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Abstract

The present paper provides an extended analysisraérogrid energy management framework
based on Robust Optimization (RO). Uncertaintiesiimd power generation and energy
consumption are described in the form of Predicidarvals (Pls), estimated by a Genetic
Algorithm (GA) — trained Neural Network (NN). Theafmework is tested and exemplified in a
microgrid formed by a middle-size train station {T8th integrated photovoltaic power
production system (PV), an urban wind power pl&4PP) and a surrounding residential district
(D). The system is described by Agent-Based MaagfABM): each stakeholder is modelled as
an individual agent, which aims at a specific gedher of decreasing its expenses from power
purchasing or increasing its revenues from powingeThe aim of this paper is to identify
which is the uncertainty level associated to théréame” conditions upon which robust
management decisions perform better than a mictaganagement based on expected values.
This work shows how the probability of occurren€és@me specific uncertain events, e.g.,
failures of electrical lines and electricity demaad price peaks, highly conditions the
reliability and performance indicators of the migrid under the two optimization approaches:
(i) RO based on the Pls of the uncertain paramatsiigii) optimization based on expected

values.

Keywords: microgrid, agent-based model, uncertain scenamsist optimization, power
imbalance, reliability.
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available energy output from the photovoltaic gatws installed in the
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portions of energy purchased from the externdllgy the TS and D,

respectively KWh),

portions of energy sold to the external gridoy TS and WPP,
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portions of energy sold to the district and gatent by the PV panels of
the TS and WPP, respectivékiwh),

energy levels in the train station battery aettrandt-1, respectively
(kwh),

energy levels in the district battery at titrendt-1, respectivelykWh),

energy portion that the train station batteryapable of charging or

discharging during time(kWh)

energy portion that the district battery is capadfl charging or
discharging during time(kWh)
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time horizon considered for the optimizatigm),

total costs for TS and D, respectively, for tipggiodT (€),
total revenue for WPP in time peridd€),

average hourly costs of purchasing and sellikgvhfrom the external

grid, respectively, at time(€/kWH,

average hourly cost pkYWhfrom the bilateral contract agreed with D at
timet (€/kWh)

coefficients defining the minimum amount of enetgye sold to D by TS

and WPP, respectively,

expected energy demand for D (for the moment,idensd without
uncertainty) at time stetp predicted by TS and WPRWH),

energy portions, which TS and WPP are ready tdsé&l at time step
(kwh,

level of uncertainty quantified for the robustioptation at timet (kWh)

upper and lower prediction bounds of WPP powepuaiat timet,
respectively(kwWh)

simulation time period composedN$ time steps of one houn),

Loss of Load Expectation, characterizing the pbaiig of unsatisfied
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losses during,

available capacity in the microgrid at time stéfp\Wh)

energy demand in the microgrid at time dt@dWVh)

probability of loss of load at time stgp

energy portion that the system is not able t@luat time step (KWh)
portions of energy contracted by the WPP to tteraal grid and

microgrid, respectivelykWh)

actual portions of energy provided by the WPEh®external grid and
microgrid, respectivelykWh)

imbalance cost generated by wind power planta Stept (€),
energy imbalance generated by wind power platitreg stept (KWh)

prices for positive and negative imbalances, retbggy, at time step
(E/kWh)

performance ratio calculated over a simulationqoeof Ns hours by
normalizing the imbalance cost by the actual expgnsevenues

calculated in the case of perfect forecast (%),

constants denoting the average annual duratibigbfand normal wind

conditions, respectively, over the time perifd* (h),

A (vy) anda "™ tailure rates at high and normal wind conditigoscur./y) respectively,

fo(Ve)

f& andf;

norm
r

weight factor caused by severe weather,

weight factors for hourly and daily variationsspectively,

reference restoration time during normal weatleddions, modelled as a

random variable with lognormal distribution.



1. Introduction

Renewable energies are promising solutions tortbegetic and environmental challenges of the
21st century [1], [2]. Their integration into theigting grids generates technical and social

challenges related to their efficient and secureaagament.

From this point of view, a closer location of geatédn and consumption sources in
decentralized microgrids is expected to increasacequality for the consumers by decreasing
transmission losses and the time needed to maaafjedstoration and congestions. However,
energy management can become critical in the mictogue to possible conflicting
requirements or poor communication between thewfft microgrids elements [3]. Therefore,

there is a need of framewaorks for efficient micidggnergy management.

A way to model microgrids and the related individgaal-oriented decision-making of the
microgrid elements is that of Agent-Based ModeliAgM) [4]-[6], which allows analyzing by
simulating the interactions among individual intght decision makers (the agents). The most
widespread application of this modeling approaatceons the bidding strategies among
individual agents, who want to increase their immaedprofits through mutual negotiations and
by participating in a dynamic energy market [7]4[IRecent studies show the extension of the
ABM approach to more complex interactions in thergg management of hybrid renewable
energy generation systems [6], [11], [12]. In theseks, the long-term goals are focused on the
efficient use of electricity within microgrids, e,ghe planning of battery scheduling to locally
store the electricity generated by renewable ssuaicd reuse it during periods of high electricity
demand [11]. However, the decision framework is camly developed under deterministic

conditions, e.g., those of a typical day in summer.

To account for the variability and randomness efdperational and environmental parameters
of the energy systems, several optimization teelesdave been progressively introduced for
handling uncertainty [13]. Fuzzy mathematical pesgming models and their extensions have
been developed for optimal management of hybridgngystems [14], [15]. Stochastic
programming models, where the uncertain paramaterdescribed by probability distributions,
and interval programming models, where the unaestas described by intervals [16], [17],

have been used to deal with different sources oédainty in optimization problems, like



economic-energy scenarios planning [18], desigeoéwable systems for community energy

management [19], and water quality and waste manege[20], [21].

In this paper, we propose an analysis of a micdoginiergy management framework based on
Robust Optimization (RO) previously proposed byadhéhors [22]. The analysis is intended to
identify the conditions required for an optimal noigrid operation in presence of several sources
of uncertainty, affecting the power output fromeemble generators [23], the production costs
[24], the electricity demand [25]. The uncertaiimtythe parameters is represented by Prediction
Intervals (PIs), which are estimated by a Neurdingek (NN), Genetic Algorithm (GA)-trained

to provide lower and upper prediction bounds betwekich the uncertain values of the

parameters are expected to lie for a given contidéevel [26], [27].

The RO framework improves the reliability of thecnaigrid operation by selecting energy
management actions that are optimal under the weatization of the uncertainty conditions.
However, this is done at the cost of possible lowegenues for the energy generators and higher
expenses for the energy consumers than thosedulat lse obtained by optimizing over the
expected values of the uncertain parameters. Topoped analysis investigates the influence of
uncertain events on the microgrid performance dedtifies the conditions under which the

application of RO or optimization based on expest&@des is most advantageous.

The paper is organized as follows. Section 2 mt#s/éor the analysis carried out. Section 3
describes the models of the individual agents énntiicrogrid and the way that the uncertainties
in the energy management parameters are accountethke procedure for the simulation of the
uncertain scenarios and the definitions of the wiugiantities are discussed in Section 4 and
Section 5, respectively. Section 6 applies thegeesl methodology to a reference microgrid

system. Finally, the last section draws conclusemnt gives an outlook on future research.
2. Motivation

Two optimization approaches are considered: (inupation based on the expected values of
the uncertain quantities (also called “determinfstiptimization) and (ii) Robust Optimization

(RO) based on Prediction Intervals (PIs) with aegiCoverage Probability (CP).

In a previous work [22], the authors have shown tiha proposed framework of RO based on

Pls leads to high system reliability, but at thpense of conservative results regarding system



revenues or expenses. In fact, the proposed frankdeads the decision maker to anticipate the
worst possible realization of the uncertain paramseaind choose the best solution with respect
to such a case. By so doing, the producer plarengsgy scheduling strategy by committing less

energy for sale while the consumer purchases magyg than it is likely required.

