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Abstract. Ten years ago, Ko et al. described a Diffie-Hellman like pro-
tocol based on decomposition with respect to a non-commutative semi-
group law. Instantiation with braid groups had first been considered,
however intense research on braid groups revealed vulnerabilities of the
group structure and of the braid based DH problem itself.
Recently, Boucher et al. proposed a similar scheme based on a particular
non-commutative multiplication of polynomials over a finite field. These
so called skew polynomials have a well-studied theory and have many
applications in mathematics and coding theory, however they are quite
unknown in a cryptographic application.
In this paper, we show that the Diffie-Hellman problem based on skew
polynomials is susceptible to a very efficient attack. This attack is in fact
general in nature, it uses the availability of a one-sided notion of gcd and
exact division. Given such tools, one can shift the Diffie-Hellman prob-
lem to a linear algebra type problem.
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1 Introduction

Since the proposal of the original Diffie-Hellman key exchange [5], many vari-
ations around the same principle have been proposed. The core structure of a
Diffie-Hellman-like key exchange is as follows. Let K and D denote fixed domains
and let F be a function from D ×K to D such that

1. for any z in D, F (z, ·) is a one-way function,
2. the set of functions Fa = F (·, a), a in K is commutative for the composition

of maps, that is, for any a, b in K, Fa ◦ Fb = Fb ◦ Fa.

In a Diffie-Hellman like protocol the function F and a particular element z of D
are public information. In a first pass, each party chooses a random element on
his own in the set K (a for Alice’s and b for Bob’s), encrypts z with it and sends
the result to the other party. Then each party encrypts again the received data
with his element of K. In the end, they both hold

Fa(Fb(z)) = Fb(Fa(z)).



The security of the protocol assumes that given Fa(z) and Fb(z) it is infeasible
to compute this common data (computational DH assumption). Of course, the
assumption cannot be true if F (·, z) is not a one-way function since one can (for
instance) recover a from Fa(z) and stand in the same position as Alice.

The original proposal by Diffie and Hellman was to set F to the exponenti-
ation of z by a in a multiplicative group [5]. When z is a fixed group element,
its powers describe a cyclic (hence commutative) subgroup. The one-wayness of
F (z, ·) means the infeasability of identifying the power (discrete logarithm) of z
corresponding with an arbitrary element of 〈z〉. This proposal seems to find sat-
isfactory instantations and is by far the most widely used. On the other hand,
there has been several attempts at building functions F for a Diffie-Hellman
protocol from non-commutative algebraic structures. In general, these schemes
rely on a particular factorization problem rather than on discrete logarithms.
Furthermore, they all appear as variations of the following construction [6].

Generic Diffie-Hellman protocol based on a non-commutative semigroup. Let
(D, �) be a non-commutative semigroup (that is, it needs not have either a neu-
tral element nor all elements to have an inverse). Elements of D may decompose
in a large number of ways in general. Therefore it is assumed that given ele-
ments z, z′ of D such that z′ admits a factorization of the shape u � z � v, it
is intractable to find such left and right factors u, v. Hence, one defines the set
K to be ordered pairs [u, v] and one defines F : (z, [u, v]) 7→ u � z � v. When
the aforementioned decomposition problem is intractable, F has Property 1. For
Property 2 to be fulfilled too, we need functions F (·, [u, v]) to commute. This
is ensured by choosing elements u, v in a commutative sub-semigroup S. Hence,
K = S × S. Note that this specialization modifies the one-wayness property of
F . It becomes: given an element z of D and an element z′ in S � z � S where S
is a commutative sub-semigroup, find u and v in S such that z′ = u � z � v.

At this point, it is not clear whether picking left and right factors in a com-
mutative sub-semigroup weakens the decomposition problem. Either way, the
cryptosystem can hardly save such a property. Encountered variations of the
above description are choosing u and v in distinct subsets L,R that are either
both commutative or commute the one with the other (in this case, one party of
the Diffie-Hellman protocol uses L×R while the other one uses R×L). A more
general setting may not require the commutative semigroup S to be a subset of
D: it simply needs to act in a different way on the left and on the right of D.
This is even more analogous to a general discrete log scheme where D may be
an arbitrary cyclic group while S is a set of modular integers.

