
HAL Id: hal-01104696
https://hal.science/hal-01104696v1

Preprint submitted on 19 Jan 2015 (v1), last revised 23 Jan 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Chasing butterflies: In search of efficient dictionaries
Luc Le Magoarou, Rémi Gribonval

To cite this version:
Luc Le Magoarou, Rémi Gribonval. Chasing butterflies: In search of efficient dictionaries. 2015.
�hal-01104696v1�

https://hal.science/hal-01104696v1
https://hal.archives-ouvertes.fr


CHASING BUTTERFLIES: IN SEARCH OF EFFICIENT DICTIONARIES

Luc Le Magoarou, Rémi Gribonval
Inria

Centre Inria Rennes - Bretagne Atlantique

ABSTRACT

Dictionary learning aims at finding a frame (called dictionary) in

which training data admits a sparse representation. Traditional dic-

tionary learning is limited to relatively small-scale problems, be-

cause dense matrices associated to high-dimensional dictionaries can

be costly to manipulate both at the learning stage and in the usage of

this dictionary, for tasks such as sparse coding. In this paper, inspired

by usual fast transforms, we consider a dictionary structure allowing

cheaper manipulation, and we propose a learning algorithm impos-

ing this structure. The approach is demonstrated experimentally with

the factorization of the Hadamard matrix and on image denoising.

Index Terms— Sparse representations, dictionary learning, low

complexity, image denoising

1. INTRODUCTION

Sparse representations using dictionaries are a common way of pro-

viding concise descriptions of high-dimensional vectors. With an

appropriate dictionary D, one can find a sparse representation vector

γ such that a vector x of interest can be approximated as x ≈ Dγ.

Traditionally, one can distinguish two ways of choosing a good

dictionary for the data at hand. The dictionary can be either an an-

alytic dictionary derived from a mathematical formula, such as the

Fourier and Hadamard transforms or wavelets, or a learned dictio-

nary, that is automatically inferred from training data. Analytic dic-

tionaries are in general computationally efficient because of associ-

ated fast algorithms (e.g., the Fast Fourier Transform (FFT) [1] or

the Discrete Wavelet Transform (DWT) [2]), but in turn they lack

adaptation to the data. On the other hand, learned dictionaries are

in general better adapted to the data, but as dense matrices they are

costly to manipulate. A survey on the topic can be found in [3].

In this paper the goal is to design dictionaries as well adapted to

the data as learned dictionaries, while as fast to manipulate and as

cheap to store as analytic ones. Such an objective can seem unreal-

istic, but generalizing approaches introduced recently in [4] and [5],

we propose here a strategy to tackle this problem. We build on the

simple observation that the fast transforms associated with analytic

dictionaries can be seen as sequences of cheap linear transforma-

tions, indicating that such dictionaries can be expressed as1:

D =

M
∏

j=1

Sj , (1)

where each factor Sj is sparse. For example each step of the butterfly

radix-2 FFT can be seen as the product by a sparse matrix having

only two non-zero entries per row and per column, which leads to the

This work was supported in part by the European Research Council,
PLEASE project (ERC-StG- 2011-277906). The authors wish to thank
François Malgouyres and Olivier Chabiron for the fruitful discussions that
helped in producing that work.

1The product being taken from right to left:
∏N

i=1 Ai = AN · · ·A1

well-known complexity savings. The proposed approach consists in

imposing this factorizable dictionary structure. With sparse enough

factors, such a structure potentially brings efficiency in terms of:

• Compactness: The dictionary can be stored efficiently.

• Speed: The dictionary and its transpose can multiply quickly vec-

tors and matrices.

• Statistical relevance: Learning the dictionary requires fewer train-

ing examples because there are fewer parameters to estimate.

Our goal is thus to “chase butterflies”, i.e. to learn such dictionaries

that somehow extend the butterfly structure of the FFT.