The analysis proposed in this paper, aims at etialythe system performance for different
levels of uncertainty affecting both operationall @mvironmental conditions. These
uncertainties can be broadly classified in two sy{g uncertainty related to fluctuations of the
operational and environmental conditions withinectpd and acceptable limits. These are
typical conditions for the microgrid operation, afiyiuncertainty related to extreme events. In
the first case, the fluctuations of the operati@aral environmental conditions can be managed
by optimization based on expected parameters valiitesut particular performance degradation
[22]. In the second case RO is expected to leadaimagement actions that guarantee the
operation within safety margins. This paper propasethodology to simulate the uncertainty
related to extreme events and to evaluate micraghiability and performance under different

optimization approaches.

To evaluate the performance of the proposed metbhggowe adopt classical reliability

indicators and the so called performance ratiountjfy negative / positive imbalances caused
by the prediction errors. This analysis allows simgwhow the probability of occurrence of an
uncertain event can influence the microgrid perfamoe indicators. Thus, this analysis provides
a way of identifying the level of uncertainty ireteystem upon which RO performs better versus

an optimization based on expected values.
3. Microgrid energy management: the practical setting

The reference system considered in this papeeisdime as in [22]. It includes a middle-size
train station (TS), which can play the role of poweoducer and consumer, the surrounding
district (D) with residences and small businesaed,a small urban wind power plant (WPP).
The goal of TS is to decrease its electricity esgsrnwhile satisfying its demand. To achieve

this, the TS strategy includes the integrationeofewable generators and energy exchanges with
the local community to increase the power flexipibf the microgrid. Photovoltaic panels (PV)
have been shown to be an adapted and efficiemdémty for its implementation on large

commercial, public buildings and transportation $1{28], [29]. For the energy exchanges with
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local community, we consider only the possibiliffegchange between the TS and the D. This is
done to keep the model simple but also completeder to properly illustrate the optimization
analysis. Future work includes the modelling of ¢hergy exchanges between the TS and the
WPP.

The goal of WPP is to increase its revenues frdiimgehe electricity to the external grid and to
the D. The latter is considered only as an eneogguamer, with the goal of decreasing its
electricity purchase from the external grid by ptiming the purchase of electricity from local
sources, i.e., the TS and the WPP. In additionasgeime that the TS and the D have the

capacity to store electricity in batteries.

For our current D model, we assume that the effeldcally installed renewable generators, in
our case PV panels, can be neglected. The enezggraged with PV panels is around 0.8% of

the annual energy consumption in 2012 for the ctemed area [30].

Only a synthetic description of the models of thdividual agents of the microgrid is presented

below; for more detailed information, the interelséithor can refer to [22].

TS: The energy consumptidiy S (kwh)in the main passengers building is divided into a
variable consumption, i.e. lighting and lifting @gpling on the solar irradiation and passengers
flow, respectively, and a fixed consumption repnéseé by plug-in electronic devices. The
power required by the lifting equipment is calcathby using the methodology in [31], which is
based on in-situ real time records of passengews fThe electrical energy consumed by the
lighting equipment is calculated based on the msidd outside luminosity (e.g., EN13272:2001
UK) [32]. The total energy produced by ¥V (kwWh)is calculated based on the solar
irradiation and technical specification of PV maal{83], [34].

WPP: The total energy produced by the WP¥F? (kwh)is calculated based on the wind speed
data from [35], by using the cubic correlation ddxsed in [36].

D: To simulate the energy consumption of the D, weaiop-down approach based on

available statistical collections of electricitynsumptions [37].

Models for the batteries charging/discharging aes@nted in Appendix A, i.e., egs. (A.6) —
(A.8) and egs. (A.12) — (A.15) for the TS and Cspectively.



In this work, the market electricity prieé (€/kwWh) is assumed to vary following a similamtde
to the wholesale market price in France [38]. MeBzpwe assume that the grid offers an
electricity pricec; (€/kWh)to purchase the energy from the agents. Finddgyetectricity price
cP (E/kwh)is the one offered by the D to purchase the enfeagy the other microgrid energy

producers.

As it is described in Section 2, the paper analylsesmpact of different extreme events, i.e.,
wind storms, associated electrical lines failuned anergy demand and prices peaks, on
microgrid performance using two different optimipatapproaches: (i) optimization based on
the expected values of the uncertain quantities @eterministic optimization) and (ii) RO based
on Pls. The detailed formulation of the microgrtimization problem and its solution by the

two approaches is presented in Appendix A.1.

Figure l1a,b illustrates the structure of the managemerdraehand operation procedure of the
microgrid. The outputs from the models of the indiisal components are used to forecast the
energy demands of the TS and D, &5 andE?, the energy outputs of the WPP and PV, i.e.,
PYYPP andPFV, and the electricity pricad . These forecasted quantities feed the optimization
models of the different decision-makers to deteatireir optimal decision variables, e.g., the
battery scheduling and the energy portion to exghdietween the agents and the upstream grid.
In order to set up the price for the energy tragihg agents use 24-hours ahead predictions of
the reference pricescf ). Note that these predictions may not accountif@xpected price

variations.
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Figure 1. Integrated framework: a) Structure ofrl@nagement scheme; b) Operation procedure
[39].

The decision-making strategy for each agent isiobthby an optimization approach so that the
expenses are minimized for the D and the TS, whéaevenues are maximized for the WPP.
These goals are achieved through strategic battdrgduling and the optimal selection of energy
exchanges between the microgrid agents and theeapselectricity grid. Thus, the consumer
aims to optimize its strategy considering a timgzom of 24 time steps, each of one hour
duration. Similarly, at each timtethe microgrid energy producers (WPP and TS) am$wmer

(D) have the possibility to negotiate bilateral tants of energy exchanges to achieve their
goals. Note that in this paper demand-response anéhs for the energy management are not

considered.
4. Simulation of uncertain scenarios

In order to analyse the RO framework develope®%j,[we have adopted the framework

illustrated in Figure 2hat allows integrating uncertain events.
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Figure 2. Procedure for construction and test ehados with uncertain events.

The step-by-step procedure is described in theviatlg. The available statistical data of the
parameters, such as wind power output of WPP atradity demand for D and TS, is divided
into two data sets: the first data set feeds a Giaired NN for the estimation of the PIs; this
provides a Pareto front of prediction solutionserms of PIs with lower and upper prediction
bounds between which the uncertain parametersxperted to lie with a given confidence level
[27]. The second data set is used to simulate ah@mal variations of the considered parameter.
From the Pareto front of the available solutioms solution of Pls can be selected according to
two characteristics, i.e., Coverage Probability@md Prediction Interval Width (PIW), and be
used to characterize the uncertainty feasible regidhe RO (egs. (A.22) — (A.55)). In parallel,
the second data set representing the nominal prafithe considered parameter is updated with
uncertain events. Note that the reference to theimad profile of the parameter indicates that it
is based on historical data and does not accouinfpuncertain events which can arise in the
future. Finally, the updated nominal profile istezsto explore the effects that the level of
uncertain events may have on the microgrid perfageaThis is done by comparing the two
management strategies for the microgrid describegkection 3, i.e., optimization based on the

expected values and RO based on Pls.

The procedure for simulation of the uncertain esémnbriefly described in this section.
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4.1. Failures correlation with environmental conditions

This section provides a brief analysis of failuoégnergy production installations, PV panels
and wind turbines, as well as electrical lines eated with environmental conditions in Section
4.1.1. Based on this analysis, Section 4.1.2 ptesha mathematical model of electrical line

failures correlation with the wind speed intensity.

4.1.1. Failuresanalysis
This section analyses the failures of energy prboocinstallations and electrical lines,
correlated with intense environmental conditionsl aliscusses the corresponding reliability

models.

Various tests and experiments have been conductddtérmine the major causes of PV panels
failures, and the associated failure rates [40]].[/Among these are thermal cycling test,
humidity freeze test, damp heat test, and hot st with failure rates of 15%, 14%, 10%, and
10%, respectively [40]. The effect of temperatureRV panels components, and their safety
margin, have been explored in detail by taking iatcount different parameters, e.g., ambient
temperature, irradiance, wind speed, bias conditipen -circuit, short-circuit, maximum-

power point and shading), and installation configions (e.g., air gap between module and roof
surface) [1]. Other experimentations analyse the g@vels efficiency degradation correlated
with the panels temperature [42], and the appbeatf diagnostics methods for these types of

problems [43].

