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Abstract

Random Uniform Forests are a variant of Breiman’s Random Forests (tm) (Breiman,
2001) and Extremely randomized trees (Geurts et al., 2006). Random Uniform
Forests are designed for classification, regression and unsupervised learning. They
belong to the family of ensemble learning and build many unpruned and randomized
binary decision trees then use averaging (regression) or majority vote (classification)
to take a decision. Unlike Random Forests, they draw random cut-points, using the
continuous Uniform distribution for each node (region) to grow each tree. Unlike
Extremely randomized trees, they use bootstrap (only for classification) and subsam-
pling, since Out-of-bag (OOB) modeling plays a key role. Unlike both algorithms,
for each node sampling with replacement is done to select features. Random Uniform
Forests are aimed to get low correlated trees, to allow a deep analysis of variable
importance (Ciss, 2015b) and to be natively distributed and incremental.
Random uniform decision trees are the core of the model. We provide an R pack-
age, randomUniformForest , and present main theoretical arguments. The algorithm
follows and extends Breiman’s key idea : increase diversity to build uncorrelated
trees. Hence the main motivation of Random Uniform Forests is to be more weakly
dependent to the data than Random Forests while giving similar performance and
inheriting of all their theoretical properties.

Keywords : Random Uniform Forests, Random Forests, statistical learning, machine
learning, ensemble learning, classification, regression, R package.
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1 Introduction

Random Uniform Forests belong to the family of ensemble models that build many base
learners then combine them to achieve tasks like classification, regression or unsupervised
learning. They are first designed to be less computationally expensive than Breiman’s
Random Forests while keeping all properties of the latter. They also follow the idea of
Extremely Randomized Trees (Extra-Trees) but, here, we do not want to loose the OOB
(Out-of-bag) evaluation. Implementations of ensemble learning are widespread, using
different manners; however we will be focused on Random Forests and Extra-Trees since
they provide efficient algorithms that can be used in R (R core Team, 2014) for real life
problems and are close to Random Uniform Forests for their decision rule. Base learners
are decision trees, like the CART (Breiman et al., 1984) paradigm, but in Random Uni-
form Forests they are unpruned and not deterministic.

In Random Uniform Forests, we seek strong randomization and some kind of global
optimization. Hence, we want to achieve low correlation between trees (or trees residu-
als) leaving average variance of trees, eventually, increase but not to much. We are not
concerned by bias, since we assume that if trees are enough randomized, ensemble model
should have low bias. If not, post-processing functions are implemented to reduce bias.
So, conceptually, we build the model using the following steps.
i) For classification, we first draw, for each tree and with replacement, n observations
among the n of the training sample (the bootstrap). For regression, we use subsampling
(drawing, without replacement, m points out-of n, m < n).
ii) Each tree is grown by sampling randomly and with replacement a set of variables,
for the candidate nodes (regions) at each step. It means that, if the dimension of the
problem is d, one can choose ⌈βd⌉ variables, β ≥ 1/d, for the candidate nodes to grow
the tree.
iii) Each cut-point is generated randomly, according to the continuous Uniform distri-
bution on the support of each candidate variable or, more computationally efficient and
for classification, between two random points of each candidate variable. Hence, we do
not use any local optimization to find the best cut-point. Each one follows exactly the
continuous Uniform distribution and, so, is not exactly one point among the ones in the
node.
iv) Optimal random node is, then, selected by maximizing Information Gain (classifi-
cation) or minimizing ’L2’ (or ’L1’) distance (regression). For the classification case,
current and candidate nodes are used to compute Information Gain while in regression,
only candidates nodes are used to compute distances.

Main arguments reside in drawing with replacement variables, using the continuous Uni-
form distribution and choosing the optimization criterion. However, at the algorithmic
level, some others arguments are used (e.g. for categorical variables or for removing use-
less variables in the case of sparse data). In both Extra-Trees and Random Forests, there
is no replacement when selecting variables. Extra-Trees use random cut-point, which is
drawn uniformly between the minimal and the maximal value of each candidate variable
for the current node. Like Random Forests, Random Uniform Forests use bootstrap for
classification, but in the case of regression, subsampling is preferred, giving better results
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than bootstrap. All three algorithms use a different criterion to find the optimal cut-point
and variable, for each node, between candidates.
In the next section we focus on theoretical arguments of random uniform decision trees,
the base learners.
In section 3, we provide the details of Random Uniform Forests.
In section 4, we provide benchmarks on many datasets and compare the results with,
both Extra-Trees and Random Forests, an some others state-of-the-art algorithms. In
section 5, we conclude our analysis.

2 Random uniform decision trees

Random uniform decision trees are unpruned and randomized binary decision trees. They
use the continuous Uniform distribution to be built (that gives them their name) and,
unlike CART, do not seek optimality. They, first, used to be the core of Random Uniform
Forests and just growing one random uniform decision tree is useless (in comparison to
CART). But understanding Random Uniform Forests needs first to know mechanisms of
the former. A binary decision tree is usually grown by recursively partitioning the data
in two regions until some stopping rules are met. Then, a decision rule is applied to the
current region. One needs to know, usually, three aspects :
- how to grow the tree and choose a node,
- when to stop growing tree,
- how to define and build the decision rule.

