spatial domain. Section IV-D

shows how the presence of noise and the nature of the

blur operator influence the results. Monte-Carlo simulations

use 100 realizations of the acquisition procedure assuming a

uniform distribution of position errors in (−ǫ, ǫ). When no

image is specified, the power law spectrum assumption is used.

A. How many images to ensure some maximum error level ?

Fig. 5 shows the dependence of the required number of

images nd(k
′) on the frequency k′ to guarantee that aliasing

contribution is less than p1 = 0.05 with probability P1 ≥ 0.95
when r = 4 and ǫ = 0.001 for an image with a power

law spectrum. As expected, the recovery of high frequencies

requires more LR images. The results are nearly independent

of the size N of images for N ≥ 32. A similar picture (not

shown) stands for the approximation term. In general (not

always) the control of aliasing effects is the most constraining.

Tab. II gathers the constraints for various values of r and ǫ
for images with a power law spectrum (η = 0 here). Numbers

are computed from (52) & (54) in Theorem 3 for parameters

(pi, Pi) = (0.05,0.95), i = 1, 2. This choice of equidistribution

of error is certainly not optimal but of practical use with re-

spect to Corollay 4 garantying an error level ≤ p1+p2 = 0.10
with probability larger than P2 − (1−P1) = 0.90. The larger

r, the larger the need for multiple images. The smaller the

positioning uncertainty ǫ, the smaller the lower bound on nd.

As an example, we consider a setting where the sensor

has LR pixels of width ≃ 1 µm. The random bias on the

positioning system can be reasonably expected to be between

1 and 10 nm corresponding to ǫ ≃ 0.001−0.01 LR pixel. The

acquition rate of images is usually of the order of 10 im./s

(e.g. in a DSLR). In practice, r2 displacements are used so

that a minimum acquisition time of about r2 × nd × 0.1s is

necessary. For r = 2 and ǫ = 0.01, relative errors ≤ 5% on

the restored image can be guaranteed with probability ≥ 0.95





PREPRINT - DECEMBER 15, 2015 10

C. How are the errors localized in the spatial domain ?

We use Monte-Carlo simulations to study the localization

of errors in the spatial domain. By selecting the less reliable

frequency components of an image where the aliasing error

is ≥ 10% with probability ≥ 0.1, one can reconstruct the

corresponding spatial counterpart to localize and quantify their

contribution. For r = 2, ǫ = 0.01, these unreliable components

weight for a SNR of -27.2dB. The present theoretical analysis

permits such a selection of frequencies as well. For a given

number nd of images/position one can reconstruct the spatial

counterpart of the less reliable frequencies where the aliasing

error is expected to be ≥ 10% with probability ≥ 0.1
according to Theorem 3. Fig. 8 shows such a picture for

Barbara for r = 2, ǫ = 0.01 and nd = 256 im./pos., to

be compared with the minimum nd = 157 in Tab. II. As

expected, the spoiled regions are the most textured ones as

well as some contours (better seen on screen). Remember that

the analysis focused on the modulus of Fourier spectra while

phases carry the location information. Maximum gray levels

are about 4 and the standard deviation is of 0.67 (to compare

with 255 in 8 bits). These ”non reliable” components then

weight for a SNR of -25.8 dB w.r.t. superresolved frequencies

only. At least on this example, our theoretical predictions both

qualitatively and quantitatively agree with Monte Carlo results.

Our analysis not only gives indications to choose nd but also

produces a detailed map of the error distribution both in the

Fourier domain and in the spatial domain.

D. How do noise and PSF influence performances ?

The influence of noise and PSF are two important questions.