Instantiations. A well-known example of such a scheme based on a full group
structure is the one on braid groups [6]. In this setting, pairs of the shape [u, u−1]
are considered and the associated decomposition problem is called conjugacy
problem. There had already been partial (still exponential) attacks on the general
conjugacy problem in braid groups (see for instance [7] for a survey). It turned
out a specific polynomial time algorithm exists to attack the Diffie-Hellman
assumption in braid groups [3]. The attack uses the property that braid group
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elements can be represented by invertible matrices over some (complicated) ring.
For any element z of the braid group, we denote by Z the associated matrix.
Then, the conjugacy problem arising in the DH-like protocol rewrites to finding U
in the representation of the particular commutative set S such that Z ′ = UZU−1

where Z,Z ′ are public matrices such that at least one such solution U exists.
Candidate solutions can be found by solving the linear algebraic problem: find a
matrix U such that Z ′U −UZ = 0 and SiU −USi = 0 for any generator si of S.
The above system in general has many solutions that are not representatives of
elements of the braid groups. When it is not possible to sieve them, it does not
solve the conjugacy problem. However, the authors further observed that any
invertible solution of the above linear system (a random solution is invertible
with high probability) has the property of commuting with the elements of S,
and as a consequence is equally useful to uncover the shared output of the Diffie-
Hellman protocol. Albeit polynomial, this attack did not yield a practical break
as is. Yet, instantiation of the Diffie-Hellman protocol with braid groups does
not seem to be still investigated.

Recently, Boucher et al. proposed a Diffie-Hellman scheme (and a companion
ElGamal scheme) based on so called skew polynomials [1]. Skew polynomials are
polynomials over a finite field with a particular non-commutative multiplication
which uses the Frobenius field automorphism. They were introduced by Ore in
1933 [8] and have found many applications in applied mathematics and coding
theory. The proposed Diffie-Hellman scheme follows the previous description
with multiplication of skew polynomials as the non-commutative law. Hence, it
is an instantiation of the non-commutative Diffie-Hellman protocol which is not
based on a full group law.

Our contribution. In this paper, we show that the scheme of Boucher et al. is
susceptible to a very efficient attack. The attack in fact only remotely uses the
structure of skew polynomials, it only uses the availability of a notion of left (or
right) gcd and of a related exact division procedure in the underlying domain.
In any such setting, one can shift solving the relevant decomposition problem to
a linear algebra type problem.

Similarly to the attack on the braid DH scheme, not all solutions of the linear
type problem are solutions of the initial decomposition problem. Real solutions
satisfy one additional condition (such as invertibility in the case of the braid DH
scheme). Particular heuristics must be used, then, to find real solutions among
the solutions of the linear problem. Based on an assumption which is satisfied in
practice for skew polynomials, one can very easily get a real solution by means
of gcds, and the attack is completely polynomial time.

We first describe the precise setting and working of the attack without refer-
ence to skew polynomials and then describe application to this particular case.
Then we consider a possible variation of the scheme based on modular skew
polynomials. While our attack seems unfit to this case, we show that density of
invertible elements makes it completely weak. Finally we point out that exam-
ples based on matrix multiplication can be reduced to modular skew polynomials.
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Hence, although the attack looks general in nature, we could not produce another
case of application of this attack, and we must leave it as an open problem.

