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The Geometry of Flex Tangents to a Cubic Curve and its
Parameterizations®

Jean-Marc Couveignes'and Jean-Gabriel Kammerer®

January 18, 2011

Abstract

We show how the study of the geometry of the nine flex tangents to a cubic produces many
pseudo-parameterizations, including the ones given by Icart, Kammerer, Lercier, Renault and
Farashabhi.

To Jean-Jacques Quisquater, on the occasion of his éméritat

1 Introduction

Much attention has been focused recently on the problem of computing points on a given elliptic
curve over a finite field in deterministic polynomial time. This problem arises in a very natural man-
ner in many cryptographic protocols when one wants to encode messages into the group of points
of an elliptic curve. A good example of the algorithmic and cryptologic motivations in finding these
parameterizations can be found in the identity-based encryption from [Bo]. The difficulty is to de-
terministically find a field element = such that some polynomial in z is a square, see [Ko], Section
6.1.8. For example, when the curve is given by a reduced Weierstrass equation 32 = x> + ax + b, we
deterministically search x such that 2> + ax + b is a square in the field.

In 2006, Shallue and Woestjine [Sh-Wo] proposed a first practical deterministic algorithm. In
2009, Icart [Ic] proposed another deterministic encoding for elliptic curves over a field with g ele-
ments, when ¢ is congruent to 2 modulo 3. Icart’s algorithm has quasi-quadratic complexity in log q.
Kammerer, Lercier and Renault [Ka-Le-Re] proposed a different parameterization under the addi-
tional condition that the elliptic curve has a rational point of order 3, and even for a special class of
hyperelliptic curves. Farashahi [Fa] found yet another parameterization for such elliptic curves too.
The point is that the map z ~ 22 is bijective for finite fields with cardinality congruent to 2 modulo
3. So one looks for a parameterization of the cubic by cubic radicals. This is a special case of the
problem of finding parameterizations of curves by radicals [Se-Se, Se-Wi-Pr].

It turns out that such parameterizations closely relate to the geometry of the dual curve of the
elliptic curve. In a nutshell, the dual C of a curve C consists of the tangents of C'. The tangents at
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the flex points of C' correspond to singular points on C, namely cusps. From rational curves going
through these cusps, we can derive pseudo-parameterizations of C'. More precisely, in this paper we
review the geometry of the nine flex tangents to a smooth plane cubic C, and we explain how this
geometry relates to the parameterizations found by Icart, Farashahi, and Kammerer, Lercier, Renault,.
We will see that these parameterizations correspond to rational curves in a degree two covering of the
dual plane ramified along the dual sextic C of C. Such rational curves can be constructed using the
very special configuration formed by the 9 cusps of C, which correspond to the nine flexes of C'

In Section 2 we recall notation and derive classical formulae for the solution of equations of degree
3, that will be used in the sequel. Section 3 briefly recalls the elementary properties of the dual of a
smooth plane cubic curve. In Section 4 we study the geometry of the nine flex tangents to a smooth
plane cubic. We show that the nine points in the dual plane, associated with these nine tangents, are
not in generic position with respect to conics and quartics. We explain in the next Section 5 how to
use this special configuration of nine points to parameterize the cubic by cubic radicals.

Throughout the paper, we denote by % a field with characteristic different from 2 and 3, by k D k
an algebraic closure of k, and by (3 € k a primitive third root of unity. We set /—3 = 2(3 + 1.

The Maple [Wa] code for the calculations in this article can be found on the authors’ web pages.

2 Solving cubic equations

In this section we recall the Tartaglia-Cardan formulae for solving cubic equations by radicals. A
modern treatment can be found in [Du-Fo]. We believe it is worth stating these equations in an
unambiguous form, that is well adapted to our context, and does not make excessive use of radicals and
roots of unity. In other words we need regular and generic formulae. Let h(z) = 2% — s122 + 502 — 53
be a degree 3 separable polynomial in k[z]. Call 79, r; and 7 the three roots of h(x) in k. Set

§ =+v/=3(r1 —ro)(ro —71)(ro — 72)

and A = §2. Note that A is the usual discriminant multiplied by —3. We call it the twisted discrimi-
nant. Since it is a symmetric function of the roots, it can be expressed as a polynomial in s1, s2 and
s3. Indeed

A = 8153 — 54535150 — 35755 + 125753 + 1253,

In particular A lies in k. Let [ = k((3,6) C k be the field obtained by adjoining & and a primitive
third root of unity to k. We set m = [(r1,72,70).

