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A LEMMA IN COMPLEX FUNCTION THEORY-II 
BY 

R. BALASUBRAMANIAN AND K. RAMACHANDRA 

§1. INTRODUCTION. This is a continuation of [1] and [2]. However the 
method here is different and is self-contained. In [2] we proved a general 
result which implied the following 

THEOREM 1. Let f(z) be analytic in I z r and there let I /(z) 
M, (M 3). Let .4 1. Then 

1 1" I /(0) (24A log M)( 2r _,.I /(iy) I dy) + M-A. (1) 

We also proved a corresponding result with I /( z + iy) I in place of I /( iy) I, 
with suitable restrictions on z and also on the range of integration namely 
on 71· These are statements about I /(z) I where f(z) is analytic. We now 
consider I /(z) 111 where k > 0 is any real number independent of z. We 
prove 

THEOREM 2. Let k be any positive real number. Let f(z) be analytic in 
I z 2r and there I /{z) M(M 9). Let z = r(log M)-1 , and let z1 

be any real number with I zt z. Put ro = J4r2 - Then with A 1 
we have 

24 1 j"O I /(0) 2e84A M-A + (2 )2 e
84Alog M( -2 I /(zt + iy) ir. dy). (2) -x- ro _,.o 
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REMARK 1. It is easy to remember a somewhat crude result namely 

I /(0) e90A{M-A +(log M)(- I /(:ct + iy) I" dy)}. 1 j"O 
2ro -ro 

(:t) 

REMARK 2. In Theorem 1 the constants are reasonably small whereas in 
Theorem 2 they are big. We have not attempted to get optimal constants. 
REMARK 3. Let k1,k2, ... ,k,.. be any set of positive real numbers. Let 
b(z), /2(z), ... , fm(z) be analytic in I z 2r, and there 

I (/l(z))"1 .•• (/m(z))""' M(M 2: 9). 

TheJ\ Theorem 2 holds good with I /(z) I" replaced by I (/I(z))"1 ••• (/m(z))k,.. I 

REMARK 4. A corollary to our result mentioned in Remark 3 was pointed 
out to us by Professor J.P. Demailly. It is this: Theorem 2 holds good with 
I /(z) I" replaced by E:cp(u) where u ill any subharmonic function. To prove 

m 

this it suffices to note that the set offunctions of the form 2:k; log I /;(z) I 
i=l 

is dense in Lloc in the set of subharmonic functions. (This follows by using 
Green-Riesz representation formula for u and approximating the measure 
6,. by finite sums of Dirac measures). 
REMARK 5. Consider k = 1 in Theorem 2. Put <p(z) = f(l)(z) the lth 
derivative of /(z). Then our method of proof gives 

I <p(O) eM-A+ C(log M)l+1 ( 4
1 j 4

" I /(iy) I dJI), 
r -4r 

where C depends only on A and l . 
REMARK 6. (Due to J.-P. Demailly). In view of the example f(z) = 
( "":-l )2, where n is a large positive integer and r = 1, the result of Remark 
6 is best possible. 
§ 2. PROOF OF THEOREM 2. The proof consists of four steps. 
STEP 1. First we consider the circle I z I= r. Let 

0 < 2z r (3) 

and let PQS denote respectively the pointsreae where 9 = -co .. - 1e,.z),cos-1e,."') 
and 1r. By the consideration of Riemann mapping theorem and the zero can-
cellation factors we have for a suitable meromorphic function </>(z) (in PQSP) 
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that (we can assume that f(z) has no zeroson the boundary) 

F(z) = (¢(z)/(z))' (4) 

is analytic in the region enclosed by the straight line PQ and the circular 
arc QSP. Further ¢(z) satisfies · 

I ¢(z) I= 1 

on the boundary of PQSP and also 

I ¢(o) 1. 

Let 
X= Ezp{u1 + ua + ... + u,..) 

where u1, ua, ... , Un vary over the box B defined by 

0 ::S: u; ::S: B(i = 1,2, ... ,n), 

and B > 0. 
We begin with 

LEMMA 1. The function F(z) defined abo11e satisfies 

F(O) =It+ Ia 

where 
f F(z)X''dz 

2rs }pQ z 
and 

fa = f F(z)X" dz 
2ra lasP z 

(5) 

(6) 

(7) 

(8) 

(9) 

{10) 

where the lines of integration are the straight line PQ and the circular arc 
QSP. 

PROOF. Follows by Cauchy's theorem. 
LEMMA 2. We have 

2Bn:a: 1 d lit I::S: I (f(z))'_.:: I 
'lr PQ Z 

PROOF. Follows since I xz e28n"' and also I ¢(z) I= 1 on PQ. 

(11) 
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LEMMA 3. We have, 

IB-n k I2dul···d'Un e28nz( :r)nM. (12) 

PROOF. Follows since on QSP we have I tf>(z) I= 1 (and so I F(z) M) 
and also 

LEMMA 4. We have, 

PROOF. Follows by Lemmas 1,2 and 3. 

