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Abstract

To address the limitations of SRAM such as high-leakage
and low-density, researchers have explored use of non-
volatile memory (NVM) devices, such as ReRAM (re-
sistive RAM) and STT-RAM (spin transfer torque RAM)
for designing on-chip caches. A crucial limitation of
NVMs, however, is that their write endurance is low and
the large intra-set write variation introduced by exist-
ing cache management policies may further exacerbate
this problem, thereby reducing the cache lifetime sig-
nificantly. We present EqualChance, a technique to in-
crease cache lifetime by reducing intra-set write vari-
ation. EqualChance works by periodically changing
the physical cache-block location of a write-intensive
data item within a set to achieve wear-leveling. Sim-
ulations using workloads from SPEC CPU2006 suite
and HPC (high-performance computing) field show that
EqualChance improves the cache lifetime by 4.29×.
Also, its implementation overhead is small, and it incurs
very small performance and energy loss.

Keywords: Non-volatile memory, ReRAM, wear-
leveling, intra-set write variation, cache lifetime, write
endurance.

1 Introduction

Recent trends of CMOS scaling have led to a large in-
crease in the number of cores on a chip. To feed data
to these cores, the size of last level cache (LLC) has
also increased, for example, Intel’s 22nm 15-core Xeon
processor has 37.5MB SRAM LLC [1]. However, since
SRAM has high leakage energy and low density, caches
designed with SRAM may consume a large fraction of
chip area and power budget [2]. To overcome the lim-
itations of SRAM, researchers have recently explored
use of NVM devices, such as ReRAM (resistive RAM),
STT-RAM (spin transfer torque RAM), and PCM (phase
change memory) for designing LLCs [3–6]. NVMs

have several attractive features, such as near-zero leakage
power consumption, high density and scalability. For ex-
ample, the size of a typical SRAM cell is in the range of
125–200F2, while that of a ReRAM cell is in the range
of 4–10F2, where F denotes the smallest lithographic di-
mension in a given technology node [7–10].

A crucial limitation of NVMs, however, is their small
write endurance, which can significantly limit the device
lifetime. For ReRAM and PCM, the write endurance val-
ues are 1011 [11] and 108 [7], respectively. For STT-
RAM, although a write endurance value of greater than
1015 has been predicted, the best write endurance test
so far shows a value of only 4× 1012 [5, 12]. Process
variations may further reduce these values by an order
of magnitude [13]. In contrast, the write endurance val-
ues of SRAM and DRAM are more than 1015 [7]. Fur-
ther, existing cache management policies are unaware of
possible write-variations across the cache. Hence, these
variations may significantly increase the writes to a few
hotspot cache blocks, causing the devices in those blocks
to experience early failures, while other blocks remain
reliable. As an example, with LRU (least recently used)
replacement policy, most hits are expected to occur at or
near MRU (most recently used) position(s). This leads to
large intra-set write variation. This is also confirmed by
the previous research [5, 14, 15].

To demonstrate the effect of write-variation on cache
lifetime and highlight the need of a wear-leveling tech-
nique, we take the example of two SPEC CPU2006
benchmarks and compare the L2 cache lifetime when
each of these benchmarks is used as a workload in a
single-core system. The first benchmark is lbm, which
has the highest L2 cache write-intensity among all the
SPEC CPU2006 workloads ( [16], also confirmed by our
experiments) and the second is povray which has the
largest coefficient of inter-set and intra-set write varia-
tion among all the SPEC2006 workloads (refer Section 3
and Figure 2). We assume an L2 cache (LLC) with LRU
replacement policy which does not use any wear-leveling



technique. We observe that, although the total number of
writes with lbm is 41 times larger than that of povray,
the largest number (i.e. worst-case) of writes on a block
for lbm is 20 times smaller than that of povray. This
is due to the fact that with lbm benchmark, the writes
are uniformly distributed to different cache blocks, while
for povray benchmark, most of the writes are directed to
only few cache blocks that would fail much earlier than
the rest of the blocks, leading to very short overall cache
lifetime.