In reality, even if the major failure causes ar@kn and their effects on PV panels can be
diagnosed, the mathematical formulation of theirr&ation with temperature has not been
undisputedly determined yet. Indeed, PV modulesareplex multi-material energy production

systems for which electrical system conditions arsdallation configuration play an important

role. Furthermore, additional parameters, e.g.dvépeed and its directions, could significantly
attenuate (or change) the temperature effect ofPYh@anel degradation and failure behaviour,
rendering them non uniform across modules of samstruction and type, and with differences

between test and real conditions [41].

Similarly, for wind turbines there are severalistatal studies that provide information about the

annual downtime and failure frequencies of winditte components [44]-[46]. However, the

14



reliability models then used, rarely address thgeddence of their failure rate of wind turbines
components on wind speed and other characterisbnl; few examples exist, that treat the
influence of wind turbulence on rotor and pitch mmasm [45], and demonstrate that the wind

turbine failure rates can be learnt by monitorimg Wwind characteristics [46].

Based on the above analysis, we can concludelibatdfinition of reliability models for multi

components systems, such as those employed inyepasduction installation is still an open
challenge. In this view, for the present reseamtly wind speed-correlated failures in the
electrical lines have been considered. The matheahabrrelations introduced allow accounting
for the increase of failure frequency and repairatdon times in presence of extreme

environmental conditions [47].

4.1.2. Wind storms and associated failures of the electrical lines
We consider failures/repairs of the electrical sinehich are correlated with the wind speed

intensity. In order to generate different profitdsvind speed, the procedure of Figure 2 is used:

1) The initial profile of wind speed is used to samgtierms with different probabilities of
occurrence. The continuous increase of the storpisapility allows generating wind
speed profiles representing different levels ofeutain conditions.

2) Each wind speed profile is analysed and the toga¢eted failure rate and restoration
time are computed.

3) The obtained failure/restoration rates are usesinollate different scenarios of uncertain

events.

As described in [47], our work focuses on the satiah of wind speed-correlated failures in the
overhead lines. This allows accounting for theease of failures frequency and repair durations
in presence of extreme environmental condition$. [#ifie following equation defines the

expected total failure ra@(A(v,)):

Thw wind norm

E(Aw) =g 2" (0e) + 7+ A @)

whereT™ andT™ are constants which denote the average annuaiauth) of high and

normal wind conditions, respectivelff:°t is the total duration of the simulation period, (h)

15



Awmd (vy) anda "™ are the failure rates (occur.ly) at high and nénmad conditions,
respectively, and is a scaling parameter. Note that contrary to,[%#g] do not consider possible
failures due to lightning events: therefore, eg.adcounts only for the increase of wind speed
above a critical value. To describe the failure @thigh wind conditions, we use an exponential

relationship between the failure rates of lines &t speed:

2 (o) = (e —y) A @)
wherev;, is the wind speed (m/s) at timee, y,, y3 are scaling parameters abd” " is the
constant failure rate during normal weather condgi The restoration time for the overhead

lines is defined as follows:

norm

re=fo) fEfler ©)

wheref, (v,) is a weighting factor caused by the severe weaflfeandf;* are weighting factors

for hourly and daily variations, respectively, and " is the reference restoration time during
normal weather conditions modelled as a randonakbeiwith a lognormal distribution:

1, if v, < vTH
fv(vt) = 14 k- (vp—vCTit)

—. )
rnorm

; 4
if vy > perit ( )
For this model, the scaling parameters and weggtibfs were defined through the analysis of
real data in [47].

The drastic increase of the wind-caused failure imsimulated and validated with real data for
wind speeds higher than the critical one [48]. Adong to different studies, the critical wind
speed above which the expected failure rate oéléhetrical lines increases is around 8 m/s [47],
[48]. Based on this indication, Figurea3billustrates the occurrence and duration rates of
discretized wind speeds for the nominal profilee Tiney bars indicate normal wind speed

conditions, while the black ones are related t@sewind speeds (storms) conditions.
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Figure 3. Analysis of nominal wind speed profilgpacurrence rate and b) duration rate of

discretized wind speeds.

To analyse the influence of the wind speed intgrmitthe failures of electrical lines, the

occurrence rate of maximum wind speed in the nohpradile is artificially raised from 0.001 to
10 occurrences per time period. To simulate thelWpeaks’, we focus on the maximum wind

speed magnitude of the profile of Figure 3 a, L&.m/s. The initial occurrence rate of such wind

speed magnitude has been progressively increaseeparted in Table 1. The exponential

distribution is used to model the time betweenm#occurrence, which are considered

statistically independent events [49].

Table 1. Failure and repair rates of overhead loedifferent wind speed conditions.

# of wind speed Wind storms Overhead line failures
profile Occurrence rate, Duration rate, Total expected MTTR, h
occur./time period  occur./time period | failure rate (MTTF,

h), occur./time

period
a. Initial wind speed
profile 0.001 0.5619 (3097) 2.15
b. 0.01 05 0.8369 (2086) 2.31
C. 0.1 ’ 3.4982 (499) 3.95
d. 1 10.3420 (168) 8.18
e 10 11.6372 (154) 9.01

At the same time, the mean duration rate of maximima speed magnitude was kept

unchanged and equal to 0.5 occurrences per simulttne period. This can be explained by the
fact that the duration of high wind speed periods wept as small as possible to decrease their
effect on the results. Indeed, the artificial irage of wind speed raises the total energy output
generated by the WPP for the considered time pefibg increase of total energy output

17



attenuates and, in some cases, veils the effeinof speed-correlated failures of electrical lines

regarding parts of negative and positive surpléisethe long-term period.

As seen inrable ] the increase of the wind storms occurrence rateigates the decrease of the
MTTF and the increase of the MTTR of overhead faikires.

4.2. Energy demand and price peaks

4.2.1. Energy demand peaks
The importance to forecast the energy demand paakgvaluate their impact on the
performance and reliability of energy systems watgilly emphasized in [50], and explored in
other reports and scientific works for various m¥as i.e., (i) the increasing concern about
electric system reliability and growing trend todsienergy efficiency as a resource [51]; (ii)
emergence of new market structures and opportarittiemonetary compensation of sources of
system reliability [51], [52]; and (iii)) increasedioption of advanced metering and
communication technologies that make it easierlessi costly to evaluate peak demand impacts
[53].

Energy demand is primarily influenced by weatherditons, i.e., temperature and hours of
daylight, as well as other consumption patternd iscnumber of business hours and school
holidays. In this view, the temperature typicalljvds electric demand especially among
residential consumers, who can use more than h#iecelectricity during the peak hours of the
coldest or hottest days (regulation of househattperature). However, the consumption peak
can also be influenced by other parameters, gecia calendar events and demographics.
Moreover, peaks’ shifting during the day is possithiring the day due to the adoption of smart
grid technologies, e.g., massive plug-in of theteleal cars. Therefore, the prediction of the
energy consumption patterns remains an importaaltestge, mainly because of the absence of
sufficient amount of statistical data. For thesssoms, the increase of the consumption peak
occurrence and intensity are difficult to foreocagh statistical models. Different works develop
numerical tools to forecast the increase in endegyand peaks, e.g., statistical tools capable to
capture unexpected extreme intraday increasesiby asailable statistical records of energy
demand [54], parametric models to predict long-tpeaks correlated with weather, economic
and demographic parameters of a particular ardaofSBayesian estimation techniques to

predict energy consumption peaks in transportatigtems [56].The statistical forecast
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approaches are based on the so-called normalgeafilthe statistical parameter, e.g., energy
consumption or temperature, which do not accouna foossible increase of the peak occurrence
and magnitude in the future [57]. Moreover, the tiquéirameters time series models accounting
for weather-induced effects, daily/weekly/yearlpsenality, special calendar events and in some
cases, the variation of GDP and demographics of¢lographical areas, provide a more accurate
forecast for peak occurrence and magnitude [58]-[Bifferent research papers and reports

[61], [62] situate the main energy demand peakrgperiod from noon to 6 p.m. Off-peak
occurs from 9:30 p.m. to 8:30 a.m. and the resionirs are considered to be the partial peak.

