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ABSTRACT

Critical kernels constitute a general framework settled in the context of abstract complexes for the

study of parallel thinning in any dimension. We take advantage of the properties of this framework,

to propose a generic thinning scheme for obtaining “thin” skeletons from objects made of voxels.

From this scheme, we derive algorithms that produce curve or surface skeletons, based on the

notion of 1D or 2D isthmus. We compare our new curve thinning algorithm with all the published

algorithms of the same kind, based on quantitative criteria. Our experiments show that our algorithm

largely outperforms the other ones with respect to noise sensitivity. Furthermore, we show how to

slightly modify our algorithms to include a filtering parameter that controls effectively the pruning of

skeletons, based on the notion of isthmus persistence.

1. Introduction

The usefulness of skeletons in many applications of pat-

tern recognition, computer vision, shape understanding etc.

is mostly due to their property of topology preservation, and

preservation of meaningful geometrical features. Here, we are

interested in the skeletonization of objects that are made of vox-

els (unit cubes) in a regular 3D grid, i.e., in a binary 3D im-

age. In this context, topology preservation is usually obtained

through the iteration of thinning steps, provided that each step

does not alter the topological characteristics. In sequential thin-

ning algorithms, each step consists of detecting and choosing a

so-called simple voxel, that may be characterized locally (see

Kong and Rosenfeld (1989); Saha et al. (1994); Couprie and

Bertrand (2009)), and removing it. Such a process usually in-

volves many arbitrary choices, and the final result may depend,

sometimes heavily, on any of these choices. This is why par-

allel thinning algorithms are generally preferred to sequential

ones. However, removing a set of simple voxels at each thin-

ning step, in parallel, may alter topology. The framework of

critical kernels, introduced by one of the authors in Bertrand

(2007), provides a condition under which we have the guarantee

that a subset of voxels can be removed without changing topol-

ogy. This condition is, to our knowledge, the most general one

∗∗Corresponding author: Tel.: +33 1 45 92 66 88; fax: +33 1 45 92 66 99;

e-mail: michel.couprie@esiee.fr (Michel Couprie)

among the related works. Furthermore, critical kernels indeed

provide a method to design new parallel thinning algorithms, in

which the property of topology preservation is built-in, and in

which any kind of constraint may be imposed (see Bertrand and

Couprie (2008, 2014)).

Among the different parallel thinning algorithms that have

been proposed in the literature, we can distinguish between

symmetric and asymmetric algorithms. Symmetric algorithms

Ma (1995); Ma and Sonka (1996); Manzanera et al. (2002); Lo-

hou and Bertrand (2007); Palágyi (2008) (also known as fully

parallel algorithms) produce skeletons that are invariant under

90 degrees rotations. They consist of the iteration of thinning

steps that are made of 1) the identification and selection of a set

of voxels that satisfy certain conditions, independently of ori-

entation or position in space, and 2) the removal, in parallel, of

all selected voxels from the object. Symmetric algorithms, on

the positive side, produce a result that is uniquely defined: no

arbitrary choice is needed. On the negative side, they generally

produce thick skeletons, see Fig. 1.

Asymmetric skeletons, on the opposite, are preferred when

thinner skeletons are required. The price to pay is a certain

amount of arbitrary choices to be made. In all existing asym-

metric parallel thinning algorithms, each thinning step is di-

vided into a certain number of substeps. In the so-called direc-

tional algorithms Tsao and Fu (1981, 1982); Gong and Bertrand

(1990); Palágyi and Kuba (1998); Palágyi and Kuba (1999a,b);

Lohou and Bertrand (2004, 2005); Raynal and Couprie (2011);

Németh et al. (2011), each substep is devoted to the detection
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Fig. 1. Different types of skeletons. (a): Curve skeleton, symmetric. (b):

Curve skeleton, asymmetric. (c): Surface skeleton, symmetric. (d): Sur-

face skeleton, asymmetric.

and the deletion of voxels belonging to one “side” of the ob-

ject: all the voxels considered during the substep have, for ex-

ample, their south neighbor inside the object and their north

neighbor outside the object. The order in which these direc-

tional substeps are executed is set beforehand, arbitrarily. Sub-

grid (or subfield) algorithms (see Bertrand and Aktouf (1995);

Saha et al. (1997); Ma et al. (2002a,b); Németh et al. (2010a,b))

form the second category of asymmetric parallel thinning algo-

rithms. There, each substep is devoted to the detection and the

deletion of voxels that belong to a certain subgrid, for example,

all voxels that have even coordinates. Considered subgrids must

form a partition of the grid. Again, the order in which subgrids

are considered is arbitrary.

