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Assessing the Performance of a Classification-Based
Vulnerability Analysis Model

Tai-ran Wang,1,∗ Vincent Mousseau,2 Nicola Pedroni,1 and Enrico Zio1,3

In this article, a classification model based on the majority rule sorting (MR-Sort) method is
employed to evaluate the vulnerability of safety-critical systems with respect to malevolent
intentional acts. The model is built on the basis of a (limited-size) set of data representing
(a priori known) vulnerability classification examples. The empirical construction of the clas-
sification model introduces a source of uncertainty into the vulnerability analysis process: a
quantitative assessment of the performance of the classification model (in terms of accuracy
and confidence in the assignments) is thus in order. Three different approaches are here con-
sidered to this aim: (i) a model-retrieval-based approach, (ii) the bootstrap method, and (iii)
the leave-one-out cross-validation technique. The analyses are presented with reference to
an exemplificative case study involving the vulnerability assessment of nuclear power plants.

KEY WORDS: Classification model; confidence estimation; MR-Sort; nuclear power plants; vulnerabil-
ity analysis

1. INTRODUCTION

The vulnerability of safety-critical systems and
infrastructures (e.g., nuclear power plants) is of
great concern, given the multiple and diverse haz-
ards that they are exposed to (e.g., intentional,
random, natural)(1) and the potential large-scale con-
sequences. This has motivated an increased atten-
tion in analyses to guide designers, managers, and
stakeholders in (i) the systematic identification of
the sources of vulnerability, (ii) its qualitative and
quantitative assessment,(2,3) and (iii) the selection of
proper actions to reduce it. In this article, we are

1Chair on Systems Science and the Energy Challenge, European
Foundation for New Energy-Electricité de France, Ecole Cen-
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concerned only with intentional hazards (i.e., those
related to malevolent acts) and we mainly address is-
sue (ii) mentioned above (i.e., the quantitative eval-
uation of vulnerability).

With respect to that, due to the specific fea-
tures (low frequency but important effects) of
intentional hazards (characterized by significant un-
certainties due to behaviors of different rationality)
the analysis is difficult to perform by traditional
risk assessment methods.(1,4,5) For this reason, in
this work we propose to tackle the issue of eval-
uating vulnerability to malevolent intentional acts
by an empirical classification modeling framework.
In particular, we adopt a classification model based
on the majority rule sorting (MR-Sort) method(6) to
assign an alternative of interest (i.e., a safety-critical
system) to a given (vulnerability) class (or cate-
gory). The MR-Sort classification model contains a
group of (adjustable) parameters that have to be
calibrated by means of a set of empirical classifica-
tion examples (also called training set), that is, a set
of alternatives with the corresponding preassigned
vulnerability classes.
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Due to the finite (typically small) size of the set
of training classification examples usually available in
the analysis of real complex safety-critical systems,
the performance of the classification model is im-
paired. In particular, (i) the classification accuracy
(resp., error), that is, the expected fraction of pat-
terns correctly (resp., incorrectly) classified, is typi-
cally reduced (resp., increased); (ii) the classification
process is characterized by significant uncertainty,
which affects the confidence of the classification-
based vulnerability model: in our work, we define
the confidence in a classification assignment as in
Ref. 10, that is, as the probability that the class as-
signed by the model to a given (single) pattern is
the correct one. Obviously, there is the possibility
that a classification model assigns correctly a very
large (expected) fraction of patterns (i.e., the model
is very accurate), but at the same time each (cor-
rect) assignment is affected by significant uncertainty
(i.e., it is characterized by low confidence). It is
worth mentioning that besides the scarcity of train-
ing data, there are many additional sources of un-
certainty in classification problems (e.g., the accuracy
of the data, the suitability of the classification tech-
nique used): however, they are not considered in this
work.

The performance of the classification model (i.e.,
the classification accuracy—resp., error—and the
confidence in the classification) needs to be quan-
tified: this is of paramount importance for taking
robust decisions in the vulnerability analyses of
safety-critical systems.(7,8)

In this article, three different approaches are
used to assess the performance of a classification-
based MR-Sort vulnerability model in the presence
of small training data sets. The first is a model-
retrieval-based approach,(6) which is used to as-
sess the expected percentage error in assigning new
alternatives. The second is based on bootstrapping
the available training set in order to build an en-
semble of vulnerability models;(9) the method can be
used to assess both the accuracy and the confidence
of the model: in particular, the confidence in the as-
signment of a given alternative is given in terms of the
full (probability) distribution of the possible vulner-
ability classes for that alternative (built on the boot-
strapped ensemble of vulnerability models).(10) The
third is based on the leave-one-out cross-validation
(LOOCV) technique, in which one element of the
available data set is (left out and) used to test the ac-
curacy of the classification model built on the remain-
ing data: also this approach is employed to estimate

the accuracy of the classification vulnerability model
as the expected percentage error, that is, the fraction
of alternatives incorrectly assigned (computed as an
average over the left-out data).

The contribution of this work is twofold:

� classification models have proved useful in a va-
riety of fields including finance, marketing, en-
vironmental and energy management, human
resources management, medicine, risk analysis,
fault diagnosis, etc.,(11) but to the best of the
authors’ knowledge, this work is the first to pro-
pose a classification-based hierarchical frame-
work for the analysis of the vulnerability to
intentional hazards of safety-critical systems;

� the bootstrap method is originally applied to es-
timate the confidence in the assignments pro-
vided by the MR-Sort classification model, in
terms of the probability that a given alternative
is correctly classified.

The article is organized as follows. The next
section presents the hierarchical framework for vul-
nerability analysis to intentional hazards. Section 3
shows the classification model applied within the pro-
posed framework. Section 4 describes the learning
process of a classification model by the disaggrega-
tion method. In Section 5 three approaches are pro-
posed to analyze the performance of the classification
model. Then, the proposed approaches are validated
on the case study of a group of nuclear power plants
(NPPs) in Section 6. Finally, Sections 7 and 8 present
the discussion and conclusions of this research.

