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Inertial magnetohydrodynamics

M. Lingam,' * P. J. Morrison, T and E. Tassi®*

! Department of Physics and Institute for Fusion Studies,
The University of Texas at Austin, Austin, TX 78712, USA
2 Aiz-Marseille Université, Université de Toulon, CNRS,
CPT, UMR 7332, 83957, 13288 Marseille, France

A version of extended magnetohydrodynamics (MHD) that incorporates electron inertia is ob-
tained by constructing an action principle. Unlike MHD which freezes in magnetic flux, the present
theory freezes in an alternative flux related to the electron canonical momentum. The associated
Hamiltonian formulation is derived and reduced models that have previously been used to describe

collisionless reconnection are obtained.

I. INTRODUCTION

Ideal magnetohydrodynamics (MHD), which arose in
the early 20th century, ranks amongst the great break-
throughs in plasma physics. The simplicity of MHD has
led to its extensive usage in the arenas of fusion, space
and astrophysical plasmas; see e.g. [1-3] and references
therein. In addition, MHD is an attractive theory as it
is endowed with several geometric properties such as flux
freezing and the conservation of magnetic and cross he-
licities, amongst others. The latter duo, in particular,
have attracted much attention owing to their topologi-
cal properties [4, 5] and intimate connections with self-
organization and relaxation [6—8]. As the advantages of
ideal MHD are far too numerous to elaborate, we refer
the reader to the aforementioned references.

However, in the latter half of the 20th century, an in-
creasing awareness arose amongst the plasma commu-
nity that MHD could serve as an effective theory only
in certain regimes. To counteract these limitations, sev-
eral fluid and kinetic models were developed, of which we
shall only focus on the former. Amongst them, the most
famous are the two-fluid model [1, 2], Hall MHD [9], elec-
tron MHD [10] and extended MHD [11, 12]. Extended
versions of ideal MHD often incorporate additional terms
into Ohm’s law, but they (mostly) suffer from a common
deficiency - a failure to conserve the energy, in the ab-
sence of dissipative effects. This fact was first pointed
out in [13], who also presented an analysis of the differ-
ent terms in the extended Ohm’s law and their role in
energy conservation; also see [14] for a related analysis.
Even amongst MHD models, most versions tend to ne-
glect the electron inertia, which can be of considerable
interest when their characteristic velocity is much faster
than their ionic counterparts. In order to retain electron
inertia while simplifying other features, several reduced
MHD (RMHD) models have been proposed [15, 16]. Such
models are of considerable interest, as they represent al-
ternative methods of driving reconnection, which in turn

*Electronic address: manasvi@physics.utexas.edu
TElectronic address: morrison@physics.utexas.edu
tElectronic address: tassi@cpt.univ-mrs.fr

is expected to play a crucial role in terrestrial and astro-
physical plasmas [17].

The energy-conserving property of MHD and its in-
variants are closely linked to its Hamiltonian structure,
i.e. it can be shown that such theories can be described
via a noncanonical bracket and an appropriate Hamilto-
nian. The existence of such a Hamiltonian structure for
MHD was first recognized in the seminal paper of Mor-
rison & Greene [18], and was consequently employed in
a wide range of contexts in the 1980s [19-22]. We refer
the reader to [23-26], and references therein, for compre-
hensive reviews of the same. The Hamiltonian formalism
has advantages that extend far beyond the mere ability
to reproduce the equations of motion; it can be used to
obtain invariants, equilibria and conduct stability analy-
ses [25, 27-29].

Associated with Hamiltonian structure is the action
principle formalism, and this can serve as a starting point
for obtaining the noncanonical Poisson bracket. Such an
action principle dates back to Lagrange’s pioneering work
in the 18th century [30], but only relatively recently was
such employed in the context of MHD [31] and, subse-
quently, for incompressible gyroscopic systems [32, 33].

Here, we construct an action by employing a method
for building actions that was described in [34]. An impor-
tant feature of this method is the Fulerian closure prin-
ciple (ECP) that insures the resulting theory can be writ-
ten in terms of an Eulerian set of variables. The method
has proven to be successful for deriving compressible gy-
roviscous MHD [35], extended MHD [36] and generalized
gyroviscous fluids [37]. The method begins with an ac-
tion in terms of a set of Lagrangian variables, treating
the particle trajectory as the sole variable, together with
the ECP. The ECP provides a generalization of, and in-
deed a justification of, constrained variations that were
called Euler-Poincaré variations in [38—40], because of its
antecedents in the work of Poincaré [41], although the
idea was previously elucidated for ideal fluids and MHD
plasmas in, e.g., [31, 42]. More recently, Euler-Poincaré
variations were employed for gyrokinetic theory in [43]
and gyro fluids in [44].