Subgrid algorithms are not often used in practice because

they produce artifacts, that is, waving skeleton branches where

the original object is smooth or straight. Directional algorithms

are the most popular ones. Most of them are implemented

through sets of masks, one per substep. A set of masks is used

to characterize voxels that must be kept during a given substep,

in order to 1) preserve topology, and 2) prevent curves or sur-

faces to disappear. Thus, topological conditions and geometri-

cal conditions cannot be easily distinguished, and the slightest

modification of any mask involves the need to make a new proof

of the topological correctness.

Our approach is radically different. Instead of considering

single voxels, we consider cliques. A clique is a set of mutually

adjacent voxels. Then, we identify the critical kernel of the ob-

ject, according to some definitions, which is a union of cliques.

The main theorem of the critical kernels framework Bertrand

(2007); Bertrand and Couprie (2014) states that we can remove

in parallel any subset of the object, provided that we keep at

least one voxel of every clique that constitutes the critical ker-

nel, and this guarantees topology preservation. Here, as we try

to obtain thin skeletons, our goal is to keep, whenever possible,

exactly one voxel in every such clique. This leads us to propose

a generic parallel asymmetric thinning scheme, that may be en-

riched by adding any sort of geometrical constraint. From our

generic scheme, we easily derive, by adding such geometrical

constraints, specific algorithms that produce curve or surface

skeletons. To this aim, we define in this paper the notions of

1D and 2D isthmuses that capture relevant geometrical infor-

mation: a 1D (resp. 2D) isthmus is a voxel that is “locally like

a piece of curve” (resp. surface).

Our article is organized as follows. The first three sections

contain a minimal set of basic notions about voxel complexes,

simple voxels and critical kernels, respectively, which are nec-

essary to make the article self-contained. In section 5, we intro-

duce our new generic asymmetric thinning scheme, and we pro-

vide some examples of ultimate skeletons obtained by using it.

Section 6 is devoted to introducing and illustrating our new

isthmus-based parallel algorithms for computing curve, surface

and curve-surface skeletons. Then in section 7, we describe the

experiments that we made for comparing our curve thinning al-

gorithm with all existing parallel curve thinning methods of the

same kind. We show that our method ranks first with respect to

robustness. Finally, we show in section 8 how to use the notion

of isthmus persistence in order to effectively filter the spurious

skeleton parts due to noise. Persistence is a criterion, easy to

compute in our framework, that allows us to dynamically de-

tect or ignore certain isthmuses.

2. Voxel Complexes

In this section, we give some basic definitions for voxel

complexes, see also Kovalevsky (1989); Kong and Rosenfeld

(1989).

Let Z be the set of integers. We consider the families of sets

F
1
0
, F1

1
, such that F1

0
= {{a} | a ∈ Z}, F1

1
= {{a, a + 1} | a ∈ Z}.

A subset f of Zn, n ≥ 2, that is the Cartesian product of exactly

d elements of F1
1

and (n − d) elements of F1
0

is called a face or

an d-face of Zn, d is the dimension of f . In the illustrations of

this paper, a 3-face (resp. 2-face, 1-face, 0-face) is depicted by

a cube (resp. square, segment, dot), see e.g. Fig. 4.

A 3-face of Z3 is also called a voxel. A finite set that is com-

posed solely of voxels is called a (voxel) complex (see Fig. 2).

We denote by V
3 the collection of all voxel complexes.

We say that two voxels x, y are adjacent if x ∩ y , ∅. We

write N(x) for the set of all voxels that are adjacent to a voxel

x, N(x) is the neighborhood of x. Note that, for each voxel x,

we have x ∈ N(x). We set N∗(x) = N(x) \ {x}.

Let d ∈ {0, 1, 2}. We say that two voxels x, y are d-neighbors

if x∩y is a d-face. Thus, two distinct voxels x and y are adjacent

if and only if they are d-neighbors for some d ∈ {0, 1, 2}.

Let X ∈ V3. We say that X is connected if, for any x, y ∈ X,

there exists a sequence 〈x0, ..., xk〉 of voxels in X such that x0 =

x, xk = y, and xi is adjacent to xi−1, i = 1, ..., k.

3. Simple Voxels

Intuitively a voxel x of a complex X is called a simple voxel if

its removal from X “does not change the topology of X”. This
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Fig. 2. (a) A complex X which is made of 8 voxels, (b) A complex Y ⊆ X,

which is a thinning of X.

notion may be formalized with the help of the following re-

cursive definition introduced in Bertrand and Couprie (2014),

see also Kong (1997); Bertrand (1999) for other recursive ap-

proaches for simplicity.

Definition 1. Let X ∈ V3.