2. GENERAL FRAMEWORK:
VULNERABILITY TO
INTENTIONAL HAZARDS

Vulnerability is defined in different ways de-
pending on the domains of application, for example,
a measure of possible future harm due to exposure to
a hazard,(1) the identification of weaknesses in secu-
rity, focusing on defined threats that could compro-
mise a system’s ability to provide a service,(12) the set
of conditions and processes resulting from physical,
social, economic, and environmental factors that in-
crease the susceptibility of a community to the impact
of hazards.(13)

With the focus on the susceptibility to intentional
hazards, the three-layers hierarchical model devel-
oped in Ref. 14 is considered and shown in Fig. 1. The
susceptibility to intentional hazards is characterized
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Fig. 1. Hierarchical model for susceptibility to intentional hazards.

in terms of attractiveness and accessibility. These are
hierarchically broken down into factors that influ-
ence them, including resilience seen as pre-attack
protection (which influences on accessibility) and
post-attack recovery (which influences on attractive-
ness). The decomposition is made in six criteria,
which are further decomposed into a layer of basic
subcriteria, for which data and information can be
collected. The details of the general framework of
analysis are not given here for brevity; the interested
reader is referred to Ref. 14 and to Appendix A.

For the purpose of this article, only six cri-
teria are considered: physical characteristics, social
criticality, possibility of cascading failures, recovery
means, human preparedness, and level of protection
(Fig. 1). These six criteria are used as the basis to as-
sess the vulnerability of a given safety-critical system
of interest (e.g., an NPP). Four levels (or categories)
of vulnerability are considered: satisfactory, accept-
able, problematic, and serious. In this view, the issue
of assessing vulnerability is here tackled within a clas-
sification framework: given the characterization of a
critical system in terms of the six criteria mentioned

above, a proper vulnerability category (or class) has
to be selected for that system. A description of the
algorithm used to this purpose is given in the follow-
ing section.

It is worthy to mention that the cyber charac-
teristics are not taken into account in this work; in
future work they will be added for the criteria physi-
cal characteristics and protection.

3. CLASSIFICATION MODEL FOR
VULNERABILITY ANALYSIS: THE
MR-SORT METHOD

The MR-Sort method is a simplified version of
ELECTRE Tri, an outranking sorting procedure in
which the assignment of an alternative to a given cat-
egory is determined using a complex concordance-
non-discordance rule.(15,16) We assume that the
alternative to be classified (in this article, a safety-
critical system or infrastructure of interests, e.g., an
NPP) can be described by an n-tuple of elements
x = {x1, x2, ..., xi , ..., xn}, which represent the evalu-
ation of the alternative with respect to a set of n
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criteria (by way of example, in this article the cri-
teria used to evaluate the vulnerability of a safety-
critical system of interest may include its physi-
cal characteristics, social criticality, level of protec-
tion, and so on: see Section 2). We denote the
set of criteria by N = {1, 2, ..., i, ..., n} and assume
that the values xi of criterion i range in the set
Xi

(9) (e.g., in this article all the criteria range in
[0, 1]). The MR-Sort procedure allows assigning
any alternative x = {x1, x2, ..., xi , ..., xn} ∈ X = X1 ×
X2 × ... × Xi × ... × Xn to a particular predefined
category (in this article, a class of vulnerability), in a
given ordered set of categories, {Ah : h = 1, 2, ..., k};
as mentioned in Section 2, k = 4 categories are con-
sidered in this work: A1 = satisfactory, A2 = accept-
able, A3 = problematic, A4 = serious.

To this aim, the model is further specialized in
the following way:

� We assume that Xi is a subset of R for all i ∈
N and the subintervals (X1

i , X2
i , ..., Xh

i , ..., Xk
i )

of Xi are compatible with the order on the
real numbers, that is, for all x1

i ∈ X1
i , x2

i ∈
X2

i , ..., xh
i ∈ Xh

i , ..., xk
i ∈ Xk

i , we have x1
i > x2

i >

... > xh
i > ... > xk

i . We assume furthermore that
each interval xh

i , h = 2, 3, ..., k has a smallest el-
ement bh

i , which implies that xh−1
i ≥ bh

i > xh
i .

The vector bh = {bh
1 , bh

2 , ..., bh
i , ..., bh

n} (contain-
ing the lower bounds of the intervals Xh

i of crite-
ria i = 1, 2, ..., n in correspondence of category
h) represents the lower limit profile of category
Ah.

� There is a weight ωi associated with each cri-
terion i = 1, 2, ..., n, quantifying the relative
importance of criterion i in the vulnerability as-
sessment process; notice that the weights are
normalized such that

∑n
i=1 ωi = 1.

In this framework, a given alternative x =
{x1, x2, ..., xi , ..., xn} is assigned to category
Ah, h = 1, 2, ..., k, if

∑

i∈N:xi ≥bh
i

ωi ≥ λ and
∑

i∈N:xi ≥bh+1
i

ωi < λ, (1)

where λ is a threshold (0 ≤ λ ≤ 1) chosen by the
analyst. Rule (1) is interpreted as follows. An
alternative x belongs to category Ah if: (1) its
evaluations in correspondence of the n criteria
(i.e., the values {x1, x2, ..., xi , ..., xn}) are at least
as good as bh

i ( lower limit of category Ah with re-
spect to criterion i), i = 1, 2, ..., n, on a subset of
criteria that has sufficient importance (in other
words, on a subset of criteria that has a weight

larger than or equal to the threshold λ chosen by
the analyst); and at the same time (2) the weight
of the subset of criteria on which the evalua-
tions {x1, x2, ..., xi , ..., xn} are at least as good
as bh+1

i (lower limit of the successive category
Ah+1 with respect to criterion i), i = 1, 2, ..., n,
is not sufficient to justify the assignment of x to
the successive category Ah+1. Notice that alter-
native x is assigned to the best category A1 if∑

i∈N:xi ≥b1
i
ωi ≥ λ and it is assigned to the worst

category Ak if
∑

i∈N:xi ≥b−k−1 ωi < λ. Finally, it is
straightforward to notice that the parameters of
such a model are the k · n lower limit profiles
(n limits for each of the k categories), the n
weights of the criteria ω1, ω2, ..., ωi , ..., ωn, and
the threshold λ, for a total of n(k + 1) + 1 pa-
rameters.

