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A REMARK ON GOLDBACH'S PROBLEM II

By
S. SRINIVASAN

For A > 0, even integer N(>> 1), set
2
r(@c_(—N)
= —— 2
EA ™) z A 9
q < (log N) $°(q)
Here, cq (n) is the Ramanujan’s sum ; one evaluation is

#q/(q. N)) ¢(q)
1 N} = e
“ (=N #a/ (@ N))
R. Balasubramanian and C. J. Mozzochi proved (cf. § 6 of [1])
the following theorem.

Theorem.

For any fixed A(>0), the relation
2) EA(N|~Ex(N),N—>An,
is false.

Now we give an alternative proof of this theorem based on
() E_(N)-E,(N)=0(E_ (N)/A), E_(N) XN/¢ (N),

proved in [2].

Remark.
In view of the above theorem, it is necessary to state the
Theorem in [2] with the factor N/¢ (N) in the hypothesis;

i. e., the bound

) = laced b E N
T replace .
s =P Y33 . a2 M)

B (log N) tiog N)
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This can be done with no change in the proof there.
We require also the following

Lemma,
Let« >> 0. Then, asx - x,

{n<x: #n) =0, pln:pgxa} I>c, x
holds with some c, > 0.

Remark ‘

Actually, the above number has a well-known asymptotic
formula. However, we give here a direct simple proof of this
Lemma, as it is sufficient for our present purpose.

Proof of the Lemma

Clearly, it suffices to prove the Lemma for a sequence

a=a —+0 (as k -+ ®). We choose a = 3/(5k+4) ;

. 2
k=1,2,... Consider0 < 3% = 30 < ... <8R = ak

with R = 2k+1; 0 defined through 8j = 80 + 0]
G = 0,1,...,R).
Note that
) ) = (R-1 2=lg
{ Het rR—g = R=Dy,+ .
R-1

=T (280 + SR — %O),
and on inserting the values of R and 3 in terms of k we see that
“) 1—280=tl +at SR_1<1—(8R+8)

1
with any flxed (0<) ¥ < 7 80.

- R
Let q* denote a typical product = P, wita primes P;
)=1
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s,
-1 < p. < xJ. Now, from (4),

3.
satisfylng xJ ;

1-3% * l--80 . *
xT 2q >x . Letting q’ < x/q tun through

square-free values, we see that q*q’ < x are distinct square—free
numbers, and their number is

with some c’k > 0. This completes the proof of the Lemma.

Proof of the Theorem.

In view of (3), it is sufficient to consider a lower bound for
3 Exar M) = E, (N —E,N)
with a suitably large A’ ( > 2A, say). Now, we restrict N to
the sequence

4 N = ~ p, (logN_ ~logm)
M pglogm H

and note that if a square-free q x N, then q / (g, N) > log N.
Thus, by (1), we see the contribution of q <N to EA A (N) is

2
tr(q 1
(2 5@ viogn ) =
where ’ denotes the restriction on q in (3’). So this contribution is

©) OA.A’ (loglog N/ v log N) = O(an (N)), N> oo,

since, for N in (5), E_ (N} =log log N, by (3). Next, the

(@]

Lomme & By o o mondbisss Bannkd J i
ueimaining) contribution I to (37) s
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3 b2 (q)
q(N G Cl

(log N)A < q < (log N)A

qiN

2A
(log N)A < q < (logN)
and this is easily seen (by ¢5) and Lemma) to be >
c* A log log N. The proofis completed by a suitably large

choice of A’ {in terms of c* A) via (3) and (6),
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