If the extension [ C m is non-trivial then it is a cyclic cubic extension. Since [ contains a primitive
third root of unity, this cubic extension is a Kummer extension: it is generated by the cubic root of
some element in /. Let o be the generator of the Galois group that sends ; to r; 41 for ¢ € {0, 1,2},
with the convention that indices make sense modulo 3. We set

p=ro+ (4G

and we check that o(p) = (3p. We set R = p® and we check that R is invariant by o. So R is an
invariant for the alternate group acting on {r, 72,73} and it can be expressed as a polynomial in sq,
s2, s3 and ¢. Indeed we find

27 9 3
R = p3 = s? + 333 — 55152 — 55.
Similarly we set

Pl =ro+ C3r1 + Coro



and we check that o7 9 3
R =p=s+ 55— 5182+ 0.

We note that pp’ = 7’(2) + r% + r% — 7roT1 — T1T9 — T9Tp 1s invariant by the full symmetric group
and is indeed equal to s — 3s5. So both p and p’ are computed by extracting a single cubic root.
Finally, the three roots rg, 1, 2 can be expressed in terms of p by solving the linear system:

ro+ 171+ 72 = 85
ro+¢G i+ G = p
ro+Grit+ Gl = o
In particular the formula for the root
s1+p+p
o= g ey

does not involve (5.

3 The dual curve of a cubic

In this section we review the properties of the dual of a cubic curve. A thorough treatment of the
duality for plane curves can be found in [Hi-Ko-To] and [Hi].

Let E = k% and let E be the dual of E. Let U = (1,0,0), V = (0,1,0) and W = (0,0, 1).
So (U, V,W) is the canonical basis of E. Let (X,Y,Z) be the dual basis of (U, V,W). Let P =
Proj(E) = Projk[X,Y, Z] be the projective plane over k. Let P = Proj(E) = Projk[U,V, W]
be the dual projective plane. The point [U : V : W] in P corresponds to the line with equation
UX+ VY +WZ =0inP. Let C C P be a smooth cubic with equation F'(X,Y,Z) = 0. Let
Fx = g—f;, Fy = 2—5, Fy; = g—g be the three partial derivatives of F'. To every point on C' one can
associate the point in P corresponding to the tangent to C' at P. The set of such points is the dual
curve C' of C. So (' is the image of the so called Gauss morphism

A

we C P

(X :Y: Z]—— [Fx(X,Y,2), Y (X,Y, Z), F(X,Y, Z)]

The plane curve C has degree 6 and w¢ induces a birational equivalence between C' and C. To each
of the nine flexes of C there corresponds an ordinary cusp on C. Since C has geometric genus 1 and
arithmetic genus 10 = (6 — 1)(6 — 2)/2 we deduce that there is no other singularity on it than these
nine cusps. For example, if C' has equation F'(X,Y, Z) = 0 where

F(X,Y,Z2)=X3+Y3+ 273 -3uXY_Z, )
then the dual curve has equation G(U, V, W) = 0 where
GU,V,W)=US +V® + W° — 6a>(UVW + UVW + UVW?)
+(4a® = 2)(UBV3 + UBW?3 + V3W?3) + (124 — 3a*) U VW2,
The equation of the dual is found by eliminating X, Y, and Z in the system

U = Fx(X,Y,Z2)
V = Ry(X.,Y,Z2)
W = Fz(X,Y,2)



The two curves C and C' are represented in Figure 1 and Figure 2 respectively in the case a = 0.

Figure 1: The cubic with equation X3 4+ Y3 + Z3 =0

Figure 2: The dual curve with equation U% + V6 + W6 — 203V3 — 2V3W3 — 2U3W3 = 0

4 The geometry of flexes

Let C' C PP be a smooth plane projective cubic. The nine flex points of C define a configuration in the
plane IP. More interestingly, the nine flex tangents correspond to nine points in the dual plane P. We
study the latter configuration.

We are particularly interested in low degree unicursal curves going through many of these nine
cusps of C. By a unicursal curve we mean a curve having geometric genus 0 and a rational point.
This is equivalent to the existence of a rational parameterization, see [Se-Wi-Pr], theorem 4.11.