The problem of noise is not the most critical: averaging nu-

merous images attenuates additive noise. The present approach

considers additive contributions of numerous images affected

by independent realizations of noise: this naturally tends to

increase the SNR. This is easily checked experimentally and

not illustrated here for sake of briefness. If the noise in LR

images was too strong to be compensated by simple averaging,

the utility of SR would be questionable since the main concern

would first be to access reliably denoised information at low

resolution, giving up hopes for high resolution. Here we

assume that LR images are of sufficient quality. The question

of the PSF is a much bigger concern since it is involved in

the error analysis. Of course frequencies where H̃(k′) = 0 are

lost and we already mentionned that the present analysis is not

valid for these frequencies. Moreover the structure of aliasing

is influenced by the PSF in an important manner, see (42). All

the experiments above considered the ideal situation of a Dirac

PSF where H̃(k′) = 1 ∀k′. The lines ‘PSF(0.5)’ in Tab. II

show how the lower bounds of nd are modified in presence

of a Gaussian PSF of width 0.5. As expected it dramatically

influences the estimates, e.g. for (r, ǫ) = (2, 0.001) as the

bound becomes 18 in place of 1. The control of the PSF is

a real stake in the design of a SR system: the present study

permits to quantitatively evaluate its influence.

V. CONCLUSION

We have presented a theoretical analysis of a cheap and

fast SR technique which takes benefit from any accurate

Fig. 8. (l.) Barbara, (r.) contribution of the less reliable frequencies.

controlled positioning system, e.g. piezoelectric actuators for

sensor shifting, now currently available on many optical

systems. Such an approach comes with some constraints. It

requires a static scene captured using a static camera in good

lighting conditions to avoid a high level of noise. It may

also suffer from a lack of depth of field or an inhomogeneity

of translations between images due to parallax for instance.

However the statistical analysis of the algorithm proposed

in [1] produces error confidence intervals as a function of

the number of available images. This is made possible by

the simplicity of the algorithm itself and by exploiting the

averaging effect of LR images taken at positions that are

randomly distributed around the same reference position. This

approach is cheap and realistic to enhance the resolution of

many devices. Even not state of the art, theoretical guarantees

are a strong advantage of the approach when the reliability

of the restored image is at stake, e.g. in scientific imaging

(biology, astronomy...). This analysis considers a zero-mean

noise which gets attenuated in the HR image reconstruction by

fusing many images. The resulting probabilistic upper bounds

are a good complement to the Cramer-Rao lower bounds

in [11] and are nearly tight since the order of magnitudes are

similar. Numerical experiments illustrate our results in both the

Fourier and spatial domains as well as the effect of the PSF.

A strong aspect of this work is in its predictions for practical

implementation. Such results also give precious hints on the

design of SR systems. Future works may investigate similar

probabilistic bounds for more sophisticated SR algorithms

where some reconstruction priors are used [25]–[28].

APPENDIX

A. Proofs of Lemma 1 & 2

Proof of Lemma 1:
√
x2
1 + x2

2 ≥
√
a21 + a22 ⇒ |x1| ≥ a1 or

|x2| ≥ a2 proves (17), see figure 9(a). |x1| + |x2| ≥ a1 + a2
⇒ |x1| ≥ a1 or |x2| ≥ a2 proves (18), see fig. 9(b) where the

grey lozenge represents the region |x1|+ |x2| ≤ a1 + a2.

Proof of Lemma 2: ∀i, |xi| ≤ ai ⇒
∑

i |xi| ≤
∑

i ai so that

P (
∑

i |xi| ≤
∑

ai) ≥ P ({∀i, |xi| ≤ ai}). Since the xi are

independent, P ({∀i, |xi| ≤ ai}) =
∏

i P (|xi| ≤ ai). Noting

that ∀i, P (|xi| ≤ ai) ≥ (1− Pi) concludes the proof. QED.