In the CART paradigm, for each candidate region, one chooses each coordinate (variable)
in the data and find the best cut-point (looking for all observations) that minimizes an
optimization criterion. Then, for all coordinates, the optimal value of the criterion leads
to the coordinate and associated cut-point that will be chosen to partition the current
node. In Breiman’s Random Forests, a few coordinates are first randomly and uniformly
chosen. Then observations are drawn randomly with replacement, the Bootstrap (Efron,
1979), before applying the CART paradigm. In Extremely randomized trees, there is
no bootstrap and both coordinates (a few again) and cut-points are chosen randomly.
Hence, only the last part of the CART paradigm is applied. We follow the same principle
in Random Uniform Forests, but make modifications in each part of the procedure when
growing a Random Unifom Decision Tree.

Definition. A random uniform decision tree is a binary decision tree in which nodes are
built using random cut-points. For each step of the recursive partitioning, ⌈βd⌉ variables,
β ≥ 1/d, are drawn with replacement. Then for each candidate variable, a cut-point α
is drawn using the continuous Uniform distribution on the support of each candidate or
between two random points of the latter. Optimal random node is the one that maximizes
information gain (in classification) or that minimizes a L

2 distance (or another one) in
regression. The recursive partitioning is pursued unless a stopping rule is matched. The
decision rule is then applied and exists only for terminal nodes.
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2.1 Regions

Random uniform decision trees are close to other types of decision trees and a node has
always two or zero children nodes. We first have to define what a region is and for that, we
call P , a partition of the data. Following Devroye et al. (1996), we propose this definition.

Definition. A is a region of the partition P if, for any B ∈ P , A ∩B = ∅ or A ⊆ B.

Hence, we suppose that we have Dn = {(Xi, Yi), 1 ≤ i ≤ n}, corresponding to the
observations and responses of the training sample, where (X, Y ) is a R

d ×Y-valued ran-
dom pair, with respect to the i.i.d. assumption. A is an optimal region of the random
uniform decision tree if :

for any A ∈ P ,
{

X
(j∗)
i ≤ αj∗ |Dn

}

, 1 ≤ j ≤ d, 1 ≤ i ≤ n,

for any AC ∈ P ,
{

X
(j∗)
i > αj∗ |Dn

}

, 1 ≤ j ≤ d, 1 ≤ i ≤ n,

where, for classification :
αj ∼ U

(

min(X(j)|Dn), max(X
(j)|Dn)

)

and j∗ = arg max
j∈{1,...,d}

IG(j,Dn),

and for regression :
αj ∼ U

(

min(X(j)|Dn), max(X
(j)|Dn)

)

and j∗ = arg min
j∈{1,...,d}

L2(j,Dn),

where IG is the Information Gain function, L2, an Euclidean distance function, and are
both defined in section 2.3.

2.2 Stopping rules

Once A and AC , its complementary region, are found, we repeat the recursive partitioning
for the two regions (randomly drawing variables and cut-points, and choosing the optimal
region) until we met some conditions, which are :
- the minimal number of observations is reached (usually one observation),
- for one region, all the observations have the same label (or value),
- for one region, all the observations are the same,
- for one region, there is no more variables to select (since the algorithm can delete any
or many of them internally),
- IG(j,Dn) (or, in regression, L2(j,Dn)) reached a threshold (usually 0).

2.3 Optimization criterion

It remains to define the IG function and a decision rule for the tree. For classification,
let us suppose, for simplicity, that Y ∈ {0, 1}. We have :

IG(j,Dn) = H(Y |Dn)−
[

H
((

Y |X(j) ≤ αj

)

|Dn

)

+ H
((

Y |X(j) > αj

)

|Dn

)]

,

where H is the Shannon entropy (note that we use it with the natural logarithm),
and

H(Y |Dn) = −
1
∑

c=0

{

1

n

n
∑

i=1

I{Yi=c} log

(

1

n

n
∑

i=1

I{Yi=c}

)}

,
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with, by definition, 0 log 0 = 0, so that H(Y ) ≥ 0.

Let n
′

=
∑n

i=1 I
{

X
(j)
i ≤αj

}, then

H
((

Y |X(j) ≤ αj

)

|Dn

)

= −n
′

n

1
∑

c=0

{

1

n′

n
∑

i=1

I{Yi=c}I
{

X
(j)
i ≤αj

} log

(

1

n′

n
∑

i=1

I{Yi=c}I
{

X
(j)
i ≤αj

}

)}

,

and

H
((

Y |X(j) > αj

)

|Dn

)

=

− n− n
′

n

1
∑

c=0

{

1

n− n′

n
∑

i=1

I{Yi=c}I
{

X
(j)
i >αj

} log

(

1

n− n′

n
∑

i=1

I{Yi=c}I
{

X
(j)
i >αj

}

)}

.

For regression, we define L2(j,Dn) by

L2(j,Dn) =
n
∑

i=1

(

YiI
{

X
(j)
i ≤αj

} − ŶAI
{

X
(j)
i ≤αj

}

)2

+
n
∑

i=1

(

YiI
{

X
(j)
i >αj

} − ŶACI{
X

(j)
i >αj

}

)2

,

with

ŶA =
1

n′

n
∑

i=1

YiI
{

X
(j)
i ≤αj

} and ŶAC =
1

n− n′

n
∑

i=1

YiI
{

X
(j)
i >αj

}.