The action formalism also has several other advantages
in addition to its ability to reproduce energy conserving
models. A second advantage of this approach is that one
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can obtain reduced or simplified fluid models by perform-
ing suitable orderings directly within the action. These
modifications still preserve energy conservation, which is
not guaranteed when an ordering is undertaken at the
level of the equations of motion. Thirdly, one can re-
cover the noncanonical bracket and the Hamiltonian de-
scribed previously; the former via a systematic reduction
of the canonical bracket, and the latter via a Legendre
transform. As the action principle formulation is inti-
mately linked with the Hamiltonian approach, we refer to
them collectively as the Hamiltonian and Action Princi-
ple (HAP) formalism, and illustrate its use in the current
paper. Lest we lose sight of our goal, we summarize it
before proceeding further. In this paper, we shall use the
HAP formalism to construct a MHD model with electron
inertia.

The organization of the paper is as follows. In Section
II, we introduce the requisite mathematical preliminaries.
In Section III, we introduce a new dynamical variable,
construct the action and obtain the equations of motion.
In Section IV, we obtain the noncanonical Hamiltonian
formalism via reduction, and demonstrate how it consti-
tutes a generalization of the widely employed Ottaviani-
Porcelli model [15]. We also briefly comment on possible
extensions of this model, and finally conclude in Section
V.

II. THE ACTION PRINCIPLE AND THE
LAGRANGIAN COORDINATES

We commence with a very brief synopsis of the La-
grangian approach and the Lagrangian coordinate. For
finite dimensional systems, the action is

Sla) = / L (g.d.1) (1)

to

where L = T'— V represents the Lagrangian, with the ki-
netic and potential energies denoted by 7" and V respec-
tively. Here, ¢ represents the generalized coordinate(s).
One can obtain the equations of motion by extremizing
the action via §S[q]/d¢* = 0. The functional derivative

is defined via
65q] >
=: = 0q" ) . 2
y (Gier)y.

The continuum version of the action principle is equally
straightforward. We introduce a label a that tracks a
given fluid element; ¢ is now a function of a and t. We
introduce the deformation matrix, dq'/0a’ =: qu and
the Jacobian, J := det(qf ;). The volume element for

the fluid obeys

dS[q + €dq]

0Sq; 6q] = e

dq=Jd%a, (3)
and an area element is regulated via

(d*q); = Ta’; (d*a); (4)

2

where J a{ ; is defined to be the transpose of the cofactor
matrix of qf ;- There are many identities that can be con-

structed involving qf ; and J, but we desist from doing
so; a detailed discussion is present in [25].

A. Attributes, observables and the Lagrange-Euler
maps

Our discussion has solely revolved around g, but a fluid
element can also possess a certain density, entropy, etc.
We refer to these quantities as attributes, since they are
inherent to the fluid element. These quantities are de-
pendent on a alone and are Lagrangian constants of mo-
tion. The subscript 0 is used to denote the attributes, to
distinguish them from their Eulerian versions.

The Eulerian version is commonly employed since it
describes fields in terms of r := (2!, 22, 23) and ¢, each
of which can be tracked through experiments. Hence, we
refer these fields as observables. However, a connection
between the attributes and the observables, between the
Lagrangian and Eulerian pictures is unclear. In order
to transition back and forth, we must introduce maps
that permit such an activity. We refer to these as the
Euler-Lagrange or Lagrange-Euler maps, depending on
the context.

Before proceeding further, we remark that the model
developed in this paper is 2D in nature, i.e. it has one
ignorable coordinate. Hence, we shall treat our system
as 3D in nature, but we note the existence of an im-
plicit constraint z = ¢.(a,t) = a., indicating that the
z-component of the trajectory remains fixed.

A natural starting point is the velocity field v(r,t). In
the Eulerian picture, we detect this velocity at a given in-
stance in space and time. Intuitively, we expect the same
result to hold true in the Lagrangian picture, i.e. the re-
lation ¢(a,t) = v(r,t) must hold true. The LHS is the
Lagrangian velocity, and the overdot indicates the deriva-
tive at fixed a. By the same logic, we expect the Eulerian
and Lagrangian positions to coincide at this moment, en-
suring that r = g(a,t). We assume that this map is in-
vertible, permitting us to obtain a = ¢~ (r,t) =: a(r,t).
From the two conditions, we find that

'U(?", t) = (j(avt”a:a(r,t) : (5)

The above map constitutes a Lagrange to Euler map, as
it Eulerianizes the Lagrangian version.

Amongst the attributes transported by a fluid element,
one of them is the entropy so(a). The entropy is advected
in an ideal fluid, implying that it is constant along a
fluid trajectory. In other words, the Eulerian entropy
s(r, t) must equal the Lagranian entropy so(a). Thus, we
conclude that s behaves as a zero form, or as a scalar.
Next, we consider the density whose attribute—observable
pair are denoted by po(a) and p(r,t). Our fluids must
(typically) obey mass conservation, which is expressible
as p(r,t)d®r = ppd®a in an infinitesimal volume. One can



geometrically interpret this as p behaving as a three form
or as a scalar density. By using (3) we obtain py = pJ.