Thus, contrary to the intuitive expectation, the lim-
ited write-endurance of NVMs poses a challenge, for not
only the write-intensive workloads but also for the write-
unintensive workloads since the variation in writes to
cache blocks may present more severe challenge than the
magnitude (i.e. number) of writes. This clearly shows
that wear-leveling techniques are crucial for achieving
reasonable lifetime with NVM caches and can be very
effective in making NVMs the universal memory solu-
tion for future extreme-scale computing systems.

1.1 Contributions

In this paper, we present EqualChance, a technique for
increasing lifetime of NVM caches by mitigating the
intra-set write variation. EqualChance records the num-
ber of writes to each set and uses this count to periodi-
cally shift a write-intensive data item to a block having
lower position (i.e. least-recent) in the LRU-stack, since
this block is expected to have seen smaller number of
writes in the recent execution interval (Section 3). Thus,
the future writes will be redirected from a hot (i.e. fre-
quently written) block to a cold block, which helps in
achieving wear-leveling. In this paper, we take the ex-
ample of a ReRAM LLC and based on the explanation,
EqualChance can be easily applied to caches designed
with other NVMs. In the remainder of the paper, we use
the term ReRAM and NVM interchangeably for the sake
of convenience.

The storage requirement of EqualChance is less than
0.2% of the L2 cache size and thus, its implementation
overhead is very small (Section 4). We conduct microar-
chitectural simulations using an x86-64 simulator and
single-core workloads from SPEC2006 suite and HPC
(high-performance computing) field (Section 5). We
characterize both intra-set and inter-set write-variation
for our workloads for different cache configurations and
show that EqualChance significantly reduces the intra-set
write variation which results in improvement in the cache
lifetime (Section 6.1). Also, EqualChance has minimal
impact on performance and energy efficiency. Additional
results show that EqualChance performs well for differ-
ent system and algorithm parameters (Section 6.2) and
thus, it offers flexibility to the designer to achieve a bal-

ance between the improvement in lifetime and perfor-
mance/energy loss. .

2 Background and Related Work

Techniques for improving NVM cache lifetime: Cache
lifetime can be improved by using either or both of write-
minimization or wear-leveling techniques. Some re-
searchers propose write-minimization techniques which
work at bit-level by avoiding redundant writes [17, 18]
and at cache-access level by using buffers or additional
level of caches [19,20]. These techniques are orthogonal
to EqualChance and hence, can be synergistically inte-
grated with it.

Based on their granularity, the wear-leveling tech-
niques can be further classified as cache-color level [21],
set-level [22], way-level [5] and memory-cell level [18].
As we show in Section 6, for our workloads, intra-set
write-variation for typical caches can be higher than
inter-set write-variation. EqualChance works at way-
level (i.e. it addresses intra-set write variation) and can
be easily combined with the set-level or memory-cell
level wear-leveling techniques for further improving the
cache lifetime.

To leverage the high write-endurance and performance
of SRAM along with high density and low-leakage of
NVMs, researchers have proposed way-based NVM-
SRAM hybrid cache designs [9, 23] where a few ways
are designed using SRAM and the remaining ways are
designed using NVM. EqualChance technique can be
easily used in such hybrid caches also to minimize the
write-variation in NVM ways and increase the number
of writes in SRAM ways.

Qureshi et al. [24] propose a wear-leveling technique
for main memory which periodically changes the map-
ping between logical and physical address to uniformly
distribute the writes in the main memory. Since writes
to caches show both inter-set and intra-set variations [6],
while those to main memory show only inter-set vari-
ation, the wear-leveling techniques proposed for main
memory cannot be utilized to mitigate intra-set write-
variation in caches.