In our case, the prediction of electricity demantich is done by using the nominal profile of
the consumption, does not allow using the foregastel to simulate the increase of energy
consumption peaks. The uncertainty in variationthefenergy demand is, thus, artificially
simulated by increasing the daily peaks duringptsak hours. For this purpose, we assign the
probability of peak occurrence to each day durimgeak by using the probabilistic approach
described in [58]. According to this approach, whig validated with real statistical data, the
working days, i.e., from Monday to Thursday, hdid highest probability of peak occurrence,
which can vary from 0.05 to 0.15 depending on #eesen (Figure &). It also provides the pdfs
of the magnitude of peak electricity demand (Figiz.
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Figured. Example of the probabilistic forecast of the Iquhk year 200[58]: a) Occurrence
probability on various dates in December; b)pdfflmrecasted values of load peak.

Based on the conclusions presented in [58], wewattdor the possibility of peak occurrence
only from Monday to Thursday.o generate scenarios with different levels of utadety in
energy demand, we assign arbitrary constant valupsobability of peak occurrence from
Monday to Thursday, which we progressively increase the scenarios tested here have 0.1,
0.2, 0.4, 0.6 and 0.8 probability of peak occureenGiven the particular characteristics of the
presented distribution, we assume that the pealkahges of energy demand are normally
distributed. In this view, the nominal value of kgeak is calculated by assuming the same

proportional standard deviation and a maximum védu¢he load peak of about 4% [58].

4.2.2. Energy price
The analysis of recent trends related to housetddgy bills shows a significant increase of
electricity prices. For example, in the UK the e&se of the energy bill is estimated to be around
20% since 2007 [63]. Moreover, the particular gapbical location, implying sometimes
particular microclimate conditions, as well as @iéint electricity network configurations or
energy generation portfolios, are able to genenap@rtant variations on the energy prices as it
is already the case of the different UK regiond.[@#addition, the further development of

Smart grids is regarded to be a main driver ofinlcesase of the household energy bills [63].

However, even in countries with strong electrieitgrkets, where producers, consumers and
transmission companies are involved in the pricen€dation, the correlation between energy

demand and price remains important (e.g., 0.58#y. Indeed, important investments, that are
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directed to upgrade the existing infrastructurbetp the network support demand during peak
times and to avoid power outages, are one of theesaof the increase of electricity prices.
Therefore, in this paper the increase of the endegyand peaks is explored jointly with the
increase of the electricity market price especiafhen the variations in market electricity prices
allow following the trend of the energy demand eynve., during working days rather than

during weekends.

This increase of the energy demand peaks is asstmteddfollowed by an increase in the
electricity price from the upstream grid. The dliedly tariff from the external grid adopted for
this case study is a tariff structure for commengidization, which is made up of a basic charge,
a daytime unit rate, a night unit rate and a péeltge. This tariff is introduced in [61] and
adopted in [65]. By assuming that the energy denadilde districtE? follows the same trend
than the energy demand profile in the upstream gridcan adopt a similar assumption
regarding the proportional correlation betweendaiy electricity market price and the daily
energy demand [61], [65], [66].This is done to damel the variations in the upstream market
price. However, it is important to highlight thatrthg the peaks of electricity demand, the
electricity price can be no longer proportionatleonand, but rise drastically. This Critical Peak
Price (CPP) represents a dynamic rate that is wised for the utilities based on real-time
capacity conditions. The value of the critical pgaike is several times higher than the usual
price applied during the off-peak periods, e.g.PC&e is 6 - 7 for [67], [68]. The objective of
this price increase can be to reduce the elegtrecihsumption during critical times [67], [69].

In this paper, we are not focussing on demand-respmanagement techniques, but on
evaluating the expenses paid by the consumersaafaan inaccurate prediction of the energy
consumption. For this, we have tested differentiesiof the critical peak price, applied during

the peak period from noon to 6 p.m.

5. Output indicators
In this section we present the indicators used/&uate microgrid performance and reliability.

5.1.Microgrid reliability
The overall microgrid performance is evaluatedeimis of classical adequacy assessment
metrics, which characterize the ability of the DgStem energy capacity to meet system demand

in presence of uncertainty [70]. Specifically, Ladd oad Expectation (LOLE) is used to
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characterize the probability of unsatisfied eleityidemand and Loss of Expected Energy

(LOEE) to quantify the expected amount of energgés folNstime steps of one hour:

Ns
t=0
Ns (6)
LOEE:Z PT‘t(Pt<Et)'(Et—Pt)
t=0

wherePr, (P, < E,) is the probability of loss of load at time step, (kWh)is the available

capacity at time periot] E; (kWh)is the energy demand at time stejm our case defined as

follows:
P = SP + SIS + VIV + VIWPP 4 5045 . RDstor 4 g[S:dis . gTSistor ve (1)
E, = EP + E[S + 8" - RPsstor 4 §[S:ch . RTSstor vt (8)

The available power capacity of the microgfid(eq. 7) represents the sum of the electricity
produced by all generation units at time dtdp our caseP, accounts for the amount of energy

purchased from the external grid (.82, andS?®), produced by the local generators (il&.Y

andV*PP) and discharged from the batteries (i85 - RPStoTand 5754 - RTSstor),

5.2. Microgrid imbalance
The renewable generators installed in the microged WPP and PV power production in TS,
are committed to provid&”*? andV/Vto the D, and.¥*? andLf"to the upstream grid. The
non-supplied energy can generate reliability pnotsiéor the microgrid and the upstream grid.
By taking into account the prediction errors andla mechanical failures of the renewable

generators, their common revenues for time stgp formulated as:

C{E'P — (L‘;VPP'C + Li’V.c) . Ci? + (VtWPP'C + VtPV'C) . CtD + TtE,P Vi (9)
whereL! "7, LFV-¢ yVPPC andy”" ¢ (kwh)are the contracted amounts of energy provided by

the WPP and PV to the external grid and microgadpectivelyT>® (€) is the imbalance cost

of the renewable generators defined as follows:

WPP * PV WPP,x PV ,x
2P =, +d )@ +d )t (10)

WPP,* PV

L L . .
. andd,* (kWh)are the imbalances for time stegalculated as

WPP VtPV'*

wheredl/t d,t . d

t

the difference between the actual amount of en@dgsh)that the renewable generator can
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supply and the level of contracted enefigWh).The pricescf /= andc;,” /- (E/kWh)are the

imbalance prices for positive and negative imbatancespectively, at time step

Note that the expenses of D are defined similéinéarevenues of the renewable generators:

aZC =8P P+ (VPP L Py P + TR vt (11)
wheres, ,"PP¢ andV,"V¢ (kwWh)are the contracted amounts of energy from therextterid

and local renewable generators, respectively,T%r‘fd(€) is the cost paid to supply the peak

electricity demand.

Again, note that the formulation of revenues actiogrfor the imbalance cost is done for

contract durations of one hour.

To define the formulation of the imbalance pricgs,have reviewed the existing imbalance
tariff structures and regulation mechanism of Eeapcountries [71] such as Belgium,
Netherland, France and Spain. Among the existingddations, the definition of imbalance
price in Spain is taken as example because ohiiglisity, whereby the imbalance price is equal
to a certain proportion of the spot price [72],][18 the numerical application that follows
(Section 6), we have tested different imbalancegsrio analyse the influence on the

performance.

To evaluate the impact of the imbalance cost omghewable generators revenues, we introduce
the performance ratip” (eq. 12), which is calculated over a simulatiorigeeof Ns hours. Note
thaty” is computed by normalizing the total imbalancet geserated by the renewable
generators by the revenues that would be obtam#tkicase of a perfect forecast [72]. To
evaluate the impact of the load and price peaksgoefficienty© (eq. 13) is calculated similar to
v, i.e., normalizing the imbalance cost generatathdithe peaking periods by the expenses

that D would pay in case of a perfect forecast:

yP = <1 - o7 ) -100% 12)
évio[(LI;I/PP,C + LIZV.C) . C? + (VtWPPC PVC) Ct]
y¢ = <1 - ol ) -100% 3
{“V=SO[S1,P'C . Cf + (VtWPPC PV C) Ct ]
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The proposed performance ratios are expresseddéermage, i.ey”,y¢ € (0,100]. For perfect

predictions, i.e., when deviations from committeergy are null, performance ratios at%.