We will first assume that C' is the Hessian plane cubic given by Equation (2). Indeed, any smooth
plane cubic can be mapped onto such an Hessian cubic by a projective linear transform, possibly after
replacing k by a finite extension of it. The modular invariant of C'is

_ 27a3(a+ 2)%(a® — 2a + 4)?
 (a—1)3(a?+a+1)3

j(a)

The nine flexes of C' are the three points in the orbit of (0 : —1 : 1) under the action of Ss, plus the
six points in the orbit of (—1 : (3 : 0) under the action of S3. Let
we: (X:Y:Z)= (X?—aYZ:Y?—aXZ: 2% - aXY)

be the Gauss map associated with C'. The images by w¢ of the nine flexes are the three points in the
orbit of (a : 1 : 1) under the action of Sg plus the six points in the orbit of (¢3 : (3 : a) under the
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action of Ss. Figure 3 lists these cusps and their images by the Gauss map. Weset O = (0: —1: 1)
andO=(a:1:1)

Flex of C Cusp on C
0:=1:1) | (a:1:1)
(=1:1:0) | (1:1:q)
(1:0:-1) | (1:a:1)
(1:¢3:0) | (GF:¢G:a)
(G:0:=1) | (G:a:¢3)
(0:-1:¢) | (a:¢F:G)
(C:-1:0) | (Gs: 3 ia)
(=1:0:¢3) | (B3:a:(3)
0:6:-1) | (a:Gs: )

Figure 3: Flexes of C' and the corresponding cusps on its dual

These nine points in the dual plane form an interesting configuration, depending on the single
parameter a.

Position with respect to lines One can first check, e.g. by exhaustive search, that no three among
these nine points are colinear unless the modular invariant is zero. See the proof of Proposition 1 in
Section 7.2 of [Br-Kn]. So the nine points in the dual plane corresponding to the nine flex lines are in
general position with respect to lines. We deduce the following lemma by duality.

Lemma 1 A smooth plane projective cubic over a field with prime to six characteristic has no three
concurrent tangent flexes, unless its modular invariant is zero.

Position with respect to conics We now consider the configuration of the nine flex tangents from
the point of view of pencils of conics. Remember that six points in general position do not lie on any
conic. Six pairwise distinct points lying on a conic are said to be coconic. Six pairwise distinct lines
are said to be coconic if they all are tangent to a smooth conic.

Lemma 2 Consider a smooth plane projective cubic over a field with prime to six characteristic and
assume its modular invariant is not zero. Remove 3 colinear flex points. The six tangents at the six
remaining flexes are coconic. There are twelve such configurations of six coconic flex tangents.

Note that we claim that the six flex tangents are coconic. Not the six flex points. Equivalently we
claim that the six points in the dual plane corresponding to the six flex tangents are coconic.

We first note that the conic with equation UW — aV?2 = O meets C' at (a : 1 : 1), (1: 1 : a),
(B :¢G:a)(a:C:¢)(G:C¢:a)and (a: (3: (3). The three remaining flexes in P are
(1:0:—1),(¢3:0:—1)and (1:0:(3) and they lie on the line with equation Y" = 0. The action of
S3 produces two more similar conics.

The conic with equation U2 + V2 + W2 + (a + 1)(UV + UW + VW) = 0 meets C at the
six points in the orbit of (¢? : (3 : a) under the action of S3. The three remaining flexes in P are
(0:=1:1),(=1:1:0),and (1:0: —1). They lie on the line with equation X +Y + Z = 0.

The conic with equation U2 + (3V2 + GGW? + (a + 1)(GUV + GUW + VW) = 0 meets C
at the three points in the orbit of (a : 1 : 1) under the action of S3. And also at the three points in



the orbit of (¢3 : (3 : a) under the action of S3. The three remaining flexes in P are (0 : (3 : —1),
(G3:—1:0),and (—1:0: (3). They lie on the line with equation X + (3Y + (3Z = 0. The action
of S5 produces one more such conic.

The conic with equation (3U? + V2 4 GW?2 + (a + ¢(3)(UV + GUW + VW) = 0 meets C at
(@:1:1),(1:1:a),(3:a:¢3),(a:C:C),(¢G: ¢ a),(¢2: a:(3). The three remaining
flexesin Pare (1 : 0 : —1), (=1 : ¢3 : 0), and (0 : ¢3 : —1). They lie on the line with equation
(3X +Y + (3Z = 0. The action of S3 produces five more conics.

We thus obtain twelve smooth conics that cross the dual curve C' at six out of its nine cusps. Each
of these conics is associated with one of the twelve triples of colinear flexes. O

Four among these twelve conics are especially interesting because their equations do not involve
(3. We note that three among these four conics are clearly unicursal over k(a) because they have
an evident k(a) rational point. The last one is unicursal also because its quotient by the evident
automorphism of order 3 is P! over k(a).