2.4 Decision rule

Each time a stopping criterion is met, we define the decision rule, g
P
, for an optimal (and

terminal) node A. We have for binary classification :

g
P
(x,A,Dn) = g

P
(x) =







1, if
∑n

i=1 I{Xi∈A,Yi=1} >
∑n

i=1 I{Xi∈A,Yi=0}, x ∈ A

0, otherwise.

And for regression :

g
P
(x,A,Dn) = g

P
(x) =

1
∑n

i=1 I{Xi∈A}

n
∑

i=1

YiI{Xi∈A}, x ∈ A.

2.5 Categorical variables

The description we give above work well for numerical variables but one may wonder how
to treat categorical variables which usually have no order in the values they take. One
may use dummies, coding each categorical variable as many binary ones, but it leads to
increase the dimension of data and may not be suitable for the algorithm. In Random
Uniform Forests, categorical variables are treated at the node level. More precisely, the
algorithm selects for each candidate node, randomly and before the splitting process, two
values of the categorical variable. The first one keeps its positions within the variable
while the second replaces, temporarily all others values. This leads to a binary variable
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that can be treated like a numerical one. After the splitting, the variable recovers its
original values. Since cut-points are almost virtual and random (a cut-point is usually
not an observed point of the training sample), one has just to take care that the random
binarization would not weaker the variable. This is avoidable, since all nodes of all trees
are treated in a random manner and any variable can be selected many times in each
node (the sampling with replacement variables procedure).

2.6 Algorithm

We can summarize the different tasks mentioned above by the following algorithm :

1- draw at random and with replacement (or subsample, m out-of n, in case of regression)
n observations of Dn.
a) select at random and with replacement ⌈βd⌉ variables,
b) for each of the ⌈βd⌉ variables, draw α using the continuous Uniform distribution on
the support of each candidate variable or between two random points,
2- for the ⌈βd⌉ variables, choose the pair (j∗, αj∗) that maximizes IG(j,Dn) for classifi-
cation, and for regression the one that minimizes L2(j,Dn),
3- (j∗, αj∗) is the pair that defines the regions A and AC ,
4- If a stopping rule is met, stop the partitioning and build the decision rule g

P
,

5- If not, pursue step 1 to 5 for A and AC .

In a random uniform decision tree, partitioning leads to a large and deep tree. If bal-
anced, maximal depth is log(n)/log(2) which is usually obtained for regression, while for
classification the depth is usually lower. Since no pruning is done, terminal nodes tend to
have a very few values leading to a high variance of the tree. Hence, in a random uniform
decision tree prediction error is not an achievement but high variance is, as a condition
for getting low correlation between trees. To avoid it increase too much, perturbations
on the training sample sent to the optimization criterion are the main argument. The
second one is that no local optimization is done since we want to lower the correlation
between trees: following Breiman’s ideas, as variance for a single tree is high and hard
to reduce, one can let it get high (introducing more diversity) and let ensemble do the
reduction using the Law of Large Numbers, if trees are independent. In practice, they
are not and one can use correlation to measure the level of dependence. Comparing to
CART, one single random uniform decision tree will have an higher variance, but average
variance of trees will be close, if not lower, in most cases than CART variance. Then,
next step is to know how averaging will affect prediction error.

3 Random Uniform Forests

As Random Forests do, we use ensemble of random uniform decision trees to build a
Random Uniform Forest. Algorithm is straightforward but one can note that many
improvements come from the algorithmic level where a lot of randomness is essential to
get improvements over a simple averaging of trees. Another point of view is that Random
Uniform Forests use the Bayesian paradigm : the forest classifier is the result of almost
all (trees) parameters for a fixed data set.
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3.1 Algorithm

Once the structure of a random uniform decision tree is known, algorithm needs a few
lines (but much more in practice) :
1- For each tree, from b = 1 to B, grow a random uniform decision tree and build its
decision rule
2- For the B trees, apply the rule ḡ(B)

P
(see section 3.3).

3.2 Key concepts

In Random Forests, a tree is grown by choosing, at each step of the recursive partitioning,
the optimal region among a few locally optimal, but randomized, regions. In Random
Uniform Forests, the optimal region is chosen among many, possibly overlapping, random
regions. In Extremely Randomized Trees, the optimal region is chosen among a few non-
overlapping random regions. In all cases, guarantees are due to the Law of Large Numbers
that generates convergence and needs trees to be theoretically independent.
The main difference with Random Forests appears in average trees correlation which is
usually higher in the latter (at least for regression) while the average variance of trees
is smaller. The motivation of pursuing low correlation is directly linked with the Law
of Large Numbers and theoretical properties of Random Forests, and Random Uniform
Forests, that we want to be the closest to the practice. In other words, Random Uniform
Forests are an application of Breiman’s ideas using (strong) randomization to the point
of view of observations rather than to the dimension whose we need, here, more for
optimization.

3.3 Decision rule

Let us write g
P
(X)

def
= g

P
(X, θ), where θ is the parameter that translates the randomness

introduced in the tree. For the b-th tree, 1 ≤ b ≤ B, we have g(b)
P
(X)

def
= g

P
(X, θb).