2. PROBLEM FORMULATION AND RELATED WORK

Notation. Throughout this paper, matrices are denoted by bold

upper-case letters: A; vectors by bold lower-case letters: a; the ith
column of a matrix A by: ai; and sets by calligraphical symbols: A.

The standard vectorization operator is denoted by vec(·). The ℓ0-

norm is denoted by ‖·‖0 (it counts the number of non-zero entries),

‖·‖
F

denotes the Frobenius norm, and ‖·‖2 the spectral norm. By

abuse of notations, ‖A‖0 = ‖vec(A)‖0.

Objective. The goal of this paper is to obtain dictionaries structured

as in (1). To this end, we can either impose the factorizable structure

while learning the dictionary (structured dictionary learning task),

or impose it on a pre-learned dictionary (dictionary factorization

task). Let X ∈ R
d×n be a data matrix, each of its n columns xi

being a training vector, D ∈ R
d×a be a dictionary with a atoms and

Γ ∈ R
a×n be the corresponding sparse representation matrix such

that X ≈ DΓ. Typically n≫ a ≥ d. In this framework, structured

dictionary learning boils down to a factorization of the data matrix

X into M + 1 sparse factors (the rightmost factor being the sparse

representation matrix Γ), while dictionary factorization reduces to a

factorization of the dictionary D into M sparse factors. These two

problems are very similar, and introducing the matrix Y to embody

the matrix to factorize (either X or D) and the integer Q to embody

the desired number of factors (M or M+1), we propose to consider

one general optimization problem:

Minimize
S1,...,SQ

∥

∥Y −
Q
∏

j=1

Sj

∥

∥

2

F
+

Q
∑

j=1

gj(Sj), (2)

where the gjs are penalties promoting sparsity and possibly addi-

tional constraints, and the factors Sjs are of compatible sizes.

Related work. Similar matrix factorization problems have been

studied recently in several domains. In dictionary learning, two main

lines of work have begun to explore this way. In [4], the authors

propose the sparse-KSVD algorithm (KSVDS) to learn a dictionary

whose atoms are sparse linear combinations of atoms of a so-called

base dictionary. The base dictionary should be associated with a fast

algorithm (it takes the form (1)), so that the whole learned dictionary

can be efficiently stored and manipulated. It can be seen as having

the Q−2 leftmost factors fixed in (2) (let us call it Dbase), the second

factor being the sparse representation of the dictionary over the base



dictionary (D = DbaseS2), and the first being the sparse representa-

tion matrix Γ = S1. One drawback with this formulation is that the

learned dictionary is highly biased toward the base dictionary, which

decreases adaptability to the training data. In [5], the authors pro-

pose to learn a dictionary in which each atom is the composition of

several circular convolutions using sparse kernels with known sup-

ports, so that the dictionary is fast to manipulate. Their problem can

be seen as (2), with the gjs corresponding to the M leftmost factors

imposing sparse circulant matrices. This formulation is limited in

nature to the case where the dictionary is well approximated by a

product of sparse circulant matrices.

In statistics, a related problem is to approximately diagonalize a

covariance matrix by a unitary matrix in factorized form (1), which

can be addressed greedily [6, 7] using a fixed number of elementary

Givens rotations. Here we consider a richer family of sparse factors

and leverage recent non-convex optimization techniques. In machine

learning, similar models were explored with various points of view.

For example, sparse multi-factor NMF [8] can be seen as solving

problem (2) with the Kullback-Leibler divergence as data fidelity

term and all Sjs constrained to be non-negative. Optimization re-

lies on multiplicative updates, while we rely on proximal iterations.

In the context of deep neural networks, identifiability guarantees on

the network structure have been established with a generative model

where consecutive network layers are sparsely connected at random,

and non-linearities are neglected [9, 10]. The network structure in

these studies matches the factorized structure (1), with each of the

leftmost factors representing a layer of the network and the last one

being its input. Apart from its hierarchical flavor, the identification

algorithm in [9, 10] differs from the proximal method proposed here.