Position with respect to cubics Next we study the pencil of cubics going through the nine points in
the dual plane associated with the nine flex tangents. It has projective dimension zero in general. The
cubic with equation

a(U3+V34+W?3) = (a®+2UVW

goes through all these nine points in the dual plane. This cubic is in general non-singular. So it is not
particularly interesting for our purpose.

Position with respect to quartics We now consider curves of degree 4 in the dual plane. The
projective dimension of the space of plane quartics is 14. So we can force a quartic to meet the
9 points we are interested in and there remains 5 degrees of freedom. Since we are particularly
interested in unicursal curves we use these remaining degrees of freedom to impose a big singularity
at O = (a :1:1). Indeed, two degrees of freedom suffice to cancel the degree 1 part in the Taylor
expansion at O. And three more degrees of freedom suffice to cancel the degree 2 part also. We find
a unicursal quartic () in P passing through the nine cusps of C and having intersection multiplicity at
least two at each of them (because they are cusps) and at least six at the cusp O. The equation of this
unicursal quartic () is

U+ a(V*+ W) = 2a(UPV + UW + V3W + VIV?) — (a® + D)U(V? + W?)
+3a2U2(VE+ W) + (a* + 20)V2W2 + (1 — X UVW(V + W) = 0.
This quadric is irreducible as soon as the modular invariant of C' is non-zero, which we assume

from now on. Computing the intersection with all lines through O we find the following parameteri-
zation of this quartic

Ut) = a*t* —2at® + (a® +2)t* — 2d%t + a,
V() = a't*+ (1 -3a*t + 3d%t* — 2at + 1,
W) = at*—(a®+1)t3 4+ 3d%t? — 2at + 1.

Substituting U, V, and W by U(t), V/(t), and W (t) in the equation of C' we find the degree 24
polynomial

5+ 12 —t 4+ 1)%(at — 2)?((a + 1)t — 1)*((a® —a+ D)t* + (1 — 2a)t + 1)?(a®t* + 1 — at)>.



We check that @ has two branches at O. One branch corresponds to ¢ = 0, and it has intersection
multiplicity 6 with C'. The other branch corresponds to ¢ = 2/a, and it has intersection multiplicity 2
with C. This is illustrated by Figure 4 where C is in black and Q is in red. So the total multiplicity of
Q.C at O is 8. And the intersection Q.C' only consists of cusps of C'; one with multiplicity 8 and the
eight others with multiplicity 2. The real part of this intersection locus is visible on Figure 4.

Lemma 3 Consider a smooth plane projective cubic C over a field with L prime 10 Six characteristic
and assume its modular invariant is not zero. Let C be the dual of C. Let O be one of the nine cusps of
C. There exists a unicursal quartic Q in the dual plane, such that the intersection Q.C has multiplicity
8 at O and 2 at each of the eight remaining cusps. In particular Q.C‘ is an even combination of cusps

ofé’.

We stress that the definition of the quartic () involves one flex on the one hand, and the eight
remaining flexes on the other hand. So we can define this quartic for any cubic having a rational flex,
that is for any elliptic curve (and this makes a difference with the four conics constructed earlier, that
distinguish a triple of colinear flexes, and therefore cannot always be defined over the base field.)

Figure 4: The real part of the intersection of C and Q.

So we can take for C' an elliptic curve with Weierstrass equation
F(X,Y,Z2)=Y*2Z - X3 —aXZ* - bZ3. (3)

We assume a # 0, so the modular invariant is non-zero either. The image of the origin O = (0 : 1 : 0)
by the Gauss map is O = (0 : 0 : 1), and the quartic () given by Lemma 3 has equation

Ut — 3V + 6UVW =0,

and parameterization
Uit) = 6t2 “4)

613,
W(t) = 3at!—1.

<
—~
~
~—

S Intersecting a cubic with lines

In this section we assume that the map a +— a® from k to k is surjective. This is the case if k is the
field of real numbers for example. This is also the case if k is a finite field with ¢ elements when ¢ is



congruent to 2 modulo 3. For every element a in k we choose once and for all a cubic root /a of a.
This way we define amap g/ : k — k.