We say that X is reducible if either:

i) X is composed of a single voxel; or

ii) there exists x ∈ X such thatN∗(x)∩X is reducible and X \{x}

is reducible.

Definition 2. Let X ∈ V
3. A voxel x ∈ X is simple for X if

N∗(x) ∩ X is reducible. If x ∈ X is simple for X, we say that

X \ {x} is an elementary thinning of X.

Thus, a complex X ∈ V3 is reducible if and only if it is possi-

ble to reduce X to a single voxel by iteratively removing simple

voxels. Observe that a reducible complex is necessarily non-

empty and connected.

In Fig. 2 (a), the voxel a is simple for X (N∗(a) ∩ X is made

of a single voxel), the voxel d is not simple for X (N∗(d) ∩ X is

not connected), the voxel h is simple for X (N∗(h) ∩ X is made

of two voxels that are 2-neighbors and is reducible).

In Bertrand and Couprie (2014), it was shown that the above

definition of a simple voxel is equivalent to classical characteri-

zations based on connectivity properties of the voxel’s neigh-

borhood Bertrand and Malandain (1994); Bertrand (1994);

Saha et al. (1994); Kong (1995); Couprie and Bertrand (2009).

An equivalence was also established with a definition based on

the operation of collapse Whitehead (1939); Giblin (1981), this

operation is a discrete analogue of a continuous deformation

(a homotopy), see also Kong (1997); Bertrand (2007); Couprie

and Bertrand (2009).

The notion of a simple voxel allows one to define thinnings

of a complex, see an illustration Fig. 2 (b).

Let X,Y ∈ V
3. We say that Y is a thinning of X or that X is

reducible to Y , if there exists a sequence 〈X0, ..., Xk〉 such that

X0 = X, Xk = Y , and Xi is an elementary thinning of Xi−1,

i = 1, ..., k.

Thus, a complex X is reducible if and only if it is reducible

to a single voxel.

4. Critical Kernels

Let X be a complex in V
3. It is well known that, if we re-

move simultaneously (in parallel) simple voxels from X, we

may “change the topology” of the original object X. For exam-

ple, the two voxels f and g are simple for the object X depicted

Fig. 2 (a). Nevertheless X\{ f , g} has two connected components

whereas X is connected.

In this section, we recall a framework for thinning in paral-

lel discrete objects with the warranty that we do not alter the

topology of these objects Bertrand (2007); Bertrand and Cou-

prie (2008, 2014). This method is valid for complexes of arbi-

trary dimension.

Let d ∈ {0, 1, 2, 3} and let C ∈ V3. We say that C is a d-clique

or a clique if ∩{x ∈ C} is a d-face. If C is a d-clique, d is the

rank of C.

If C is made of solely two distinct voxels x and y, we note

that C is a d-clique if and only if x and y are d-neighbors, with

d ∈ {0, 1, 2}.

Let X ∈ V
3 and let C ⊆ X be a clique. We say that C is

essential for X if we have C = D whenever D is a clique such

that:

i) C ⊆ D ⊆ X; and

ii) ∩{x ∈ C} = ∩{x ∈ D}.

Observe that any complex C that is made of a single voxel

is a clique (a 3-clique). Furthermore any voxel of a complex X

constitutes a clique that is essential for X.

In Fig. 2 (a), { f , g} is a 2-clique that is essential for X, {b, d}

is a 0-clique that is not essential for X, {b, c, d} is a 0-clique

essential for X, {e, f , g} is a 1-clique essential for X.

Definition 3. Let S ∈ V
3. The K-neighborhood of S , written

K(S ), is the set made of all voxels that are adjacent to each

voxel in S . We set K∗(S ) = K(S ) \ S .

We note that we have K(S ) = N(x) whenever S is made

of a single voxel x. We also observe that we have S ⊆ K(S )

whenever S is a clique.

Definition 4. Let X ∈ V3 and let C be a clique that is essential

for X. We say that the clique C is regular for X if K∗(C) ∩ X

is reducible. We say that C is critical for X if C is not regular

for X.

Thus, if C is a clique that is made of a single voxel x, then C

is regular for X if and only if x is simple for X.

In Fig. 2 (a), the cliques C1 = {b, c, d}, C2 = { f , g}, and

C3 = { f , h} are essential for X. We have K∗(C1) ∩ X = ∅,

K∗(C2) ∩ X = {e, h}, and K∗(C3) ∩ X = {g}. Thus, C1 and C2

are critical for X, while C3 is regular for X.

The following result is a consequence of a general theo-

rem that holds for complexes of arbitrary dimensions Bertrand

(2007); Bertrand and Couprie (2014).

Theorem 5. Let X ∈ V3 and let Y ⊆ X.

The complex Y is a thinning of X if any clique that is critical

for X contains at least one voxel of Y.

