President, Vice-Chancellor K Ramachandra Dear 
  
Professor K S Padmanabhan 
  
Profes- Sor E Sampathkum 
  
INAUGURAL ADDRESS

I thank you very much for the honour you have done me by asking me to inaugurate the first conference of the Ramanujan Mathematical Society. The 99th birthday ofSrini\"8Sa Ramanujan falls on 22 December 1986 and we are approaching the Centenary. I am glad that you have started Rarnanujan Mathematical Society to perpetuate the rnemor:y of this geitius. This was a long felt need. Hardy's Centenary was on 7.2.1971. Any worthwhile account of Ramanujan should start with the correspondence between Ramanujan and Hardy and their glorious collaboration in Cambridge University, U.K .. Hardy was the closest friend of Ramanujan and also a teacher who taught him many things. As a close friend he cleared up what appeared to the world as superstitious religious feelings of Ramanujan and. published the true image of Ramanujan as an admirer of the broad principles of all religions of the world . As a teacher he brought out the best in Ramanujan without doing any injustice to Ramanujan. He goes to the extent of saying (in a ce~tain context) that he learnt from Ramanujan much more than what he taught him. Which Professor in the present day says this? It would be considered beneath one's dignity and a lowering of one's status in the eyes of others. He has tried to build up a rational picture of Ramanujan's mathematical genius and not as a inspired mystic from India. To do all this especially to an unknown poor clerk of Madras port trust and to cc!Uaborate with him on equal terms is the great quality of the great teacher Hardy. Of course Ra.rnanujan was great. But he would have perhaps gone to oblivion without the help of Hardy. We remember him today because Hardy brought him to the lime light of the world. One of the great discoveries of Ra.rnanujan and Hardy is a development of a problem stated by Ramanujan from Madras port trust in one of his letters to Hardy namely'an asymptotic formula for the coefficient q(n) of :r;n in ( f ( -l)mxm')-1 . The glorious m::=-oo method developed by Ramanujan and Hardy tame to be known as circle method. This was developed further by Hardy, Littlewood, Vinogradov, Davenport and others. Thanks to the circle method. Not only has it given birth to large sieve, Dispersion method and so on but it has solved some very difficult problems which a common man would like to pose. For example the ternary Goldbach Conjecture and the progress on binary Goldbach Co!Uecture. Another example is Waring's problem. All these problems appeared to be inaccessible for a number of years. §1. GOLDBACH CONJECTURE (1742).

Goldbach conjectured that every even number ?: 4 is the sum of two primes.

He wrote this conjecture in a letter to L. Euler and Euler attached his name to this conjecture. This is called the binary Goldbach conjecture. There is the ternary Goldbach conjecture which says that every odd number ?: 9 is the sum of three odd primes. Hardy-Littlewood developed the Ramanujan-Hardy Circle method to show on GRH (which I will explain)

(1) All sufficiently large odd numbers are the sum of three prime numbers.

(Only (J ~ ~ was assumed here).

(2) The number of exceptions to binary Goldbach Conjecture for 2n::; xis O(:r.l/2H)ln 1937 Vinogradov developed this method further to establish their result (1) without any hypothesis.

In 1975 H.L. Montgomery and R.C. Vaughan {11] proved the fundamental result that the number of tJinary Goldbach exceptions 2n :S x is O(:r. 6 ) with a a < 1. In 1980 Chen-Jing-Run and Pan-Cheng-Dong [START_REF]J Chen-jing-run and Pan-cheng-dong, The exceptional set of Goldbach number (I)[END_REF] showed that 6 could be taken = 0.99. In 1982 both of them independently showed (see {5)) that 8 could be taken to be 0.96 = ~- §2. WARING'S PROBLEM (1770).

In 1770 Waring made the following conje<:ture. I explain the conjecture by starting with squares. Let us express the positive integers as sums of squares. Bachet (1621) conjectured that four squares are sufficient for all integers.

This was proved by Lagrange after Waring made his conjecture. We wr.ite this result as g(2) == 4. Wiefrich and Kempner independently proved that g(3) = 9. Waring made the general conjecture 3

g(k) = 2k + [(2)"1-2.
Building on the work of I.M. Vinogradov, S.S. Pillai proved this for all k, 6 ~ k :$ 100 and also for all k satisfying a certain property. Some of these results were proved independently also by L.E. Dickson. This property namely k ~ 100000 and I <n"-I~o 12: (il (where his the integer nearest to ( ~ )k) was proved by K. Mahler [10) to be true for all but finitely many k.