Hitherto, our attributes (and observables) have been
purely thermodynamic. Let us consider the magnetic
field and denote the attribute—observable pair by By(a)
and B(r,t). At this point, we make an important ob-
servation regarding ideal MHD: it has the very special
property that the flux is frozen. The frozen flux con-
straint is expressible as B -d*r = By - d*a, and from (4)
we obtain JB' = q'; Bj In other words, the magnetic
field B can be mterpreted as a two-form or as a vector
density, but only in the case of ideal MHD. In general,
one cannot introduce two forms into extended MHD the-
ories since the frozen flux condition is (apparently) not
obeyed. In the next section, we shall tackle the issue of
frozen flux, and present a new dynamical variable that,
by construction, satisfies the frozen flux constraint.

In the preceding expressions, we evaluate the at-
tributes at a = ¢~ (r,t) =: a(r,t), thereby completing
the Lagrange-Euler maps. We can also express the above
relations in an integral form. This is done by demanding
that the Eulerian and Lagrangian observation points co-
incide, which is accomplished via the judicious use of the
delta function §(r — g(a,t)). Before proceeding further,
we remind the reader that our model is actually 2D in
nature.

As an example, the relation for the density is shown

p(r,t) = /Ddgapo(a)(S(r—q(a,t))

Po

G (6

a=a(r,t)

Instead of the velocity, we introduce the canonical mo-
mentum M° = (M, MS), which is related to the La-
grangian canonical momentum as follows

Me(r,t) = /Ddzal'[(cut)&(r—q(a,t))

II(a,t)

Z ™

a=a(r,t)

In the case of ideal MHD, II(a,t) = (II;,II3) = pog. One
can always determine Il(a,t) via II(a,t) = dL/d§¢, and
use it in the above expression. In the case of gyroviscous
fluids, one finds that II(a,t) # pod as shown in [35,

B. The Eulerian Closure Principle and
action-building

Thus far, much of our analysis has been predicated
on the notion that the Eulerian and Lagrangian pictures
are related to one another, i.e., one can find a set of
maps that allows us to go back and forth between the two
descriptions. A natural consequence of this postulate is
that our action must also obey such a property.

This property is the ECP, referred to in the Introduc-
tion. The ECP amounts to the following: given an ac-
tion expressed in terms of the Lagrangian variables, it
must be equally expressible fully in terms of the Eule-
rian variables. For instance, consider the kinetic energy

functional
1
[ [ 3o a ®)

and let us invoke the Lagrange-Euler maps introduced in
the previous subsection. Through suitable use of (6) and
(7), one can show that (8) reduces to

/ / —pv? d?r dt. (9)

As a result, we conclude that (8) satisfies the ECP since
the kinetic energy functional in Lagrangian variables has
been expressed in terms of Eulerian variables. The ECP
dictates that all the other terms in the action also exhibit
identical behavior as the kinetic energy functional.

In summary, we follow a two step procedure to con-
struct the action. The first involves the choice of the
domain and the observables. The second involves the
construction of each term in the action from first prin-
ciples (when possible) while ensuring that they obey the
ECP.

III. THE INERTIAL MHD ACTION

In this section, we shall present a new dynamical vari-
able, one that determines a frozen flux for our model.
An action principle in terms of this new variable is de-
veloped, and the equations of motion are obtained and
analyzed.

A. The inertial magnetic field: a new dynamical
variable

In Section ITA, we discussed the implications of mag-
netic flux freezing in ideal MHD. Extended MHD lacks
this feature, which implies that the magnetic field can
no longer be interpreted as a two form. From a purely
geometric point-of-view, it would be logical to look for
a new dynamical variable, not B, which could play a
similar role.

Hence, we introduce the variable B, and its corre-
sponding attribute Beg. The relation between the two is
akin to that obeyed by the magnetic field in ideal MHD,
viz. JB! = qu B!,. Since we claim that our new theory
is still a magnetofluid model, it is necessary for B, to be
a function of the MHD variables v, B, n and s. We make

the choice
Be—B+m;V><<J)— x((VXB)>.
e n n
(10)




In other words, this is also equivalent to stating that we
replaced the vector potential A by A, the latter of which
is given by

Ae:A+me<J>:A+ e (VXB). (11)

e2 \n o€ n

Although the expressions (10) and (11) may appear ad
hoc, there are good reasons that justify these choices.
The first stems from the inclusion of electron inertia,
which is exemplified by the presence of an additional fac-
tor involving m, and it also satisfies the consistency re-
quirement, i.e. in the limit m./m; — 0, we recover the
usual magnetic field and vector potential. Secondly, we
note that B, serves as a natural dynamical variable in ex-
tended MHD theories; for instance, if one takes the curl
of equation (20) in [13] and uses Faraday’s law, we re-
cover a dynamical equation for B.. It is possible to carry
out a similar procedure for the extended MHD models
presented in [2, 11] and arrive at the same conclusion.
Lastly, the statement of flux freezing in ideal MHD is
equivalent to stating that § A-dl is an invariant, which is
altered in our model. To understand the alteration con-
sider the canonical momentum for the electrons, which is
proportional to A— (m.ve/e). Assuming v, > v; permits
the approximation J ~ —enwv,; consequently, the canon-
ical momentum is (approximately) equal to A.. If we let
me/m; — 0, the canonical momentum reduces to A. As
this is a 2D theory, with z serving as the ignorable co-
ordinate, the corresponding canonical momentum in the
z-direction is conserved. This yields § (A.), dz, which
is akin to § A - dl being conserved in ideal MHD. Later,
we shall show that even better reasons can be advanced,
albeit a posteriori, that further justify the choice of B..
Before we proceed to the next section, we introduce
the nomenclature ‘inertial magnetic field’ to refer to B..
The choice is natural since B, plays the role of a mag-
netic field, and incorporates the effects of electron inertia.
Hence, we refer to this theory as inertial MHD (IMHD).