See an illustration in Fig. 2(a) and (b) where the complexes

X and Y satisfy the condition of theorem 5. For example, the

voxel d is a non-simple voxel for X, thus {d} is a critical 3-clique

for X, and d belongs to Y . Also, Y contains voxels in the critical

cliques C1 = {b, c, d}, C2 = { f , g}, and the other ones.
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5. A generic 3D parallel and asymmetric thinning scheme

Our goal is to define a subset Y of a voxel complex X that is

guaranteed to include at least one voxel of each clique that is

critical for X. By theorem 5, this subset Y will be a thinning of

X.

Let us consider the complex X depicted Fig. 3 (a). There are

precisely three cliques that are critical for X:

- the 0-clique C1 = {b, c} (we have K∗(C1) ∩ X = ∅);

- the 2-clique C2 = {a, b} (we have K∗(C2) ∩ X = ∅);

- the 3-clique C3 = {b} (the voxel b is not simple).

Suppose that, in order to build a complex Y that fulfills the

condition of theorem 5, we select arbitrarily one voxel of each

clique that is critical for X. Following such a strategy, we could

select c for C1, a for C2, and b for C3. Thus, we would have

Y = X, no voxel would be removed from X. Now, we observe

that the complex Y ′ = {b} satisfies the condition of theorem 5.

This complex is obtained by considering first the 3-cliques be-

fore selecting a voxel in the 2-, 1-, or 0 cliques.

The complex X of Fig. 3 (b) provides another example of

such a situation. There are precisely three cliques that are criti-

cal for X:

- the 1-clique C1 = {e, f , g, h} (we have K∗(C1) ∩ X = ∅);

- the 1-clique C2 = {e, d, g} (we have K∗(C2) ∩ X = ∅);

- the 2-clique C3 = {e, g} (K∗(C3) ∩ X is not connected).

If we select arbitrarily one voxel of each critical clique, we

could obtain the complex Y = { f , d, g}. On the other hand, if

we consider the 2-cliques before the 1-cliques, we obtain either

Y ′ = {e} or Y ′′ = {g}. In both cases the result is better in the

sense that we remove more voxels from X.

This discussion motivates the introduction of the fol-

lowing 3D asymmetric and parallel thinning scheme

AsymThinningScheme (see also Bertrand and Couprie

(2008, 2009, 2014) for other thinning schemes and properties

of critical kernels). The main features of this scheme are the

following:

- Taking into account the observations made through the two

previous examples, critical cliques are considered according

to their decreasing ranks (step 4). Thus, each iteration is

made of four sub-iterations (steps 4-8). Voxels that have

been previously selected are stored in a set Y (step 8). At a

given sub-iteration, we consider voxels only in critical cliques

included in X \ Y (step 6).

- Select is a function from V
3 to V3, the set of all voxels. More

precisely, Select associates, to each set S of voxels, a unique

voxel x of S . We refer to such a function as a selection function.

This function allows us to select a voxel in a given critical

clique (step 7). A possible choice is to take for Select(S ),

the first pixel of S in the lexicographic order of the voxels

coordinates.

- In order to compute curve or surface skeletons, we have

to keep other voxels than the ones that are necessary for the

preservation of the topology of the object X. In the scheme,

the set K corresponds to a set of features that we want to be

preserved by a thinning algorithm (thus, we have K ⊆ X). This

set K, called constraint set, is updated dynamically at step 10.

SkelX is a function from X on {True,False} that allows us to

keep some skeletal voxels of X, e.g., some voxels belonging to

c

b
a

e
g

f
h

d

(a) (b)

Fig. 3. Two complexes.

parts of X that are surfaces or curves. For example, if we want

to obtain curve skeletons, a frequently employed solution is to

set SkelX(x) = True whenever x is a so-called end voxel of X:

an end voxel is a voxel that has exactly one neighbor inside X.

Better propositions for such a function will be introduced in

section 6.

By construction, at each iteration, the complex Y at step 9

satisfies the condition of theorem 5. Thus, the result of the

scheme is a thinning of the original complex X. Observe also

that, except step 4, each step of the scheme may be computed

in parallel.

Algorithm 1: AsymThinningScheme(X, SkelX)

Data: X ∈ V3, SkelX is a function from X on {True,False}

Result: X

K := ∅;1

repeat2

Y := K;3

for d ← 3 to 0 do4

Z := ∅;5

foreach d-clique C ⊆ X \ Y that is critical for X do6

Z := Z ∪ {Select(C)};7

Y := Y ∪ Z;8

X := Y;9

foreach voxel x ∈ X \ K such that SkelX(x) = True do10

K := K ∪ {x};11

until stability ;12

Fig. 4 provides an illustration of the scheme

AsymThinningScheme. Let us consider the complex X

depicted in (a). We suppose in this example that we do not keep

any skeletal voxel, i.e., for any x ∈ X, we set SkelX(x) = False.