Discussion of a few wear-leveling techniques:
Wang et al. [5] propose a technique, named probabilis-
tic line flush (PoLF) to reduce intra-set write variation.
After a fixed number of write hits in the entire cache,
a write-operation on cache is skipped, instead the data
item is directly written-back to memory and the cache-
block is invalidated, without updating the LRU-age in-
formation. A common limitation of cache wear-leveling
techniques based on data invalidation (e.g. [5,22]) is that
in an attempt to reduce or uniformly spread the writes
to the cache, they may increase the number of writes on
main memory, which increases the memory power dissi-
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pation and queue contention. Also, in the modern pro-
cessors, the main memory itself may be designed using
NVM and hence, these techniques may exacerbate the
write endurance issue in the main memory. In compari-
son, EqualChance does not use data invalidation, rather it
uses in-cache data movement approach and tries to redi-
rect the hot data-item to a cold block in the same set.
Also, EqualChance does not require offline profiling or
modification of the program binary (unlike [9]) or includ-
ing set-index bits as part of the tag (unlike [22]). Also, in
EqualChance, data movement is done within the same set
and not across sets (unlike [23]) and hence, set-decoding
and block-lookup mechanisms are not affected.

3 Methodology

Notations: We use the following symbols. For L2 cache,
N, M, L and G denote the number of sets, associativity,
cache line (block) size and tag-size, respectively. In this
paper, we assume L = 64B (or 512 bits) and G = 40 bits.
Also, we use Wavg to show the average writes on all cache
blocks and wi, j to show the number of writes on a block
at way j in set i. Using these, the coefficient of inter-set
write variation (InterV) and coefficient of intra-set write
variation (IntraV) can be defined [5] as

InterV =
100
Wavg

√√√√√√ N
∑

i=1

(
M
∑
j=1

wi, j/M−Wavg

)2

N−1
(1)

IntraV =
100

N ·Wavg

N

∑
i=1

√√√√√ M
∑
j=1

(
wi, j−

M
∑

r=1
wi,r/M

)2

M−1
(2)

Thus, InterV measures the CoV (coefficient of varia-
tion) of the average write count within cache sets, and In-
traV measures the average of the CoV of the write counts
across a cache set [5]. Note that EqualChance does not
require computation of IntraV or InterV. We use them
only to characterize the write-variation present in work-
loads and as a figure of merit for evaluating effectiveness
of EqualChance. We now discuss the main idea and al-
gorithm of EqualChance.

3.1 Main Idea
Based on the temporal locality principle, cache manage-
ment policies such as LRU replacement policy, aim to
keep the hot data in the cache as long as possible. How-
ever, if a particular data item sees frequent write hits, the
number of writes on that block will increase much more
than those on the other blocks.

EqualChance works on the key idea that periodically,
if the physical cache-block location of a write-intensive

data item is changed, future writes will occur to another
cache-block, and thus, the writes can be more uniformly
distributed in a cache set. EqualChance records the num-
ber of writes on each set individually and uses this count
to trigger a write-redirection operation for that set. By
virtue of recording per-set counters, it performs more ag-
gressive wear-leveling for the heavily written sets, which
is especially advantageous for applications which have
high inter-set write variation. Unlike previous techniques
(e.g., [3,9]) we do not use compiler analysis or extra stor-
age to detect write-intensive blocks. Instead, we assume
that, probabilistically, the data-item being shifted on a
write-hit is hot, since the most frequently accessed data-
item is most likely to be chosen for redirection when the
shifting is performed. This assumption has been con-
firmed by our experiments. For a 16-way cache, assum-
ing that the age of the MRU-way is 0 and that of the
LRU-way is 15 (and similarly for other ways), we record
the average age of the data-item selected for shifting in
all shifting-operations and then average it over all the
workloads. This value is observed to be 0.29, which is
very close to 0, the age of the MRU-way, which confirms
that the MRU-way is most frequently chosen for shifting.

In a set-associative cache, any block in a set can be a
candidate for write-redirection. A candidate block may
store either an invalid, clean or dirty data item. We term
I-shifting (resp. C-shifting) as the case when a write
is redirected to an invalid (resp. clean) block. We do
not redirect to another dirty block since the dirty data
item itself may have write-intensive nature. I-shifting
is preferred over C-shifting, since it incurs less over-
head. Also, less recent (i.e. “older”) blocks are expected
to have seen smaller number of cache accesses than
the more recent blocks in the near-past execution win-
dow. Hence, for achieving wear-leveling, EqualChance
searches for the least-recent invalid or clean block.