2 General Strategy of the Attack

2.1 The Invertible Case

As a preliminary, let us consider the case when the commutative subsemigroup
S is a group, that is, all its elements are invertible. In this case, a pair [u, v]
in S × S is a solution to the Diffie-Hellman decomposition problem for given
z in D and z′ in S � z � S if and only if z′ = u � z � v, that is u′ � z′ =
z � v where u′ = u−1. (Let us denote public variables in bold letters.) As a
consequence, when S is a group, the quadratic looking equation z′ = u�z�v with
unknown (u, v) can be directly turned into a linear looking equation u′ � z′ =
z � v with unknown (u′ = u−1, v). Of course it is the case in braid groups,
where one additionally has u′ = v. Then, representing braid groups elements
by matrices (see [3]), the linear looking equation is turned into a linear relation
on matrices (over a ring), which can be solved as shown in [3]. Note that the
attack may not solve the DH conjugacy problem. The same approach can also be
used to find a linear invertible change of variables mapping two sets of quadratic
multivariate equations over a field (which is a particular instance of the problem
of ‘isomorphism of polynomials’ [9]). Quadratic multivariate polynomials can be
represented by upper triangular matrices (with the same number of non-zero
coefficients), and whenever a linear invertible change of coordinates U maps a
quadratic polynomial p to a polynomial p′, it translates into the matrix identity
P ′ = U tPU (where superscript t denotes transposition). Since U is invertible,
one can attack this problem by solving the linear equation V P ′ −PU = 0 with
unknown (V = (U t)−1, U). It can easily be seen that roughly 3 independent
pairs (p,p′) with the same U only are heuristically needed to directly solve this
problem (i.e. find a one-dimensional space of solutions). Higher degree cases can
be attacked as well from the identity between degree 2 homogeneous parts. A less
immediate attack to this problem was also developed in [10]. A similar attack
was independently developed in [2].

2.2 The Setting of our Attack

In this paper, we consider cases where the elements of S are not invertible, but
breaking the Diffie-Hellman problem can also be shifted to solving a commutator-
type (linear looking) equation. The basic structure of D that we need is that of
a domain with a computable notion of left (or right) gcd and computable left
(right) exact division (and S is a multiplicative commutative sub-semigroup).
Here, domain means that it has no divisors of zero: u�v = 0⇒ u or v = 0. Note
that it needs not be a form of Euclidean ring.

Before we describe the attack, let us recall the problem hierarchy on which
the protocol relies. The Diffie-Hellman problem is: given zA = uA � z � vA and
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zB = uB � z � vB , compute

zAB = uA � zB � vA = uB � zA � vB .

A sufficient way of breaking the DH problem is the one of solving the decom-
positional problem arising in the Diffie-Hellman protocol: given z in D and z′
in S � z � S, compute u, v in S such that z′ = u � z � v. However, it was noted
in [3,12] that breaking a relaxed variant of this problem is enough to break the
DH problem: given z in D and z′ in S � z � S, compute u, v commuting with
the elements of S such that z′ = u � z � v. Indeed, if an attacker can recover
u′A, v

′
A commuting with the elements of S and such that zA = u′A � z � v′A, she

can compute

u′A � zB � v′A = uB � u′A � z � v′A � vB = uB � zA � vB = zAB .

Hence, with obvious notation, the problem hierarchy is

DH ≤ RelaxedDecomposition-DH ≤ Decomposition-DH.

2.3 The Attack

Now we describe the attack. Assume that D is a domain such that the left
(or right) greatest common divisor of two elements always exists and can be
computed efficiently and left (or right) exact division can performed efficiently.
The attack originates from the following observation. Elements in the set S�z�S
are changed in a particular way when multiplying on the left (or on the right)
by an element of S. This property is used to create the Diffie-Hellman protocol.
Here we use it to attack the scheme. Let indeed λ be an arbitrary element of S.
Then,

λ � (u � z � v) = u � λ � z � v.

Hence, we obtain another element which too has u as a left divisor. As a conse-
quence, taking the left gcd of z′ = u � z � v and λ � z′, one obtains a (non-zero)
multiple of u. The same can be done for any element λ of S. Let λ1, . . . ,λs

be generators of S. For S to be transmittable data, these generators must be
in very practical number (which we do not consider). Let g be the left gcd of
{z′,λ1 � z′, . . . ,λs � z′}, obtained iteratively from pairwise left gcds. Hopefully,
relying on the non-commutativity of z with the elements of S, g might be u
itself. It can happen that we actually have a way to distinguish between u and
its non-trivial multiples. In this case and if g actually equals u, then we use
the left exact division algorithm and get v, and the decomposition problem is
already broken. Otherwise, let anyway a be such that g = u � a. By using the
exact division algorithm, we obtain m and mi, i = 1, . . . , s such that{

z′ = g �m
λi � z′ = g �mi.

(1)
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Since there are no divisors of zero in D, this system of equations rewrites{
z � v −a �m = 0

λi � z � v −a �mi = 0. (2)

Hence we obtain a set of linear looking equations in the unknown (v, a). Since
relevant solutions v commute with S, one has the additional linear looking equa-
tions λi � v − v � λi for any i = 1, . . . , s.