The traces of the cliques that are critical for X are represented

in (b), the trace of a clique C is the face f = ∩{x ∈ C}.

Thus, the set of the cliques that are critical for X is precisely

composed of six 0-cliques, two 1-cliques, three 2-cliques, and

one 3-clique. In (c) the four different sub-iterations of the first

iteration of the scheme are illustrated (steps 4-8):

- when d = 3, only one clique is considered, the dark grey

voxel is selected whatever the selection function;

- when d = 2, all the three 2-cliques are considered since none

of these cliques contains the above voxel. Voxels that could be

selected by a selection function are depicted in medium grey;

- when d = 1, only one clique is considered, a voxel that could

be selected is depicted in light grey;

- when d = 0, no clique is considered since each of the critical
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Fig. 4. (a): A complex X made of precisely 12 voxels. (b): The traces of the

cliques that are critical for X. (c): Voxels that have been selected by the

algorithm. (d): The result Y of the first iteration. (e): The traces of the 4

cliques that are critical for Y . (f): The result of the second iteration. (g)

and (h): Two other possible selections at the first iteration.

0-cliques contains at least one voxel that has been previously

selected.

After these sub-iterations, we obtain the complex depicted in

(d). The figures (e) and (f) illustrate the second iteration, at the

end of this iteration the complex is reduced to a single voxel.

In (g) and (h) two other possible selections at the first iteration

are given.

Of course, the result of the scheme may depend on the choice

of the selection function. This is the price to be paid if we try to

obtain thin skeletons. For example, some arbitrary choices have

to be made for reducing a two voxels wide ribbon to a simple

curve.

Fig. 5 shows another illustration, on bigger objects, of

AsymThinningScheme. Here also, for any x ∈ X, we have

SkelX(x) = False (no skeletal voxel). The result is called an

ultimate asymmetric skeleton.

6. Isthmus-based asymmetric thinning

In this section, we show how to use our generic scheme

AsymThinningScheme in order to get a procedure that com-

putes either curve or surface skeletons. This thinning procedure

preserves a constraint set K that is made of “isthmuses”.

Intuitively, a voxel x of an object X is said to be a 1-isthmus

(resp. a 2-isthmus) if the neighborhood of x corresponds - up to

Fig. 5. Ultimate asymmetric skeletons obtained by using

AsymThinningScheme. On the left, the object is a solid cylinder

bent to form a knot. Its ultimate skeleton is a discrete curve. On the

right, the object is connected and without holes and cavities. Its ultimate

skeleton is a single voxel.

a thinning - to the one of a point belonging to a curve (resp. a

surface) Bertrand and Couprie (2014).

We say that X ∈ V
3 is a 0-surface if X is precisely made of

two voxels x and y such that x ∩ y = ∅.

We say that X ∈ V3 is a 1-surface (or a simple closed curve)

if:

i) X is connected; and ii) For each x ∈ X, N∗(x) ∩ X is a 0-

surface.

Definition 6. Let X ∈ V3, let x ∈ X.

We say that x is a 1-isthmus for X ifN∗(x)∩ X is reducible to a

0-surface.

We say that x is a 2-isthmus for X ifN∗(x)∩ X is reducible to a

1-surface.

We say that x is a 2+-isthmus for X if x is a 1-isthmus or a

2-isthmus for X.

See Fig. 6 for an illustration of the notion of k-isthmus.

Our aim is to thin an object, while preserving a constraint set

K that is made of voxels that are detected as k-isthmuses during

the thinning process. We obtain curve skeletons with k = 1,

surface skeletons with k = 2, and surface/curve skeletons with

k = 2+. These three kinds of skeletons may be obtained by

using AsymThinningScheme, with the function SkelX defined

as follows:

SkelX(x) =

{

True if x is a k-isthmus for X,

False otherwise,

with k being set to 1, 2, or 2+.

Observe that there is the possibility that a voxel belongs to

a k-isthmus at a given step of the algorithm, but not at further

steps. This is why previously detected isthmuses are stored (see

lines 10-11 of AsymThinningScheme).

In Fig. 7, we show a curvilinear skeleton and a sur-

face/curvilinear skeleton obtained by our method from the same

object.



6

x

y

Fig. 6. First row: a voxel complex X. Second row: left, the setN∗(x)∩X and

right, a 0-surface that is a thinning of N∗(x) ∩ X. Hence, x is a 1-isthmus.