B. The IMHD action

We introduce the action for IMHD below, and then
comment on its significance and interpretation. Our vari-
ables are chosen to be the density (3-form) p, the inertial
magnetic field (2-form) B., the entropy (0-form) s and
the velocity v.

B.-B
S = / / [ —pU (p, s =
®)- 240
The first term in (12) is the kinetic energy, which was
already shown to obey the ECP in Section II B. The sec-
ond term in (12) is the internal energy density, and is the
product of density and the specific internal energy (per

unit mass). This term generates the temperature and the
pressure, given by OU/0s and p?0U/dp respectively. The

d’rdt.  (12)

third term in the above expression is the unusual part,
since it deviates from the usual ideal MHD action. In
the limit where m./m; — 0 we have noted that B, — B,
which in turn reduces the last term of (12) to the con-
ventional magnetic energy density.

Although (12) is expressed in terms of the Eulerian
variables, the ECP and the Euler-Lagrange maps allow
us to express (12) purely in terms of the Lagrangian coor-
dinate ¢ and the attributes. In order to do so, we express
the magnetic field B in terms of the inertial magnetic
field B, as follows

B (r,t) /Kr|7“

where K is a complicated kernel. Using the kernel is quite
complex, but we note that the self-adjoint property is
preserved. Alternatively, one can use the Euler-Poincaré
approach, described in Section I, to obtain the same re-
sult. A short summary of this method is presented in
Appendix A.

Before proceeding to the next section, a couple of re-
marks regarding (12) are in order. Firstly, the only
term involving ¢ is the kinetic energy term. Hence, one
can perform a Legendre transformation, and recover the
Hamiltonian (in Lagrangian variables). Upon Eulerian-
izing the Hamiltonian, we obtain

(', t) d*, (13)

2
pv B.-B|

H = — U — | d°r. 14

[1% +wn+ 52 ey

We can use the definition of B,, as given in (10), and
simplify the resultant expression. The result is

2 2 2
pv B Mme J 9

H= — +pU — d*r. (15

[5 +o00a+ ot Ze] a9

The above expression is identical to equation (23) of [13].
Furthermore, we see that (15) is identical to MHD Hamil-
tonian, except for the last term. As a consistency check,
we verify that the last term does vanish in the limit
me/m; — 0. These facts lend further credence to our
choice of B, and the action (12).

C. The IMHD equations of motion

The Lagrange-Euler maps outlined in Section II A per-
mit us to obtain the corresponding dynamical equations
for the observables by applying 9/9t on both sides of the
map. We obtain

0s

dp

E+V~(pv) =0, (17)
9B | B(V.-v)— (B.-V)v+(v-V)B.—0. (18)

ot



The equations (16), (17) and (18) correspond to the Lie-
dragging of zero, three and two forms respectively. From
the definition of (10), we see that V - B, = 0, and this
implies that one can rewrite (18) as follows

0B,
ot

= Vx(wxB.)=Vx(vxB)

+ %Vx {vx(Vx(v2B>>} (19)

The equation of motion is obtained by extremizing the
action in Lagrangian variables, or by extremizing the Eu-
lerian action via the Euler-Poincaré approach. It is found
to be

p<23+(v~v)v> = -Vp+JxB
- TZZ (J-V) (i) (20)

Equations (19) and (20) constitute the heart of our
model. Let us first consider the latter. We see that it
is nearly identical to the usual ideal MHD momentum
equation, except for the presence of the last term, which
can be neglected in the limit m./m; — 0. However, this
term represents more than a correction - in the extended
MHD models with electron inertia, this term is absolutely
crucial for energy conservation, as pointed out in [13].
Secondly, we note that our equation of motion is exactly
identical to equations (2) and (19) of [13], thereby lending
further credence to our choice of the inertial magnetic
field and action.

We turn our attention to (19), which represents the
extended Ohm’s law. It is instructive to compare this
against the inertial Ohm’s law of [13], represented by
their equation (20). We find that our expression is ex-
actly identical to equation (20) of [13], when the 2D limit
of their model is considered and B, — const (constant
guide field) is assumed. Under these assumptions, the
two results are exactly identical, irrespective of whether
the fluid is compressible or incompressible. A few com-
ments on the 3D generalization of this model are pre-
sented in Section IV C.

To summarize thus far, we find that the momentum
equations of our model and that of [13] are identical.
The Ohm'’s laws are also in perfect agreement with one
another in the 2D, constant guide field limit. In addi-
tion, both of them yield the same (conserved) energies
and momenta. Collectively, it is self-evident that these
represent ample grounds for justifying the form of the
inertial magnetic field B, and the IMHD action.