Not all solutions to these linear conditions, however, are solutions of the
initial decomposition problem. This is because when shifting from the initial
system (1) to the linear system (2), one loses the information that z �v is a right
divisor of z′. For instance, any linear combination of such solutions satisfies the
linear conditions while not necessarily satisfying the divisibility condition.

Let divisor solutions refer to the linear solutions (v, a) such that z � v is a
right divisor of z′. We first show that any divisor solution is enough to break the
relaxed decomposition problem. Assume indeed that the linear-looking system
can be solved, and let (v′, a′) be an arbitrary divisor solution. By using the exact
division algorithm, we get u′ such that z′ = u′ � z � v′. From z � v′ = a′ �m,
we find z′ = u′ � a′ �m, and therefore we also have g = u′ � a′. Furthermore, u′
commutes with all generators of S: from λi � z � v′ = a′ �mi, we get

u′ � λi � z � v′ = g �mi = λi � z′ = λi � u′ � z � v′,

and therefore u′�λi = λi�u′. As a consequence, (u′, v′) is a pair of elements that
both commute with S and satisfy z′ = u′�z�v′. Hence the relaxed decomposition
problem is broken.

The only unproven step in the attack is the one of finding a divisor solution
among the solution linear space. This part may only be heuristically approached.
We first need to understand the structure of the solution linear space itself.
Observe the following property.

Property 1. Let C̃(z) denote the set of pairs (c, c′) such that z � c = c′ � z. For
any solution (v, a) of the linear looking equation z � v − a �m = 0 and any
(c, c′) in C̃(z), the pair (c � v, c′ � a) is also a solution. As a consequence, the
solutions of the equation z �v−a�m = 0 are closed under left (coordinate-wise)
multiplication by C̃(z). Of course, they are also closed under addition.

One easily sees that the property generalizes to solutions (v, a) of the complete
linear system and left multiplication by I = C̃(z) ∩i C̃(λi � z) ∩ (·, S̄) where S̄
is the elements that commute with S. One easily checks that I = C̃(z) ∩ (S̄, S̄).
Also note that I is a ring for coordinate-wise addition and multiplication.

Additivity and left multiplication by I are degeneracies that are independent
of the existential solution. Save these degeneracies, we expect the system of
equations to be characteristic of the existential solution. Hence, we expect:

Claim. the solutions of the linear system are all spanned by a single generator
through addition and left multiplication by I. Let (vg, ag) denote this generator.
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Then, since I is a ring, the linear solutions write simply I � (vg, ag). For the
existential solution (v̂, â) in particular, there exists (ĉ, ĉ′) in I such that (v̂, â) =
(ĉ, ĉ′) � (vg, ag). This means that (vg, ag) is (v̂, â) purged out of its factors in I.
This shows that (vg, ag), just like (v̂, â), is a divisor solution. The other ones
are spanned by factors (c, c′) related to left factors c of v or right factors c′ of
u. Finally note that (vg, ag) is a common right factor of all linear solutions and
since it includes itself, it is in fact the right gcd of the linear solutions.

3 Application to Skew Polynomials Cryptosystems

Diffie-Hellman and ElGamal-like schemes based on skew polynomials were re-
cently presented at PQCrypto 2010 [1]. The Diffie-Hellman protocol follows the
general construction described in the introduction and developed by the earlier
group-based proposals. We first recall the particularities of skew polynomials and
review the setting up of the cryptosystem. Then, we describe unrolling the attack
in this particular case. Since the ElGamal scheme relies on the DH problem, we
only consider the DH protocol.

3.1 Skew Polynomials

Skew polynomials are polynomials over a finite field with a particular non-
commutative inner product. Let Fq denote the finite field with q elements, and p
be the characteristic of the field. Automorphisms of Fq are the so-called Frobe-
nius maps which are powering to a power of p. Let θ be such an automorphism.
We denote by ? the inner product of skew polynomials. It is defined inductively
for all a ∈ Fq by X ? a = θ(a)X. The ring of skew polynomials is sometimes
denoted Fq[X, θ].