Chen-Jing-Run [START_REF]J Chen-jing-run, Waring's, problem for g(5) = 37, Chinese Mathernat[END_REF] proved 21 years ago that g(5) = 37. R. The coefficients q( n) are generated by

( f (-lrxm')-1 =IT {(1-x2")(1-x2h-1)2} -l = f q(n)x". m ::: -oo h=l n=O
It is clear that q(n) are non-negative. They do not have a simple arithmetical interpretation. But historically the genesis of the circle method lies in the discovery of Raffianujan that q(n) is the integer nearest to 

. ). n 1fyn

This is written in his first letter to Professor G.H. Hardy (see equation number (1.14) of "RAMANUJAN"). Ramanujan was sure that the approximation given by him. was very much more intimately corrected with q(n) than a mere asymptotic formula ..!:..Exp(1r..,;n)(1 + o(n-t))

Bn

Even this asymptotic formula is far from being obvious. Just like his asser• tion on the divisor function, here assertion regarding q( n) is a formal principle (see page XXIV of collected papers of Ramanujan, equation [START_REF] Balasubramanian | Probleme de Waring pour les bicarres, 2 : Resultats auxiliares pour le tht!oreme asymptotique[END_REF] where

he writes d(1) + d(2) + ... + d(n) = n(log n + 2-y-1} + ~d(n), whicl! we can
easily disprove by finding a suitable value of n . In fact G .H. Hardy showed that ~d(n) has to be replaced by O±(nk) and much more), rather than an absolutely indisputable statement . He must have had some ingenious proof whether intutive or rigourous. But we have nowhere any record of how he obtained this result . After he collaborat.~>d with Hardy on the Asymptotic Theory of partitions (they considered instead of q(n) the coefficients p(n) defined by 00 "" 

1 1 + LP(n)x" =IT(--)
q n = --------+2v3 os ---• -----=--+ dn 21fy'n 3 6 dn 21fv'n
(see p. 73 of note book vol. 1 held in Trinity College, Cambridge. Equation number (1.14) is also to be found on p.178 of note book number 2 (published by TIFR, edited by K. Chandrasekharan)). •see also page 304 of collected papers for a remark concerning q(n) that the method of Hardy and Ra• manujan is applicable for q(n) and by taking [ant] terms one can calculate q(n) exactly since the error is O(n-t). However the analogue of the Hardy-Ramanujan-Rademacher formula was worked out for q(n) in 1981 by L.A. Goldberg [START_REF] Larry | Transformations of theta-functions and analogues of Dedekind sums[END_REF] (a student of Bruce C. Berndt) and the result runs as. follows:

Let ((x)) = 0 if xis an integer and x-[x]-~ otherwise. Let 8(h, k) = t< -l)i+!¥l((i )). i=l . k Put " ni1rh i~- Ak(n) = L Exp{--k---S(h,k)}. O:<:;h<2k 2 
Then (h., U.) =i.

( -1)" "" d Sinh(¥i) • q(n) = ----L Ak(n)vk--(---=--). 2 7r k=I, kodd dn \11' 1
The first term of this series viz. k = I is precisely Ramanujan's expression for q(n). So in a way the genesis for Rademacher's improvement of Hardy-Ramanujan formula (whether for partitions or q(n)) lies in equation {1.14) of the book "RAMANUJAN" by G.H. Hardy. (Here we may also refer to equation ( 7) of page XXVII of collected papers, for the first letter written to Professor Hardy by Rarnanujan ). The coefficients in the expansion of ( ' f= x"')-1 must be ( -l)kq(k) as can be seen by replacing x by -x. Hence

n=-oo

we may concentrate on the coefficients of the latter expansion. Although Cauchy's theorem was not known. to Ramanujan it is plain that he knew that if y > 0 is any fixed nU111ber then

I oo 2(-l)kq(k) = j ( L e•'"''(z+iu))-le-i.-k(,+iy)dx.
-l n=-oo Ran1anujan knew that, for all x > 0,

~ -wn2z 1 ~ -'ll'n'l/z Le = -L t : - n=-oc
.jX. n:::-•-'X:

13

From this it follows that lf z = x + iy, with 11 > 0, then "" CXl ""' __ ,,..,... (z) _ l ""' _,,.,., But before proceeding further it is better to give a brief account of the historic collaboration of Ramanujan and Hardy on the asymptotic theory of partitions p(n). This magnificient work which had a 'tremendous inlluence on the later work by almost every great mathematician is best described in the words of the great master G.H. Hardy. It (both the joint work and its account in "RAMANUJ AN") is like a running commentary of the spectacular discovery. x"'

1 00 x -L 2 <log F(x) < --L -2. 1 -X m=l m 1 -X m=! m
From the latter part we get

. w2

e-u 'f'2 log (p(n)e-"") < (61e-u) < [START_REF]J Chen-jing-run, Waring's, problem for g(5) = 37, Chinese Mathernat[END_REF] for all u > 0. From this it follows that if K =a: /f. then p(n) < eKv'f' , (n = 1, 2, 3, ... ). It is actually true that p(n) ~ ~eKfo as n ..... oo, but we should use more powerful methods. By Cauchy's theorem

1 L' F(x) p(n) = -2 . ~dx 1r1 c x" {1)
where C is the circle I x i= R with radius R = 1 -~ where {J is a suitable constant. F( x) has a functional equation xl/24 1 .

.,.-2

F(x) = r.;-:-(log-)1-Exp{~( }F(1:') v2:r x 6lo_q 7)
where

1 1 41f2 .
log -log -; == 41r 2 , i.e. x' = Exp{----y--}.

X X log(,;)

• Rougl:tly since the rac:lius is close to 1 we can replace F(x') by 1 since I x' j is very small in the formula ( 1) after applying the functional equation (the error being of order e 8 n' 12 with H < K). The integrand involves only elementary functions and can be calculated very precisely. The net result is the formtlla 1 d eK>.. 

21rv2 n "n

where An = /(n--l4) and H < K. The singularity x = 1 is in some sense the heaviest. There are other singularities of F(x). In fact xp.q defined by cxp(!:!jl') (p,q positive integers with (p,qf = 1) are alJ'singularities. As

x ~ xp,q along the radius, F(n) behaves roughly like 1r2

Exp{6q2(i=-I~T) }.

Moving 'the contour C close to these singularities we expect

where 1\(n) is the dominant terms in (2) and and [START_REF]J Chen-jing-run and Pan-cheng-dong, The exceptional set of Goldbach number (I)[END_REF] where UJp,q are certain (24q)th roots of unity not depenc:ling on nand p runs through positive integers Jess. than aud prime to q; and Hq <. K /(}. This expected formula is in fact true and is proved in their famous collaboration. I now quote from Hardy's book "RAMANUJAN".

"At this point we might have stopped had it not been for Major MacMa• bon's love of calculation. MacMahon was a practised and enthusiastic com• puter and made us a table of p(n) up ton = 200. In particular he found that p(200) = 39729 99029 388.

(

) 5 
and we naturally took this value as a test for our aaymptotic formula. We expected a good result with an error of perhaps one or two figures, but we had never dared to hope for such a result as we found. Actually 8 terms of our formula gave p(200) with an error of 0.004. We were inevitably led to ask whether the formula could not be used to calculate p(n) exactly for any large n" .

Thus they proceeded to make Q in (3) a function of n . The result waa p(n) = 2: P 9 (n) + O(n-1 1 4 ), [START_REF]J Chen-jing-run, Waring's, problem for g(5) = 37, Chinese Mathernat[END_REF] q<arr.'f2 so that the suni on the RHS of ( 6) gives p(n) with an error less than 1/2. However D.H. Lehmer showed that the infinite Jeriei ob~ained in (6) oy letting q = 1 to oo, is diVl!rgent . Hence in order to find out p(n) exactly it was necessary to find out a and the 0-constant in [START_REF]J Chen-jing-run, Waring's, problem for g(5) = 37, Chinese Mathernat[END_REF]. In the meantime

Lehmer used 21 terms of the. series in ( 6) to get a plausible value for p(721) uamdy 16106 H557 50279 47763 55347 62.0041, [START_REF] Larry | Transformations of theta-functions and analogues of Dedekind sums[END_REF] hut not still r.onclusive. The gap was filled by H. Rademacher who (trying to simplify their work) arrived at an identity as follows. Ramanujan and Hardy worked not exactly with Since I L.(n) 1:0:: q it follows that in {8) the remainder after Q tenns is in absolute value less than [START_REF] Mahler | On the fractional parts of the powers of a rational number -II[END_REF] where C and D are certain positive constants.