Third row: left, the set N∗(y) ∩ X and right, a 1-surface that is a thinning

of N∗(y) ∩ X. Hence, x is a 2-isthmus.

7. Experiments, results and discussion

In these experiments, we used a database of 30 three-

dimensional voxel objects. These objects were obtained by

converting into voxel sets some 3D models freely available on

the internet (mainly from the NTU 3D database, see http:

//3d.csie.ntu.edu.tw/~dynamic/benchmark). Our test

set can be downloaded at http://www.esiee.fr/~info/

ck/3DSkAsymTestSet.tgz. We chose these objects because

they all may be well described by a curve skeleton, the branches

of which can be intuitively related to object parts (for example,

the skeleton of a coarse human body has typically 5 branches,

one for the head and one for each limb). For each object, we

manually indicated an “ideal” number of branches. Unneces-

sary branches are essentially due to noise. Thus, a simple and

effective criterion for assessing the robustness of a skeletoniza-

tion method is to count the number of extra branches, or equiv-

alently in our case, the number of extra curve extremities.

In order to compare methods, we mainly use the indicator

E(X,M) = |c(X,M)− ci(X)|, where c(X,M) stands for the num-

ber of curve extremities for the result obtained from X after

application of method M, and ci(X) stands for the ideal num-

ber of curve extremities to expect with the object X. Note that,

for all objects in our database and all tested methods, the differ-

ence was positive, in other words the methods produced more

skeleton branches than expected, or just the right number. We

define E(M) as the average, for all objects of the database, of

E(X,M). The lower the value of E(M), the better the method M

with respect to robustness.

Another useful indicator is the reconstruction ratio, defined

as R(X,M) = 100×
V(Re(Sk(X,M),X))

V(X)
, where Sk(X,M) is the skele-

ton obtained from object X using method M, Re(S , X) stands for

the reconstruction from S (union of balls using the voxels of S

as centers and the values of the distance map of X as radii), and

Fig. 7. Asymmetric skeletons obtained by using AsymThinningScheme.

Left: curve skeleton. The function SkelX is based on 1-isthmuses. Right:

curve and surface skeleton. The function SkelX is based on 2+-isthmuses.

Of course, these skeletons need some filtering, see section 8 and Fig. 11.

V(X) stands for the number of voxels of X. We define R(M)

as the average, for all objects of the database, of R(X,M). Of

course, there is a trade-off between indicators R and E, as a

noisy skeleton with many spurious branches will likely yield a

high reconstruction rate. But for skeletons with comparable val-

ues of E, a higher R indicates a better quality (better centering

and/or longer skeleton branches).

The goal of asymmetric thinning is to provide “thin” skele-

tons. This means in particular that the resulting skeletons

should contain no simple voxel, apart from the curve extrem-

ities. However, due to their parallel nature, most thinning al-

gorithms considered in this study may leave some extra sim-

ple voxels. We define our third indicator as P(X,M) = 100 ×
V(Si(Sk(X,M)))

V(Sk(X,M))
, where Si(S ) denotes the set of simple voxels of S

that are not curve extremities. We define P(M) as the average,

for all objects of the database, of P(X,M). The lower the value

of P(M), the better the method M with respect to thinness.

To make a fair comparison, we consider only parallel asym-

metric thinning methods that produce curve skeletons of voxel

objects, and that have no parameter. In particular, we do not

consider the variants of the algorithms of Németh et al. (2010b)

that involve the checking of extremity voxel neighborhoods of

increasing size, as this neighborhood size is indeed a parameter.

First of all, it is interesting to look at the results of different

methods for a same object (see Fig. 8 and Fig. 9). We notice

in particular that some methods, like Tsao and Fu (1981) and

Palágyi and Kuba (1998), are not sufficiently powerful to pro-

duce results that may be interpreted as curve skeletons (see also

the ratio of remaining simple points in table 1). For the sake

of space and readability, we selected only 12 methods among

the 21 that took place in our experiments. See table 1 for the

complete quantitative results.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Fig. 8. Curve skeletons of a same object obtained through different meth-

ods: (a) Tsao and Fu (1981), (b) Tsao and Fu (1982), (c) Palágyi and

Kuba (1998), hybrid, (d) Palágyi and Kuba (1999a), (e) Palágyi and Kuba

(1999b), (f) Ma and Wan (2000), (g) Ma et al. (2002b), (h) Ma et al. (2002a),

(i) Lohou and Bertrand (2005), (j) Németh et al. (2010a), 2 subgrids, (k)

Németh et al. (2010b), 8 subgrids, (l) Our new method based on isthmuses.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Fig. 9. Idem Fig. 8.
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Table 1. Results of our quantitative comparison (see text). The term “dir”

indicates a directional algorithm, “sgr” a subgrid algorithm, and “hy-

brid” an algorithm that alternates directional steps and subgrid steps. Our

method AsymThinningScheme was used, either with a function SkelX that

detects 1-isthmuses (1), or with a function that detects extremity voxels (2).