STEP 2. Next in (13), we replace I /(z) lA: by an integral over a chord 
P1Q 1 (parallel to PQ) of I w I= 2r, of slightly bigger length with a similar 
error. Let Zt be any real number with 

I Zl z. (14) 

{

Let P1Q1R1 be the points 2rei8 

where 8 = -co&-1(Pr"),O and cos-1(Pr")· (IS) 
(IT z1 is negative we have to consider the points 

8 = -j- sin-1(Pr"),O andj + sin-1(fr)). 
Let X be as in (7). As before let 

G(w) = (,P(w)f(w))A: (16) 

be analytic in the region enclosed by the circular arc P1R1 Q1 and the 
straight line Q 1P1 (we can assume that f(z) has no zeros on the bound-
ary P1R1Q1Pt). By the consideration of Riemann mapping theorem and 
the zero cancelling factors there exists such a meromorphic function ¢( w) 
(in P1R1Q1P1) with the extra properties, · 

LEMMA 5. we have with z on PQ, 

G(z) =Is+ !4 
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where 

and 
f .. 

2w-t jPtRtQI W ·- Z 

PROOF. Follows by Cauchy's theorem 
LEMMA 6. We have with z on PQ 

PROOF. Follows since I x-<w-z) e3Bnz and I tP(w) I= 1 on PtQl . 
LEMMA 7. We have with z on PQ, 

I B_,. e3B""'(:r)"'M. 

(18) 

(19) 

{20) 

(21) 

PROOF. Follows since on PtRtQt we have I tP(w) I= 1 (and so I G(w) 
M)andalso 

I B -n h I -( .. -z) dw d d I ( 2 )" z 2 .( ) Ut. .. u,. -B . a w-1 w- z r 

LEMMA 8. We have with z on PQ, 

I f(z) e3s .... (_!_)"M + eas .... f I f(w) llcl (22) 
Br 2w- 1P1Q1 w- z 

PROOF. Follows from Lemmas 5,6 and 7. 
STEP 3. We now combine Lemmas 4 and 8. 
LEMMA 9. We have 

I /(0) e2B""'( :r )" M + J1 + J2 

where 
It= e5Bna f I dz I, 

2w- Br }pQ z 
and 

(23) 

(24) 

(25) 
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LEMMA 10. We have 

i dz r 1 - 2 + 2 log( -2 ). 
PQ Z Z 

(26) 

PROOF. On PQ we have z = 2z +ill with Ill r az:.d 2z r. We split 
the integral into Ill 2z and 2z r. On these, we use respectively 
the lower bounds I z 2z and I z Jl· The lemma follows by these 
observations. 
LEMMA 11. We have for won P1Q1 and z on PQ, 

1 dz 6 
JPQ I z(w- z) (27) 

PROOF. On PQ we have Re z = 2z and on P1Q1 we have I Re w z 
and so I Re(w- z) z. We have 

dz <dz+ dz. I z( w _ z) L I z2 I I ( w _ z )2 I 
Writing z = 2z + iy we have 

I I }pQ • 
< 2 2z + 2 f'JO ¥!J. J2z 11 
= 1 z 

Similarly 
I I .u I 2(! + ¥!ill ) }pQ (w-.o)2 • Jz 

= 
This completes the proof of the lemma. 

STEP 4. We collect together the results in Steps 3 and 4 and choose the 
parameters B and n and this will give Theorem 2. Combining Lemmas 9,10 
and 11 we state the following lemma. 
LEMMA 12. We have 

(28) 
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where 0 < 2:r: r, z1 u any real number with I Zt z, n any natural number 
and B u any posititJe real number and Pt CJI u the straight line joining -ro 
and ro where ro = J 4r2 -

Next we note that 1 + log;:c ;:c and so by putting z = r(log M):-1 the 
first two terms on the RHS of (28) together do not 'exceed 

2 1 · 2 (-te5B"s(1 +-· log M)M 2(-)"e5B""' M log M. 
Br 2r Br 

Also, 
= 6109 M = 6log M( 210 )...!_ (24log M)(...!_), 

z r . · r 
Thus RHS of (28) does not eiceed 

2(-teSBnz M log M + (-·-e6B""'log M)(- I (f(w))"'dw 1). 2 24 11 . 
Br (2r)2 2ro P 1Q1 

We have chosen z = r(log M)-1 . We now choose B such that Br = 2e and 
n = [C log M] + 1, where C 1 is any real number. We have 5Bnz 
tS:M 10e(C + 1) 28(C + 1) and also 

< e-C log M =M-e. 
Br -

With these choices of z, B, n we see that RHS of (28) does not exceed 

2M-0 e28(C+t)M log M + M)(...!_ f I f(w))"'dw 1). 
(2r)2 2ro }p1Q1 

Putting C = A + 2 we obtain Theorem 2 since C + 1 3A. This completes 
the proof of Theorem 2. 
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