In general, microgrids can operated in two modkes: dgrid-connected mode and the islanded
mode. In the grid-connected mode, the microgridtcatie power with the upstream power grid

to solve the power imbalance. On the other handepambalances in the islanded mode can be
solved by decreasing the total output of the disted generators (DGs), or by load-shedding,
which is an intentional load reduction [74]. In quaper, we focus on the grid-connected mode.
Therefore, the power imbalances are accountedaribiel microgrid and between the microgrid

power producers and the upstream external grid.

6. Numerical case study

As discussed in Subsection 3.3, the Pls of thdalaiwind energy outpu?’**, and energy
demandsE7S andEP are estimated by a NN trained by a NSGA-II witspect to two

objectives: the coverage of the prediction inteft@be maximized) and their width (to be
minimized) [27]. This optimization gives rise tceetRareto fronts depicted in Figure 5, from
which different solutions can be selected and usélde energy management by RO. Note that
these solutions differs on the interval widths andheir corresponding coverage probability and

were also used in paper [39].
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Figure 5 Pareto fronts of Pls: ap/’*?, b) EIS and c)EP.

The comparison of the optimization results obtaiwéti the RO based on Pls with (i) CP = 96%
and (ii) CP = 56.3% shows that Pls with high CPrelase drastically the amount of committed
energy [39]. This is due to the large width of Bie characterized by high CP, i.e., 96%, which
forces the RO to provide a very conservative sofutAs a consequence, the producer plans its
energy scheduling strategy based on the worstlgessalization of the available power
production and thus commits less energy for saldieaopposite, the consumer anticipates the
worst possible realization of its uncertain constiarpand, thus, it purchases more energy than
it will probably be required in the future. As ansequence the performance ratio of the RO
based on the Pls with high CP = 96% is very low tl@ncontrary, the optimization based on the
Pls with low CP = 56.3% considers “less extremetstioealizations and, thus, provides
adequate results in terms of performance ratio pewable with results of other optimization
techniques [72], and achieves satisfactory val@igseoreliability indicators, i.e., LOLE and

LOEE, in comparison with these achieved by themoation based on expected values.

In this view, for the following we consider and &rs& the performance of the RO based on the
Pls with moderate CP in the range of 50 — 60%.Hlsaused for the prediction of the electricity
power output are selected from the Pareto fromgu(fé 5a) of the available solutions, with
prediction interval width (PIW) and coverage proiigb(CP) equal to 0.0535 and 56%,
respectively. The Pls used for the electricity dedharediction are selected from the Pareto front
(Figure 5c¢) of the available solutions with similar charagices than the Pls used for the wind
power output prediction, i.e., PIW = 0.0518 and=<50.5%.
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To account for the variations of the electriciticpsc?, ¢ andc?, the lower and upper bounds
of their associated Pls have been assumed to Bd.@% of their expected values. Similarly, the
variations ofPfV have been accounted for by setting the lower apeiubounds of the Pls to
+5% of their expected values. Note that thesewilths have been fixed based on the accuracy
of a 24-hours ahead prediction for the electripiiges [75] and the PV energy output [76].

The optimization based on the expected values &as performed also; as it was discussed in
Appendix A.1, by considering the mean of the prealicinterval as a point estimate of the
uncertain quantity of interest. Note that the dffefche electrical lines failures and the increase

of the energy demand and prices peaks will be ezgleeparately from each other.

6.1. Impact of wind storms and associated lines failures

Based on Table 1, five case studies are consideréer the following assumptions:

» Failures of the electrical lines are considereddour within the microgrid.

* The same initial wind speed profile was used fergampling of overhead line failures
with different MTTF and MTTR. Indeed, the use o tind speed profiles with the
artificially increased wind speeds for the diffarease studies, renders a higher wind
power output and, consequently, the performande o&er the simulation period is
increased. This disturbs the output indicatorshsascthe performance ratio, by hiding the
effect of the overhead lines failures.

* The failures/repair rates of the generation umissde the microgrid, i.e., PV and WPP,

are considered constant and of the same values[a9]i

For the point estimation of the wind energy outBf” , which is used for the optimization
based on the expected values, we use the meaa obtisidered prediction interval with CP =
56.3%. The results obtained by the simulation efabents dynamics on a periodrof 1680h
have been calculated as the average Nger 20simulations, which is a sufficiently large
number of simulations to efficiently determine twvergence of the different indicators. The
convergence is evaluated by considering the difiegdetween two successive values of the

indicators moving average where a threshold valli#®is used.

26



Figure 6a,bshows the variations of the shortage and surplpeicentage of the total amount of
committed energy under different conditions ofdegls and repairs using the RO and the

optimization based on expected values.
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Figure 6.Variations of shortage and surplus proportiongarcentage of the total amount of committed
energy using RO based on the Pls and determiraptimization based on the expected values: a) &pert
b) Surplus.

As it can be observed in Figureaf, the increase of the MTTF associated to the eletthites
increases the number of shortages in the gridildads common to both optimization
approaches. With the increase of the probabilitglettrical lines failure, i.e., of the ratio
MTTF/MTTR, the proportions of shortage tend to ¥atues 9.59% and 10.54% for RO based on
the PIs and optimization based on the expectedsahespectively. This indicates that the RO
based on the Pls with moderate CP efficiently antéur shortage up to a certain level of the
probability of the uncertain events occurrence.eNtbat the energy shortage due to large failure
rates of the electrical lines optimized by RO basedPls tends to the results provided by the
optimization based on expected values. In orderdease the robustness to failures, Pls with

higher CP would have to be used.

At the same time, the surplus caused by the lowadla wind power used by the RO remains
almost the same, with a minor increase of aboub&®veen a MTTF/MTTR of 3097/2 and
154/9, respectively. This increase is due to tleesi@se of the electrical line failures between D

and the other microgrid players, which resultshia ise of the energy surplus in the microgrid.
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It is important to highlight that the RO based be Pls is generally characterized by smaller

shortages and a higher surpluses than the optionziahsed on the expected values.

Due to the particular characteristics and datheftase study considered in this paper, the
negative imbalance is smaller than the positiveailarce. In this view, the variations in the
negative imbalance generate a small impact onéhfenmance ratios (12) and (13), which show
a decrease of 0.66 and 1.02% between a MTTF/MTT8087/2 and 154/9, for the RO based on
the Pls and the optimization based on the expe@tkes, respectively. Note that the surplus and
shortage values depend on different microgrid patars, i.e., the microgrid structure and
characteristics, strategy of the agents, optinopationstraints, etc. In this view, the higher the
shortage the higher impact on the performancesagigpecially for the optimization based on

the expected values, which is more sensible toégative imbalances.

Table 2 Performance ratiog” of the RO based on Pls and the optimization baseithe
expected values.

% 10 20 40 60 80 100 120 140 160 180 200 220 40
S RO 97 96.6| 957 | 949 | 941 | 932 | 924 | 916 | 90.7 | 89.9 | 89.0 | 88.2 | 87.4
% D 97.5| 96.7| 95.21 93.6 92 904 888 8712 856 84 48280.8| 79.2
g RO | 96.4| 95.2| 933 912892 | 871 | 85 83 | 89| 789 | 768 | 747 | 73.1
3 D 97.1| 95.7| 93.7 914 891 86/8 846 823 QFO N HB.47 73.2| 70.9

Table 2 provides the information about the valueth® performance ratiog” of the RO based
on the Pls and the optimization based on the eggdaatlues obtained for the two extreme
scenarios presented in Table 2, i.e., MTTF/MTTB@37/2 and 154/9, respectively. As it can be
observed, both optimization approaches provide g@wtbrmance, which is comparable to the
performances of different approaches tested in [2¢ RO based on the Pls becomes more
advantageous with the increase of the negativelanba price (bold values).