B. Proof of concentration inequality (20)

As far as the real part of BG in (16) is concerned:

Re (BG) =
1

r2nd

∑

d,j

cos (qγ .bdj)− IE[cos (qγ .bdj)] (65)
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Since |qα ·bdj | ≤ ‖qα‖1ǫr, we apply Hoeffding’s inequality

to (78) and (81) for δα = c‖qα‖1ǫ, and for α−γ /∈ {0, r/2}2:

P (|Re (Gα(k
′))| ≥ δ′α) ≤ 2e

−
2r2n2

d
c2

4
∑

d,j sin2 θ
αd (83)

P (|Im (Gα(k
′))| ≥ δ′α) ≤ 2e

−
2r2n2

d
c2

4
∑

d,j cos2 θ
αd (84)

where δ′α = c‖qα‖1ǫ + f(qα, ǫr). Using (97) & (98) in

App. E, Lemma 1 yields inequalities (30) & (31).

D. Computing c2(p) in (36)

Here we estimate c2(p) in (36) under assumptions of Theo-

rem 3. If one neglects the effect of blur, we aim at computing

the maximum value of c2(p) such that for all qγ ,

a c2(p) + p0 ≤ p. (85)

after little reorganization of (34) where we use

p0 ≃
√
2

2

∑

α 6=γ

|Y (qα)|
|Y (qγ)|

‖qα‖21ǫ2r (86)

a =
√
2
∑

α 6=γ

|Y (qα)|
|Y (qγ)|

‖qα‖1ǫ. (87)

as soon as ǫr ≪ 1 so that cubic terms can be neglected. We

first study (86). We focus on the highest frequencies only,

typically qγ = (π − 2π
rN , π − 2π

rN ). As a consequence, note

that ‖qγ‖1+η
2 ≃ (

√
2π)1+η . Then, one needs to detail:

∑

α 6=γ

‖qα‖21
‖qα‖1+η

2

=
π2

π1+η

∑

β 6=(0,0)

‖vrN − 2β/r‖21
‖vrN − 2β/r‖1+η

2
︸ ︷︷ ︸

F (r,N)

(88)

where vrN = (1 − 2/rN, 1 − 2/rN). The sum F (r,N) can

be computed numerically. It weakly depends on N so that

F (r,N) ≃





2 =
2

3
(r2 − 1) if r = 2,

1.2(r2 − 1) if r ≥ 3.
(89)

For r = 2, computations are easy and only 2 terms both equal

to 1 appear in F (r,N). For r ≥ 3, one can observe that

‖qα‖1 ∼ ‖qα‖2 (norms are equivalent) so that when η = 0
one expects that F (r,N) ∝ (r2 − 1), the number of terms in∑

β 6=(0,0). This is due to the fact that 〈‖qα‖1〉α 6=γ ≃ π for

large r. As a result, one obtains in good approximation that :

p0 ≃ b0
√
2
η
π2ǫ2r2(r2 − 1) (90)

where b0 = 2/3 if r = 2 or b0 ≃ 1.2 if r ≥ 3. Now let study

coefficient (87) along the same lines.

a ≃
√
2
∑

α 6=γ

‖qγ‖1+η
2

‖qα‖1+η
2

‖qα‖1ǫ (91)

Using that ‖qα‖1 ∼ ‖qα‖2 (within constant factors), one

expects that when η = 0,

a ∝ 21+η/2(r2 − 1)ǫ (92)

Numerical estimates for values 2 ≤ r ≤ 8 show that

a = a0 × 21+η/2ǫ(r2 − 1) (93)

where a0 varies with η around a typical value of 1.3 for η = 0,

e.g. a0 ≃ 0.95 if η = −0.2 and a0 ≃ 1.85 if η = 0.2 for all

r ≥ 3. For r = 2, one finds a0 ≃ 0.63, resp. 1.14 and 3.04
when η = −0.2, resp. 0 and 0.2.

E. Properties of complex roots of unity

θαd =
2π

r
(α− γ)d =

2π

r
δd (94)

where α and γ are integers in (0, r− 1)2. The set of the θαd

matches the set of products of complex roots of unity so that:

∑

d

cos

(
2π

r
(α− γ)d

)
=
∑

d

cos(θαd) = 0 (95)

∑

d

sin

(
2π

r
(α− γ)d

)
=
∑

d

sin(θαd) = 0 (96)

∑

d

cos2(θαd) =

{
r2 if α− γ ∈ {0, r/2}2,
r/2 otherwise.

