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PROOF OF SOME CONJECTURES ON THE MEAN-VALUE 
OF TITCHMARSH SERJES WITH APPLICATIONS TO 

TITCHMARSH'S PHENOMENON 
BY 

K. RAMACHANDRA 

§ 1. INTRODUCTION. This is a continuation of [R]1 but no previous 

knowledge of this paper is necessary. In fact we improve these results a 

good deal. However for some applications of the main results of the present 

paper, a knowledge of the results of [BRS] is assumed.- The main results 

of the present paper are the following two theorems on what I call weak 

Titchmarsh series. We begin with a definition. 

WEAK TITCHMARSH SERIES. Let 0 :$ e < 1,D ~ 1,C ~ 1 and 

H ~ 10. Put R = n~. Let a1 =At= 1 and Pn} (n = 1,2,3, .. ·) be any 

sequence of real numbers with b ~ An+l - An :$ C ( n · = 1, 2, 3, · · ·) and 

{a,.} (n = 1,2,3,. · ·) any sequence of complex numbers satisfying 

'E I an I$ D(log X)R 

for all X ~ 3C. Then for complex s = u + it(u > 0) we define the analytic 
00 

function F(s) = LGnA;;• as a weak Titchmarsh series associated with the 
n==l 

parameters occuring in the definition. 

THEOREM 1 (FOURTH MAIN THEOREM). For a weak Titchmarsh 

series F(s) with H ~ 36C2 H', we have 

lim inf {HI F(u +it) I dt ~ H- 36C2H' -12 CD . 
.,. .... +olo 
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THEOREM 2 (FIFTH MAIN THEOREM). For a weak Titchmarsh series 

F(s) with log H ~ 4320 C2(1- e)-5 , we have, 

l
H H 

lim inf ! F(cr +it) 12 dt ~ L (H- -
1 

H - 100C2n) I a,. 12 -2D2 

cr-+0 0 n~M og 

where M = (36C2)-1 H 1-t:(log H)-4 • 

REMARKS. Theorems 1 and 2 have been refered to as the fourth and 

the fifth main theorems in [R]2 • Also we remark that it is not difficult to 

improve the conditions in the theorems slightly. 

§ 2. PROOF OF THEOREM 1. We can argue with cr > 0 and then 

pass to the limit as cr -+ +0. But formally the notation is simplified if we 

treat as though F( s) is convergent absolutely if cr = 0 and there is no loss 

of generality. Let r be a positive integer and 0 < U ~ r-1 H. Then since 

I F(s) I~ 1 + Re(F(s)), we have {with~= '-'1 + · · · + u,.), 

foH I F(it) I dt > u-rI~ du,. ... I~ dul If!-rU+>. I F(it) I dt 

~ u-rI~ du,.. ··J~ dul If!-rU+>.{l + Re(F(it))}dt 

> H-rU-2r+lu-rJ 

~ ~ 

where J = L I a,. I (log ~)-r- 1 . Now J = So+ L:s; where $o = L 
n:2 i=l >..~ac 

I an I (log ~>-r-1 and S; = L I an I (log ~)-r-l. In So we 
aiC<>.. <ai+lC 

use ~n ~ ~2 ~ 1 + c-1 and so (log- ~)-r- 1 ~ (2Ct+1 and we obtain 

So~ D(2C)r+1(3C)R. Also, we have, 

S; < D(log(3i+lC))R(log(3iC))-r-t 

~ D2R(log(3iC))R-r-l, (since 3i+1C ~ (3iC)2), -

~ D2Rj-2 by fixing T = (3R]. 

Thus for r = [3R] we have 
~ 

J < D(2Ct+1(3C)R + 2D2R, (since Li-2 < 2), 
j=l 
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Collecting we have, 

2r+lu-r J ~ t2CD(ac)n ( .W)" 
~ 12CD (~)R if U ~ 4C 

< 12C D by fixing U == 12C2• 

23 

The only condition which we have to satisfy is rU ~ H which is secured by 
H ~ 36C2 Ht:. This completes the proof of Theorem 1. 

§ 3. PROOF OF THEOREM 2. We write A :: u1 + · · · + u.., where 

0 ~ Ui 5 U and 0 < U ~ r-1 H. We put M1 = [M],A(s) = L a,.>.;.• 
rn$_M1 

and B(s) = E anA;;• so that F(s) == A(s) + B(s). For the moment we 
n>M1+l 

suppose M to-be a free parameter with the restriction 3 ~ M ~ H. We use 

I F(it) 1 2 ~1 A(it) 12 +2 Re(A(it)B(it)). 

Now by a. well-known theorem of H.L. Montgomery and R.C. Vaughan we 

have 

Next the absolute value of 

{U (U (H-rU+>. · 
2u-r lo du.. · · · lo du1 l>. (A(it)B(it))dt (3.1) 

does not exceed 

I a,. a,.. I (logi!) -r-l 

m$.Mt,n~M,+l 

Here them-sum is~ D(log AM1 )R ~ D(log(3MC))R, since AM, ~ M1C ~ 

M C. It is enough to choose M ~ 1 for the bound for the m-sum. The 

n-sum can be broken up into An 5 3AM1 and 3i ~M1 < An $ 3i+1 AM1 (j = 
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1,2,3, ···).Let us denote these sums by So and Sj. Now since (log{;;J ~ 

(lo/'f!-;1
) ~log ( 1 + 0{M

1
) ~ (2CAM1 )-

1 ~ (2C2 M)-1
, we obtain 

Also 

So 5 D (log (3AM1 ))R {2C2 Mr+1 5 D(log(3MC))R(2C2 M)r+l. 