Based on the results in Table 2, the variatiohefgerformance ratip” depends not only on the
energy shortage and surplus, but also on the splotipstream electricity prices. Figure 7
illustrates the variation of the difference betwéss performance ratios obtained for the RO
based on the PIs and the optimization based oexipected value for two extreme scenarios,
i.e., MTTF/MTTR of 3097/2 and 154/9, respectivéiipte that in Figure 7 the percentage of the

price for the positive imbalance is consideredd®o of the spot price. The Standard Deviation
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(SD) is used to quantify the uncertainty of thef@enance ratios in thes = 20scenarios
summarized in Table 1.
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Figure 7 Performance ratig'? differences for RO based on PlIs and optimizatiasel on the
expected values.

It can be observed that with the increase of tlyatnee imbalance price, the network optimized
by RO based on the Pls gains in profitability inms of performance ratio. This profitability is
even more evident for the case of MTTF/MTTR = 3@9FHor the case of MTTF/MTTR =

154/9, the performance ratio of the RO based oPtheshows a small increase and remains
close to the performance ratio obtained with thinapation based on the expected values.
According to the reliability indicators, shown fibre two considered scenarios in the right part of
Figure 7, the RO based on the Pls holds the lol@®kE and LOEE for both scenarios. The
increase of MTTF from 3097 to 154 h decreasesdhaility indicators for both optimization
approaches. However, the RO based on the Pls is raliable in comparison with the

optimization based on the expected values.

Figure 8a-dshows the variation of the performance ratio ihra¢-dimensional coordinate
system defined by the following axes: percentagh®hegative imbalance price (%),
MTTF/MTTR (h) and the difference between the perfance ratio values calculated for the RO

based on the Pls and the optimization based oexpected values (%). The performance ratio
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difference provides a visual illustration of th@fmability for the two approaches: the white bars
(negative values) show the advantage to use thmiaption based on the expected values over
the RO based on the Pls and the grey bars (pos#ives) indicates a better performance of the
RO based on the PIs. Each figure plots differeitasafor the positive imbalance prices.
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Figure 8 Performance ratio differences for RO based ondrid the optimization based on the expected
values depending on the negative imbalance priceMRTF/MTTR for different percentages of spot
price for the positive imbalance: a) 5%; b) 10%;26%; d) 30%.

As it can be observed in Figureagthe increase of the negative imbalance price midesgse of
the RO based on the Pls more profitable in ternte@performance ratio (starting with 40% of
average spot price for the negative imbalance)s plofitability becomes significant as the rates
of failures occurrence are lower, i.e., MTTF/MTTR3897/2 h. Note that the advantage of RO
slightly decreases with the increase of the MTTEhefelectrical lines due to the increase of the

negative imbalance part (cf. Figur@B The increase of the positive imbalance price
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compensates progressively the penalty paid fondgative imbalance and reduces the

advantage of the RO based on the PIs.

We have to underline once again that the performaaitio characterizes the microgrid revenues
in presence of negative and positive imbalancesvaver, these results highly depend on the
election on the model parameters, i.e., the miadagjructure and characteristics, strategy of the

agents, optimization constraints, etc.

6.2. Impact of energy demand and prices peaks

We tested different values of the peak price agaliering the peak periods, i.e., from noon to 6
p.m. Table 3 recalls the performance rajibsof the RO based on the Pls and the optimization
based on expected values obtained for two extrezak pccurrence probability scenarios: 0.1
and 0.8.

Table 3 Performance ratios and reliability indicators fire RO based on Pls and the
optimization based on expected values.

%] CPP rate 1 2 4 6 8
X
5 RO 94.56 94.35 93.94 93.54 93.16
&g 01
o5 D 95.74 95.23 94.29 93.44 92.66
=5
55 RO 92.3 90.33 87.7 86.02 84.85
5°| 08
T D 92.51 89.87 86.57 84.58 83.25

As it can the observed, the increase of the prdibabf peak occurrence generates a decrease of

the performance ratip®. Additionally, the increase of the CPP rate degsdtie performance

ratio for both RO based on the Pls and the optinuadased on the expected values. It can be

noticed that the RO based on the PIs becomes meamtageous with the increase of the CPP

rate (bold values).

Figure 9illustrates the influence of the progressive inseeaf the probability of the load peak

occurrence on the output indicators.
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Figure 9 Performance ratig ¢ differences for RO based on Pls and optimizatiasel on the
expected value.

It can be observed, that with the increase of thbeability of peak occurrence, the RO based on
the Pls performs better in terms of the performaatiey¢. This profitability is even more
evident for the case of a maximum CPP rate. Monedkie peak of profitability for the RO is
situated at a probability of peak occurrence of Tl& progressive increase of the probability of
peak occurrence will decrease the performance yéatiabtained with the RO. According to the
reliability indicators, shown for two extreme sceasa of 0.1 and 0.8 of probability of peak
occurrence, the RO based on the PlIs holds the tdwadsE and LOEE for both scenarios. The
increase of probability of peak occurrence fromt0.0.8 degrades the reliability indicators for
both optimization approaches. However, the RO basettie Pls is more reliable in comparison
with the optimization based on the expected values.

7. Conclusions
The present paper provides an extended analysmcobgrid energy management under two
optimization frameworks: Robust Optimization (R@psbd on Prediction Intervals (PIs) and
optimization based on expected values. The coreideameworks are exemplified on a

microgrid including the following stakeholders: &die-size train station (TS) with integrated
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photovoltaic power production system (PV), a urbéamd power plant (WPP), and a surrounding
residential district (D). The system is describgdNgent-Based Modelling (ABM), in which
each stakeholder, modelled as an individual agemis at a particular goal, i.e., decreasing its

expenses from power purchases or increasing ientms from power selling.

The proposed analysis allows evaluating the impadifferent levels of uncertainty on the agent
expense and revenue functions, as well as on talbwmicrogrid reliability. Furthermore, the
imbalance cost has been introduced to quantifetfeet of prediction errors and failure
occurrences. The analysis shows how the probabilibccurrence of some specific uncertain
events, e.g. failures of electrical lines and eleity demand and price peaks, highly conditions
the reliability and the performance indicatorsioé tmicrogrid under the two optimization

approaches: RO based on the Pls and optimizatieedban expected values.

In particular, the proposed methodology allows tdgimg the level of uncertainty in the
operational and environmental conditions upon wiRéhperforms better than an optimization

based on expected values.

This analysis is intended to assist decision-makesglect microgrid energy management

actions that provide an adequate trade-off betvggstem reliability and economic performance.

Regarding the results obtained in the numericad sagdy considered, the following conclusions
are in order:

» The reliability analysis performed for differentéds of wind power output uncertainty
shows a strong improvement on the reliability ilatlics if RO based on the Pls is used

* As it was expected, the increase of the probadslitif uncertain events, i.e., failure of
electrical lines, frequency of electricity peaksl amcrease of electricity price during
peak-hours, shows the advantage of RO based d?ishie comparison with an
optimization based on the expected values.

» The price variations play a significant role in #ystem’s performance. In particular,
with an increase of either the price for the negaiimbalance or the peak-hours price, the
RO shows a clear advantage in comparison with ptien@ation based on expected
values. Thus, there is a threshold probabilityrafartain events occurrence above which

RO based on PIs performs better, which stronglyddg on the price variations.
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* In addition, there is a second threshold probatitiait indicates some limitations of the
RO based on the PIs. In particular, the Pls consitm this paper, which are obtained
from a CP of about 50% , efficient up to certaweleof the probability of the uncertain

events occurrence.

The adoption of RO based on the PlIs or optimizatiased on expected values must be guided
by the knowledge on the environmental and operatioonditions of the microgrid under study.
Future research will consider the development drilalyoptimization frameworks, for switching
between different optimization techniques by coasitj the different environmental and

operational conditions of the microgrid that mayepected at different times.
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Appendix A

A.1. Optimization framework

For completeness of the paper, we present the izatimn problem as considered in [22] and
here taken for our analysis. The decision-makirgtegy for each agent, identified by the use of
robust optimization, is based on the expenses n@aiion for the district (D) and train station
(TS) and the revenues maximization for the wind @optant (WPP). For the purpose of better
understanding here below the deterministic andRiBeproblems are presented.