4. CONSTRUCTING THE MR-SORT
CLASSIFICATION MODEL

In order to construct an MR-Sort classifi-
cation model, we need to determine the set
of n(k + 1) + 1 parameters described in Section
2, that is, the weights ω = {ω1, ω2, ..., ωn}, the
lower profiles b = {b1, b2, ..., bh, ..., bk},with bh =
{bh

1 , bh
2 , ..., bh

i , ..., bh
n}, h = 1, 2, ..., k, and the thresh-

old λ; in this article, λ is considered a fixed, constant
value chosen by the analyst (e.g., λ = 0.9).

To this aim, the decision maker provides
a training set of classification examples DTR =
{(xp, �

t
p), p = 1, 2, ..., NT R}, that is, a set of NTR al-

ternatives (in this case, NPPs) xp = {x p
1 , x p

2 , ..., x p
i , ...,

x p
n }, p = 1, 2, ..., NT R together with the correspond-

ing real preassigned categories (i.e., vulnerability
classes) �t

p (the superscript t indicates that �t
p rep-

resents the true, a priori known vulnerability class of
alternative xp).

The calibration of the n(k + 1) parameters is
done through the learning process detailed in Ref. 6.
In extreme synthesis, the information contained in
the training set DTR is used to restrict the set of
MR-Sort models compatible with such information,
and to finally select one among them.(6) The a pri-
ori known assignments generate constraints on the
parameters of the MR-Sort model. In Ref. 6, such
constraints have a linear formulation and are inte-
grated into a mixed integer program (MIP) that is
designed to select one (optimal) set of such param-
eters ω∗ and b∗ (in other words, to select one clas-
sification model M(·|ω∗, b∗)) that is coherent with
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the data available and maximizes a defined objective
function. In Ref. 6, the optimal parameters ω∗ and
b∗ are those that maximize the value of the minimal
slack in the constraints generated by the given set
of data DTR. Once the (optimal) classification model
M(·|ω∗, b∗) is constructed, it can be used to assign a
new alternative x(i.e., a new NPP) to one of the vul-
nerability classes Ah, h = 1, 2, ..., k: in other words,
M(x|ω∗, b∗) = �M

x where �M
x is the class assigned by

model M(·|ω∗, b∗) to alternative x and assumes one
value among {Ah : h = 1, 2, ..., k}. Further mathemat-
ical details about the training algorithm are not given
here for brevity: the reader is referred to Ref. 6 and
to Appendix B.

Obviously, the number NTR of available classifi-
cation examples is finite and quite small in most real
applications involving the vulnerability analysis of
safety-critical systems. As a consequence, the model
M(·|ω∗, b∗) is only a partial representation of reality
and its assignments are affected by uncertainty: this
uncertainty, which needs to be quantified to build
confidence in the decision process that follows the
vulnerability assessment.

In the following section, three different methods
are presented to assess the performance of the MR-
Sort classification model.

5. METHODS FOR ASSESSING THE
PERFORMANCE OF THE
CLASSIFICATION-BASED
VULNERABILITY ANALYSIS MODEL

5.1. Model-Retrieval-Based Approach

The first method is based on the model-retrieval
approach proposed in Ref. 6. A fictitious set Drand

TR
of NTR alternatives {xrand

p : p = 1, 2, ..., NT R} is
generated by random sampling within the ranges
Xi of the criteria, i = 1, 2, ..., n. Notice that the size
NTR of the fictitious set Drand

TR has to be the same
as the real training set DTR available, for the com-
parison to be fair. Also, an MR-Sort classification
model M(·|ωrand, brand) is constructed by randomly
sampling possible values of the internal parameters,
{ωi : i = 1, 2, ..., n} and {bh : h = 1, 2, ..., k − 1}.
Then, we simulate the behavior of a decision-
maker (DM) by letting the (random) model
M(·|ωrand, brand) assign the (randomly generated)
alternatives {xrand

p : p = 1, 2, ..., NT R}. In other
words, we construct a learning set Drand

TR by assigning
the (randomly generated) alternatives using the

(randomly generated) MR-Sort model, that is,
Drand

TR = {(xrand
p , �M

p ) : p = 1, 2, ..., NT R}, where �M
p

is the class assigned by model M(·|ωrand, brand) to
alternative xrand

p , that is, �M
p = M(xrand

p |ωrand, brand).
Subsequently, a new MR-Sort model M′(·|ω′, b′),
compatible with the training set Drand

TR , is inferred
using the MIP formulation summarized in Sec-
tion 3 and in Appendix B. Although models
M(·|ωrand, brand) and M′(·|ω′, b′) may be quite
different, they coincide on the way they assign
elements of Drand

TR , by construction. In order to
compare models M and M′, we randomly generate
a (typically large) set Drand

test of new alternatives
Drand

test = {xtest,rand
p : p = 1, 2, ..., NTest } and we com-

pute the percentage of assignment errors, that is, the
proportion of these NTest alternatives that models M
and M′ assign to different categories.

In order to account for the randomness in the
generation of the training set Drand

TR and of the
model M(·|ωrand, brand), and to provide robust es-
timates for the assignment errors ε, the procedure
outlined above is repeated for a large number Nsets

of random training sets Drand, j
TR , j = 1, 2, ..., Nsets ; in

addition, for each set j the procedure is repeated
for different random models M(·|ωrand,l , brand,l), l =
1, 2, ..., Nmodels . The sequence of assignment er-
rors thereby generated, e jl , j = 1, 2, ..., Nsets, l =
1, 2, ..., Nmodels , is then averaged to obtain a robust
estimate for ε. The procedure is sketched in Fig. 2.

Notice that this method does not make any use
of the original training set DTR (i.e., of the training
set constituted by real-world classification examples).
In this view, the model-retrieval-based approach can
be interpreted as a tool to obtain an absolute evalua-
tion of the expected error that an “average” MR-Sort
classification model M(·|ω, b) with k categories, n cri-
teria, and trained by means of an “average” data set
of given size NTR makes in the task of classifying a
new generic (unknown) alternative.