For an ensemble of trees, the decision rule, ḡ(B)
P

, is easy to write. We have for binary
classification :

ḡ(B)
P

(x) =







1, if
∑B

b=1 I{g
(b)
P

(x)=1}
>
∑B

b=1 I{g
(b)
P

(x)=0}

0, otherwise.

And for regression :

ḡ(B)
P

(x) =
1

B

B
∑

b=1

g(b)
P
(x).

The decision rule is simple and one can ask how to find interesting properties and how
to explain good results of ensemble models. Trees in Random (Uniform) Forests are
designed to be weakly dependent in order to apply most main theoretical properties pro-
vided by Breiman and Random Uniform Forests simply inherit from them. In fact, the
most important aspect is the simplification introduced when growing trees. This leads to
many, new or updated, applications like procedure for prediction and confidence intervals,
missing values imputation, many measures of variable importance and deep analysis, or

7



incremental learning. From the theoretical side, the main argument of Random Uniform
Forests is to lower correlation between trees faster or as fast as the increase of average
variance of trees introduced by the strong randomization. To be more precise :
- in classification, the theoretical prediction error is bounded by the product of average
correlation between trees and a function of the squared strength (or margin), which is
the difference, in frequency, between observations that are classified correctly and mis-
classified observations over all trees. Since, for binary classification, the misclassification
rate can be written as a function of (among others terms) the parameter of the class dis-
tribution, the study of bias is the main object to assess when lowering correlation. But,
since Random Uniform Forests converge (hence strength reaches is theoretical value) the
main practical consequence of lowering correlation is the number of observations needed
to get an optimal error, with respect to the training sample structure.
- In regression, the theoretical prediction error is bounded by the product of average cor-
relation between trees residuals and the average prediction error of trees, which depends
to the average variance of trees residuals. Hence, if one supposes that the bias can not
be reduced, then lowering correlation implies to control variance.

3.4 The use of random cut-points

For practitioners, the use of random cut-points may seem non optimal since variance
(stated as average variance of trees residuals) will get higher. The first essential point is
that as the same time correlation (stated as average correlation between trees residuals)
will decrease faster than most of others splitting rules. Since low dependence between
trees is a necessary condition for convergence, if this latter happens for others splitting
rules it will also happen, possibly slowly, when using random cut-points. In fact, random
cut-points ensure that conditions for convergence are provided. However, variance will
still not be controlled, especially if we let the trees growing to their maximum size.

3.5 Sampling, with replacement, features

To overcome issues with a possible increasing variance, by using random cut-points, one
needs to introduce techniques that do not affect correlation but lead to control variance.
Unfortunately, there is not a unique one on which we can count every time. For regres-
sion, subsampling is, empirically, a good choice. But the most important is to use the
dimension of the problem. It is done by sampling with replacement features for each
node. Hence, competition between (fully random) candidate nodes increases with the
number of selected features, and the duplication of some, while variance is reduced up to
a point. Empirically, the main effects reside in the following steps :
i) since Random Uniform Forests do not have bias around the mean over all trees, corre-
lation can be easily decreased,
ii) using random cut-points, with other techniques, allows to decrease correlation as fast
as possible but increases variance,
iii) sampling, with replacement, features, allows to decrease variance up to a point, with-
out touching correlation, or can decrease both variance and correlation.

In Extra-trees, there is not sampling with replacement when selecting candidate variables.
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Hence, more work is done on the optimization criterion in order to reduce variance, also
leading to a slightly increase of correlation, in comparison to Random Uniform Forests.
In Breiman’s Random Forests, the correlation is usually higher, since the main source of
randomness comes from sampling, without replacement, a few coordinates at each node.
average variance of trees residuals is reduced since cut-points are not random with respect
to a candidate variable.

The main point and source of improvements is to know how to find a way to further
reduce average variance of trees residuals with, in all cases, a low (or monotonically de-
creasing) average correlation between trees residuals. Most of the possible solutions reside
on the algorithmic side where a corollary seems to make one case (decrease variance or
decrease correlation) arise (much) faster than the other (the increase of one of them).

3.6 The OOB classifier

The Out-of-bag (OOB) informations are the observations that do not participate to the
trees growth. For each tree, due to bootstrap or subsampling, some observations are
not chosen and are stored in order to build the OOB classifier whose decision rule is
ḡ
(B)

P ,oob(X). The OOB classifier exists only for the training sample and use B′ trees, B′ ≃
exp(−1)B, with n observations. Note that the B′ trees are not necessary the same for
each observation that needs to be evaluated.
We have for an observation x and for only Dn,

ḡ(B)
P ,oob

(x) =











1, if
∑B

b=1 I
{

g
(b)
P

(x)=1
}I{b∈G−

(x,B)} >
∑B

b=1 I
{

g
(b)
P

(x)=0
}I{b∈G−

(x,B)}

0, otherwise.

And, for regression :

ḡ(B)
P ,oob

(x) =
1

∑B

b=1 I{b∈G−
(x,B)}

B
∑

b=1

g(b)
P
(x)I{b∈G−

(x,B)},

where G
−

(x,B) is the set of trees, among the B, which have never classified x.