A.1.1. Deterministic optimization problem

The optimization of energy scheduling for the T?RVand D, where the objective functions to
be optimized are formulated in terms of expenseth®TS (eq.A.2) and D (eq.A.11), and
revenues for the WPP (eq.A.19), are posed as fellow

Optimization problem - TS
Minimize a’s
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S.t.

Eth + Lgs + 5tTS.ch . RTS.stor _ 5tTS.dis ] RTs,stor_l_VtPV < PfV+StTS Vi

T P.cTS _ .s.yTS _ D .\/PV TS
t=o(Ct * St ¢t - Lt ¢ Vi) <a

LIS +VEY < PPV vt

SIS =0, =0,V >0 vt

{ﬁ EP <V, if PV 2 BoEP vt
0<VvtY, otherwise

Rth < Rg‘_s1 + 5tTS.ch . RTS.stor _ 5tTS.dis . RTSstor Vi

6th,ch n Strs,dis <1 vt

0<6IM" <1,0<65% <1 vt

0 < R]® < RTSmax vt

Optimization problem - D

Minimize a?

s.t.

EtD < Sr_p + VtPV + VtWPP _ (5f.ch . RD.stor _ 55.111'5 . RD,stor) Vi

T o(cl - SP+cP-VWPP 4+ P -VPY) < aP

RP < RP, + 8D . gpstor _ 5:),011'5 . pD:stor vt
5"+ 8 <1 vt
0<8P"<1,0<80% <1 Vi

0 < RP < RPmax vt

5P =0 Vit

VPV = JFV yWPP = jWPP Vi

Optimization problem - WPP

Maximize  a"PP

(A1)
(A.2)
(A.3)

(A.4)

(A.5)

(A.6)
(A7)
(A.8)

(A.9)

(A.10)
(A.11)
(A.12)
(A.13)
(A.14)
(A.15)
(A.16)

(A.17)
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S.t.

LYFPP + yVPP < pVPP vt (A.18)

t=o(ci " LYPP + ¢ - V{'PP) = aWPP (A.19)
\ED < yWPP  jf pWPP > ., . D

Y Et VI_/PPt if P = 4 ‘ t vt (A.20)
0V , otherwise

LYPP > 0,V¥PP > 0 vt (A.21)

whereLlS andLY?F (kwh)are the portions of energy sold to the external yi the TS and
WPP, respectivel\§7> andS? (kwh)are the portions of energy purchased from the eaterid
by the TS and D, respectively”” andV¥F? (kwh)are the portions sold to the district and
generated by the PV panels of the TS and WPP, cigply, 5 andy are the coefficients
defining the minimum amount of energy to be sol®tby TS and WPP, respectivef (kwh
is the expected energy demand for D (for the monuemisidered without uncertainty) at time
stept, predicted by TS and WPPFY andV?*?P (kwh are the energy portions, which TS and

TS,ch TS, di D,ch D,di
§t C ,6t lS’ 6t C 6t LS

WPP are ready to sell to D at time stephe variable and are
binary variables, which take values 0 or 1 to iatBcthat the battery can either only be charged

or discharged at time t.

The coefficientsff and y in egs. (A.5) and (A.20) allow regulating the egyeexchanges

between the microgrid agents, by imposing the mimmamount of energy that WPP and TS can
supply to D under conditions of availability of wliand solar energy outputs, and promoting the

local energy exchanges among the microgrid agents.

The optimization problems account for the energhaibce at egs. (A.1), (A.3), (A.10) and
(A.18), and for the costs and revenues at eqs),(fA211) and (A.19). The batteries charging
and discharging dynamics is formulated with eqs6)A (A.9) for TS, and egs. (A.12) — (A.15)
for D. Egs. (A.4), (A.16) and (A.21) are the deaisivariables constraints.

A.1.2. RO problem

The approach adopted in this paper allows the fifeenulation of the robust counterpart of an
optimization problem [17].

Train Station
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Minimize a’s

s.t.
_StTS + LIS + 5tTS,ch . RTS:stor _ atTS.dls ] RTS,stor+VtPV _ PtPV ] x{”’l + Eth -x;""z
pPV E]S
P P
+zt°W"-1“t°W”+pt +p <0 Vvt
Power pfY 5pv . PEY_power EfS ST, EfS
Zt +p.° =Py 7 +p; ZEt yt Vvt
784 n+1 784 EfS n+2 EfS
_yt <x <yt ,_yt <x <yt vVt
, . pPV
LIS + VtPV _ P,_FV . x%l+1 + Zé\/llcro . Fg\/llcro + ptt <0 Vvt
Micro 74 spv . PLY
Zt +p.° =Py, Vvt
T b TS 5. TS PV Cost . pCost ot ct cf
D @SB+ (4 ¢ +p )
< aTS
Cost Cf > AP . Cf ost > ¢ Cost cf > ¢
Zt +pt —Ct yt yZ +pt = yt JZt +p yt

14 14 D D
Ct TS Ct ct TS Ct PV Ct
=yt <857 <y -y <L <y Yy SV Sy,

SIS >0,L5 =0,V >0 vt
{ﬁ EP <VPV, if PPV >p-EP e
0 <V, otherwise
Rth < RZ";S‘I + StTS'Ch . RTS.stor _ 5tTS.dis . RTS.stor Vi
SIS 4 g7 < 1 vt
0<6M"<1,0<6 <1 vt
0 < RIS < RTSMmax, vt

District
Minimize aP

S.t.

—S? _ VtPV _ VtWPP + (R? _ R?—l) + Eé) ) n+1 + ZPower ) FPower + pEt <0 Vt

EP ~ ED
Power_l_p t >E1,P'ytt Vit
EP ED
-y, b <xtt <yt vt

Vvt

(A.22)

(A.23)
(A.24)
(A.25)
(A.26)

(A.27)

(A.28)
(A.29)

(A.30)
(A.31)

(A.32)
(A.33)
(A.34)
(A.35)

(A.36)
(A.37)

(A.38)
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T T p D
E (e SP+cP VPP +cP - VEY) + E (zfost TESt +p.* +pyt ) <aP
t=0 t=0

Cost + ptt > ¢ yt ,ZtCOSt + pftD > CA? . ytctD vt
Y tCt <SP < ytcf} _thtD S VPP +VEY < ytc,P vt
RP < RP | + 55,ch . RD.stor _ 5tD,dis . gD.stor vt
5" + 8" <1 vt
0<68PM<1,0<62™ <1 Ve
0 < RP < RPM* vt
Sé’ =0 vt
VPV = PV yWPP = jWPP v

Wind Power Plant

Maximize a"PP

S.t.
WPP
LI;I/PP + VWPP PWPP +1 + Zfower l—fower + p < 0 Vit
Power pVEP > pWPP . PP
Zt + pt = It yt Vt
WPP 1 pwPP
_yt t < xn+ < y t VvVt

T T s b
Z (3 - LWPP 4 D . VPP Z (ZtCost - Tost 4 ptcr + ptct ) > oWPP
t=0

t=0
Cost+p > 3’1: ,Zt05t+p t > yt vt
¢ — JWPP ¢ _. cf WPP cf
—V: < Lt < Ye =V < Vt < y vt
y-EP <V/PP, if PVPP >y - EP Vi
0 < VYWPP, otherwise
LYPP = 0,VPP > 0 vt
Pt WPP PL!JV TS Ct CL'D PLYVPP

where the variableg °Ve", z£ost, zMicro p t p, ,pft,pft ,pt A A

EP EIS

(A.39)

(A.40)
(A.41)

(A.42)
(A.43)
(A.44)

(A.45)
(A.46)
(A.47)

(A.48)
(A.49)
(A.50)

(A.51)

(A.52)
(A.53)

(A.54)

(A.55)

pfv

1yt 1

p
Vel Yy ,ytcf,yt andyt are dual or auxiliary variables needed to fornaulttie linear
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counterpart of the robust optimization problem [1These are forced to be greater than or equal
to zero, similarly,x?**! andx*? are auxiliary variables that are forced to be etpane.

rPower androst define the level of uncertainty considered in eagtimization model (a zero
value corresponds to the deterministic problem)anedsuch thad < I'7°%¢" < 1 and0 <

rfost < 2 for the D and WPP, arti< I7°%¢" < 2 and0 < I£°st < 3 for the TS. The upper

limits of [Foe andl¥°st indicate the maximum number of uncertain pararsdtandled by the
RO formulated here above. The value of the uncestdevels can be fixed and adjusted
independently by each agent depending on the wieBrtrelated to different numerical case
studies, i.e.[;F°"¢" = 1 for the D and TS to account for the uncertaintwind and PV power
output in case of wind storms and associated faigges, and;¢°5¢ = 2 for D and WPP and

r,Fower = 3 for TS to account for the uncertainty in energyndads and electricity prices.