An objective somewhat related to that of having a computation-

ally efficient dictionary is that of being able to rapidly compute the

sparse code Γ corresponding to the training data X given the dic-

tionary D. Models addressing this issue have been proposed in [11]

and [12]. Since most of sparse coding methods rely on products

with the dictionary and its transpose, the method proposed here con-

tributes also to this objective because dictionaries taking the form (1)

naturally lead to fast vector and matrix multiplication.

3. OPTIMIZATION FRAMEWORK

We now express the considered optimization problem, and describe

an algorithm with convergence guarantees to a stationary point.

3.1. Choice of the sparsity-inducing penalties

Considering a dictionary D =
∏M

j=1 Sj as in (1), the storage and

multiplication cost of the dictionary are determined by the number

of non-zero entries in the factors Sj . Indeed, storing/multiplying the

dictionary in the factorized form will costO(
∑M

j=1 ‖Sj‖0), whereas

classical dictionary learning methods would typically provide dense

dictionaries for which storing/multiplying would cost O(da). This

simple statement allows to introduce the Relative Complexity (RC):

RC(D) :=

(

M
∑

j=1

‖Sj‖0

)

/da. (3)

This quantity is clearly positive and should not exceed 1 in order

to yield complexity savings. In practice, we choose as sparsity-

inducing penalties the indicator functions δEj (·) of subsets Ejs of “ℓ0

balls”: {A ∈ R
rj×cj : ‖A‖0 ≤ pj}, hence RC ≤

∑M

j=1 pj/da.

3.2. Coping with the scaling ambiguity.

To avoid scaling ambiguities, it is common [5, 8] to normalize the

factors and introduce a multiplicative scalar λ in the data fidelity

term. This results in the optimization problem:

Minimize
λ,S1,...,SQ

Ψ(S1, . . . ,SQ, λ) :=
1
2

∥

∥

∥
Y − λ

Q
∏

j=1

Sj

∥

∥

∥

2

F

+
Q
∑

j=1

δEj (Sj),

(4)

with Ej = {A ∈ R
rj×cj : ‖A‖0 ≤ pj , ‖A‖F = 1}.

3.3. Proposed algorithm

The optimization problem (4) is highly non-convex, and the spar-

sity enforcing part is non-smooth. We leverage recent advances in

non-convex optimization to express an algorithm with convergence

guarantees to a stationary point of the problem. In [13], the authors

consider cost functions depending on N blocks of variables:

Ψ(x1, . . . ,xN ) := H(x1, . . . ,xN ) +

N
∑

j=1

fj(xj), (5)

where the function H is smooth, and the fjs are proper and lower

semi-continuous. To handle this cost function, the authors propose

an algorithm called Proximal Alternating Linearized Minimization

(PALM)[13], that updates alternatively each block of variable by a

proximal (or projected in our case) gradient step.

PALM can be instantiated to handle the objective (4): there is

indeed a match between (4) and (5) taking N = Q+1, xj = Sj for

j ∈ {1 . . . Q}, xQ+1 = λ, H the data fidelity term, fj(·) = δEj (.)
for j ∈ {1 . . . Q} and fQ+1(·) = 0 (there is no constraint on λ).

Although we do not discuss it here, it is shown in our technical report

[14] that all the conditions for PALM to converge to a stationary

point of the objective are satisfied.

Projection operator. With Ejs defined as in Section 3.2, the projec-

tion operator PEj (·) simply keeps the pj greatest entries (in absolute

value) of its argument, sets all the other entries to zero, and then nor-

malize its argument so that it has unit norm. Regarding the scalar λ,

we can consider its constraint set as EQ+1 = R, hence the projection

operator is simply the identity mapping.