(97)

∑

d

sin2(θαd) =

{
0 if α− γ ∈ {0, r/2}2,
r/2 otherwise.

(98)

Properties (95) and (96) come from the observation that

∑

d∈(0,r−1)2

eiθαd =
∏

i=1,2


 ∑

di∈(0,r−1)

ei2π(αi−γi)di/r


 (99)

where each factor in the r.h.s. is zero since α 6= γ and for

any integer 1 ≤ δ ≤ r − 1,

r−1∑

d=0

ei2πδd/r =
1− ei2πδ

1− ei2πδ/r
= 0 (100)

Now we prove (97) and (98). To this aim we need:

cos2(θαd) =
1 + cos(2θαd)

2
(101)

sin2(θαd) =
1− cos(2θαd)

2
(102)

We need to evaluate
∑r−1

d=0 e
i2θαd . For 0 ≤ δ ≤ r − 1,

r−1∑

d=0

ei4πδd/r =





∑r−1
d=0 1 = r if δ ∈ {0, r/2},

1− ei4πδ

1− ei4πδ/r
= 0 otherwise,

(103)

so that using (99) again

∑

d

ei2θαd =

{
r2 if α− γ ∈ {0, r/2}2,
0 otherwise.

(104)

Taking the real part yields
∑

d cos(2θαd). The sum of (101)

& (102) over d ∈ (0, r − 1)2 yield (97) & (98).

F. Expectations IE[Gα]

Taking the expectation of (13) with respect to bdj yields:

IEGα(k
′) =

∑

d

e−i 2π
r
(α−γ)·dIE

[
e−i 2π

rN
k′

α
·bdj

]
(105)
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Then let χ(k′) = IE
[
e−i 2π

rN
k′·bdj

]
the characteristic function

of the distribution of bdj . It results from properties of roots

of unity above that

∑

d

e−i 2π
r
(α−γ)d =

{
0 when α 6= γ,
r2 when α = γ

(106)

so that denoting Kronecker’s symbol by δγα:

IEGα(k
′) = δγα χ(k′) (107)

G. The Gα are uncorrelated

The correlation between Gα1
and Gα2

for αi 6= γ is:

IE[Gα1
G∗

α2
] =

1

n2
d

∑

dd′

e−i 2π
rN

(α1−γ)dNe+i 2π
rN

(α2−γ)d′N

×
nd∑

j,ℓ=1

IE
[
e+i 2π

rN
(k′+α1N)·bdje−i 2π

rN
(k′+α2N)·bdℓ

]

︸ ︷︷ ︸
βjℓ

One remarks that

βjℓ =

{
χ((α2 −α1)N) if j = ℓ,

χ(k′
α1

)χ(−k′
α2

) if j 6= ℓ,
(108)

so that

IE[Gα1
(k′)G∗

α2
(k′)] =

1

n2
d

(∑

d

e−i 2π
rN

(α1−α2)dN

)

×




nd∑

j,ℓ=1

βjℓ −
nd∑

j,ℓ=1

χ(k′
α1

)χ(−k′
α2

)


 (109)

Then using (108) and little algebra one gets

nd∑

j,ℓ=1

βjℓ −
nd∑

j,ℓ=1

χ(k′
α1

)χ(−k′
α2

)

= nd

[
χ((α2 −α1)N)− χ(k′

α1
)χ(−k′

α2
)
]

(110)

As a consequence one finally gets:

IE[Gα1
(k′)G∗

α2
(k′)]

= δα1α2

r2

nd

[
χ((α2 −α1)N)− χ(k′

α1
)χ(−k′

α2
)
]

= δα1α2

r2

nd

(
1− |χ(k′

α1
)|2
)

(111)

so that the Gαi
, αi 6= γ, are uncorrelated. QED.
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