3.2 Working of EqualChance

For each cache set, we use a numWrite counter and
a FlagBit. The numWrite counter is incremented
when a write-access takes place in that set. When the
counter reaches a pre-determined shifting interval (ϒ),
the FlagBit is turned ON and the counter is reset. When
a write-access happens and the FlagBit is ON, Algo-
rithm 1 is triggered which finally turns OFF the FlagBit.
If no candidate for write-redirection is found (line 16-
18) or FlagBit is OFF (line 21-23), a normal write is
performed and LRU-age (i.e. cache replacement policy)
information is also updated (line 24-26). In Algorithm
1 if there is no invalid (resp. clean) block in a set, a
NULL value is returned in line 5 (resp. line 11). Further,
on lines 9, 14 and 15, it is assumed that when data are
shifted, corresponding tags are also shifted accordingly
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Invalid 

data

Figure 1: Illustration of working of EqualChance algorithm. Updated items are highlighted as: item.

Algorithm 1: EqualChance: algorithm for handling
a write-access in set-index i

1 /* Way-index refers to the physical-order,
not the LRU-order */

2 z← way-index of the write-hit block (found by tag matching)
3 isNormalWrite← FALSE
4 if FlagBit[i] is ON then
5 p← way-index of the least-recent invalid block in set i
6 if p ̸= NULL then
7 /* Perform I-shifting */
8 Mark Data[i][z] as invalid
9 Write new data to Data[i][p] and mark dirty (and valid)

10 else
11 q← way-index ( ̸= z) of the least-recent clean block in

set i
12 if q ̸= NULL then
13 /* Perform C-shifting */
14 Write Data[i][q] to Data[i][z] and mark clean
15 Write new data to Data[i][q] and mark dirty
16 else
17 isNormalWrite← TRUE
18 end
19 end
20 Turn FlagBit[i] OFF
21 else
22 isNormalWrite← TRUE
23 end
24 if isNormalWrite then
25 Write new data to Data[i][z], mark dirty and update LRU-age

information
26 end

(but LRU-age information is not updated).
Figure 1 presents an illustration of the working of Al-

gorithm 1. In case 1, invalid blocks exist in the cache (p
= 2 and 7), and if the FlagBit is ON, the least-recent one
(p = 7 having LRU-age as 6) is selected and I-shifting is
performed. If the FlagBit is OFF, a normal write is per-
formed where the block is written and LRU-age values
are updated. In case 2, no invalid block exists and hence,
the algorithm searches for the clean blocks. Of the four
clean blocks at indices 0, 3, 4, 6, the one with index 6 is
the least-recent in LRU-position and hence, it is selected
for C-shifting (q = 6). If the set had no clean block, a
normal write would be performed.

4 Implementation and Overhead Assess-
ment

Storage Overhead: We use ϒ values less than 16 and
thus, 4-bits are sufficient for the numWrite counter. We
assume, C-shifting is performed using a centralized swap
buffer [3] or a similar scheme. Due to the inter-set write
variation and the preference for I-shifting, not all sets
are expected to perform C-shifting simultaneously and
hence, few swap-buffer entries are sufficient. Assuming
64 swap-buffer entries (64B each) and 5-bit storage for
each set (numWrite counter + FlagBit), the percentage
overhead of EqualChance (Overhead), compared to the
L2 cache is

Overhead =
(N×5)+(64×L)
N×M× (L+G)

×100 (3)
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As an example, for an 8MB, 16-way L2 cache, we find
Overhead of EqualChance as merely 0.15% of L2 cache,
which is very small.