The ring of skew polynomials is a left and right Euclidean domain, that
is, there are both a left and a right Euclidean division algorithm. Using the
Euclidean algorithms one can thus compute left and right greatest common
divisors, and also perform exact division.

As priorly addressed, due to the non-commutativity of the inner product,
skew polynomials admit many factorizations instead of a single one. The cardi-
nality of the number of possible factorizations is expected to be exponential in
the degree of the polynomial.

3.2 Generation of the Scheme

For the sake of completeness, we recall part of the specification given in [1].
However the attack is not tied to any particular key generation.

A brute-force approach is suggested to construct the commutative subset S.
One iteratively constructs a set of generators G0, . . . , Gs of small degree δ. At
each step, a polynomial of degree δ is picked at random and tested for com-
muting with the current set of generators. If it does, it increments the set of
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generators, otherwise repeat. The set S is the commutative algebra spanned by
these generators.

Let d be the security parameter of the protocol. A public polynomial Z
of degree d is generated. At the execution of the Diffie-Hellman protocol, each
participant selects two elements U and V in S with degree d through combination
of the generators of S. More precisely, any picked element is a product of sums
of products of the generators.

All tasks performed during the protocol can clearly be made practical, how-
ever the cost of generating a set of generators for S is quoted as a long computa-
tion without further detail. The proposed instantiation is with skew polynomials
over F4, generators of S have degree δ = 8 or 9, and the protocol uses polynomi-
als of degree d = 600. For these parameters, they give two examples of S through
generator sets with ≥ 90 polynomials.

3.3 Commutativity Among Skew Polynomials

Before we go on with the attack, it is useful to investigate commutation proper-
ties of skew polynomials.

There are particular skew polynomials that commute with any other. This
subset is called the center and we denote it by C. A characterization of these
elements can be found in [1]. Let m be the order of θ (say the degree of Fq over
Fp to simplify). Then, the center polynomials are the polynomials over Fp and
in the only powers of Xm.

C = Fp[Xm].

Also, for any polynomial P , let CP denote the set of polynomials that com-
mute with P . Of course, P commutes with itself and the elements of the center.
As a consequence, CP contains the algebra generated by P and C, that is, the
set of sums and multiples of elements of C and P . This algebra is a vector space
over Fp. On the other hand, if P has all its coefficients in Fp, it commutes with
any polynomial with coefficients in Fp, not only itself and C. Hence,{

if P ∈ Fp[X], CP ⊇ Fp[X]
otherwise, CP ⊇ 〈C, P 〉 = C[P ].

On the other hand, for any degree bound r, one can easily compute the elements
of CP with degree ≤ r. Indeed, the equation P ? Q = Q ? P in the degree ≤ r
indeterminate Q is a linear system over Fp, and one can find its solutions through
linear algebra. We ran experiments for many random choices of P (not with all
coefficients in Fp) of degree ' δ = 8 and we found that at least up to degree
r = 30 the elements of CP in fact all were in C[P ]. It suggests that when one picks
generators for S during the key generation, one actually obtains polynomials in
C[P0], where P0 is any smallest degree polynomial in S modulo C (modulo is
well defined for central polynomials). Hence it is pointless to generate this set
by brute force. This is confirmed for the proposals of S in [1]: we respectively
found P0 = X5 +X3 + α and P0 = X3 +X + α.
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3.4 Unrolling the Attack

Let Z ′ = U ? Z ? V be the data transmitted by one of the participants of the
protocol. Our first step is to take the gcd of Z ′ and Λi ?Z

′ over all generators
Λi of S. Due to our previous comment on these generators having a common
generator P0, we actually take the gcd of Z ′ and P0?Z

′. We find a polynomialG
which is a right multiple of U : there exists a polynomial A such that G = U ?A.
Also we compute M ,M0 such that{

Z ′ = G ?M
P0 ?Z

′ = G ?M0.

Since the ring is a domain, one deduces from these equations,{
Z ? V = A ?M

P0 ?Z ? V = A ?M0.

In addition, one has P0 ? V = V ? P0 since V commutes with S. These three
equations are not linear over Fq, as it would be with the usual product of poly-
nomials, however they are linear alright over Fp. Expanding these equations over
Fp, and degree bounding the search space according to the expected degree of
the existential (V,A), we can solve the system through linear algebra.