5.2. The Bootstrap Method

A way to assess both the accuracy (i.e., the ex-
pected fraction of alternatives correctly classified)
and the confidence of the classification model (i.e.,
the probability that the category assigned to a given
alternative is the correct one) is by resorting to the
bootstrap method,(17) which is used to create an en-
semble of classification models constructed on differ-
ent data sets bootstrapped from the original one:(18)

the final class assignment provided by the ensemble
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Fig. 2. The general structure of the model-retrieval approach.

Fig. 3. The bootstrap algorithm.

is based on the combination of the individual output
of classes provided by the ensemble of models.(10)

The basic idea is to generate different train-
ing data sets by random sampling with replacement
from the original one:(17) such different training sets
are used to build different individual classification
models of the ensemble. In this way, the individ-
ual classifiers of the ensemble possibly perform well
in different regions of the training space and thus
they are expected to make errors on alternatives

with different characteristics; these errors are bal-
anced out in the combination, so that the perfor-
mance of the ensemble of bootstrapped classification
models is in general superior to that of the single
classifiers.(18,19) This is a desirable property since it is
a more realistic simulation of the real-life experiment
from which our data set was obtained. In this article,
the output classes of the single classifiers are com-
bined by majority voting: the class chosen by most
classifiers is the ensemble assignment. Finally, the
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accuracy of the model is given by the fraction of
the patterns correctly classified. The bootstrap-based
empirical distribution of the assignments given by the
different classification models of the ensemble is then
used to measure the confidence in the classification
of a given alternative x that represent the probability
that this alternative is correctly assigned.(10,20)

In more detail, the main steps of the bootstrap
algorithm are as follows (Fig. 3):

(1) Build an ensemble of B (typically of the
order of 500–1,000) classification models
{Mq(·|(ωq, bq) : q = 1, 2, ..., B)} by random
sampling with replacement from the original
data set DTR and use each of the boot-
strapped models Mq(·|ωq, bq) to assign a class
�

q
x , q = 1, 2, ..., B, to a given alternative x

of interest (notice that �
q
x takes a value in

Ah, h = 1, 2, ..., k). By so doing, a bootstrap-
based empirical probability distribution
P(Ah|x), h = 1, 2, ..., k for category Ah of
alternative x is produced, which is the basis
for assessing the confidence in the assignment
of alternative x. In particular, repeat the
following steps for q = 1, 2, ..., B:
(i) Generate a bootstrap data set DTR,q =

{(xp, �
t
p) : p = 1, 2, ..., NT R}, by perform-

ing random sampling with replacement
from the original data set DTR = {(xp, �

t
p) :

p = 1, 2, ..., NT R} of NTR input/output pat-
terns. The data set DTR,q is thus constituted
by the same number NTR of input/output
patterns drawn among those in DTR,
although due to the sampling with replace-
ment some of the patterns in DTR will ap-
pear more than once in DTR,q, whereas
some will not appear at all.

(ii) Build a classification model {Mq(·|ωq, bq) :
q = 1, 2, ..., B}, on the basis of the boot-
strap data set DTR,q = {(xp, �

t
p) : p =

1, 2, ..., NT R}.
(iii) Use the classification model Mq(·|ωq, bq)

to provide a class �
q
x , q = 1, 2, ..., B to a

given alternative of interest, that is, �
q
x =

Mq(x|ωq, bq).
(2) Combine the output classes �q, q = 1, 2, ..., B

of the individual classifiers by majority vot-
ing: the class chosen by most classifiers is
the ensemble assignment �ens

x , i.e., �ens
x =

argmaxAh [cardq{�q
x = Ah}].

(3) As an estimation of the confidence in
the majority-voting assignment �ens

x (step 2,
above), we consider the bootstrap-based

empirical probability distribution P(Ah|x),
h = 1, 2, ..., k, that is, the probability that cat-
egory Ah is the correct category given that
the (test) alternative is Ref. 6. The estima-
tor of P(Ah|x) here employed is: P(Ah|x) =∑B

q=1 I{�q=Ah}
B , where I{�q = Ah} = 1, if �q =

Ah, and 0 otherwise.
(4) Finally, the error of classification is presented

by the fraction of the number of the alterna-
tives being assigned by the classification model
and the total number of the alternatives. The
accuracy of the classification model is defined
as the complement to 1 to the error.

5.3. The LOOCV Technique

LOOCV is a particular case of the cross-
validation method. In cross-validation, the origi-
nal training set DTR is divided into N partitions,
A1, A2, ..., AN, and the elements in each of the par-
titions are classified by a model trained by means
of the elements in the remaining partitions (leave-
p-out cross-validation).(20) The cross-validation er-
ror is, then, the average of the N individual error
estimates. When N is equal to the number of ele-
ments NTR in DTR, the result is LOOCV, in which
each instance xp, p = 1, 2, ..., NT R is classified by all
the instances in DTR except for itself.(21) For each
instance xp, p = 1, 2, ..., NT R in DTR, the classifica-
tion accuracy is 1 if the element is classified correctly
and 0 if it is not. Thus, the average LOOCV error
(resp., accuracy) over all the NTR instances in DTR is
ε/NTR (resp., 1 − ε/NTR), where ε(resp., NTR − ε) is
the number of elements incorrectly (resp., correctly)
classified. Thus, the accuracy in the assignment is
estimated as 1 − ε/NTR.

With respect to the leave-p-out cross-validation,
the LOOCV produces a smaller bias of the true error
rate estimator. However, the computational time in-
creases significantly with the size of the data set avail-
able. This is the reason why the LOOCV is particu-
larly useful in the case of small data sets. In addition,
for very sparse data sets (e.g., of size lower than or
equal to 10), we may be forced to use LOOCV in
order to maximize the number of training examples
employed and to generate training sets containing an
amount of information that is sufficient and reason-
able for building an empirical model.(22) In Fig. 4, the
algorithm is sketched with reference to a training set
DTR containing NTR = 11 data (like in the case study
considered in the following section).
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Fig. 4. Leave-one-out cross-validation study procedure.