IV. THE HAMILTONIAN FORMULATION OF
INERTIAL MHD

In this section, we describe the methodology employed
in recovering the (Eulerian) noncanonical Hamiltonian
picture from the (Lagrangian) canonical action. After

obtaining the bracket—Hamiltonian pair, we comment on
potential extensions of this framework.

A. Derivation of the inertial MHD bracket

Our first step is the determination of the Hamiltonian,
which is done via a Legendre transformation and Eule-
rianizing the resultant expression. The exercise was al-
ready performed in Section III B, and the Hamiltonian is
given by (14). An alternative route is to invoke Noether’s
theorem, which also leads to the same result.

Next, we need to obtain the noncanonical bracket. A
detailed description of this procedure can be found in
[34]; here, we shall merely present the salient details.
Before proceeding on to the derivation, we reformulate
our observables. We replace the velocity v by the mo-
mentum M€, and the entropy s by the entropy density
o = ps. The new set of observables result in a simpler
and compact noncanonical Poisson bracket. Let us recall
from Section IT A that the Lagrange-Euler maps can be
represented in an integral form. We present them below

p= [ @as(r~gfa.t) mla). (21)
o= /d2a5 (r—q(a,t)) oola), (22)
Bl = [ #as - ale ) @Bl (2

M = /d2a5 (r —q(a,t)) U(a,t). (24)

The last expression is also equivalent to M ¢ = pv, which
can be found by computing II from the Lagrangian, and
then obtaining the Eulerian equivalent. We drop the sub-
script ¢ henceforth, since the canonical momentum M®°
is the same as the kinetic momentum M = pv.

Next, we note that a given functional can be expressed
either in terms of the canonical momenta and coordi-
nates, II and ¢, or in terms of the observables. Hence,
we can denote the former by F' and the latter by F', and
note that F' = F. As a result, we find that

oF oF
2 —_— —_—
/d a5 Ol + 50 dq (25)
OF OF OF OF
— 2, 7 . R JE— _—
—/d S 5M+6B 5B+6p5p+6050.

From (21), we can take the variation on the LHS and
RHS, thereby obtanining

dp=— / d?a poVé (r — q(a,t)) - dq. (26)



A similar procedure can also be undertaken for (22), (23)
and (24) as well. We substitute (26) into the second
line of (25) and carry out an integration by parts, and a
subsequent interchange of the order of integration. This
process is repeated for the rest of the variables. By doing
so, we can determine the functional derivatives §F/dq
and 6F /411 in terms of the functional derivatives of the
observables. Next, we note that the canonical bracket is
given by
_ o (O0F 0G O6G ¢F
(PG} = /d a (5q o o 511) L@

We can now substitute the expressions for §F/dq and
dF /611, obtained as per the procedure outlined above,
into (27) and derive the noncanonical bracket. It is found
to be

SF . 6G oG _ OF
— 2 ) . _ .
{hG) = / @ [Ml (5Mj %581, ~ oA, 6Mi)

n <5Fa.5G_ 0G ‘5F)
P\GM; “sp ~ 50, P 5p
+0<5F 5 0G oG _5F>

§M; 7 60 M, 7 So

L[ 6F _ §G  6G . 6F
+ B <5MjajaBg; - 5Mjaj(ng>
L pi (G 5 8F _ SF , 4G

“\sBJ "0M; §B 'SM;

(28)

The inertial MHD bracket, derived above, possesses a
couple of remarkable features. Firstly, we note that the
bracket is precisely identical to the ideal MHD bracket of
[18], if we replace B, in (28) with B instead. Secondly, if
one replaces M by M€ in the above expression, one can
obtain an expression for the gyroviscous inertial MHD
bracket, yielding results identical to those of [34, 35].

We must reiterate the importance of the bracket, be-
cause it further highlights the merits of B, as a dynami-
cal variable. Our simple postulate in Section IIT A, that
B, behaves as a two form, ensures that inertial MHD
and ideal MHD are identical to one another under the
exchange B, <> B. Not only does B, yield equations
of motion that are highly similar to those of extended
MHD, but it also maintains a close connection with ideal
MHD via its notion of flux freezing. Owing to the near-
identical nature of the inertial and ideal MHD brackets,
an independent analysis of inertial MHD is not required;
instead, one can simply migrate the results pertaining
to the Casimirs, equilibria and stability of ideal MHD
models, by replacing B by B, in the suitable places. In
particular, we note that the Casimir

ei= [ drost), (29)

still remains an invariant in inertial MHD. On the other
hand, the counterpart of the magnetic helicity of ideal

MHD is

Cy :/d?’rAe-Be:/d?’r
2
2 powsxn + T (D) (vx (2))],
Lone2 et \n n

and it is seen that each of the three terms is of the
form W - (V x W). Note that the terms in the second
line vanish when m./m; — 0, thereby yielding the ideal

MHD magnetic helicity. The cross helicity of ideal MHD
morphs into

A-(V x A) (30)

C3 = /d3rv~Be:/d3rv-(V><Ae) (31)

[ir[ons e (v (2))].

and we see that it reduces to the ideal MHD cross helicity
if we assume m./m; — 0. It is easily seen that the ideal
and inertial MHD cross helicities are both expressible as
v (VxW).