Thus Rademacher showed that 21 terms of Hardy-Ramanujan formula gave p(72l) with an error less than 0.38. A cruder estimate would also suffice since Ramanujan showed that p(721) "" O{modll 2 ). Thus the exact value of p{721) was obtained and checked that (as predicted by Ra.manujan} p(721) =. O(modll 3 ql Rademacher's expression for Wp .q is e"""' where ~P-• = ! Lll( 1 ;:' -l 1 ';J'l- 

""

Ramanujan applied his methods to 3tudy the coefficients of ( L x"' ) 2 • no::::-x whl're .< is a positive integer. He found that the coefficient r~.( n) of x" satisfies

lS where 6 2 ,{n) is a certain divisor function ofn and e2.(n) ia of much smaller order compared with 62,(n), ao that as n ..... oo, ,..,.(n)-ch.(n). In fact Ramanujan proved things like ra(n) = 6s(n) through he was {here) anticipated by eadier mathematicians like Jacobi. We now describe 62.(n). Put

u•(n) __ { u~(n) if n is odd ~ -a!(n) -o~(n) if n ia even (lJ)
where a~(n) and a!!$enote \he &UJJlll of vth powers of the even and odd divisors of n . Ramanujan proved that [START_REF] Murty | Prime divisors of Fourier coefficients of modular forms[END_REF] We next give an example of explicit results discovered by Ramanujan. Let T ( n) be defined by 00 g(x) => :r.{(l -x}(l-x 2 ) ..•. } 24 = l:r(n)x" .

n :;:-1

Then Ramanujan discovered the formula

E oc ,.> ~4 16 Loc • ( " 33152 ( ) 65536 ( 2 ( x ) -1,., - au n)x ---g --x ---g :r. •) n ~-'X> 691= 1 691 691 (15) 
a formula which gives r 24 (n) in terms of divisor functions and r(n) . Ra manuja.n expanded the main term .!2.(n) in terms of "Ramanujan swns" defined by

"" 2,.->.n C,(n) = L.../v:J --- ~ •' ( 16) 
where ,\ t1!Ils through numbers prime to .s and not exceeding.~. Whereas [START_REF] Serre | Divisibilite de certaines fonctions arithmetiques, Serninaire Delange-Pisot-Poitou, 16 anee (1974-75) Theorie des nombres[END_REF] gives his work explicitly in the form of "Einsenstein series plu., a cusp form" for the representation of a number by rums of an even number of squares (those of an odd number of squares was developed by Hardy and others) the second expression in terms of ( 16) for such representations ha.S.a strong connection with the circle method (discovered with respect to p( n), aee also equation (1.14} of Hardy's book "RAMANUJAN")ofRa.mantijan and Hardy developed further by Hardy and Litaewood and later by Vir.ogradov. l.n view of these Ramanujan is the inventor of circle method ('It !east in" naiv.form) and it is fnlly justified to refer to circ!l' method as "RAMANUJ AN-HARDY-LITTLEWOOD-VINOGRADOV CIRCLE !11ETHOD" . We end this section by an extract from page 388 of the book "l.M. VINOGRADOV, SELECTED WORKS, (SPlUNGER-VERLAG, {1985))».

In such additive problema as those of Waring, Goldbach and others the principal term is investigated with the help of a method similar to the circle method of Hardy, Littlewood and Ramanujan (at present this method is known as "The circle method of Hardy, I.ittlewood and Ramanujan in the form of Vinogradov 's trigonometric sums"). The references to previous works are given in Atkin's paper.

(2} RESULTS ON RAMANUJAN'S FUNCTION T(n).

