A remark on goldbach's problem II

S Srinivasan

To cite this version:

S Srinivasan. A remark on goldbach's problem II. Hardy-Ramanujan Journal, 1984, Volume 7-1984, pp.17-20. 10.46298/hrj.1984.110 . hal-01104342

HAL Id: hal-01104342

https://hal.science/hal-01104342

Submitted on 16 Jan 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A REMARK ON GOLOBACH'S PROBLEM II

By
S. SRINIVASAN

For $\mathbf{A}>0$, even integer $\mathrm{N}(>1)$, set

$$
E_{A}(N)=\sum_{q \leqslant(\log N)^{A}} \frac{\mu^{2}(q) c_{q}(-N)}{\phi^{2}(q ;}
$$

Here, $\mathrm{c}_{\mathrm{q}}(\mathrm{n})$ is the Ramanujan's sum ; one evaluation is

$$
\begin{equation*}
\mathrm{c}_{\mathrm{q}}(-\mathrm{N})=\frac{\mu(\mathrm{q} /(\mathrm{q}, \mathrm{~N})) \phi(\mathrm{q})}{\phi(\mathrm{q} /(\mathrm{q}, \mathrm{~N}))} \tag{1}
\end{equation*}
$$

R. Balasubramanian and C. J. Mozzochi proved (cf. § 6 of [1]) the following theorem.

Theorem.
For any fixed $\mathrm{A}(>0)$, the relation
(2)

$$
E_{A}(N) \sim E_{\infty}(N), N \rightarrow \infty,
$$

is false.
Now we give an alternative proof of this theorem based on
(3) $\mathrm{E}_{\infty}(\mathrm{N})-\mathrm{E}_{\mathrm{A}}(\mathrm{N})=O\left(\mathrm{E}_{\infty}(\mathrm{N}) / \mathrm{A}\right), \mathrm{E}_{\infty}(\mathrm{N}) \asymp \mathrm{N} / \phi(\mathrm{N})$, proved in [2].

Remark.

In view of the above theorem, it is necessary to state the Theorem in [2] with the factor $N / \phi(N)$ in the hypothesis; i. e., the bound

$$
\delta_{B} \frac{N}{(\log N)^{2}} \text { replaced by } \delta_{B} \frac{N}{(\log N)^{2}} \frac{N}{\phi(N)} .
$$

This can be done with no change in the proof there.
We require also the following

Lemma.

Lot $\alpha>0$. Then, as $x \rightarrow \infty$,
$\left|\left\{\mathrm{n}<\mathrm{x}: \mu(\mathrm{n}) \neq 0, \mathrm{p} \mid \mathrm{n} \Rightarrow \mathrm{p} \leqslant \mathrm{x}^{\alpha}\right\}\right|>\mathrm{c}_{\alpha} \mathrm{x}$, holds with some $c_{\alpha}>0$.

Remark

Actually, the above number has a well-known asymptotic formula. However, we give here a direct simple proof of this Lemma, as it is sufficient for our present purpose.

Proof of the Lemma

Clearly, it suffices to prove the Lemma for a sequence $\alpha=\alpha_{k} \rightarrow 0$ (as $k \rightarrow \infty$). We choose $\alpha_{k}=3 /(5 k+4)$; $\mathbf{k}=1,2, \ldots$ Consider $0<\frac{2}{3} \alpha_{k}=\delta_{0}<\ldots<\delta_{R}=\alpha_{k}$ with $\mathbf{R}=2 \mathrm{k}+1 ; \theta$ defined through $\delta_{j}=\delta_{0}+\theta j$ $(\mathrm{j}=0,1, \ldots, \mathrm{R})$.

Note that

$$
\begin{aligned}
\delta_{1}+\cdots+\delta_{R-1} & =(R-1) \delta_{0}+\frac{R-1}{2} R_{\theta} \\
& =\frac{R-1}{2}\left(2 \delta_{0}+\delta_{R}-\delta_{0}\right),
\end{aligned}
$$

and on inserting the values of R and δ_{R} in terms of k we see that

$$
\begin{equation*}
1-2 \delta_{0}=\delta_{1}+\ldots+\delta_{R}-1<1-\left(\delta_{R}+\delta\right) \tag{4}
\end{equation*}
$$

with any fised $(0<) \delta<\frac{1}{2} \delta_{0}$.

$$
\text { Let } q^{*} \text { denote a typical product } \underset{j=1}{\mathbb{R}} p_{j} \text { witi primes } p_{j}
$$

satisfying $x^{\delta_{j}-1}<p_{j}<x^{\delta} j$. Now, from (4), $\mathrm{x}^{1-\delta}>\mathrm{q}^{\star}>\mathrm{x}^{1-\delta} 0$. Letting $\mathrm{q}^{\prime}<\mathrm{x} / \mathrm{q}^{\star}$ run through square-free values, we see that $q^{*} q^{\prime}<x$ are distinct square-free numbers, and their number is

$$
\gg \sum \frac{x}{q^{*}}=x \underset{j=1}{\frac{R}{\pi}}\left(\sum \frac{1}{p_{j}}\right)>c_{k}^{\prime} x
$$

with some $c_{k}^{\prime}>0$. This completes the proof of the Lemma.

Proof of the Theorem.

In view of (3), it is sufficient to consider a lower bound for

$$
\mathrm{E}_{\mathrm{A}, \mathrm{~A}^{\prime}} \quad(\mathrm{N})=\mathrm{E}_{\mathrm{A}^{\prime}}(\mathrm{N})-\mathrm{E}_{A^{\prime}}(\mathrm{N})
$$

with a suitably large $\mathrm{A}^{\prime}(>2 \mathrm{~A}$, say $)$. Now, we restrict N to the sequence

$$
\begin{equation*}
N_{m}=\underset{p<\log m}{\pi} p, \quad\left(\log N_{m} \sim \log m\right) \tag{5}
\end{equation*}
$$

and note that if a square-free $q \times N$, then $q /(q, N) \gg \log N$. Thus, by (1), we see the contribution of $q \times N$ to $E_{A, A^{\prime}}(N)$ is

$$
o\left(\sum^{\prime} \frac{\mu^{2}(q)}{\phi(q)} \frac{1}{v \log N}\right), \text { say }
$$

where ' denotes the restriction on q in (3^{\prime}). So this contribution is
since, for N in (5), $E_{x}(N) \asymp \log \log N$, by (3). Next, the (íēuatiang) côntribution of $\mathrm{q} \mid \mathrm{N}$ to $\left(3^{\prime}\right)$ is

$$
(\log N)^{\mathbf{A}}<q \leqslant(\log N)^{2 A}
$$

and this is easily seen (by 15) and Lemma) to be $>$ ${ }^{*}{ }_{A} \log \log \mathrm{~N}$. The proof is completed by a suitably large choice of A^{\prime} (in terms of $c^{*} A$) via (3) and (6).

References

[11 R. Balasubramaiaian and C. J. Mozzochi, Siegel zeros and the Goldbach Problem, J. Number Theory, 16 (1983), 311-332.
[2] S. Srinivasan, A Remark on Goldbach Problem, J. Number Theory, 12 (1980), 116-121.

School of Mathematics
Tata Institute of Fundanental Research
Homi bhâuha Roád
Bombay 400005 (India)