B. The six-field model and its subcases

Hitherto, we have not fully exploited the 2D nature of
our model. The choice was deliberate since the bracket
and the equations of motion could be expressed in a rel-
atively compact form. However, it comes at the cost of
obtaining a narrower class of Casimirs, and an inability
to clearly demarcate the behavior of the different fields.
We shall now exploit this 2D symmetry.

First, let us consider B, defined via (10). We see
that it is divergence free. As z serves as our ignorable
coordinate, we can immediately express it as

Be = Beos + Ve x 3. (32)

Next, we consider the momentum, recognizing that it in-
volves two components. Hence, the most general possible
representation is

M = VT 4 Vg x 2. (33)

We note that a similar analysis, albeit in terms of B
instead of B., was carried out in [15, 46]. The advan-
tage of inertial MHD is that the bracket is identical in
structure to that of ideal MHD under the interchange
B, <» B. Upon substituting (32) and (33) into (28) and
using the functional derivative chain rule, we obtain a
bracket identical to that of equation (98) in [15], except
for two differences. The bracket obtained involves an in-
tegration over d?r, as opposed to d®r in [15]. Secondly,
one must set M, = 0 in equation (98) in [45] as our model
lacks the z-component of the velocity.

In summary, we have a 6-field model with our observ-
ables given by (T, ¢, Be., %, p, o). Each of these six fields



are now scalar and possess clear physical interpretations.
We can whittle the model down to a 5-field model by
assuming it to be isentropic, which eliminates o. If we
assume incompressibility, we eliminate p and I - the last
of which follows from the condition V - v = 0. Lastly, we
can eliminate the guide field B., by making it constant,
and our resultant model now involves just ¢ and .. We
introduce the notation w = Ay, implying that the two

functional derivatives are related via AF,, = —F,, and
the final bracket is given by
(.6} = - [ r [wlFu.Gul + e (1Fur G
~ (G Ful)] (34)

and the corresponding Hamiltonian takes on the form

2 2 2 2 2
H= /d%«1 [de(v ¥) + Vol + Vel } , (35)
2 ) o p

where B = V) x Z, and the relation between 1. and
is determined via (10). We note that d. represents the
electron skin depth. The bracket and Hamiltonian, given
by (34) and (35) are of considerable importance, as they
give rise to the well known Ottaviani-Porcelli model [15],
used in modelling collisionless magnetic reconnection.

C. Extensions of the inertial MHD bracket

In the preceding subsection, we have obtained the iner-
tial MHD noncanonical bracket, with the corresponding
expression given by (28). A crucial feature of inertial
MHD was also identified, namely, the close affinity with
the ideal MHD bracket, as one can be transformed into
the other via B, +> B.

The analogy between B and B, also makes it possible
to import the results of 2D gyroviscous MHD, and recast
them in an inertial MHD framework. As noted in the
previous subsection, the noncanonical brackets derived in
[35] can be adapted for such a purpose. They are easily
distinguishable from the non-gyroviscous brackets owing
to the presence of the canonical momentum M€ in place
of the kinetic momentum M. If the same methodology is
employed herein, we can obtain a model for 2D gyrovis-
cous inertial MHD. It must be cautioned, however, that
these methods are only applicable to the inertial and ideal
brackets, as they are equivalent under B, <> B. Modify-
ing the Hamiltonians is a trickier task, as it requires us
to explicitly use the relation (10).

As we have stated thus far, our model of inertial MHD
possesses an ignorable coordinate, thereby rendering it
2D. A natural generalization of the procedure is to un-
dertake the same work in a 3D framework. Our central
results thus far were the equation of motion (20) and the
Ohm’s law (19). We find that the former is unmodified,
and is identical to that of [13]. However, in the 3D limit,
we find that the Ohm’s law of [13] and our model are not

in agreement, although most of the terms are identical
to one another. Next, we consider the incompressible 3D
limit, and we find that there is a near-exact match; in
fact, we find that the Ohm’s law of [13] reduces to our
Ohm’s law (19) when the flow is irrotational.

V. CONCLUSION

In this paper, we have approached the issue of elec-
tron inertia in an unusual manner - via the inclusion of
geometric constraints. We generalized the flux freezing
condition of ideal MHD, by replacing the vector potential
A with an extended vector potential A., and motivated it
via the conservation of canonical momentum. Our model,
dubbed 2D inertial MHD, comes with an intrinsic advan-
tage - it is endowed with flux conservation, albeit not for
the magnetic field.

2D inertial MHD was shown to possess a couple of
pleasing properties. Firstly, it yielded an equation of
motion and an Ohm’s law that were identical to the ones
derived in [13, 36], when the 2D case of the latter, in
the constant guide field limit, was taken. Secondly, we
demonstrated that 2D inertial MHD could be expressed
as a six (scalar) field model. A limiting subcase of 2D
inertial MHD was shown to reproduce the Ottaviani-
Porcelli model [15] of magnetic reconnection. Lastly,
we demonstrated the inertial MHD bracket was identi-
cal to that of ideal MHD under the interchange B, <> B,
thereby cementing the close connection between the two
models.