Method M E(M) R(M) P(M)

Tsao and Fu (1981), 6 dir 177.2 89.9 29.07

Tsao and Fu (1982), 6 dir 37.0 75.1 5.66

Gong and Bertrand (1990), 6 dir 134.1 92.5 28.15

Bertrand and Aktouf (1995), 8 sgr 15.6 72.6 0.13

Saha et al. (1997), 8 sgr 117.4 80.1 0.29

Palágyi and Kuba (1998), 6 dir 43.2 78.7 1.96

Palágyi and Kuba (1998), hybrid 25.7 78.0 8.28

Palágyi and Kuba (1999a), 8 dir 8.97 60.8 0.23

Palágyi and Kuba (1999b), 12 dir 9.2 51.3 0.72

Ma and Wan (2000), 6 dir 115.9 82.9 10.40

Ma et al. (2002b), 4 sgr 380.1 88.0 0.18

Ma et al. (2002a), 2 sgr 51.5 79.7 0.43

Lohou and Bertrand (2004), 12 dir 21.0 55.8 0.13

Lohou and Bertrand (2005), 6 dir 11.3 71.5 0.003

Németh et al. (2010a), 2 sgr 67.9 81.3 38.32

Németh et al. (2010b), 4 sgr 38.2 75.6 0.0

Németh et al. (2010b), 8 sgr 31.7 74.7 0.0

Németh et al. (2011), 6 dir 10.1 71.5 5.59

Raynal and Couprie (2011), 6 dir 12.9 74.3 1.56

AsymThinningScheme(1) 5.5 68.5 0.05

AsymThinningScheme(2) 6.7 68.8 0.0

This illustrates the difficulty of designing a method that keeps

enough voxels in order to preserve topology, and in the same

time, deletes a sufficient number of voxels in order to produce

thin curve skeletons. This difficulty is indeed high when these

two opposite constraints are not clearly distinguished. The

strength of our approach lies in a complete separation of these

constraints.

The example of Fig. 8 illustrates very well the sensitivity to

contour noise of the methods. The original object is a solid

cylinder bent in order to form a knot. Thus, its curve skeleton

should ideally be a simple closed curve. Any extra branch of

the skeleton must undoubtedly be considered as spurious. As

can be seen in the figure, only our method produces a skeleton

of this object that is totally free of spurious branches.

Table 1 gathers the quantitative results of our experiments,

that allows us to compare the 19 other existing methods of the

same class with our algorithm. We see that our method out-

performs all existing methods with respect to the robustness

criterion. This remains true if we use extremity voxels (vari-

ant 2) instead of 1-isthmuses (variant 1) as skeletal voxels. We

note also that, compared with the two best methods after ours,

namely Palágyi and Kuba’s directional methods with 8 and 12

substeps, our algorithms have a better reconstruction ratio R(M)

and thinness factor P(M).

8. Isthmus persistence and skeleton filtering

It is well known that the skeletonization process is highly

sensitive to noise, and this is a major issue in practical appli-

cations. The origin of this problem lies in the following fact:

the transformation that associates its skeleton to a shape is not

continuous. In practice, it means that if a small perturbation is

applied on the contour of an object, then a big skeleton part may

appear or disappear. See for example Attali et al. (2009) for a

survey of selected studies on the stability of skeletons.

In consequence, many authors have proposed methods that

aim at eliminating, or “pruning”, spurious skeleton branches or

parts. These methods are essentially based on a criterion that

permits to distinguish between points or parts of the skeleton,

those that are due to noise from those that are robust to small

perturbations.

Among the different criteria that were proposed in the liter-

ature, the notion of isthmus persistence introduced in Liu et al.

(2010) (see also Chaussard (2010)) yields a simple yet efficient

method to filter skeletons during the thinning process. Origi-

nally, this method has been formulated in the framework of 3D

cubical complexes, i.e., objects made of faces of different di-

mensions. In this section, we show that it can be adapted to the

context of voxel complexes.

Let x be a voxel in a voxel complex X, that becomes an isth-

mus for the first time at step i of the parallel thinning. Then,

we define the birth date of x, denoted by b(x), as b(x) = i. In-

tuitively, b(x) corresponds to the local thickness of the object

around the voxel x, see Fig. 10 for an illustration in 2D.

Now, consider an isthmus voxel x that becomes, at step j of

the parallel thinning process, a deletable voxel. Then, we define

the death date of x, denoted by d(x), as d(x) = j.