The OOB classifier gives an estimate of prediction error and lead to many improve-
ments, like post-processing, in order to control prediction error or for others purposes.
One of the most important is a way to prevent overfitting, using the OOB classifier in
conjunction with the Breiman’s bounds.

3.7 Incremental learning

Incremental learning is a way to do learning for streaming data. If data are very large or
come by chunks, then incremental learning is one way to treat them whatever their size
is. But, it will usually have a cost, at least a (slight or large) loss of accuracy. Incremen-
tal learning proceeds by chunks of data and the regression case is usually less easy than
classification for achieving low prediction error (in contrast of a computation of all the
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data at once). Incremental learning has two cases :
- the i.i.d. assumption holds for all chunks (or, at least, many),
- the (joint) distribution of (X, Y ) is shifting (either the distribution itself or its param-
eters or the target variable).

Random Uniform Forests are natively incremental. We consider the i.i.d case, but it
also applies to the non-i.i.d. one by considering sub-forests. Let us call ḡ(T )

P,inc
the incre-

mental forest classifier. We simply have

ḡ(T )
P,inc

(x) =











1, if
∑T

t=1

∑Bt

b=1 I
{

g
(b)
Pt

(x)=1
} >

∑T

t=1

∑Bt

b=1 I
{

g
(b)
Pt

(x)=0
}

0, otherwise.

And for regression,

ḡ(T )
P,inc

(x) =
1

∑T

t=1 Bt

T
∑

t=1

Bt
∑

b=1

g(b)
Pt

(x),

where P
t
is a partition of the data for the slice time t,

Bt, is the number of trees for the slice time t,
T , is the number of slices time.

Incremental learning is a subsampling process that we apply on both data and deci-
sion rule. Each tree sees only a part of the data and the forest itself sees a (bigger) part.
The main argument here is that cut-points are random, so see a part or whole data does
not change, in practice, many things in the i.i.d. case. Moreover, for very large datasets,
one will never be able to compute all data at once. The problem relies more on the infor-
mations retained. Some informations that are important for a slice time, can be obsolete
in the next slice time or worst, leading to confuse the forest. The only hope is, then, to
adapt the classifier to the new situation without loosing all the informations memorized
before. Since a sub-forest is a forest, with just less trees (like the OOB classifier is),
we can adapt Random Uniform Forests by assessing ḡ(T )

P,inc
, ḡ(T−1)

P,inc
and ḡ(BT−1)

P
. Those

sub-forests will also be a little correlated (since they will produce at the end an unique
forest of all trees), leading to convergence with the increasing number of chunks. Hence,
one can compute many different models (with different parameters and data) and just
combine them. One alternative is to use incremental trees that update themselves with
new data. While possibly more powerful with deeper trees, this technique requires more
parameters and much more attention to the tree structure. In the (wild) non-i.i.d case,
there is no result in supervised learning we can use to assess the model, since even very
simple rule linking target and predictors can no more be learned. We found in this case
that unsupervised learning, as a companion of the supervised case, seems a promising
alternative.

4 Experiments

To better understand how Random Uniform Forests works in practice, we provide an R
package with a large number of functionalities, randomUniformForest , abbreviated rUF.
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We use 34 datasets, from both classification and regression, to show how the algorithm
performs. For comparison, we use Random Forests (RF), Extra-Trees (ET), Gradient
Boosting Machines (GBM), SVM and CART as companions, using, respectively, the
packages randomForest, extraTrees (a free implementation of the original algorithm),
gbm, e1071 and rpart.

4.1 Protocol

All experiments are done using R (R Core Team, 2014), the free software environment
for statistical computing and graphics.
For almost all the datasets, we compute the 10-fold cross-validation error, 5 times, and
report the mean and the standard deviation in parenthesis.

- Random Uniform Forests always applies (internally) a preprocessing step to the data.
Algorithms that only allow matrix, or that can not handle some categorical variables,
see the data to be converted, using the same preprocessing step than Random Uniform
Forests. Others algorithms take the data as they come except when they were too sensi-
tive to the data (like the GBM algorithm in the credit approval dataset).
- For all algorithms we use their default parameters, to preserve fairness, except for GBM
whose default ones give in too many cases the worst results. Hence we use for this algo-
rithm parameters (that replace well the default ones but with longer computation times)
namely : shrinkage = 0.05, interaction.depth1 = 12, n.minobsinnode = 1.

- Default parameters for the randomUniformForest algorithm :
number of trees, ntree = 100,
number of variables to select at each node, mtry = ⌈4

3
p⌉, where p is the number of vari-

ables of the training sample,
minimal node size, nodesize = 1,
for classification, replace = TRUE, meaning that a random bootstrap sample is drawn
for each tree,
for regression, subsamplerate = 0.7, meaning that a random subsample, of size equal to
70% of the training sample size and without replacement, is drawn for each tree.

- Default parameters for the randomForest algorithm :
ntree = 500,
mtry = ⌈√p⌉ for classification, mtry = ⌈p/3⌉ for regression,
nodesize = 1 for classification, nodesize = 5 for regression,
bootstrap always enabled.