There are several avenues that open up for investiga-
tion. It is possible, akin to ideal MHD, to derive expres-
sions for compressible waves and nonlinear Alfvén-like so-
lutions for inertial MHD. A second possibility is to move
to the weak 3D limit, and obtain a suitable extension of
the Ottaviani-Porcelli model. We expect to tackle such
issues in our subsequent work.
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Appendix A: The Euler-Poincaré approach to
magnetofluids

Descriptions of the Euler-Poincaré formalism can be
found in [37, 38, 42]. Let us represent the Lagrangian
density given in (12) by £. The equation of motion, via



the Euler-Poincaré approach is

DM
ot oI

T
oI _,, (A1)

where M€ is the canonical momentum introduced in (7),
and is given by Mf = 9L/0v". The stress tensor in the
above equation is given by

. . VA
I — My J
T; Miv?) + angBe
; oL oL
+ & (c g, BfaBg) : (A2)

Note that the above expression is independent of the vari-
able s. Upon taking the functional derivatives of S with
respect to the given variables, and substituting them into
(A2) and (A1), we obtain the equation of motion (20).

[1] N. A. Krall and A. W. Trivelpiece, Principles of plasma
physics (McGraw Hill, New York, 1973).

[2] J. P. H. Goedbloed and S. Poedts, Principles of Magne-
tohydrodynamics (Cambridge University Press, 2004).

[3] R. M. Kulsrud, Plasma physics for astrophysics (Prince-
ton University Press, 2005).

[4] H. K. Moffatt, J. Fluid Mech. 35, 117 (1969).

5] M. A. Berger and G. B. Field, J. Fluid Mech. 147, 133

(1984).

[6] L. Woltjer, Proc. Natl. Acad. Sci. 44, 489 (1958).

[7] J. B. Taylor, Phys. Rev. Lett. 33, 1139 (1974).

[8] J. B. Taylor, Rev. Mod. Phys. 58, 741 (1986).

[9]

0]

M. J. Lighthill, Phil. Trans. Roy. Soc. 252, 397 (1960).
L. I. Rudakov, C. E. Seyler, and R. N. Sudan, Comments
Plasma Phys. Cont. Fusion 14, 171 (1991).

[11] L. Spitzer, Physics of Fully Ionized Gases (Interscience,
New York, 1956).

[12] R. Liist, Fortschr. Phys. 7, 503 (1959).

[13] K. Kimura and P. J. Morrison, Phys. Plasmas 21, 082101
(2014).

[14] C. Tronci, E. Tassi, E. Camporeale, and P. J. Morrison,
Plasma Phys. Cont. Fusion 56, 095008 (2014).

[15] M. Ottaviani and F. Porcelli, Phys. Rev. Lett. 71, 3802
(1993).

[16] T. J. Schep, F. Pegoraro, and B. N. Kuvshinov, Phys.
Plasmas 1, 2843 (1994).

[17] E. G. Zweibel and M. Yamada, Annu. Rev. Astron. As-
trophys. 47, 291 (2009).

[18] P. J. Morrison and J. M. Greene, Phys. Rev. Lett. 45,
790 (1980).

[19] P. J. Morrison, Phys. Lett. A 80, 383 (1980).

[20] R. G. Spencer and A. N. Kaufman, Phys. Rev. A 25,
2437 (1982).

[21] D. D. Holm and B. A. Kupershmidt, Physica D 6, 347
(1983).

[22] P. J. Morrison and R. D. Hazeltine, Phys. Fluids 27, 836
(1984).

[23] P. J. Morrison, in Mathematical Methods in Hydrody-
namics and Integrability in Dynamical Systems, Vol. 88,
edited by M. Tabor and Y. Treve (New York: Am. Inst.
Phys., 1982) pp. 13—46.

[24] R. Salmon, Ann. Rev. Fluid Mech. 20, 225 (1988).

il

[25] P. J. Morrison, Rev. Mod. Phys. 70, 467 (1998).

[26] P. J. Morrison, Phys. Plasmas 12, 058102 (2005).

[27] D. D. Holm, J. E. Marsden, T. Ratiu, and A. Weinstein,
Phys. Rep. 123, 1 (1985).

[28] T. Andreussi, P. J. Morrison,
Plasmas 20, 092104 (2013).

[29] P. J. Morrison, E. Tassi, and N. Tronko, Phys. Plasmas
20, 042109 (2013).

[30] J. L. Lagrange, Mécanique Analytique (Dordrecht Kluwer

Academic, Boston, MA, 1997).

] W. A. Newcomb, Nucl. Fusion Suppl. pt 2, 451 (1962).

] W. A. Newcomb, Ann. Phys. 72, 29 (1972).

]

]

and F. Pegoraro, Phys.

W. A. Newcomb, Ann. Phys. 150, 172 (1983).

P. J. Morrison, in New Developments in Nonlinear

Plasma Physics: Proceedings for the 2009 ICTP College

on Plasma Physics, Vol. 1188, edited by B. Eliasson and

P. K. Shukla (New York: Am. Inst. Phys., 2009) pp. 329—

344.