Note that the RO has the advantage that it repteses uncertainty related to the variations of
the operational or environmental conditions in iwhPI without making any assumption about
the probabilistic distribution on the PI. For exdeydor the WPP in the robust formulation the

level of uncertainty?’*?? can be defined a&¥?? = (pV*P0 — pWPPIby 15 wherep!’ PPuP

andP"VPP™* (kwh) are the upper and lower prediction boundina t, respectively. In this
work, we take the mean of the prediction intensapaint estimate of the wind energy output
P/"P? in eq.A.48. The point estimates of the other uraieariables are the values calculated

with the models of the individual components orentstatistical data described in [22].

The robust optimization problems are solved by gisiie optimization package CPLEX,
implemented in Java code, which guarantee glob@hapty for mixed integer linear
programming (MIP) problems (the iterative processmimization in CPLEX is not illustrated
in the paper: the interested reader may referpfpt further details). After optimization, the

decisions are shared among the agents througlothegnication process indicated in the paper.

A.2. Communication framework

Figure. Al depicts the communication interactiom®ag the microgrid agents. It can be noted
that the microgrid does not include an independeetator, responsible for coordinating,
controlling and operating the electric power systefand market, as in most of the actual power

grids. Indeed, we assume that all coordinationgutaces are done in a decentralized manner
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through direct negotiation among the agents, sinal10], [11]. However, to facilitate the
agents communications, an additional agent catiddgendent System Operator (ISO) is

introduced in the model, similar to [78], assistommmunication between microgrid agents.

Power producers
agents

WIND POWER
PLANT

Power Flow

Bilateral TRAIN

DISTRICT I‘ Contract ’l STATION
,J_/ External power grid

Figure. Al. Multi-layered interaction between agd2?].

Power consumers
agents

)

The microgrid agents participate in the decisiorkimgframework as illustrated in Figure. A2.
For the sake of clarity, the hierarchy of decisioossidered in this work gives priority to the
energy producers, i.e., the TS and the WPP, taldebie renewable energy” andV,V** that

is available to be sold to the D, and the energntjtiesLt” andL¥*? that are sold to the
external grid at each time steprhese decisions are transmitted through the ig€tao the D,
which considers these decisions as constant pagesifet its optimization problem (eqs.A.10 —
A.17 and eqs.A.36 — A.47 for the deterministiclhpeon and RO, respectively). After the
determination of other energy scheduling varialdash ass? andR?, the D sets a bilateral
agreement with the TS and the WPP in order to msah’" and VP, respectively. The

duration of the bilateral contract is assumed tore hour.
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(ii) D proceeds with robust optimization for goal-oriented

actions planning to determine SP and R **

Time step |

t+1

Conversation ID: i"ower-Request

L
r
]
]

3.2)

PROPOSE OR REFUSE

Figure. A2. Example of agents communication at tatep t [22].

Table A gathers the previsions of the operationabdions (i) made by the agents themselves

and (ii) received from other agents through the ¥ (iii) the decision variables.

Table Al. Previsions and decision variables.

Previsions of the operational cotions D WWE TS

(i) agent personal previsions EP; cP; P ’;fflpp‘ ct; ETS; PEV; cF; cP; ¢f
(ii) previsions received from other age VPV. yWwPP _t -

throughlSO t 7t

glrlt)a\(/jigicclfllson variables based the above SP; RD YWPP, [WPP | yPV, [TS, GTS, pTS

* Personal previsions of agents are representd@tldfor RO and point predictions for the deterntinisptimization.

Note that the adopted hierarchical decision schaiows, on the one hand, the TS and the WPP

increasing their revenues by deciding which amadieinergy to sell to the D or to the external
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grid using the most profitable actions planningtloa other hand, it gives the possibility to the D
to purchase the emissions-free and less expensergyegenerated by the TS and WPP in the

microgrid.

A.3. Uncertaintiesin energy management

The expenses and revenues of each agent, andbthed gliability of the microgrid are affected
by uncertain parameters, such as the energy outpatsrenewable generataP$” andPVF?,
the energy demands of the consunigisandE?, and the electricity priceg, c§ andc?. This

section illustrates the procedure used to accaurthese uncertainties.

A.3.1. Energy output of renewable energy generators

The energy outputs from the renewable generateraféected by the variability of the
renewable sources of energy, i.e., wind for WPP<sahal irradiation for PV.

As discussed previously, the uncertainty relatetthécavailability of the wind energy output
PYPP is described by prediction intervals (Pls), estadeby a multi-perceptron neural network
(NN) [27]. The PIs are optimized in terms of maxmm@overage Probability (CP) and minimum
Prediction Interval Width (PIW). A multi-objectivgenetic algorithm (namely, non-dominated
sorting genetic algorithm—Il1 (NSGA-I1)) is usedftod the optimal parameters (weights and
biases) of the NN. Pareto-optimal solution setseveral non-dominated solutions with respect
to the two objectives (CP and PIW), are generated.

As presented in Section 3, the expected value oérgy outpuP/" is simulated based on the
solar irradiation and technical specification of Pddule [33], [34]. In absence of a prediction
model for the PV energy output, the related unagstas described by intervals, whose lower
and upper bounds are symmetric around the expeated of PV energy output. The width of
the interval is selected to account for the valitghof the PV energy output in the time period
considered.

The actual energy output of renewable generatalsasaffected by mechanical failures, which
may lead to periods of production unavailabilityidg the subsequent repairs. A description of
this effect is given by the compound quantitativéicator called technical unavailability [79].
Mechanical failures of generation units of the saype are, for simplicity, assumed to be
independent from each other: no common causesifards are considered. Moreover, no

particular reduction of energy production due tdasidegradation has been considered: only two
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states are possible, i.e., 100% of technical aviitlaand 0% during the repair upon a failure.
Failure and repair times are assumed to follow egptal distributions, considering the useful
life of the components. For the numerical applmawf this paper, the Mean Time To Failure
(MTTF) and Mean Time To Repair (MTTR) of the windeegy generation units have been
taken equal to 1920and 25, respectively [80]. The failures of the power #lecics parts are
major contributors to the reliability problem arepresent about 40% of the annual failure
frequency for the wind turbines, based on long-teredback experience [44], which is almost
two times higher than the annual frequency of ottied turbine components. For the sake of
simplicity, in this research we used the term ‘natbal failure’ to represent all types of failures
of the wind turbines and the generators.

Failure times and repair durations are simulatedadmpling from the exponential distribution of
failure and repair times for the given MTTF and MR Values, with the inverse transform
technique [81].

A.3.2. Energy demand

Similar to the wind energy output, Pls accounfimgthe variability of the energy demanBg®
andE?, are used as estimated a GA — trained Neural Nkt(N) [27].

A.3.3. Electricity prices

Similar to the PV energy output, the uncertaintgtesl to the variability of electricity prices,

cf andc? is accounted for in the form of intervals, whoseér and upper bounds are symmetric
around the expected value of each variable. Théwafithe intervals is selected to account for

the fluctuations of these variables in the timaqeconsidered.
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