Let C C P2 be a plane projective smooth cubic curve over k. We want to construct k-rational
points on C. More precisely, we look for a non-trivial map from k to C'(k). Since C' has genus 1 it
is not unicursal, and the map we are looking for cannot be a morphism of algebraic curves. We try
to construct a map from k to C'(k) that could be expressed with rational fractions and the cubic root
operator /. The idea is to look for a one parameter family of lines (Dy) in the projective plane such
that, for every value of the parameter ¢, the intersection D; N C has a rational point in it. We observe
that this intersection is described by a cubic extension (depending on t). So we ask that the twisted
discriminant of this extension be a square for every value of the parameter ¢. If this is the case, we can
construct a root (and the corresponding point in C' N D;) using the Tartaglia-Cardan formulae given
in Section 2 and the cubic root map g/ : k — k defined above.

Aline D C P meets C in exactly three points unless it is a tangent line to C' (in which case we
have one simple point and one double point) or even a flex (in which case we have one triple point).
Assume that D is the line with equation

UX+VY+WZ=0. 5)

The intersection D.C' is described by the homogeneous system consisting of Equation (5) and the
equation of the cubic C'. We can use Equation (5) to eliminate one of the three variables X, Y, Z in the
equation of C'. We obtain a binary cubic form whose twisted discriminant A(U, V, W) is essentially
the equation of the dual curve C because it cancels when the intersection D.C' has multiplicities. In
particular this twisted discriminant is not a square. However, if ¢ is an indeterminate, and if we choose
carefully U, V and W to be polynomials U (t), V' (¢) and W (¢) in k[t], then the corresponding rational
fraction A(¢) might be a square in k(¢) or something close to a square. So we look for a unicursal
curve I C PP that intersects the dual curve C' with lots of even multiplicities. Note that L may be
given by its projective equation, or as the image of a parameterization \ : P! — P that maps the point
(t:1)onto (U(t) : V(t): W(t)).
The considerations in Section 4 provide several candidates for L.

5.1 Intersecting the dual curve with a conic

We may first take L to be one of the twelve conics in Lemma 2. So we assume that C' is the Hessian
cubic given by Equation (2) for some a such that a® # 1. Four conics, among the twelve conics given
in Lemma 2, are unicursal over k(a). The intersection L.C has degree 12 and contains six among the
nine cusps of C, each with multiplicity 2. So this intersection is exactly twice the sum of these six
cusps. If we take for L the conic with equation UW — aV? = 0 then a convenient parameterization
is given by U(t) = 1, V(t) = —t and W (¢) = at®. The corresponding line D; has equation

X —tY +at’Z =0.
We substitute X by tY — at?>Z in the Hessian Equation (2) and find the degree 3 form in Y and Z
#+1)Y3 = 3at(® + 1)Y2Z + 36> (> + )Y Z% + (1 — a1%) 23

describing the intersection C.D;. We divide by (3 + 1)Z3 and we obtain a cubic polynomial in
y = Y /Z whose twisted discriminant is

A(t) — (9(1+a3t3)>2

1+t



We use the formulae and notation in Section 2. We have

s1 = 3at,
Sy = 3a2t2,
_ a’ts —1
s3 = 7153 1
5 — 9(1 + a3t3)
14+t 7
a’td +1
R = —277153 1
R =0

So we find the solution

and we deduce

343
_ _ 9 sfa’t’ + 1

This is the pseudo-parameterization found by Farashahi [Fa].

5.2 Intersecting the dual curve with a quartic

Assume now that we take L to be the unicursal quartic ) in Lemma 3. All the multiplicities in the
intersection Q.C’ are even. So we expect the twisted discriminant to be a square. This time we may as
well take for C' the Weierstrass cubic in Equation (3). The parameterization of ) given in Equation (4)
provides a one parameter family of lines (D;); with equation

612X + 6t°Y + (3at* —1)Z = 0.

We divide by Z, we set z = X/Z, y = Y/Z and we substitute y by 1/(6t3) — at/2 — x/t in the

Weierstrass Equation (3). We find a cubic equation 3 — 5122 4 sgx — sz3inz = X /Z, where
s1 = 1/t2,
so = 1/(3th),

s3 = (1/t° —6a/t* — 36b + 9a*t?)/36.

Using the formulae and notation in Section 2 we find

§ = (—1/t®—108b — 18a/t* + 27a’t*)/12,
R = 0,
R = (—1/t%—108b — 18a/t* + 27a*t?) /4.

So we find the solution

1 3] a2t? 1 a
- X/7 = — L N
v=X/7=35 +\/ 4 1086 612




and 1

This is the pseudo-parameterization found by Icart [Ic], up to the change of variable ¢ + —1/%.