Effect on Latency and Energy: We assume that in
the normal case, checking for FlagBit can be folded into
the address decode tree of the cache and hence, the la-
tency of normal case is not affected. Let Lw denote the
cache write latency in cycles and its value is shown in
Table 1. Then, we assume, I-shifting takes 2+ Lw + 1
cycles (2 cycles for searching an invalid cache block, Lw
cycles for writing the data and 1 cycle for invalidating the
existing block and setting appropriate valid/dirty bits).
Also, C-shifting takes 2+2+4+2Lw+1 cycles (2 cycles
each for searching an invalid block first and then a clean
block, 4 cycles for transferring a 64B block on a 32B
bus to and from the swap-buffer, Lw cycles for writing
the clean data, Lw cycles for writing the newly-arrived
data and 1 cycle for setting appropriate valid/dirty bits).
Compared to the baseline case, C-shifting incurs an ex-
tra write, which we include in total number of L2 writes.
In addition, we assume 0.5 nJ energy overhead of each
C-shifting operation.

As confirmed by the results, due to the instruction-
level parallelism present in modern processors, a small
increase in the latency of LLC is easily hidden and by
choosing a large ϒ value, the overhead of shifting can be
amortized over a large execution window (refer Section
6.2). In Section 6.2, we also evaluate EqualChance as-
suming higher shifting overhead (i.e. using ‘pessimistic’
estimates of overhead) and find that the overhead of
EqualChance still remains small. For further optimiza-
tion, the search for invalid/clean blocks can be over-
lapped with the tag-matching.

5 Experimental Methodology

Simulation Platform: We conduct simulation using in-
terval core model in Sniper x86-64 simulator [25], which
has been verified against real hardware. Processor fre-
quency is 2GHz and both L1 I/D are 4-way 32KB caches
with 2 cycle latency. L2 cache is a 16-way 4MB cache.
L2 cache is inclusive of L1 and all caches use LRU,
write-back, write-allocate policy. We find the parame-
ters for ReRAM L2 cache using NVSim [10], assuming
sequential cache access, 32nm CMOS process, 16-way
set-associativity and write EDP (energy delay product)
optimized cache design. These parameters are shown in
Table 1. Main memory latency is 220 cycles. Peak mem-
ory bandwidth is 10 GB/s and queue contention is also
modeled.

Workloads: All 29 benchmarks from SPEC
CPU2006 suite with ref inputs and 5 benchmarks from
HPC field (shown in italics in Table 2) are used as work-
loads. These workloads, along with their acronyms are

Table 1: Parameters for 16-way ReRAM L2 cache

2MB 4MB 8MB
Hit Latency (ns) 5.06 5.12 5.90

Miss Latency (ns) 1.73 1.65 1.68
Write Latency (ns) 22.11 22.18 22.67

Hit energy (nJ) 0.542 0.537 0.602
Miss energy (nJ) 0.232 0.187 0.188

Write energy (nJ) 0.876 0.827 0.882
Leakage Power (W) 0.019 0.037 0.083

shown in Table 2.

Table 2: Workloads used in the paper

As(astar), Bw(bwaves), Bz(bzip2), Cd(cactusADM)
Ca(calculix), Dl(dealII), Ga(gamess), Gc(gcc)
Gm(gemsFDTD), Gk(gobmk), Gr(gromacs)

H2(h264ref), Hm(hmmer), Lb(lbm), Ls(leslie3d)
Lq(libquantum), Mc(mcf), Mi(milc), Nd(namd)

Om(omnetpp), Pe(perlbench), Po(povray), Sj(sjeng)
So(soplex), Sp(sphinx), To(tonto), Wr(wrf)
Xa(xalancbmk), Ze(zeusmp), Am(amg2013)

Co(CoMD), Lu(LULESH), Mk(MCCK), Ne(Nekbone)