6. APPLICATION

The methods presented in Section 5 are here
applied on an exemplificative case study concern-
ing the vulnerability analysis of NPPs.(14) We iden-
tify n = 6 main criteria i = 1, 2, ..., n = 6 by means of
the hierarchical approach presented in Ref. 14 (see
Section 2); x1 = physical characteristics, x2 = social
criticality, x3 = possibility of cascading failures, x4 =
recovery means, x5 = human preparedness, and x6 =
level of protection. Then, k = 4 vulnerability cate-
gories Ah, h = 1, 2, ..., k = 4 are defined as: A1 = sat-
isfactory, A2 = acceptable, A3 = problematic, and
A4 = serious (Section 2). The training set DTR is con-
stituted by a group of NTR = 11 NPPs xp with the
corresponding a priori known categories �t

p, that is,
DTR = {(xp, �

t
p) : p = 1, 2, ..., NT R = 11}. The train-

ing set is summarized in Table I.
In what follows, the three techniques of Section

5 are applied to assess the performance of the MR-
Sort classification-based vulnerability analysis model
built using the training set DTR of Table I.

6.1. Application of the Model-Retrieval-Based
Approach

We generate Nsets = 1, 000 different training
sets Drand, j

TR , j = 1, 2, ..., Nsets , and for each set
j, we randomly generate Nmodels = 100 models

Table I. Training Set with NTR = 11 Assigned Alternatives

Alternatives, xp Vulnerability
Class �t

p

x1 = {0.61, 0.6, 0.75, 0.86, 1, 0.94} A1

x2 = {0.33, 0.27, 0, 0.575, 0.4, 0.72} A3

x3 = {0.55, 0.33, 0.5, 0.725, 0.7, 0.71} A2

x4 = {0.55, 0.33, 0.75, 0.8, 0.7, 0.49} A3

x5 = {0.39, 0.23, 0.5, 0.6, 0.6, 0.62} A3

x6 = {0.39, 0.27, 0.75, 0.725, 0.7, 0.68} A2

x7 = {0.61, 0.7, 0.5, 0.725, 0.9, 0.94} A2

x8 = {0.16, 0.1, 0.5, 0.475, 0.3, 0.59} A4

x9 = {0.1, 0, 0.25, 0.5, 0.6, 0.61} A4

x10 = {0.1, 0, 0, 0.3, 0.3, 0.43} A4

x11 = {0.61, 0.7, 0.75, 1, 1, 0.94} A1

M(·|ωrand,l , brand,l), l = 1, 2, ..., Nmodels = 100. By so
doing, the expected accuracy (1-ε) of the corre-
sponding MR-Sort model is obtained as the average
of Nsets · Nmodels = 1, 000 · 100 = 100, 000 values (1 −
ε jl), j = 1, 2, ..., Nsets, l = 1, 2, ..., Nmodels (see Sec-
tion 5.1). The size Ntest of the random test set Drand

TR
is Ntest = 10, 000. Finally, we perform the procedure
of Section 5.1 for different sizes NTR of the random
training set Drand

TR (even if the size of the real train-
ing set available is NTR = 11; see Table I): in particu-
lar, we choose NTR = 5, 11, 20, 50, 100, and 200. This
analysis serves the purpose of outlining the behavior
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of the accuracy (1 − ε) as a function of the amount of
classification examples available.

The results are summarized in Fig. 5 where the
average percentage assignment error ε is shown as a
function of the size NTR of the learning set (from 5
to 200). As expected, the assignment error ε tends
to decrease when the size of the learning set NTR

increases: the higher the cardinality of the learn-
ing set, the higher (resp., lower) the accuracy (resp.,
the expected error) in the corresponding assign-
ments. Comparing these results with those obtained
by Leroy et al. (6) using MR-Sort models with k = 2
and 3 categories and n = 3–5 criteria, it can be seen
that for a given size of the learning set, the error rate
(resp., the accuracy) grows (resp., decreases) with the
number of model parameters to be determined by
the training algorithm = n(k + 1) + 1. It can be seen
that for our model with n = 6 criteria and k = 4 cate-
gories, in order to guarantee an error rate inferior to
10% we would need training sets consisting of more
than NTR = 100 alternatives. Typically, for a learn-
ing set of NTR = 11 alternatives (like that available
in the present case study), the average assignment er-
ror ε is around 30%; correspondingly, the accuracy
of the MR-Sort classification model trained with the
data set DTR of size NTR = 11 available in the present
case is around (1 − ε) = 70%: in other words, there
is a probability of 70% that a new alternative (i.e., a
new NPP) is assigned to the correct category of vul-
nerability.

In order to assess the randomness intrinsic in
the procedure used to obtain the accuracy esti-
mate mentioned above, we have also calculated
the 95% confidence intervals for the average
assignment error ε of the models trained with
NTR = 11, 20, and 100 alternatives in the training
set. The 95% confidence interval for the error
associated to the models trained with 11, 20, and 100
alternatives as learning set are [25.4%, 33%], [22.2%,
29.3%], and [10%, 15.5%], respectively. For illus-
tration purposes, Fig. 6 shows the distribution of the
assignment mismatch built using the Nsets · Nmodels =
100, 000 values ε jl, j = 1, 2, ..., Nsets = 1, 000, l =
1, 2, ..., Nmodels = 100, generated as described in
Section 5.1 for the example of 11 alternatives.

6.2. Application of the Bootstrap Method

A number B (= 1,000) of bootstrapped train-
ing sets DTR,q, q = 1, 2, ..., 1, 000 of size NTR = 11
is built by random sampling with replacement from
DTR. The sets DTR,q are then used to train B = 1, 000
different classification models {M1, M2, ..., M1000}.