The output of the previous phase is a degree bounded restriction of the entire
solution subspace of the linear system. Recall from Section 2.3 that the entire
solution space is closed under left multiplication by I = C̃(Z)∩(S̄, S̄). If the entire
solution space indeed is monogeneous under linearity and left multiplication by
I, then this generator is the lowest degree solution (V,A). Then, it can also be
found as the right gcd of a linear basis of the bounded degree solution subspace.

We checked the previous expectations in practice with the recommended pa-
rameters and beyond. In any tested case, the bounded degree solution admitted
only one lowest degree solution (up to Fp multiples) and any other solution was
a multiple of it by a central factor. It incidentally shows that I = C ? (1, 1) up
to the fixed degree bound. Let (Vg, Ag) denote the found generator. We verified
that it is a divisor solution and also that it is the right gcd of a linear basis
of the bounded degree solutions. We also checked that (Vg, Ag) is the greatest
central factor of the original solution (V̂ , Â). This greatest central factor can be
extracted by taking the left gcd of (V̂ , Â) and arbitrary left multiples of it.

The attack has theoretical complexity in (md)3. It takes about a minute with
the recommended parameters and with a straightforward implementation in C++
using the NTL library [11].

4 The Case of Modular Skew Polynomials

We consider a possible variation of the Diffie-Hellman protocol based on modular
skew polynomials.
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4.1 Constructing Modular Skew Polynomial Rings

Let R denote a skew polynomial ring Fq[X, θ] and let N be an arbitrary element
of R. Let ?N denote the set of left multiples of N . Congruence modulo ?N is
an equivalence relation over R and the associated partition elements are called
left classes modulo N . Obviously right classes can be defined all the same from
N?. Reduction modulo ?N (resp. N?) can be performed by using the left (resp.
the right) Euclidean division algorithm.

One awkward property of left classes is that they cannot be multiplied the
ones with the others unless N commutes with their elements in a certain sense.
Indeed, let U+Λ?N and V +Λ′ ?N be arbitrary reprensentatives of two classes.
Their product

(U + Λ ? N) ? (V + Λ′ ? N) = U ? V + Λ ? N ? V + (U ? Λ′ + Λ ? N ? Λ′) ? N

does not equal U ? V modulo ?N unless Λ ?N ? V is right divisible by N . Since
Λ may be chosen arbitrarily, it means N ? V is right divisible by N , or again
that there exists W such that N ? V = W ? N . When such a W exists, we say
that N quasi-commutes with V .

When we want the set of classes to itself be a (non-commutative) ring, we
need N to quasi-commute with all elements of R. Let N denote the set of such
N ’s; we call it the quasi-center of R. Observe that the elements with which
N quasi-commutes is closed under the ring operations. Therefore, N quasi-
commutes with all elements of R if and only it quasi-commutes with X and
all the constants. This yields an easy characterization of such polynomials N . If
a constant a quasi-commutes with N , because of the degree, its dual element is
also a constant b. For any a,

N ? a =
∑

i niθ
i(a)Xi = b ? N =

∑
i nibX

i

implies that there is k such that all non-zero terms are at i ≡ k mod m (where
m is the order of θ, assumed equal to the degree of Fq over Fp). Next, we do the
same with X: there are constants a, c such that

N ?X =
∑

i niX
i+1 = (aX + c) ? N =

∑
i(aθ(ni) + cni+1)Xi+1 + cn0 .

Let j be the smallest i such that ni 6= 0. Then, c.nj = 0 implies c = 0, and
for any i such that ni 6= 0, a = ni/θ(ni). Let ā satisfy ā/θ(ā) = a. Finally the
quasi-center N is the union of the sets Nk,a = āXkC, k ∈ {0, . . . ,m−1}, a ∈ Fq,
where C = Fp[Xm] is the center of R. More concisely, this is ∪m−1

k=0 FqX
kC.

For any polynomial N of the quasi-center, left and right multiples of N are
just the same sets and classes modulo these sets are simply said classes modulo
N . These classes form a ring, which we denote by RN .