Finally, we define the persistence of the voxel x as the dif-

ference between the death date ane the birth date, that is,

d(x) − b(x). It may be seen that a voxel with a high persistence

value is likely to belong to a robust skeleton part, whereas a

low persistence characterizes a voxel in a spurious skeleton part

(Fig. 10). Therefore, skeleton filtering may be performed by

keeping in the constraint set of the thinning algorithm, only the

isthmuses that have a persistence greater than a given threshold.

Fig. 10. The lengths depicted with a solid line correspond to the birth dates,

the dotted lines to the death dates.
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In the following algorithm, k stands for the dimension of the

considered isthmuses (1, 2 or 2+), and p is a parameter that

sets the persistence threshold. The function b associates to cer-

tain voxels their birth date, and K is a constraint set that is dy-

namically updated by adding those voxels whose persistence is

greater than the threshold p (lines 12-13).

Algorithm 2: PersistenceAsymThinning(X, k, p)

Data : X ∈ V3, k ∈ {1, 2, 2+}, p ∈ N ∪ {+∞}

Result : X

i := 0; K := ∅; foreach x ∈ X do b(x) := 0;1

repeat2

i := i + 1;3

Y := K;4

for d ← 3 to 0 do5

Z := ∅;6

foreach d-clique C ⊆ X \ Y that is critical for X do7

Z := Z ∪ {Select(C)};8

Y := Y ∪ Z;9

W := {x ∈ X \ K | x is a k-isthmus for X};10

foreach x ∈ W such that b(x) = 0 do b(x) := i;11

W ′ := {x ∈ Y | b(x) > 0 and i + 1 − b(x) > p};12

X := Y; K := K ∪W ′;13

until stability ;14

In line 11, the birth date b(x) of each new isthmus voxel x

is recorded. In line 12, the test b(x) > 0 implies that the con-

sidered voxel x has been recorded as an isthmus voxel. Fur-

thermore, since this voxel x belongs to Y , it is not deletable,

thus its death date d(x) is strictly greater than i. The condition

i + 1 − b(x) > p thus implies d(x) − b(x) > p, meaning that

the voxel x must be added to the constraint set K (see line 13)

because its persistence is greater than p.

Extreme cases for the values of the parameter p are p = 1

and p = +∞. Notice that, by the very definitions of isthmus

and persistence, the persistence of any isthmus is at least one

(since an isthmus is not deletable). If p = 1, then all detected

isthmuses are added to the constraint set. In this case, we re-

trieve the behaviour of algorithm IsthmusAsymThinnning. If

p = +∞, then no voxel is added to the constraint set. In this

case, the result is an ultimate asymmetric skeleton of X.

Fig. 12 illustrates the usefulness and the effectiveness of

persistence-based filtering. Fig. 12(a) shows a 3D shape and

its skeleton obtained by using AsymThinningScheme. In

Fig. 12(b), we added some random noise to the shape contour.

We clearly see that, for noisy objects, some filtering is manda-

tory. We obtain satisfactory results with values of p greater

than 5. See also Fig. 11.

9. Conclusion

We introduced an original generic scheme for asymmetric

parallel topology-preserving thinning of 3D objects made of

voxels, in the framework of critical kernels. We saw that from

this scheme, one can easily derive several thinning operators

having specific behaviours, simply by changing the definition

Fig. 11. Filtered skeletons of the same object as in Fig. 7. Left: curve skele-

ton, p = 3. Right: curve and surface skeleton, p = 2.

of skeletal points. In particular, we showed that ultimate, curve,

surface, and surface/curve skeletons can be obtained, based on

the notion of 1D/2D isthmuses.

A key point, in the implementation of the algorithms pro-

posed in this paper, is the detection of critical cliques and isth-

mus voxels. In Bertrand and Couprie (2014), we showed that

it is possible to detect critical cliques thanks to a set of masks,

in linear time. Note also that the configurations of 1D and 2D

isthmuses may be pre-computed by a linear-time algorithm and

stored in lookup tables. Finally, based on a breadth-first strat-

egy, the whole method can be implemented to run in O(n) time,

where n is the number of voxels of the input 3D image.

We performed some experiments in order to compare our

curve skeletonization algorithm with all methods of the same

class found in the literature. The results show clearly that our

method outperforms the other ones with respect to robustness.

Furthermore, we showed that an effective filtering can be eas-

ily performed within our framework, thanks to the notion of

persistence. In this approach, the filtering is done dynamically,

with very little added cost, and is governed by a unique pa-

rameter. Persistence is closely linked to the notion of isthmus,

and we stress that this kind of filtering cannot be adapted to the

other methods considered in our experiments.
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