Gradient and Lipschitz moduli. To specify the iterations of PALM

specialized to our problem, we fix the iteration i and the factor j, and

denote S
i
j the factor that we are updating, L :=

∏Q

k=j+1 S
i
k what

is on its left and R :=
∏j−1

k=1 S
i+1
k what is on its right (with the

convention
∏

k∈∅
Sk = Id). With these notations we have, when

updating the jth factor Sj : H(Si+1
1 , . . . ,Si+1

j−1,S
i
j , . . . ,S

i
Q, λ

i) =
1
2
‖Y−λi

LS
i
jR‖

2
F . The gradient of this smooth part of the objective

with respect to the jth factor reads:

∇
Si
j
H(Si+1

1 , . . . ,Si+1
j−1,S

i
j , . . . ,S

i
Q, λ

i)=λi
L

T (λi
LS

i
jR−Y)RT,

which has a Lipschitz modulus with respect to
∥

∥S
i
∥

∥

F
:

Lj(L,R, λi) = (λi)2 ‖R‖22 . ‖L‖
2
2. Once the first Q factors are up-

dated we need to update λ. Denoting Ŷ =
∏Q

k=1 S
i+1
k , we get:

H(Si+1
1 , . . . ,Si+1

Q , λi) = 1
2
‖Y − λi

Ŷ‖2F , and the gradient with

respect to λ reads:

∇λiH(Si+1
1 , . . . ,Si+1

Q , λi) = λi
Tr(ŶT

Ŷ)− Tr(YT
Ŷ).

An explicit version of the algorithm is given in Algorithm 1, in

which the factors are updated alternatively by a projected gradient

step (line 6) with a stepsize controlled by the Lipschitz modulus of

the gradient (line 5). We can solve for λ directly at each iteration



(line 9) because of the absence of constraint on it (see our report

[14] for more precisions on the convergence conditions of PALM).

Initialization. Except when specified otherwise, initialization by

default is done with λ0 = 1, S0
1 = 0 and S

0
j = Id, j ≥ 2, with the

convention that for rectangular matrices the identity has ones on the

main diagonal and zeroes elsewhere.

Algorithm 1 PALM for Efficient Dictionary Learning (palm4EDL)

Input: Data matrix or dictionary Y; desired number of factors Q;

constraint sets Ej , j ∈ {1 . . . Q}; initialization {S0
j}

Q
j=1, λ0;

stopping criterion (e.g., number of iterations Ni).

1: for i = 0 to Ni − 1 do

2: for j = 1 to Q do

3: L←
∏Q

k=j+1 S
i
k

4: R←
∏j−1

k=1 S
i+1
k

5: Set cij > (λi)2 ‖R‖22 . ‖L‖
2
2

6: S
i+1
j ← PEj

(

S
i
j −

1
ci
j

λi
L

T (λLSi
jR−Y)RT

)

7: end for

8: Ŷ ←
∏Q

k=1 S
i+1
k

9: λi+1 ← Tr(YT
Ŷ)

Tr(ŶT Ŷ)

10: end for

Output: The estimated factorization:

λNi ,{SNi
j }

Q
j=1 = palm4EDL(Y, Q, {Ej}

Q
j=1, . . . )

3.4. Practical strategy

Algorithm 1 presented above factorizes a data matrix into Q sparse

factors and converges to a stationary point of problem (4). How-

ever, while we are primarily interested in stationary points where

the data fidelity term of the cost function is small, there is no guar-

antee that the algorithm converges to such a stationary point. This

was observed on a very simple experiment where Algorithm 1 was

used for a dictionary factorization task, with a dictionary Y = D

with a known factorization in M factors: D =
∏M

j=1 Sj , such as

the Hadamard dictionary. The naive approach consisted in taking

directly Q = M in Algorithm 1, and setting the constraints so as

to reflect the actual sparsity of the true factors. This simple strategy

performed quite poorly in practice, and the attained local minimum

was very often not satisfactory (high data fidelity term).

We noticed experimentally that taking fewer factors (Q small)

and allowing more non-zero entries per factor led to better results in

general. This observation suggested to adopt a hierarchical strategy.