4.2 The Modified Scheme

Modular skew polynomial rings might be considered at the basis of a non-
commutative Diffie-Hellman protocol following exactly the same construction
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as proposed in [1]. Let d denote the degree of N . Any class admits a unique
representative with degree < d. Multiplication of classes is realized through
multiplication of canonical representatives and subsequent reduction mod N .
We denote this operation by ◦.

A commutative set S may again be constructed by selecting commuting
classes with canonical representatives of small degree δ. Since δ is a small con-
stant while d is the security parameter, one can assume 2δ < d. In this case, the
picked canonical representatives in fact commute without modulo. Then, follow-
ing 3.3, these representatives are spanned over the center by a single polynomial
P0. Elements of S are arbitrary combinations of P0 over C reduced mod N .

4.3 First Remarks

It is immediate that RN is not a domain: for any pairwise factorization U ? V
of N , we get U ? V = 0 mod N while neither U or V is divisible by N .

Now, by definition a class Ū is a left factor of a class P̄ if P̄ lies in the image
space of the map

µ(Ū) : RN −→ RN

V̄ 7−→ Ū ◦ V̄ .

Recall the product Ū ◦ V̄ equals U ? V mod N where U and V are arbitrary
elements of Ū and V̄ . Observe that the set U ? +N? is independent of the
particular U in Ū . As a consequence, the left gcd G of U and N is independent
of U in Ū . Now, from U ?+N? = G?, we get that right multiples of U and G are
the same mod N . As a consequence, the image of µ(Ū) is the set Ḡ◦. Finally,

Property 2. the set of left factors of a class P̄ is the set of classes Ū whose left
gcd G with N is a left factor of the canonical representative P̂ of P̄ .

In particular, classes that are left coprime with N are left factors of any class
(they are the units of the ring). As one can see, the relationship between divisors
and multiples is very loose in RN . Then, the fact that a class Z̄ ′ is computed
as Ū ◦ Z̄ ◦ V̄ hardly carries information on the particular Ū and V̄ . Therefore,
there is not much information to be obtained in using gcds on Z̄ ′ and P̄0 ◦ Z̄ ′.
Instead, since P̄ is loosely related to the initial (Ū , V̄ ), one may take advantage
of the many equivalent pairs (Ū , V̄ ).

4.4 Attacking the Modular Decomposition

Given a class Z̄ ′, we search for a decomposition Ū ◦ Z̄ ◦ V̄ where Ū and V̄ are
in S̄ (that is, commute with P0 mod N). At least one exists by construction of
Z̄ ′ and we expect many others.

We target pairs (Ū , V̄ ) in S̄ × S̄ such that (e.g.) Ū is left coprime with N .
Before going on, observe that being left or right coprime with N is the same
when N is in the quasi-center. From Ū being left coprime with N , we get W̄
such that Ū ◦ W̄ = 1̄. Then right multiplication by Ū is clearly injective (right
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multiply by W̄ ), and therefore bijective, and Ū is right coprime with N . Using
associativity, one also gets that the left and right inverses are the same.

Now, for any (Ū , V̄ ) in S̄ × S̄ where Ū is coprime with N ,

Z̄ ′ = Ū ◦ Z̄ ◦ V̄ ⇐⇒ W̄ ◦ Z̄ ′ = Z̄ ◦ V̄ .

Also, Ū commutes with P̄0 iff W̄ commutes with P̄0. Therefore, the decomposi-
tional pairs (Ū , V̄ ) in S̄ × S̄ with Ū invertible are in bijection with the solutions
(W̄ , V̄ ) in S̄ × S̄ of the linear equation W̄ ◦ Z̄ ′ = Z̄ ◦ V̄ with W̄ invertible.

For the attack to be successful, we simply need to extract a pair (W̄ , V̄ ) with
an invertible W̄ from the solutions of the linear system. For this, we rely on the
density of such pairs. First observe that restricting elements of pairs in S̄ can
only negligibly impact the density of invertible elements. Indeed, the modular
condition is exact for all classes whose canonical representative has degree under
deg(N) − deg(P0). Since deg(P0) asymptotically remains a small constant, the
fraction of classes for which the condition involves N is negligible. Besides, we
see no reason why the density of W̄ among solution pairs (W̄ , V̄ ) (not restricted
to S̄) of the equation W̄ ◦ Z̄ ′ = Z̄ ◦ V̄ should differ from the global density.