Table II. Number of Patterns Classified with Confidence Value

Confidence range (0.4, 0.5] (0.5, 0.6] (0.6, 0.7]

Number of patterns 1 2 0
Confidence range (0.7, 0.8] (0.8, 0.9] (0.9, 1]
Number of patterns 1 2 5

This ensemble of models can be used to clas-
sify new alternatives. Fig. 7 shows the proba-
bility distributions P(Ah|xp), h = 1, 2, ..., k = 4, p =
1, 2, ..., NT R = 11, empirically generated by the en-
semble of B = 1, 000 bootstrapped MR-Sort clas-
sification models in the task of classifying the
NTR = 11 alternatives of the training set DTR =
{x1, x2, ..., xNT R}. The categories highlighted by the
rectangles are those selected by the majority of
the classifiers of the ensemble: it can be seen
that the assigned classes coincide with the origi-
nal categories of the alternatives of the training set
(Table I), that is, the accuracy of the inferred classifi-
cation model based on the given training set (with 11
assigned alternatives) is 1.

In order to investigate the confidence of the
algorithm in the classification of the test patterns, the
results achieved testing one specific pattern taken in
turn from the training set are analyzed. For each test
of a specific pattern xi , the distribution of the assign-
ments by the B = 1, 000 classifiers shows the confi-
dence of the assignment of the classification model
on this specific pattern. By way of example, it can be
seen that alternative x3 is assigned to Class A2 (the
correct one) with a confidence of P(A2|x3) = 0.81,
whereas alternative x6 is assigned to the same class
A2, but with a confidence of only P(A2|x6) = 0.56.

Notice that the most interesting information re-
gards the confidence in the assignment of the test pat-
tern to the class with the highest number of votes,
that is, the class actually assigned by the ensem-
ble system according to the majority voting rule
adopted.(10) In this respect, Table II reports the dis-
tribution of the confidence values associated to the
class to which each of the 11 alternatives has been
assigned.

Thus, a 10/11 ≈ 91% of all class assignments
with confidence bigger than 0.5 are correct.

6.3. Application of the LOOCV Method

Based on the original training set DTR of
size NTR = 11, we generate 11 “new” training sets
DTR,i , i = 1, 2, ..., 11 (each containing NTR − 1 = 1−
assigned alternatives) by taking out each time one
of the alternatives from DTR. These 11 training
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Fig. 5. Average assignment error ε (%) as a function of the size NTR of the learning set according to the model-retrieval-based approach of
Section 5.1.

Fig. 6. Distribution of the assignment mismatch for an MR-Sort model trained with NTR = 11 alternatives (%).
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Fig. 7. Probability distributions P(Ah|xp), h = 1, 2, ..., k = 4, p = 1, 2, ..., NTR = 11 obtained by the ensemble of B = 1,000 bootstrapped
MR-Sort models in the classification of the alternatives xp contained in the training set DTR.

Table III. Comparison Between the Real Categories and the
Assignments Provided by the LOOCV Models

Real Assignments by
Alternative Categories, �t

p LOOCV Method

x1 1 1
x2 3 3
x3 2 2
x4 3 2
x5 3 3
x6 2 3
x7 2 2
x8 4 4
x9 4 4
x10 4 4
x11 1 1

sets are then used to train 11 different classifica-
tion models M1, M2, ..., M11. Each of these 11 mod-
els is used to classify the alternative correspondingly
taken out. Table III shows the comparison between
the real classes �t

p of the alternatives of the train-
ing set and the categories assigned by the trained
models.

It can be seen that ε = 2 out of the NTR = 11
alternatives are assigned incorrectly (alternatives x4

and x6). Thus, the accuracy in the classification is
given by the complement to 1 of the average er-
ror rate, that is, 1 − ε/NTR = 1 − 2/11 = 1 − 0.182 =
0.818. Notice that the 95% confidence interval for
this recognition rate is [0.5901, 1].

7. DISCUSSION OF THE RESULTS

The three proposed methods provide conceptu-
ally and practically different estimates of the perfor-
mance of the MR-Sort classification model.

The model-retrieval-based approach provides a
quite general indication of the classification capabil-
ity of a vulnerability model with given characteristics.
Actually, in this approach the only constant, fixed pa-
rameters are the size NTR of the training set (given
by the number of real-world classification examples
available), the number of criteria n, and the number
of categories k (given by the analysts according to
the characteristics of the systems at hand). On this
basis, the space of all possible training sets of size
NTR and the space of all possible models with the
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above-mentioned structure (n criteria and k cate-
gories) are randomly explored (again, notice that no
use is made of the original real training set): the clas-
sification performance is obtained as an average over
the possible random training sets (of fixed size) and
random models (of fixed structure). Thus, the result-
ing accuracy estimate is a realistic indicator of the
expected classification performance of an “average”
model (of given structure) trained with an “average”
training set (of given size). In the case study consid-
ered, the average assignment error (resp., accuracy)
is around 30% (resp., 70%).

On the contrary, the bootstrap method uses the
real training set available to build an ensemble of
models compatible with the data set itself. In this
case, we do not explore the space of all possible
training sets as in the model-retrieval-based ap-
proach, but rather the space of all the classification
models compatible with that particular training set
constituted by real-world examples. In this view, the
bootstrap approach serves the purpose of quantifying
the uncertainty intrinsic in the particular (training)
data set available when used to build a classification
model of given structure (i.e., with given numbers n
and k of criteria and categories, respectively). In this
case study, the accuracy evaluated by the bootstrap
method is much higher (equals to one) than that
estimated by the model-retrieval-based approach:
this is reasonable because the latter evaluates the
accuracy on a wider (i.e., in a broad sense, more
uncertain) space of possible models and training sets;
on the other hand, in the former method the training
set adopted is given and it represents possibly only
one of those randomly generated within the model-
retrieval-based approach. In addition, notice that
differently from the model-retrieval-based approach,
the bootstrap method does not provide only the
global classification performance of the vulnerability
model, but also the confidence that for each test
pattern a class assigned by the model is the correct
one: this is given in terms of the full probability
distribution of the vulnerability classes for each
alternative to be classified.