Indeed, when Y =
∏Q

j=1 Sj is the product of Q sparse factors, it is

also the product Y = T1S1 of 2 factors with T1 =
∏Q

j=2 Sj , so

that S1 is sparser than T1. Our strategy is then to factorize the input

matrix Y in 2 factors, one being sparse (corresponding to S1), and

the other less sparse (corresponding to T1). The process can then

be repeated on the less sparse factor T1, and so on until we attain

the desired number Q of factors. Denoting Tk =
∏Q

j=k+1 Sj , a

simple calculation shows that if we expect each Sj to have roughly

O(h) non-zero entries per row, then Tk cannot have more than

O(hQ−(k+1)) non-zero entries per row. This suggests to decrease

exponentially the number of non-zero entries in Tk with k. This

strategy turns out to be surprisingly effective and the attained local

minima are very good, as illustrated in the next section. In a sense,

this hierarchical approach is similar to learning a deep neural net-

work layer by layer, as done in [9, 10]. Our preliminary theoretical

analysis of the proposed approach suggests that the results of [9, 10]

could in fact be leveraged to explain the observed empirical success.

The proposed hierarchical strategy is summarized in Algo-

rithm 2, where we need to specify at each step the constraint sets

related to the two factors. For that, let us introduce some notation:

Ek will be the constraint set for the right factor and Ẽk the one for

the left factor at the kth factorization. The global optimization step

(line 5) is done by initializing palm4EDL with the current values

of {Sj}
k
j=1 and Tk. It is here to keep an attach to the data matrix

Y. Roughly we can say that line 3 of the algorithm is here to yield

complexity savings, whereas line 5 is here to improve data fidelity.

Algorithm 2 Hierarchical factorization

Input: The data matrix or dictionary Y, the desired number of fac-

tors Q and the constraint sets Ek and Ẽk, k ∈ {1 . . . Q− 1}.
1: T0 ← Y

2: for k = 1 to Q− 1 do

3: Factorize the residual Tk−1 into 2 factors:

λ′,{F2,F1} = palm4EDL(Tk−1, 2, {Ẽk, Ek}, . . . )

4: Tk ← λ′
F2 and Sk ← F1

5: Global optimization:

λ,
{

Tk, {Sj}
k
j=1

}

= palm4EDL(Y, k + 1,
{

Ẽk, {Ej}
k
j=1

}

,

. . . )

6: end for

7: SQ ← TQ−1

Output: The estimated factorization λ,{Sj}
Q
j=1.

In the case of structured dictionary learning, the first factor S1

corresponds to the sparse coefficients matrix Γ, and the first iteration

of factorization (k = 1) amounts to classical dictionary learning. It

can thus be done with any classical dictionary learning method, such

as K-SVD. Moreover, to avoid manipulating the coefficient matrix

(which is often way bigger than the other factors) one can keep it

fixed, and update it only by Orthogonal Matching Pursuit (OMP)

[15] after the global optimization step (between lines 5 and 6). This

simple modification of Algorithm 2 makes the hierarchical strategy

look like a traditional dictionary learning algorithm [3] where update

of the coefficients and update of the dictionary alternate, except that

in the present case the dictionary update is different and seeks to

make complexity savings (reducing RC), and the coefficient update

can be done efficiently taking advantage of the dictionary structure.

4. EXPERIMENTS

4.1. Dictionary based image denoising

Our experimental scenario for the structured dictionary learning task

follows the workflow of a classical dictionary based image denois-

ing. First, n = 10000 patches xi of size 8 × 8 (dimension d = 64)

are randomly picked from an input 512 × 512 noisy image (with

PSNR= 22.1dB), and a dictionary is learned on these patches. Then

the learned dictionary is used to denoise the entire input image by

computing the sparse representation of all its patches in the dictio-

nary using OMP, allowing each patch to use 5 dictionary atoms. The

image is reconstructed by averaging the overlapping patches. Var-

ious dictionary learning methods were compared, each learning a

four times overcomplete dictionary (D ∈ R
64×256).