- Default parameters for the extraTrees algorithm :
same as randomForest ones, except that the whole sample is used for each tree, without
any modification.

1The value of interaction.depth was initially set to 24 but after some issues in multi-class classification
and slow computation time, we decided to set it to 12.
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Classification datasets : Heart disease (with 13 attributes), Liver, Ionosphere, SAheart,
Credit approval, Climate model, Pima indians diabetes (Diabetes), Vehicle, German credit,
QSAR biodegradation, Banknote authentification, Yeast, Car evaluation, Steel plates
faults, Wine quality (white), Musk, Bank marketing.

Regression datasets : Yacht Hydrodynamics, Auto MPG, Boston housing, Forest fires,
Energy efficiency, Stock Prices, Friedman_c3_1000_25, Mortgage, Concrete compres-
sive strength, Airfoil self-noise, Treasury bounds, Weather Ankara (Wankara), Puma32h,
Pole telecommunications, California housing, YearPredictionMSD.

Most of the datasets are available from the UCI repository , except the Friedman data set,
SAheart (in the R package ElemStatLearn), Stock prices, Mortgage, Treasury, Weather
Ankara (Wankara), Puma32h, Pole telecommunications, California housing.

4.2 Results

4.2.1 Classification

RF ET SVM GBM CART rUF
Heart disease 15.89 (6.99) 17.20 (6.02) 17.21 (6.48) 19.57 (6.99) 19.20 (5.38) 18.26 (6.14)

Liver 26.2 (6.96) 27.48 (6.3) 29.52 (6.73) 30.15 (6.54) 31.3 (7.34) 27.01 (6)
Ionosphere 7.52 (5.83) 7.03 (4.50) 9.07 (6.55) 8.08 (5.30) 11.14 (7.04) 7.19 (5.44)
SAheart 30.99 (6.29) 32.24 (6.91) 28.09 (6.15) 35.72 (6.57) 31.28 (6.56) 32.11 (5.97)

Credit approval 12.78 (3.53) 12.72 (3.61) 13.65 (3.39) 13.27 (4.06) 13.94 (4.04) 12.40 (3.87)
Climate model 8 (3.44) 8.48 (3.47) 8.14 (3.46) 6.22 (2.69) 7.37 (3.37) 6.40 (2.72)

Diabetes 23.09 (4.43) 23.17 (4.54) 23.95 (5.03) 25.62 (5.10) 25.33 (5.24) 23.69 (4.33)
Vehicle 24.72 (4.86) 25.93 (4.55) 23.23 (4.05) 21.58 (4.15) 32.21 (4.77) 24.28 (5.72)

German credit 23.16 (3.96) 24.58 (4.04) 24.30 (4.68) 23.46 (3.85) 26.20 (3.01) 24.30 (4.12)

QSAR biodegradation 12.64 (3.27) 12.59 (3.70) 12.43 (3.33) 12.79 (3.19) 17.41 (3.29) 12.79 (2.49)
Banknote 0.62 (0.7) 0.1 (0.25) 0 (0) 0.45 (0.56) 3.87 (2.5) 0.26 (0.38)

Yeast 35.95 (3.52) 36.80 (3.40) 38.36 (3.86) 32.5 (2.85) 43.39 (3.86) 36.95 (4.48)
Car evaluation 2.66 (1.38) 0.89 (0.75) 5.66 (2.18) 0.68 (0.72) 5.67 (1.66) 2.16 (1.38)

Steel plates faults 21.42 (2.53) 21.27 (2.74) 19.39 (2.53) - 31.03 (3.67) 19.87 (2.97)
Wine quality (white) 29.48 (2.07) - 26.58 (2.26) 31.71 (2.04) 47.14 (2.02) 29.59 (2.22)

Musk 2.1 (0.62) 1.83 (0.51) 2.95 (0.63) 1.24 (0.51) 5.75 (0.93) 1.91 (0.63)
Bank marketing 8.44 (0.32) 8.92 (0.38) 9.04 (0.31) - 8.78 (3.5) 8.51 (0.43)

Table 1: Classification. Reporting test error in % and standard deviation (in parenthesis) of
the 10-fold cross-validation repeated 5 times. Second part of the table are datasets with more
than 1000 rows. Default parameters for all classifiers except GBM.

From all the datasets, the only classifier that is clearly behind the others is CART.
From the theoretical side, using the Breiman’s bound, one can explain that most of the
improvements of random forests like classifiers come from the little correlation of trees.
Even if one unpruned and randomized binary tree is worst than a CART one, using many
will enough improve the average margin (difference, in frequency, between well-classified
and misclassified examples) so that the Breiman’s bound will usually be lower for an
ensemble model. From the others classifiers, the difference in test error is so close, in a
sense or another, that results depend most on the dataset and on the default parameters.
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For example, Random Uniform Forests use 100 trees while Random Forests and Extra-
Trees use 500. But, considering the number of selected variables for each node, Random
Uniform Forests use 4/3

√
p times more variables. Considering the sample, Extra-Trees use

the whole one while Random Forests and Random Uniform Forests use a bootstrap one.
Average test error for all datasets is 16.80% for Random Forests and 16.92% for Random
Uniform Forests, with almost the same variance. Hence, to our opinion, a classifier can
only be better (or with more predictive abilities) than another if it outperforms for almost
all datasets. Here each classifier has its strength. For some datasets, SVM pushes the test
error lower than others one or it can be GBM. Others ensemble models seem, overall, to
maintain an enough low variance of their prediction error which is an essential property
for models that are almost random. In the case of Random Uniform Forests, the model
goes a bit further, since its algorithm is clearly stochastic, meaning that one will not be
able to reproduce exactly any prediction error with the same data, even by fixing the
seed (that generates random numbers). In fact, this aspect is something important in the
model since convergence is the master word of Random Uniform Forests. Hence, most of
the efforts are done to reduce correlation between trees (for most of the datasets above it
is lower than 0.1) and the OOB error (from which one can derive non-asymptotic bounds)
is the one from which prediction error is assessed.