[35] P. J. Morrison, M. Lingam, and R. Acevedo, Phys. Plas-
mas 21, 082102 (2014).

[36] I. Keramidas Charidakos, M. Lingam, P. J. Morrison,
R. L. White, and A. Wurm, Phys. Plasmas 21, 092118
(2014).

[37] M. Lingam and P. J. Morrison, Phys. Lett. A 378, 3526
(2014).

[38] D. D. Holm, J. E. Marsden, and T. Ratiu, Adv. Math.
137, 1 (1998).

[39] D. D. Holm, J. E. Marsden, and T. S. Ratiu, Phys. Rev.
Lett. 80, 4173 (1998).

[40] H. Cendra, D. D. Holm, M. J. W. Hoyle,
Marsden, J. Math. Phys. 39, 3138 (1998).

[41] H. Poincaré, C. R. Acad. Sci. 132, 369 (1901).

[42] E. Frieman and M. Rotenberg, Rev. Mod. Phys. 32, 898
(1960).

[43] A. J. Brizard, Phys. Plasmas 7, 4816 (2000).

[44] A. J. Brizard, Phys. Plasmas 17, 112503 (2010).

[45] T. Andreussi, P. J. Morrison, and F. Pegoraro, Plasma
Phys. Controlled Fusion 52, 055001 (2010).

[46] T. Andreussi, P. J. Morrison, and F. Pegoraro, Phys.

Plasmas 19, 052102 (2012).

and J. E.


http://dx.doi.org/10.1017/S0022112069000991
http://dx.doi.org/10.1017/S0022112084002019
http://dx.doi.org/10.1017/S0022112084002019
http://dx.doi.org/10.1073/pnas.44.6.489
http://dx.doi.org/10.1103/PhysRevLett.33.1139
http://dx.doi.org/10.1103/RevModPhys.58.741
http://dx.doi.org/10.1098/rsta.1960.0010
http://dx.doi.org/10.1002/prop.19590070902
http://dx.doi.org/10.1063/1.4890955
http://dx.doi.org/10.1063/1.4890955
http://dx.doi.org/10.1103/PhysRevLett.71.3802
http://dx.doi.org/10.1103/PhysRevLett.71.3802
http://dx.doi.org/10.1063/1.870523
http://dx.doi.org/10.1063/1.870523
http://dx.doi.org/10.1146/annurev-astro-082708-101726
http://dx.doi.org/10.1146/annurev-astro-082708-101726
http://dx.doi.org/10.1103/PhysRevLett.45.790
http://dx.doi.org/10.1103/PhysRevLett.45.790
http://dx.doi.org/10.1016/0375-9601(80)90776-8
http://dx.doi.org/10.1103/PhysRevA.25.2437
http://dx.doi.org/10.1103/PhysRevA.25.2437
http://dx.doi.org/10.1016/0167-2789(83)90017-9
http://dx.doi.org/10.1016/0167-2789(83)90017-9
http://dx.doi.org/10.1063/1.864718
http://dx.doi.org/10.1063/1.864718
http://dx.doi.org/10.1146/annurev.fl.20.010188.001301
http://dx.doi.org/10.1103/RevModPhys.70.467
http://dx.doi.org/10.1016/0370-1573(85)90028-6
http://dx.doi.org/10.1016/0003-4916(72)90236-9
http://dx.doi.org/10.1016/0003-4916(83)90008-8
http://dx.doi.org/10.1063/1.3266810
http://dx.doi.org/10.1063/1.3266810
http://dx.doi.org/10.1063/1.3266810
http://dx.doi.org/10.1063/1.4891321
http://dx.doi.org/10.1063/1.4891321
http://dx.doi.org/10.1063/1.4896336
http://dx.doi.org/10.1063/1.4896336
http://dx.doi.org/10.1016/j.physleta.2014.10.013
http://dx.doi.org/10.1016/j.physleta.2014.10.013
http://dx.doi.org/10.1006/aima.1998.1721
http://dx.doi.org/10.1006/aima.1998.1721
http://dx.doi.org/10.1103/PhysRevLett.80.4173
http://dx.doi.org/10.1103/PhysRevLett.80.4173
http://dx.doi.org/10.1063/1.532244
http://dx.doi.org/10.1103/RevModPhys.32.898
http://dx.doi.org/10.1103/RevModPhys.32.898
http://dx.doi.org/10.1088/0741-3335/52/5/055001
http://dx.doi.org/10.1088/0741-3335/52/5/055001

	Introduction
	The action principle and the Lagrangian coordinates
	Attributes, observables and the Lagrange-Euler maps
	The Eulerian Closure Principle and action-building

	The Inertial MHD action
	The inertial magnetic field: a new dynamical variable
	The IMHD action
	The IMHD equations of motion

	The Hamiltonian formulation of inertial MHD
	Derivation of the inertial MHD bracket
	The six-field model and its subcases
	Extensions of the inertial MHD bracket

	Conclusion
	Acknowledgment
	The Euler-Poincaré approach to magnetofluids
	References