Finally, also the LOOCV method has been used
to quantify the expected classification performance
of the model trained with the particular training
data set available. In order to maximally exploit
the information contained in the training set DTR,
NTR = 1 “reduced” (training) sets are built, each
containing NTR − 1 = 10 assigned alternatives:
each “reduced” set is used to build a model whose

classification performance is evaluated on the ele-
ment correspondingly left out. The average error
rate (resp., accuracy) turns out to be 18.2% (resp.,
72.8%). The 95% confidence interval for the error
rate (resp., accuracy) is approximately [0, 0.4099]
(resp., [0.5901, 1]).

8. CONCLUSIONS

In this article, the issue of quantifying the vul-
nerability of safety-critical systems (in the example,
NPPs) with respect to intentional hazards has been
tackled within an empirical classification framework.
To this aim an MR-Sort model has been trained by
means of a small-sized set of data representing a pri-
ori known classification examples. The performance
of the MR-Sort model has been evaluated with re-
spect to: (i) its classification accuracy (resp., error),
that is, the expected fraction of patterns correctly
(resp., incorrectly) classified; (ii) the confidence as-
sociated to the classification assignments (defined as
the probability that the class assigned by the model
to a given [single] pattern is the correct one). The
performance of the empirically constructed classifi-
cation model has been assessed by resorting to three
approaches: a model-retrieval-based approach, the
bootstrap method, and the LOOCV technique. To
the best of the authors’ knowledge, it is the first time
that:

� A classification-based hierarchical framework is
applied for the analysis of the vulnerability of
safety-critical systems to intentional hazards;

� The confidence in the assignments provided by
an MR-Sort classification model is quantita-
tively assessed by the bootstrap method in terms
of the probability that a given alternative is cor-
rectly classified.

From the results obtained it can be concluded
that although the model-retrieval-based approach
may be useful for providing an upper bound on the
error rate of the classification model (obtained by
exploring the space of all possible random models
and training sets), the bootstrap method seems to
be advisable for the following reasons: (i) it makes
use of the training data set available from the partic-
ular case study at hand, thus characterizing the un-
certainty intrinsic in it; (ii) for each alternative (i.e.,
safety-critical system) to be classified, it is able to as-
sess the confidence in the classification by providing
the probability that the selected vulnerability class is
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the correct one. This is of paramount importance in
the decision-making processes involving the vulner-
ability assessment of safety-critical systems, since it
provides a metric for quantifying the “robustness” of
a given decision.

APPENDIX A:

As described in Section 2, the hierarchical model
developed in Ref. 14 is considered to analyze the vul-
nerability of NPPs to intentional hazards. The sus-
ceptibility to intentional hazards (first layer) is char-
acterized in terms of attractiveness and accessibility
(second layer). These are hierarchically broken down
into factors that influence them, including resilience
seen as preattack protection (which influences on
accessibility) and postattack recovery (which influ-
ences on attractiveness); this decomposition is made
in six criteria: physical characteristics, social critical-
ity, possibility of cascading failures, recovery means,
human preparedness, and level of protection (third
layer). These six third-layer criteria are further de-
composed into a layer of basic subcriteria, for which
data and information can be collected (fourth layer)
(see Table A1). The criteria of the layers are assigned
preference directions for treatment in the decision-
making process. The preference direction of a crite-
rion indicates toward which state it is desirable to
lead it to reduce susceptibility, that is, it is assigned
from the point of view of the defender of an at-
tack who is concerned with protecting the system.
Although only the six criteria of the third level of
the hierarchy are considered in the NPPs vulnera-
bility analysis considered in this article, examples of
evaluation of the basic subcriteria of the fourth layer
are proposed in what follows for exemplification pur-
poses: in particular, we describe an example of the
procedure employed to calculate the numerical val-
ues of the third-layer criteria on the basis of the char-
acteristics of the fourth-layer subcriteria.

In extreme synthesis, the subcriteria of the fourth
layer can be characterized by crisp numbers or lin-
guistic terms, depending on the nature of the subcri-
terion. These descriptive terms and/or values of the
fourth-layer subcriteria are then scaled into numer-
ical categories. The influence to the corresponding
third-layer criterion of each of the subcriteria is an-
alyzed.

To get the values of the six main third-layer cri-
teria, (i) we assign arbitrary weights to each subcrite-
rion and (ii) we apply a simple weighted sum to the
categorical values of the constituent subcriteria.

A.1 Illustrative Example: Evaluation of the
Criterion Physical Characteristics

The criterion “physical characteristics” is taken
as an illustrative example. It is constituted by the sub-
criteria “number of workers,” “nominal power pro-
duction,” and “number of production” or “service
units.” The description and category scales are pre-
sented as follows.

Number of Workers

This criterion can be seen to contribute to the at-
tractiveness for an attack from various points of view,
for example: (1) the more workers, the more work
injuries and deaths from an attack; (2) the more
workers, the easier for the attackers to sneak into the
system; (3) the more workers, the higher the possibil-
ity that one of them can be turned into an attacker.
Limiting the number of workers can, then, contribute
to the security of the plant and, thus, reduce its attrac-
tiveness for an attack. Table A2 reports some refer-
ence values typical of NPPs.

Nominal Capacity

The higher the production capacity, the larger
the potential consequences of lost production or se-
curity in case of an attack. Then, it is preferable to
have a site with low capacity. Of course, for a fixed
amount of total capacity needed, this would lead to
its distribution on multiple sites, with an increase
in the number of multiple targets, though each of
them would lead to milder consequences if attacked.
Table A3 shows some reference values of power gen-
eration capacity at NPP sites.

Number of Production or Service Units

Locally, within a single site, this criterion rep-
resents the number of potential attack points. Pref-
erence would go toward having a small number of
targets on a site. Table A4 gives some reference val-
ues for NPPs.