(a) Ramanujan conjectured that whenever (m,n) = 1 (m,n positive integers) we have T(mn) = T(m)T(n). This was proved by L.J. Mordell. Ramanujan also conjectured that Watson from Ramanujan's result T(n) = un(n)(rnod691). A lot of work has been done by J.-P. Serre [START_REF] Serre | Divisibilite de certaines fonctions arithmetiques, Serninaire Delange-Pisot-Poitou, 16 anee (1974-75) Theorie des nombres[END_REF], [START_REF] Serre | Divisibilite de certains fonctions arithmetiques[END_REF] who proved various results on congru!!nce properties of T(n). In particular "r(n) is divisible by m for almost all n" is true for almost all m. There is a conjecture due to •D.H. Lehmer [9] that T( n) is never zero (he verifies this for n < 3316779 by some theory and computation). Serre has some results in this direction. V. Kumar Murty [START_REF] Murty | Fourier coefficients of modular forms, Number theory[END_REF] and M. Ram Murty and V. Kumar Murty [START_REF] Murty | Prime divisors of Fourier coefficients of modular forms[END_REF] have got some extensions of these results. For the earlier works in these direction see the paper of V. Kumar Murty and that of Serre [START_REF] Serre | Divisibilite de certains fonctions arithmetiques[END_REF]. Actually it is conjectured by Atkin and Serre that 1 T(p) 1> 6 p-6 +9/ 2 . (c) Ramanujan conjectured that I T(n) I~ n 11 1 2 d(n). He knew that this woUld follow from I T(p) I~ 2p 11 

  :l 1-x" since Jl( n) has a nice arithmetical interpretation namely the munber of solutions of n = a1 + a2 + ... + ak, (1 S a1 S a2 S .. .. S ak) where a1 , .. . , ak are positive integers and k is also an unrestricted integer) he writes () d(Co.sh(~vn)-1) r;;c (2n"lf ,-)d(Co.•h.(~'fi)-1)

1 :

 1 I closely follow Professor Hardy in what follows. For any fixed integer r> 1 the coefficients p,(n) defined by 00 1 + :Ep.(n)x" = {{1-x)(1-x 2 ) •.. (1-x'W 1 n=l has been studied by many mathematicians like Cayley, Sylvester, Glaisher (seep. 276-277 of Collected papers of Rarnanujan) . For example P3(n) = _!_(n + 3) 2 -!__ + ~( -1)" + ~co., 2 n.,.seen by partial fraction decomposition. Other expressions are given on page 277. We may quote P:l(n) = integer nearest to f-i(n + 3) 2 • These results aie, from a certain point of view, of a very trivial character. The interest which they possess 1 is algebraical. The coefficient p(n) E p(n)x" = II ( 1 _ xh) = F(x), say n=O h=l as already remarked can be interpreted as the number of unrestricted partitions of n. It is easy to prove that if x > 0, 1 00

  -(-........-)+O(eHn)

1 d

 1 eK>-. l/l(n)= 2wv'2dn{~) but with the nearly equivalent function _1_!!.._(Co3h(K>.,.)-\ 1rv'2 dn An (and afterwards discarding the less important parts of the function)

pzl~)

  D.H. Lehmer proved that L.(n) is mul~iplicative :u a function of q. H. Gupta verified Lehmer's and Rademacher's calculations of p(599) by direct computation. §4. SUMS OF SQUARES, RAMANUJAN•HARDY-LITTLEWOOD-VINOGRADOV CIRCLE METHOD, COMMENTS FROM THE BOOK "SELECTED WORKS OF I.M. VINOGRADOV".

l.M. Vinogradov A

 Vinogradov brief outline of his life and works by K.K. Mard.zhan.ishvili §5. SOME OTHER RESULTS OF RAMANUJAN. (1) CONGRU-ENCE PROPERTIES OF PARTITIONS. Rarnanuja.n discovered two beautiful identities 2 {(l _ :r;S)(l •-:z:lO)(l-:rl5) ... p p(4} + p(9)x + p(l4):z; + ... "'5 {(1-x)(l-:i:2))(1-z3)::-v (17) and p(5) + p(l2)r. + p(l9)x 2 + ...