Settings of our algorithm. We tested several configurations for Al-

gorithm 2, and we present here one that exhibits a good tradeoff be-

tween relative complexity (RC) and adaptation to the data (we call it

EDL for Efficient Dictionary Learning). Inspired by usual fast trans-

forms, we chose a number of factors Q close to the logarithm of the

signal dimension d = 64, here Q = 5. The sizes of the factors are:

Γ = S1 ∈ R
256×10000, S2 ∈ R

64×256 and S3, . . . ,SQ ∈ R
64×64.

Algorithm 2 was used with the modifications presented in the pre-

vious section i.e. the first factorization (k = 1 in Algorithm 2) is

done by KSVD [16] and S1 was updated only by OMP allowing



Learning Denoising Complexity

(PSNR) (PSNR) (RC)

KSVD 24.71 27.55 1.00

ODL 24.62 27.51 1.00

KSVDS 24.16 27.64 0.41

EDL 23.63 29.38 0.13

Table 1. Image denoising results, averaged over the standard image

database taken from [22] (12 standard grey 512× 512 images). The

best result of each column is bold.

each patch to use 5 dictionary atoms. In this setting, E1 and Ẽ1 do

not need to be specified, but implicitly correspond to E1 = {A ∈

R
256×10000, ‖ai‖0 ≤ 5 ∀i ∈ {1 . . . 10000}} and Ẽ1 = {A ∈

R
64×256, ‖ai‖2 = 1 ∀i ∈ {1 . . . 256}}. Regarding the other

factorizations (k > 1 in Algorithm 2) we allowed in each factor 4
non-zero entries per column in average, so that the considered con-

straint sets were: E2 = {A ∈ R
64×256, ‖A‖0 ≤ 1024, ‖A‖

F
=

1} and for k ∈ {3 . . . Q − 1}: Ek = {A ∈ R
64×64, ‖A‖0 ≤

256, ‖A‖
F

= 1}. In order to decrease the Relative Complexity

(RC) of the learned dictionary at each new factorization, the num-

ber of non-zero entries in the residual was divided by 2 at each step,

starting from p = 1.3×2048, so that we have, for k ∈ {2 . . . Q−1}:

Ẽk = {A ∈ R
64×64, ‖A‖0 ≤

p

2k−2
, ‖A‖

F
= 1}. The stopping

criterion for palm4EDL was a number of iterations Ni = 50.

Baselines. We compared Algorithm 2 with the following methods.

All methods involve a coefficient update step which is performed

using OMP allowing each patch to use 5 dictionary atoms:

• KSVD [16]. We used the implementation described in [17], run-

ning 50 iterations (empirically sufficient to ensure convergence).

• Online Dictionary Learning (ODL) [18], running 200 iterations

(empirically sufficient to ensure convergence).

• Sparse KSVD (KSVDS) [4], a method that seeks to bridge the

gap between learned dictionaries and analytic dictionaries. The

implementation of [4] is used, with Dbase the four times overcom-

plete 2D-Discrete Cosine Transform (DCT) matrix and 50 itera-

tions, ensuring convergence in practice. The columns of the esti-

mated dictionary D are 6-sparse in Dbase.

Performance measures. The computational efficiency of the dic-

tionary is measured through the Relative Complexity (RC) quantity

introduced in Section 3.1. For the KSVDS method, we used the for-

mula provided in [4] to compute RC. The quality of approximation

at the learning stage and at the denoising stage is expressed using

the classical PSNR measure (even though at the learning stage we

are manipulating patches and not entire images).