We choose NPP x1 as an example to show
the calculation of the numerical value associated to
the main criterion “physical characteristics” starting
from the data relative to the three corresponding
subcriteria (i.e., number of workers, nominal power
production, and number of production or service
units). The original data of the three subcriteria of
x1 are listed in Table A5.
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Table A1. Criteria, Subcriteria, and Preference Directions

Possibility of
Criterion Physical Characteristics Social Criticality Cascading Failures

Subcriteria Number of workers Percentage of contribution to the
welfare

Connection distance

Nominal power production Size of served cities
Number of production units

Preference direction Min Min Min
Criterion Recovery Means Human Preparedness Level of Protection
Subcriteria Number of installed backup components Training Physical size of the system

Duration of backup components Safety management Number of accesses
Duration of repair and recovery actions Entrance control
External emergency measures Surveillance

Preference direction Max Max Max

Table A2. Number of Workers

Number of
Level Workers

1 500
2 1,000
3 1,500
4 2,000
5 2,500

Table A3. Nominal Power Production

Level Nominal Power
Level Production

1 1,000 MWe
2 3,000 MWe
3 5,000 MWe
4 7,000 MWe
5 10,000 MWe

Table A4. Number of Production or Service Units

Number of Production
Level or Service Units

1 2
2 4
3 6

In scaling them onto corresponding category,
we obtain the categorical value of alternative x1

(Table A6).
Then, the numerical values of Table A6 are nor-

malized (i.e., rescaled Between 0 and 1 based on the
predefined scales) as shown in Table A7.

Table A5. Corresponding Subcriteria Original Data of Main
Criterion Physical Characteristics of x1

Nominal Power Number of
Number of Production Production or

Alternative Workers (MWe) Service Units

x1 600 1,000 2

Table A6. Categorical Value for the Subcriteria Corresponding
to the Main Criterion “Physical Characteristics” of Nuclear

Power Plant x1

Number of
Number of Nominal Power Production or

Alternative Workers Production Service Units

x1 2 2 1

Table A7. Normalized Categorical Value for Corresponding
Subcriteria of Main Criterion Physical Characteristics of x1

Number of
Number of Nominal Power Production or

Alternative Workers Production Service Units

x1 0.4 0.4 0.33

Using the weights of these three subcriteria (ar-
bitrarily assigned by the authors) in Table A8, we can
apply a simple weighted sum to calculate the cumu-
lative value for main criterion “physical characteris-
tics”: 0.4 × 0.3 + 0.4 × 0.5 + 0.33 × 0.2 = 0.386.

Finally, considering the preference directions of
Table A1 (i.e., minimization for criterion “physical
characteristics”) and setting for each main criteria
the value “0” as the worst case and “1” as the best
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Table A8. Weights of Subcriteria for Physical Characteristics

Main Criterion: Number of
Physical Number of Nominal Power Production or
Characteristics Workers Production Service Units

Weights 0.3 0.5 0.2

one, we convert the cumulative weighed value ob-
tained earlier to its complement to “1,” that is, 1 −
0.386 = 0.614.

For the other five main third-layer criteria, the
process of calculation is the same as for criterion
“physical characteristics.”

APPENDIX B: MATHEMATICAL DETAILS
ABOUT THE ALGORITHM OF
DISAGGREGATION OF AN MR-SORT
CLASSIFICATION MODEL

We consider the case involving k categories
that are, thus, separated by (k − 1) fron-
tier denoted b = {b1, b2, ..., bh, ..., bk−1}, where
bh = {bh

1 , bh
2 , ..., bh

i , ..., bh
n, h = 1, 2, ..., k}, n is the

number of criteria that are taken into account. Let
DTR = {(xp, �

t
p), p = 1, 2, ..., NT R} be the training

set, where NTR is the number of alternatives, and
(A1, A2, ..., Ak) be the partition of the training set,
ordered from the best to worst alternatives.

For each alternative xp ∈ DTR, in category Ah

of the learning set DTR (for h = 2, 3, ..., k − 1), let
us define 2n binary variables δh

ip and δh−1
ip , for p =

1, 2, ..., NT R, such that δl
ip equals to 1 iff gi (xp) ≥

bl
i for l = h − 1, h and δh

ip = 0 ⇔ gi (xp) < bh
i . We

introduce 2n continuous variables cl
ip(l = h − 1, h)

constrained to be equal to ωi if δl
ip = 1 and to 0 oth-

erwise.
We consider an objective function that describes

the robustness of the assignment. We introduce two
more continuous variables, yp and zp, for each xp ∈
DTR and α. In maximizing α, we maximize the value
of the minimal slack in the constraints.

We resume all the constraints in the following
mathematical program:

max α, (A1)

α ≤ yp, α ≤ zp,∀xp ∈ DTR, (A2)

∑

i,p∈N

cl
ip + yp + ε = λ,∀xp ∈ Al−1, (A3)

∑

i,p∈N

cl
ip = λ + zp,∀xp ∈ Al , (A4)

cl
ip ≤ ωi ,∀xp ∈ DTR,∀i ∈ N, (A5)

cl
ip ≤ δl

ip,∀xp ∈ DTR,∀i ∈ N, (A6)

cl
ip ≥ δl

ip − 1 + ωi ,∀xp ∈ DTR,∀i ∈ N, (A7)

Mδl
ip + ε ≥ gi (xp) − bl

i ,∀xp ∈ DTR,∀i ∈ N, (A8)

M(δl
ip − 1) ≤ gi (xp) − bl

i ,∀xp ∈ DTR,∀i ∈ N, (A9)
∑

i,p∈N

ωi = 1, λ ∈ [0.5, 1], (A10)

ωi ∈ [0, 1],∀i ∈ N, (A11)

cl
ip ∈ [0, 1], δl

ip ∈ {0, 1},∀xp ∈ DTR,∀i ∈ N, (A12)

yp, zp ∈ R,∀xp ∈ DTR, (A13)

α ∈ R, (A14)

M is an arbitrary large positive value, and ε an arbi-
trary small positive quantity.

The case in which xp belongs to one of the ex-
treme categories (A1 and Ak) is simple. It requires the
introduction of only n binary variables and n continu-
ous variables. In fact, if xp belongs to A1 we just have
to express that the subset of criteria on which xp is
at least as good as b1 has sufficient weight. In a dual
way, when xp lies in Ak, the worst category, we have
to express that it is at least as good as bk on a subset
of criteria that has not sufficient weight.
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