Evaluation Metrics: Our baseline is a ReRAM L2
cache which uses LRU replacement policy but does not
use any mechanism for lifetime enhancement. We show
the results on a) coefficient of inter-set write-variation
(InterV, see Section 3), b) coefficient of intra-set write-
variation (InterV), c) relative cache lifetime where the
lifetime is defined as the inverse of maximum writes on
any cache block. Further, we show d) relative perfor-
mance [2], which is the ratio of IPC with EqualChance
to IPC with baseline, e) percentage energy loss, f) to-
tal number of I-shifting and C-shifting operations which
took place in EqualChance. We model energy of L2,
main memory and algorithm execution. The values of
leakage power and dynamic energy of main memory are
taken as 0.18W and 70nJ/access, respectively [15] and
the energy parameters for L2 are shown in Table 1. The
energy overhead of algorithm execution includes 0.5 nJ
for each C-shifting operation. We ignore the overhead of
counters and buffers, since it is several orders of magni-
tude smaller compared to the memory subsystem (L2 +
main memory). As an example, the dynamic energy of
writing a 5-bit counter is 0.96pJ [26], which is 3 orders of
magnitude smaller than the energy consumed in writing
an L2 cache block (refer Table 1).

We fast-forward the benchmarks for 10B instruc-
tions and simulate each workload for 300M instruc-
tions. Across the workloads, relative lifetime and rel-
ative performance values are averaged using geometric
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Figure 2: Results with EqualChance technique

mean and the remaining metrics are averaged using arith-
metic mean, since they can be zero or negative. We
have also computed absolute increase in MPKI (miss-
per-kilo-instructions) and found its average value across
workloads to be less than 0.04 for all configurations and
hence, EqualChance does not increase off-chip accesses.
For sake of brevity, we omit the results on MPKI.

6 Results and Analysis

6.1 Results with Default Parameters

Figure 2 shows the experimental results. We now analyze
the results.

Results on InterV and IntraV: Firstly, from Figure
2(a) and 2(b), we note that for a 16-way 4MB cache, av-
erage IntraV is larger than InterV. Note that for a fixed
cache capacity, on increasing the associativity, InterV re-
duces and IntraV increases and vice versa (refer Table

3 and Section 6.2). With increasing number of cores,
the associativity will also increase, since to avoid con-
flict misses, the cache associativity should be equal to
at least the number of cores. This highlights the im-
portance of an intra-set wear-leveling technique such as
EqualChance in improving the lifetime of NVM caches.
EqualChance reduces the average intra-set write varia-
tion from 141.8% to 33.8%. For several workloads, the
IntraV in baseline cache is nearly 400%, for example,
Ga (gamess), Po (povray) and Am (amg2013). Also, for
several other workloads, the IntraV in baseline cache is
more than 200%. This also underscores the necessity of
using an intra-set wear-leveling technique.

Results on Lifetime Improvement: On average,
EqualChance increases the cache lifetime by 4.29×. For
several workloads, the lifetime is improved by more than
10×, for example, Ga, Nd (namd), Po, Sj (sjeng), Ze
(zeusmp) and Am. Similarly, for several other work-
loads, the improvement in lifetime is more than 5×. The
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maximum increase possible in the cache lifetime de-
pends on the variation present in the workload. Thus,
the largest improvement in lifetime is obtained for work-
loads which show high write-variation, e.g., Ga, Po, Sj,
Nd etc. Conversely, for workloads such as Lq (libquan-
tum) and Mi (milc), the intra-set write variation in base-
line is close to zero, and hence, the scope of improvement
in lifetime is negligible. Cache lifetime improvement for
these workloads can be achieved using other techniques
such as cache bypassing, use of write-buffer, etc.

Results on Performance: The relative performance
is 1.00× and thus, EqualChance has negligible effect on
performance. This is due to the fact that EqualChance
uses in-cache data-movement and unlike previous data-
invalidation based techniques (e.g. [5,22]), EqualChance
does not flush the data to achieve wear-leveling. Thus,
EqualChance does not increase DRAM traffic signifi-
cantly or cause queue-contention, or write-endurance is-
sues at main memory. The largest loss in performance
is seen for workloads such as So (soplex) where relative
performance is 0.97×. This is because, soplex uses L2
cache intensely.