4.2.2 Regression

RF ETa SVM GBM CART rUF
Yacht hydrodynamics 14.93 (9.1) 18.61 (11.75) 41.06 (6.55) 0.46 (0.51) 4.91 (2.01) 1.5 (1.41)

Auto MPG 7.64 (3.05) 7.22 (3.23) 7.84 (3.35) 7.52 (2.91) 13.58 (4.14) 7.17 (3.26)
Boston housing 10.28 (4.56) 9.62 (4.36) 14.57 (8.81) 8.41 (4.15) 22.41 (10.27) 10.25 (5.9)

Forest fires 4249 (6989) 4307 (6967) 4095 (7239) 5994 (7068) - 4634 (6969)
Energy efficiency 1 1.18 (0.27) 0.2079 (0.05) 5.03 (1.26) 0.11 (0.05) 6.80 (1.44) 0.21 (0.05)
Energy efficiency 2 3.37 (0.78) 3.06 (0.66) 7.04 (1.52) 0.52 (0.15) 9.42 (1.48) 2.84 (0.47)

Stock prices 0.531 (0.098) 0.421 (0.082) 0.765 (0.12) 0.563 (0.178) 3.95 (0.66) 0.413 (0.072)
Friedman (c3_1000_25) 0.135 (0.018) 0.194 (0.02) 0.621(0.08) 0.052 (0.009) 0.286 (0.038) 0.092 (0.01)

Mortgage 0.017 (0.007) 0.011 (0.005) 0.032 (0.004) 0.01 (0.004) 0.48 (0.08) 0.012 (0.006)
Concrete compressive 27.63 (3.96) 33.38 (8.03) 42.64 (4.68) 15.35 (4.66) 84.34 (13.36) 21.21 (5.86)

Airfoil self-noise 12.67 (1.43) 4.59 (0.86) 10.49 (1.92) 2.42 (0.49) 19.68 (2.27) 4.08 (0.70)
Treasury 0.046 (0.022) 0.036 (0.015) 0.066 (0.021) 0.039 (0.017) 0.4424 (0.108) 0.034 (0.015)
Wankara 3.18 (1.52) 3.1 (1.17) 7.37 (3.74) 2.15 (0.64) 17.19 (3.39) 2.17 (0.58)

Puma32h∗(×100) 0.014 0.0281 0.072 0.006 0.0185 0.007
Pole∗ 32.32 38.11 216.34 28.48 244.93 28.88

California housing∗b 0.14 0.148 0.108 0.15 0.187 0.137
YearPredictionMSDc - - - 81.88 109.99 86.56

aResults of Extra-Trees were got with 100 trees.
bwe used the transformation Z = log(Y + 1) to assess models
cThe last 51,630 examples (of 515,345 ones) are taken as test set. Out-of-memory problems occurred

with ET and we stopped RF after more than 10 hours. rUF used their incremental learning mode to
reduce computation time.

Table 2: Regression. Reporting mean squared error and standard deviation (in parenthesis) of
the 10-fold cross-validation repeated 5 times (except for the four last datasets).
∗ : For these datasets, the second half was taken as a test set.

From the table above, things are now very different. At first, GBM dominates, by
far, most of the results for small datasets. What we observed is that GBM is (one of)
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the best algorithm(s) as soon as dataset is small or with a small number of covariates
and/or the distribution of responses is close to a Gaussian one. For large datasets or
when assessing a single test set (second part of the table), things begin to change. We
set GBM parameters that might be close to the optimal ones, but they never changed
for all the datasets (classification and regression). Hence, it remains that GBM is very
impressive and some functionalities in Random Uniform Forests are directly inspired by
the former.

From what is reported, Random Forests has most of the times a higher mean squared
error than Random Uniform Forests. The first reason is due to the correlation between
trees residuals, usually high in regression. This leads to a slower convergence for some
ensemble models. In Random Uniform Forests lowering correlation is an achievement
and lead to three mechanisms : use random cut-points, exploit the dimension of the
problem, use subsampling. As a consequence, Random Uniform Forests are less sensitive
to overfitting while their greater randomness does not let the average variance of trees
getting high. Extra-Trees seems to also get benefits from random cut-points. To better
show the difference between these models, we computed the average correlation between
trees residuals and the average prediction error of trees (which can be summarized as the
variance of trees residuals) whose the product leads to the upper bound of the prediction
error for a random forest like model. We got :

RF ET rUF
Average correlation between trees residuals (1) 0.4443 0.4243 0.4073

Average prediction error of trees (2) 0.3239 0.3572 0.3446
Estimate of the theoretical prediction error 0.1428 0.1462 0.1362
Upper bound of the prediction error (1×2) 0.1439 0.1516 0.1402

Table 3: Correlation and prediction error for the test sample of the California housing dataset
for a forest of 100 trees. The second half of the dataset was taken as a test set. Size of the test
set : 10320 × 10.

