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A REMARK ON GOLDBACH'S PROBLEM II 
By 

S. SRINIVASAN 

For A > 0, even integer N(> 1), set 

2 
p. (q)c (-N) 

EA (N) = L A - __ _ 9___ 

q < (log N) ~2 (q) 

Here, c (n) is the Ramanujan's sum ; one evaluation is 
q 

JL(q! (q, N)) t? (q) 
(1) c (- N) - ---- ----- ---- -

q ' - ~(q I (q, N)) 

R. Balasubramanian and C. J. Mozzochi proved (cf. § 6 of [lJ) 
the following theorem. 

Theorem. 

For any fixed A(>O), the relation 

(2) EA (N, "'E
00 

(N), N-+ 10, 

is false. 

Now we give an alternative proof of this theorem based on 

(3) E ao (N) - E A (N) = 0 (E 
00 

(N) /A), E ao (N) .:=: Nf<P (N), 

proved in [2]. 

Remark. 

In view of the above theorem, it is necessary to state the 

Theorem in [2] with the factor N/9 (N) in the hypothesi&; 

I. e., the bound 

N N 
~.B - ., replaced by ~B •-- .... n 2 

(log NJ - ''viS .. , 

N 
tf*(N). 
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Tbla can be done with no change in the proof there. 

We require also the folJowing 

Lemma. 

Then, as x-+ ~. Let (J. > 0. 

l{n..;x: a 
P.(n) ~ 0, p I n => p < x } I > c x, 

a 
holds wltb aome c > 0. 

a: 

Remark 

Actually, the above number has a well-known asymptotic 

formula. However, we give here a direct simple proof of this 
Lemma, as it ia sufficient for our present purpose. 

Proof of the Lemma 

Clearly, it suffices to prove the lemma for a ~equence 

a = IXk -+ 0 (as k -+ oo). We choose ak = 3{(5k + 4); 

2 
k = I, 2, • . . • Con11ider 0 < 3 a:k = a 0 < 

with R = 2k + 1; e defiaed through a. -
J 

(j = 0,1, ... ,R). 

Note that 
R-1 

ll +···+ SR-1 = (R-l)&o+ -2-Re 

R-1 
·= -2-<2'o + ~R - •o>· 

and on inserting the values ofR and aR in torms ~f k we see that 

(4) 1-260 =a1 + ... + li"R_ 1 < 1- (lR + l) 

1 
with any !txed (0<) ~ < 2t0 . 

D ..... 
Let q * denote a typical product "' p . with primes p. 

j= 1 J J 
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~. 
satisfying 

~. 1 xJ- < p. 
J 

x J. Now, from (4), 

t-a 
x1 -~ > q* ;;;;.. x 0 Letting q' < xfq* run through 

square-free values, we se~ that q•q' < x are diltinct square-free 

numbers, and their number is 

with some c' k > 0. This completes the proof of the Lemma. 

Proof of the Theorem. 

In view or (3), it is sufficient to consider a lower bouad fot 

(3') 

with a suitably large A' ( > 2A, say). Now, we restrict N to 

the sequence 

(5) N 
m 

'Jt p. 
p <log m 

(log N i"'J log m) 
m 

and note that if a squa:-e-free q x N, then q I (q, N) » Jog N. 

Thui, by (l ), we see the contribution of q X' N toE A,A' (N) ia 

where' denotes the restriction on q in (3'J. So this contribution i1 

(6) 

liince, 

0 A.A' (log log N I .; log N) = o(E
00 

(N) ), N-+ 110, 

for N in (5), It (N) :::::::log log N, by (3). Next, the 
x; 

(reruai!liug) cuntiibuticn cf q 1 N to (3') i~ 



~ 
q[N 

A A' 
(log N) < q < (log N) 
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2 
~) 
¢(q) > 

~ 
q!N 

A 2A 
(log N) < q ..-. (log N) 

2 
p. (q) 

q 

and this is easily seen (by t5) and Lemma) to be ;> 

c• A log log N. The proof is completed by a suitably large 

choice of A' tin terms of c•A) via('\) and (6), 
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