Sj < D (log (3H1.XM1))R (jlog 3)-'"-1 

5 D(j log 3 + log(3MC))Rj-,.-1 

5 2RD(j log3)R(log(3MC))Rj-'"-1 

5 4RD(log(3MC))Rj-2, if r ~ R + 1, 

00 

and so (since 2:)-2 < 2), 
j=l 

( ~ · ·-) ( ~ · ·-) 5 D
2
(log(3MC))R(log(3MC))RY 

(where Y = (2C2 M)'"+l + 2( 4R)) 

5 D 2{log(3MC))2R((2C2 M)'"+1 + 2(4R)). 

Hence the absolute value of the expression (3.1) does not exceed 

D 2(log(3MC))2R ((8C 2 M) ( 
4C~ Mr + 2 ( ~~)) (3.2) 

< D 2 8C2 M og + 2 -
{ (

4C2 M(l (3M C))2) R+log(SC2 M) ( 4 ) R} 
- u u 

if U ~ 4C2 M and r ~ R + log(SC2 M). We put U = 12C2 M(log(3MC)) 2 

and obtain for (3.2) the bound D 2{1 + 1} 5 2D2 • The conditions to be 

satisfied are M ~ 1 and 

12C2 M(log(3MC))2(R + log(8C2 M) + 1) 5 H. 

In fact we can satisfy U r 5 ,/: H by requiring 

12C2 M(log(3MC))2(R + log(8C2 M) + 1) 5 lo: H · 
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This is satisfied if 

Let SC2 M ~ H. Then 36C2M R ~ H(log H)-4 gives what we warit. We 
choose M == (36C2)-1 H1-e:(log H)-4 . Clearly this satisfies 8C2 M ~ H. In 

order to satisfy M ~ 1 we have to secure that 

(36C2)-t ((1- e~~~g H))5 (log H)-4 ~ 1 

i.e. log H ~ 4320C2(1- e)-5. 

This completes the proof of Theorem 2. 

§ 4. APPLICATIONS OF THEOREMS 1 AND 2. An immediate 

application of Theorem 1 is 
00 

THEOREM 3. Let ((6 1 a) = 2)n + a)-• (where (0 < a ~ 1)) be the 
n::::O 

Hurwitz zeta-function in lT > 1 and consider its analytic continuation in 

u ~ 1. Then 

~
T+H 1 

min I ((1 +it, a) I dt > -H + o(H). 
T~l T - a 

00 

Let (((s))u = Ldu(n)n-• where u is any complex constant. Consider 
n=l 

the analytic continuation of (((s))u in u ~ 1, t ~ 1. An immediate corollary 

to Theorem 2 is 

THEOREM 4. We have, 

min(.!. /T+H I ((1 + it)u 12 dt) > f I d,.(n) j2 + o(l) 
T~l H lT - n::::l n2 

' 

and in particular for u = 1, we have, 

( 
1 {T+H ) -r2 

~~ H lT I ((1 + it) 1
2 

dt ~ 6" + o(l ). 

It is possible to prove by using Theorem 2 a very nice n theorem 'for 

1 (((1 +it))'" I, where z = e18(0 $ 8 < 2-r, 8 fixed) as t --4 oo. It is 
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THEOREM 5. We have, 

min max I (((1 +it))" I~ e..,>.(O)(loglog H -logloglog H)+ 0(1), (4.1) 
T~lT~t$T+H 

where 

PROOF. By Theorem 2 we have withE:= !,u = kz, 

!.. rT+H I (((1 + it))"l2 dt ~!. L I d,.(n) 12 (4.2) 
H JT 2 1 n2 

n~H'l 

uniformly in T ~ 1, and 1: any positive integer satisfying 1 ~ k ~ log H, 

provided H exceeds an absolute constant. Denote by S the RHS in ( 4.2). 

Then S~ has been studied in [BRS] as a function of H all k runs over 

1 :$ k S log H. It has been proved (by considering the maximum term of 
the sum in S) that 

max (sil) ~ e..,>.(B)(loglog H -logloglog H)+ 0(1). 
l~Jt$fog H 

This completes the proof of Theorem 5. 

These ideas are quite general (applicable to zeta and L-functions of al­

gebraic number fields). For example for ordinary L-series L(-') = L(.,, x) 
where xis a non-principal character mod q, we can prove 

THEOREM 6. We have, 

min max I (L{1+it))"l~ e..,>.(O)~(q) {(loglog H -logloglog H)+ 0(1)} 
T T9$T+H q 

uniformly in q ~ 3. 
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P.S. The theorems of§ 4 can be stated for u satisfying I u- 1 I~ t/J(t) for 

suitable t/J(t) --+ 0 as t--+ oo . 
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