Claim. The density of invertible W̄ among solutions (W̄ , V̄ ) in S̄×S̄ of W̄ ◦Z̄ ′ =
Z̄ ◦ V̄ is the same as the density of invertible classes in RN .

Although N can have many distinct irreducible left factors, these are a sub-
collection of all possible irreducible left factors of degree deg(N) polynomials.
As a consequence, we expect the fraction of classes left coprime with N to be
asymptotically a constant close to 1. For the sake of intuition, for any u < d, the
fraction of right multiples of degree u monic polynomial L among degree < d
polynomials is q−u. Then, the probability that two degree < d polynomials be
both right multiples of L is q−2u. Then, the probability that they not share a
common left multiple of degree u is 1−quq−2u = 1−q−u. We estimate the prob-
ability of they be coprime by the probability not to share degree 1 left factors:
1− 1/q. This is our expectation of the density of invertible elements.

We checked the above properties in practice. We checked (through sampling)
the density of invertible classes both among the left coordinates W̄ of the solution
space and among all classes. We found densities of the same order in both cases:
equal in large characteristic and indeed close to 1 − 1/q, but slightly different
in small characteristic. Hence, we could in any case extract a decompositional
solution almost at once.

Interestingly, the attack can be slightly generalized. We may more generally
target decompositional solutions (Ū , V̄ ) such that Ū has a right gcd with N not
necessarily 1 but a target right factor G of N which commutes with P0 (for
instance a central polynomial). Then, for any such Ū , there exist W̄ such that
W̄ ◦ Ū = Ḡ. Since both Ū and Ḡ commute with P0, the same holds for W̄ . Then,
we simply compute solutions (W̄ , V̄ ) in S̄ ×S̄ of W̄ ◦ Z̄ ′ = Ḡ◦ Z̄ ◦ V̄ , and extract
W̄ such that the left gcd of W̄ and N is G.
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5 Beyond the Case of Skew Polynomials?

Another usual example of a non-commutative algebra are square matrices over
a finite field. Then, the question arises as to whether this algebra can be used to
build a non-commutative Diffie-Hellman protocol. We answer this question neg-
atively by simply describing a well-known connection between square matrices
over a finite field and modular skew polynomials (see for instance [4]): square
matrices are modular skew polynomials with particular moduli.

Let Fp be an arbitrary finite field and let Fq = Fpn be the degree m extension
field of Fp. It is well-known that Fq is an m-dimensional vector space over Fp.
Hence, fixing arbitrary basis elements of Fq over Fp, one can encode any element
of Fq into an n-dimensional vector. This correspondence also induces a one-to-
one correspondence between Fp-linear maps on Fq and Fp-linear maps on (Fp)m.
The latter simply are represented bym×mmatrices over Fp. Hence, composition
of Fp-linear maps on Fq is the same as matrix multiplication. We can now regard
the ring of m ×m matrices over Fp as the ring of Fp-linear maps on Fq for +
and the composition of maps, which we denote by Lp(Fq).

We now describe a generator basis for Lp(Fq). It is well-known that powerings
to the power of p are Fp-linear bijections on Fq called the Frobenius maps. We let
θ be the first Frobenius map. Multiplication by an element of Fq is also Fp-linear.
Therefore, linear combinations over Fq of Frobenius maps (powers of θ) also are
Fp-linear. It can be seen that this representation is injective and finally, by a
simple cardinality argument, one-to-one. As a consequence, Lp(Fq) is the set of
linear combinations over Fq of the Frobenius maps,

∑m−1
i=0 ai ◦ θi. These maps

can be identified with polynomials
∑m−1

i=0 aiX
i. Mapping the ring structure of

Lp(Fq) to these polynomials, one obtains the usual + law but multiplication
following the identities X ◦a = θ(a)X and Xn = 1. This is exactly the identities
defining skew polynomials Fq[X, θ] modulo the center polynomial Xm − 1.

{m×m matrices over Fp} = Lp(Fq) = Fq[X, θ]/(Xm − 1).
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