5.3 Intersecting the dual curve with a line

Assume finally that we take for L a line passing through two rational cusps of C. So we assume
that C is the Hessian cubic given by Equation (2) for some a® # 1. Assume L is the unique line
passing through the two cusps (a : 1 : 1) and (1 : @ : 1) of C. The intersection L.C' has degree 6.
Since (a : 1 : 1) and (1 : a : 1) each have intersection multiplicity > 2, there remains at most two
intersection points. This situation is illustrated on Figure 5.

Figure 5: The intersection of Cand L

Not all the multiplicities in the intersection L.C are even, but only two multiplicities are odd. So
we expect A(t) to be a square times a degree 2 polynomial in ¢.

Points on L C P represent a linear pencil of lines in P generated by the tangents to C' at (0 :
—1:1)and (1:0: —1). The first tangent has equation aX + Y + Z = 0. The second tangent has
equation X + aY + Z = 0. So let ¢ be a formal parameter and consider the line D; with equation
(at +1)X + (t+ a)Y + (t + 1)Z = 0. The tangent at (0 : —1 : 1) corresponds to the value
t = oo. The tangent at (1 : 0 : —1) corresponds to the value ¢ = 0. The line D; meets the fixed point
(1:1:—a— 1) and the moving point (1, —¢,¢ — 1). So a parametric description of D; is given by

i (i+1:i—t:t—1—(a+1)i).

We substitute X by i + 1, Y by i —t and Z by t — 1 — (a + 1)i in Equation (2) and divide by the
leading coefficient. We find the degree three polynomial

3t(a+2)i  3t(1—t)

h(i) = i 6
(i) =i +a?—l—cH—l a’?+a+1 ©
defining the intersection D;.C'. The twisted discriminant of A is

9(a? 1)t? + 2(2a + 1)(a? 7)t + 9(a? 1

(a24+a+1)3

This is not quite a square in k(a)(t). However, it only has two roots with odd multiplicity. So
if we substitute ¢ by a well chosen rational fraction, we can turn A into a square. So we look for a
parameterization of the plane projective conic with equation

(> +a+1)S2=9(®+a+1)T*+22a+1)(a®> +a+7)TK +9(a*+a+1)K?. (8)

10



This conic has two evident k-rational points, namely (3 : 1 : 0) and (3 : 0 : 1). The line through
these two points has equation
-5+ 3T +3W = 0.

The tangent at (3 : 0 : 1) has equation
3> +a+1)S — 2a+1)(a®>+a+7)T —9(a*+a+1)W = 0.
The generic line in the linear pencil generated by these two lines has equation
(Ba*+a+1)—)S+Bji—Ra+1)(a®+a+ )T+ (35 —9a* +a+1)j) )W =0 (9

where j is a formal parameter.
Intersecting the conic in Equation (8) with the line in Equation (9) we find the parameterization

S() = 352 —2(a+2)3+3(a+2)3a®+a+1),
T() = 3G = 3(a® + a+1)),
W(j) = (a®+a+1)((a+2)% - 37).

We now substitute ¢ by 7'(j)/W (j) in Equation (6) and find a cubic polynomial with coefficients
in the field k(a) (). If we substitute ¢ by T(j)/W (j) in Equation (7) we find that A = §2(j) where
5(j) = 95(35%2 —2(a+2)%j +3(a®> +a+1)(a +2)*)(3(a®> + a + 1) — j)

7 ((a+2)° =3j)2(a> +a+1)7 |

We use the formulae and notation in Section 2. The polynomial A in Equation (6) has coefficients

1, —s1, s9 and —s3 with

S1 = 0
3j(a+2)3(a®> +a+1)—j)
(a4 a+1)2((a+2)3 - 3))
3j(3(a* +a+1) —j)((a* + a+1)(a +2)° — j?)
(a® +a+1)3((a+2)% - 35)2 '

We deduce the following pseudo-parameterization of the cubic C'

52

53

275%(3(a® +a+1) — j)
((a+2)3 —3j)(a® +a+1)3
p(j) = {/R>)
9j(a+2)(3(a®> +a+1)—7)

P = (a®+a+1)%((a+2)3 —35)p(4)
o pl) +0'0G)

) = —75

) = ot od)

(@® +a+1)((a+2)° - 3j)
P@) = @G)+1:i() —t() - 1) =1 = (a+ 1)i(4)).
where P(j) is the point on C associated with the parameter j.
We illustrate this situation on Figure 6 in the case a = 2. The red segment corresponds to the

parameter j taking values in the interval [—4, —0.3]. We also note that the computation in Section 3.1
of [Ka-Le-Re] hides a similar geometric situation.
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Figure 6: A pseudo parameterization
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