Discussion of the results. Table 1 summarizes the performance of

the different methods. First of all, the proposed method is able to

provide dictionaries that are much more computationally efficient

than the others (RC= 0.13). Second, and perhaps more surprisingly,

while the proposed method performs worse than the others at the

learning stage, it outperforms them at the denoising stage. This indi-

cates that its generalization properties are better [19, 20, 21], which

is consistent with the lower number of parameters to learn compared

to KSVD and ODL. Regarding KSVDS, its poorer performance may

be explained by the fact that it is highly biased toward its base dic-

tionary. Moreover, we suspect the proposed factorized structure to

have the interesting property of being more intrinsically unable to fit

noise than standard dictionaries.

4.2. Retrieving the fast Hadamard transform

Here is presented an experiment regarding the dictionary factoriza-

tion task. Consider a data matrix Y = D with a known factorization

Fig. 1. Example of denoising result. It is a zoom on a small part of

the “house” standard image.

in M factors, D =
∏M

j=1 Sj : in Section 3.4, we evoked the fail-

ure of Algorithm 1 for this factorization problem. In contrast, Fig-

ure 2 illustrates the result of the proposed hierarchical strategy (Al-

gorithm 2) with D the Hadamard dictionary in dimension n = 32.

The obtained factorization is exact and as good as the reference one

in terms of complexity savings (2n log n non-zero entries in the fac-

tors), so in a way the chased butterflies were caught. The running

time is less than a second. Factorization of the Hadamard matrix in

dimension up to n = 1024 showed identical behaviour, with running

time O(n2) up to ten minutes.

Fig. 2. Hierarchical factorization of the Hadamard matrix of size

32 × 32. The matrix is iteratively factorized in 2 factors, until we

have Q = 5 factors, each having p = 64 non-zero entries.

5. CONCLUSION

We proposed a matrix factorization framework with convergence

guarantees that provides a flexible tradeoff between computational

efficiency and data fidelity. It shows promising results in image de-

noising and is able to automatically retrieve an ideally compact fac-

torization of the fast Hadamard transform. Besides the obvious need

to better understand the role of its parameters in the control of the

desired tradeoff, a particular challenge will be to leverage the gained

complexity to speed up the factorization process itself, in order to

efficiently learn efficient dictionaries. Moreover, the algorithm un-

derlying the factorization is very general, and it would be interest-

ing to take advantage of its versatility in order to incorporate other

structures in the factors. This line of work could lead for example to

learn data-driven efficient wavelets on graphs [23], by constraining

the support of the factors. Finally, a concern in the numerical analy-

sis community is to be able to approximate certain integral operators

with a butterfly structure [24, 25]. The method proposed in this paper

could help finding automatically such approximate fast transforms.



6. REFERENCES

[1] James Cooley and John Tukey. An algorithm for the machine

calculation of complex Fourier series. Mathematics of Compu-

tation, 19(90):297–301, 1965.

[2] Stéphane Mallat. A theory for multiresolution signal decom-

position : the wavelet representation. IEEE Transaction on

Pattern Analysis and Machine Intelligence, 11:674–693, June

1989.

[3] Ron Rubinstein, A.M. Bruckstein, and Michael Elad. Dictio-

naries for Sparse Representation Modeling. Proceedings of the

IEEE, 98(6):1045 –1057, 2010.

[4] Ron Rubinstein, Michael Zibulevsky, and Michael Elad. Dou-

ble sparsity: learning sparse dictionaries for sparse signal

approximation. IEEE Transactions on Signal Processing,

58(3):1553–1564, March 2010.

[5] Olivier Chabiron, Francois Malgouyres, Jean-Yves Tourneret,

and Nicolas Dobigeon. Toward fast transform learning. Tech-

nical report, November 2013.

[6] Ann B. Lee, Boaz Nadler, and Larry Wasserman. Treelets -

an adaptive multi-scale basis for sparse unordered data. The

Annals of Applied Statistics, 2(2):435–471, July 2008.

[7] Guangzhi Cao, L.R. Bachega, and C.A. Bouman. The sparse

matrix transform for covariance estimation and analysis of high

dimensional signals. Image Processing, IEEE Transactions on,

20(3):625–640, 2011.