From the table above, we can see that Random Uniform Forests reduce correlation
stronger than the two others models (up to 10% below) while the average variance of
trees increases by 6% (at most). That leads to a lower theoretical prediction error of the
forest (Breiman, 2001) due to the correlation that is applied to all the trees residuals.
The gap with the upper bound gets higher than the Random Forest one, due to the
higher average variance of trees. Random Uniform Forests, in regression, decrease the
correlation faster than they increase the average variance of trees residuals. That is one
of the manners to lower the prediction error. In the case of Extra-Trees, the random
cut-poins also lead to a lower correlation but, at least for this dataset, the variance does
not decrease enough because of the number of selected features at each node (one third
of the total number of variables, like Random Forests). Increasing the number of trees
decrease all the measures but does not change the order.

One way to further assess the models is to find the best number of selected features
per node (the mtry value) and to look how it affects measures:
In the previous table, the values of mtry were 2 (RF), 2 (ET) and 10 (rUF). Increasing
the default values reduce the prediction error, by reducing both correlation and variance
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RF (mtry = 8) ET (mtry = 8) rUF (mtry = 20)
average correlation between trees residuals (1) 0.5329 0.4165 0.3944

average prediction error of trees (2) 0.2889 0.3083 0.3373
Estimate of the theoretical prediction error 0.1531 0.1267 0.1298
Upper bound of the prediction error (1×2) 0.1539 0.1284 0.1330

Mean squared error 0.15 0.1261 0.1264

Table 4: Correlation and prediction error for the test sample of the California housing dataset
for a forest of 100 trees with optimized mtry value. Test set size: 10320 × 10.

except for Random Forests (while we optimized the mtry parameter using the OOB er-
ror). Default values in regression are not easy to set for Random Forests, since the model
has to avoid the correlation getting high, which will happen when mtry is increasing,
and in the same time reduce variance, which will not happen fairly rapidly for low values
of mtry. Extra-Trees take benefits from the increased number of selected features and
this seems to be a paradigm for methods that use random cut-points. In comparison
to Random Uniform Forests they use around 40% more examples for growing a tree (no
subsampling), but around half of the features used by the former for this dataset (sam-
pling with replacement features in Random Uniform Forests) and a minimal number of
observations in a node of 5 (against 1).

We show in the figure below how correlation and variance evolve with either the number
of trees or the mtry value :

Figure 1: Correlation and variance in Random Uniform Forests for the California housing
dataset.

One can see that reducing correlation depends more on the random cut-points. Number
of trees is important to get stability, while mtry value does not matter a lot. Considering
the average variance of trees, it is reduced up to a point by using larger values of mtry
(meaning that an increasing number of features are selected twice or more times) while
the number of trees is, again, essential to get stability. For this dataset, much of the work
to reduce correlation is natively done by the algorithm structure. What is interesting
is both correlation (as low as 0.2) and variance (as low as 0.28) can be reduced further
using options, but hardly in the same time.
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5 Discussion

We have proposed in this article a novel extension of random forests, firstly designed to
reduce correlation between trees (and trees residuals). To achieve this goal, we chose
random cut-points using the continuous Uniform distribution on the support of each can-
didate variable, or between two random points of the latter. This first step is enough
but may lead to an higher prediction error, comparing to the Breiman’s procedure. To
narrow the gap, we used for each node a set of features drawn randomly, and uniformly,
with replacement. This lead to have similar performance than Random Forests, making
the cost less expensive, especially for large datasets. The last step, that is receding our
model from the original one, is the use of a different optimization criterion (the informa-
tion gain) in classification and the use of subsampling in regression. However in practice,
Random Uniform Forests can also use the Gini criterion which does not really seem to
change performance. Random Uniform Forests can be viewed as an ensemble of random-
ized trees which produces a whole framework for many tools, while not discussed here,
like deep variable importance analysis, partial dependencies and extrapolation, predic-
tions and confidence intervals, post-processing functions for reducing bias, missing values
imputation in many ways, native handling on sparse data, imbalanced class techniques,
unsupervised learning or straightforward incremental and distributed learning. From the
theoretical side, the main mechanism is the use of random cut-points in the splitting
procedure rather than finding the best one for each candidate variable. As it can be
observed in Extremely Randomized Trees, this has the advantage to decrease, especially
in regression, the correlation between trees residuals more than in Breiman’s Random
Forests. While the average variance of trees residuals increases, it is usually slower than
the decrease of correlation. Results observed in regression show that this strategy is ef-
fective and the main theoretical argument resides in the fact that convergence, which can
be considered as the primal property of random forest models, is more likely to happen
as the correlation decreases. It still remains some questions on how to further reduce
correlation, which seems less complex than the alternative of finding ways to reduce more
the average variance of (randomized) trees residuals.
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