Results on Energy: The average loss in energy
on using EqualChance is 1.97%. Thus, the effect of
EqualChance on energy efficiency is small. Since, in
general, the higher density and lower leakage power of
NVMs help in achieving high performance and energy
efficiency, a small loss in these parameters may be ac-
ceptable for addressing the crucial limitation of NVMs,
viz. their limited write endurance. As we show in Sec-
tion 6.2, by changing the shifting-interval (ϒ), a designer
can exercise trade-off between performance/energy loss
and improvement in lifetime. Further, power density
minimization comes as a side-benefit of wear-leveling
[27], which may reduce the chip-temperature, leakage
power and the cooling requirement, thus offsetting a
small energy loss incurred by EqualChance.

For some workloads, such as Mc (mcf), Sp (sphinx),
Xa (xalan) etc., EqualChance leads to small saving in en-
ergy. This can be attributed to the fact that EqualChance
alters the cache replacement policy and periodically
shifts some blocks from the more recent position to the
less recent position in the LRU stack. Since a large frac-
tion of blocks in mcf etc. are used only once (i.e. dead-
on-arrival) [28], demoting them in LRU stack enables
their faster eviction, which also improves the hit-rate.

Results on Shifting Operations: Table 3 shows
the number of I and C-shifting operations on using
EqualChance. On average, 199K I-shifting and 96K
C-shifting operations take place. The number of these
operations depends on the interaction of several factors
such as cache-usage intensity, write-intensity and write-
variation present in cache access behavior of a work-
load. The higher the write-intensity, the more frequently

Table 3: Number of I-and C-shifting operations

I-shifting C-shifting I-shifting C-shifting
As 120K 143K Mi 298K 50K
Bw 1K 61K Nd 76K 0
Bz 271K 0 Om 4K 2K
Cd 344 86K Pe 11K 571
Ca 261K 0 Po 107K 0
Dl 63K 0 Sj 45K 0
Ga 133K 0 So 737K 577K
Gc 97K 35K Sp 361 58K
Gm 217K 517K To 120K 0
Gk 131K 0 Wr 33K 0
Gr 156K 6K Xa 34K 66K
H2 47K 0 Ze 625K 0
Hm 176K 0 Am 82K 0
Lb 2580K 1K Co 71K 33
Ls 51K 595K Lu 134K 239K
Lq 0 201K Mk 21K 251K
Mc 38K 361K Ne 8K 0

EqualChance algorithm is executed, but if most blocks
store dirty data-item, then a candidate for shifting may
not be found. Also, the higher the cache-usage intensity,
the more will be the number of valid blocks in the cache
and hence, the more will be the number of C-shifting op-
erations. Similarly, if the write-variation is high, most
writes are directed to only few blocks and the remaining
blocks remain invalid or store clean data-item and hence,
candidates for I or C-shifting can be easily found.

6.2 Parameter Sensitivity Results

We now study the sensitivity of EqualChance for dif-
ferent parameters. Except the parameter mentioned, all
other parameters have default values as shown in Sec-
tion 5. The energy/latency value for other cache config-
urations were computed as shown in Section 5 and are
omitted for brevity. The results are summarized in Table
4.

Changing Shifting Interval (ϒ): Shifting interval de-
cides the number of writes to a cache-set after which an
I- or C-shifting is performed. On increasing the shift-
ing interval, EqualChance algorithm is executed less fre-
quently, which is reflected in the reduction in number
of I- and C-shifting operations. Thus, increasing ϒ re-
duces the loss in performance and energy, although it
also reduces the enhancement in lifetime, since the wear-
leveling is performed less frequently. Note that even with
ϒ = 15, the improvement in lifetime is significant. Thus,
the value of ϒ can be chosen to exercise a trade-off be-
tween desired lifetime enhancement and acceptable loss
in performance and energy. Also notice that on increas-
ing ϒ from 5 (default) to 10, the total number of shifting

7



Table 4: Parameter Sensitivity Results for EqualChance. Default values: ϒ = 5, overhead values shown in Section 4, 16-way, 4MB
L2 cache (Perf. = performance).