[8] Siwei Lyu and Xin Wang. On algorithms for sparse multi-

factor NMF. In Advances in Neural Information Processing

Systems 26, pages 602–610. 2013.

[9] Behnam Neyshabur and Rina Panigrahy. Sparse matrix factor-

ization. CoRR, abs/1311.3315, 2013.

[10] Sanjeev Arora, Aditya Bhaskara, Rong Ge, and Tengyu

Ma. Provable bounds for learning some deep representations.

CoRR, abs/1310.6343, 2013.

[11] Karol Gregor and Yann LeCun. Learning fast approximations

of sparse coding. In Proceedings of the 27th Annual Inter-

national Conference on Machine Learning, ICML ’10, pages

399–406, 2010.

[12] Pablo Sprechmann, Alexander M. Bronstein, and Guillermo

Sapiro. Learning efficient sparse and low rank models. CoRR,

abs/1212.3631, 2012.

[13] Jérôme Bolte, Shoham Sabach, and Marc Teboulle. Proximal

Alternating Linearized Minimization for nonconvex and non-

smooth problems. Mathematical Programming, pages 1–36,

2013.

[14] Luc Le Magoarou and Rémi Gribonval. Learning computa-

tionally efficient dictionaries and their implementation as fast

transforms. CoRR, abs/1406.5388, 2014.

[15] S.G. Mallat and Zhifeng Zhang. Matching pursuits with time-

frequency dictionaries. IEEE Transactions on Signal Process-

ing, 41(12):3397–3415, December 1993.

[16] M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An algorithm

for designing overcomplete dictionaries for sparse representa-

tion. Signal Processing, IEEE Transactions on, 54(11):4311–

4322, Nov 2006.

[17] Ron Rubinstein, Michael Zibulevsky, and Michael Elad. Ef-

ficient Implementation of the K-SVD Algorithm using Batch

Orthogonal Matching Pursuit. Technical report, 2008.

[18] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo

Sapiro. Online learning for matrix factorization and sparse

coding. Journal of Machine Learning Research, 11(1):19–60,

January 2010.

[19] Rémi Gribonval, Rodolphe Jenatton, Francis Bach, Martin

Kleinsteuber, and Matthias Seibert. Sample Complexity of

Dictionary Learning and other Matrix Factorizations. ArXiv

e-prints, December 2013.

[20] Daniel Vainsencher, Shie Mannor, and Alfred M Bruckstein.

The sample complexity of dictionary learning. The Journal of

Machine Learning Research, 12:3259–3281, 2011.

[21] Augusto Maurer and Massimiliano Pontil. K -dimensional cod-

ing schemes in Hilbert spaces. IEEE Transactions on Informa-

tion Theory, 56(11):5839–5846, 2010.

[22] http://www.imageprocessingplace.com/.

[23] David K. Hammond, Pierre Vandergheynst, and Rémi Gribon-

val. Wavelets on graphs via spectral graph theory. Applied and

Computational Harmonic Analysis, 30(2):129 – 150, 2011.

[24] Michael O’Neil, Franco Woolfe, and Vladimir Rokhlin. An al-

gorithm for the rapid evaluation of special function transforms.

Applied and Computational Harmonic Analysis, 28(2):203 –

226, 2010. Special Issue on Continuous Wavelet Transform in

Memory of Jean Morlet, Part I.

[25] Emmanuel J. Candès, Laurent Demanet, and Lexing Ying. A

fast butterfly algorithm for the computation of Fourier inte-

gral operators. Multiscale Modeling & Simulation, 7(4):1727–

1750, 2009.


	 Introduction
	 Problem formulation and related work
	 Optimization framework
	 Choice of the sparsity-inducing penalties
	 Coping with the scaling ambiguity.
	 Proposed algorithm
	 Practical strategy

	 Experiments
	 Dictionary based image denoising
	 Retrieving the fast Hadamard transform

	 Conclusion
	 References