% InterV % IntraV Relative Relative % Loss in I-shifting C-shifting
Baseline Baseline EqualChance Lifetime Perf. Energy operations operations

Default 111.1 141.8 33.8 4.29 1.00 1.97 199K 96K
ϒ=10 111.1 141.8 41.5 3.79 1.00 1.11 78K 69K
ϒ=15 111.1 141.8 44.9 3.60 1.00 0.75 48K 48K

Higher overhead 111.1 141.8 33.8 4.29 0.99 2.01 199K 96K
8-way L2 154.2 111.7 28.8 3.09 0.99 1.55 148K 144K
32-way L2 74.0 171.6 36.3 5.02 1.00 3.29 251K 44K
2MB L2 71.9 108.6 25.9 3.38 0.99 2.96 157K 139K
8MB L2 152.3 181.5 45.1 6.20 0.99 2.74 239K 53K

operations are reduced by nearly half, which is expected.

Higher Shifting Overhead: To evaluate the effect of
shifting overhead, we assume 3 and 9 cycles extra la-
tency overhead of each I-shifting and C-shifting oper-
ation (respectively) over and above that mentioned in
Section 4 and 0.5nJ additional energy overhead of C-
shifting. The results in Table 4 show that the energy
efficiency and performance are minimally affected and
hence, EqualChance is not very sensitive to the shifting
overhead. This can be easily understood by noting that
shifting happens relatively infrequently and a small in-
crease in LLC latency is easily hidden by the instruction-
level parallelism.

Changing Associativity (M): For a fixed cache ca-
pacity, reducing the associativity increases the inter-set
write variation but reduces the intra-set write variation
which is confirmed from the InterV and the IntraV val-
ues for baseline caches of different associativity values
in Table 4. This can be easily understood by consider-
ing the two extreme cases, viz. a fully-associative cache
and a direct-mapped cache. A fully-associative cache
has only one set and hence, its InterV will be zero and
similarly, a direct-mapped cache has only a single way
and hence its IntraV will be zero. From the table, we
conclude that EqualChance works well for caches of all
associativity values and provides lifetime improvement
in proportion to the amount of write-variation present in
the original workload. Specifically, it provides large im-
provement for the 32-way set associative caches. Com-
paring with the default case, the total number of shifting
operations remain nearly the same, which is expected.
Further, for large associativity, invalid blocks in a set can
be more easily found and since I-shifting is preferred
over C-shifting, the number of I-shifting operations in-
crease with increasing associativity and vice versa.

Changing Cache size: We experiment with both
double-sized and half-sized caches. The results in Ta-
ble 4 show that on increasing the cache size, the aver-
age improvement in lifetime is also increased and vice-

versa. This can be explained by noting that since appli-
cations have a fixed working set size (i.e. unique number
of cache lines accessed in a period of time), on increas-
ing the cache size, the hit-rate is also increased. Hence,
only few blocks are repeatedly accessed which increases
the intra-set write variation and hence, the scope for im-
proving the cache lifetime is also increased. Opposite is
seen on decreasing the cache size. From the results, it
is clear that for both the cache sizes, EqualChance pro-
vides significant reduction in the intra-set write variation
and improvement in cache lifetime. For large cache size,
larger number of invalid blocks can be found and hence,
the number of I-shifting operations are also higher in the
8MB cache and opposite is seen in 2MB cache.

For all parameters, the relative performance is equal to
or greater than 0.99× and the loss in energy is less than
3.30%. This confirms that EqualChance works well for
a wide-range of system and algorithm parameters.

7 Conclusion

The limited write endurance of NVMs is a key bottle-
neck preventing their use in designing on-chip caches.
In this paper, we presented EqualChance, a technique
for mitigating intra-set write variation to improve life-
time of NVM caches. Experimental results have shown
that EqualChance is effective in increasing the cache life-
time for NVM caches and works well for a wide range
of parameters. Our future efforts will focus on syner-
gistically integrating EqualChance with techniques for
write minimization and inter-set write variation mitiga-
tion to improve the cache lifetime even further. We also
plan to compare our technique with other techniques for
addressing intra-set write-variation (e.g. [5, 6]) to fully
evaluate and highlight the effectiveness of our technique.
Finally, we are currently evaluating our technique with
multicore system configurations to study how it scales
with increasing number of cores.
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