7 {( 1

 71 -z')(t-.,~<)(t-.-21 } ... }' {(l E)(l "'Hl zl) .. .)' '~ + 49 {(I -z 7 )(l-E"Jl!:z"J•4! {(l-z}(l-;'l}(t-'7}' ... }(18) This makes obvious the congruencel_to modulii 5 and 7. He went on to prove congruences to mcdulii 5, 7, 11 , 5 2 , 7 2 , 11 2 , t hat to the modulus 5 2 being p(25m + 24) "=' O(n.od5 2 ). He put forward a general conjecture : if 6 = 5"7 6 11< and 24-X == l(modli) then p(mb +.X)=: O(modb) for every positive integer m . It would be sufficient to prove congruences to modulii 5 4 , 7b and 11". The general case would be a consequence, The congruenr.es ~o modulus 5" ..-ere proved by G.N. Watson. In extending the MacMahon's table of partitions from p(200) to p(300) H. Gnpta found that p(243) = 13397 82593 44888. Since 24.243 =: l(mod7 3 ) artd p(243) i-O(mud7 3 ) S. Chowla found thal Ramanujan's conjecture for _powers of 7 needs a modification. G.N. Wat• son proved this with a modification. He proved that if b > t and 24n = l(mod72b-2 ) then p(n) = O(mod.,.). The congruences to modulus 11 3 was proved by J . Lehner. Following this method and with a good deal of complicated work A.O.L. Atkin [1] proved the congruences (modll•). Thus if 24m = l(modsaru•) then p(m) = O(mod5°7fln•) where /3 = [(b + 2)/2).

  proved by Mordell. (b) Ramanujan observed that for p = 2,3, 5, 7,23 we have T(p) = O(modp) and so T(pn) = O(modp) for these primes for every positive intege~ n . Ramanujan also discovered r(7m + k) = O(mod7) for k = 3, 5, 6 and also for k "' 0. He also had the congruence T(23m + k) = O(mod23) where k is any quadratic non-residue of 23. Ramanujan conjectured r(n) = O(mod5) for almost all n. Similarly to the modulus 691. The later was deduced by G.N.

  1 2 for primes p. Ramanujan proved T(n) = O(n 7 ) by elementary methods . Hardy proved that }::> 2 (n) lies between n<z Ax 12 and Bx 12 where A and B are certain constants~ Rankin has proved that this quantity is o:x 12 + O(x 12 -2 1 5 ) using this it is obvious that r(n) = O(n 6 -1 1 5 ) . The conjecture of Ramanujan was finally solved by P. Deligne. By way of lower bounds (infinitely often) R. Balasubrarnanian and Ram Murty have proved much beyond I r(n) I> n 11 / 2 (> means greater than a constant times) for infinitely many n. The lateat result in this direction . Ram Murty [13] who proves r(n) == O(n 11 2 Exp( 11 <,g 02 1 .g n)'*)) for some constant A > 0. (0 means > for infinity of n). The ea.lier results are due to R.A . Rankin and H. Joria and for references to these see Ram Murty's paper cited above. The reference to the paper of P. Deligne is also. to be found in this paper. §6. CONCLUDING REMARKS. The present paper is .the development of my address at the first meeting of the Ramanujan Mathl'!rnatical Society which I gave as a chief guest. Listed at the end are seventeen references; most of the references which are implicit in the text, and not listed among the seventeen are to the three fundamental works of Hardy and Wright, Hardy and Ramanujan namely . (a) G.H. Hardy and E.M. Wright, Introduction to the theory of number.f, Clarendon Press, Oxford (1954). (b) G.H. Hardy, RAMANUJAN, twelve lectures on subjects suggested by his life and work (Chapters 8,9 and 10), Chelsea Publishing Company, N.Y. (printed in U.S.A.) originally by Cambridge Univ. Press (1940). (c) S. Ramanujan, Collected papers (edited by G.H. Hardy, P.V. Seshu lyer and B.M. Wilson) (papers 18,21,25 and 36), Chelsea Publishing Company, N.Y. (printed in U.S.A.) (1962).

  This ser-..ms to be the plausible method (which is heuristic) of Ramanujan. Ramanujan being an expert on definite integrals could handle the right hand side of the last asymptotic relation. (This method is very well explained in a rigourous fashion by C.L. Siegel in his lectures on analytic number theory given at New York University in the spring term of 1945. The notes of these lectures was taken down by B. Friedman. I do not know whether it is published or not ; but a typed (xerox) copy is M-ailable at the TIFR library). This looks like a plausible explanation of how Ramanujan arrived at equation (1.14) of Hardy's book "RAMANUJAN". The method christened as "CIRCLE METHOD" by G.H. Hardy was applicable to a whole class of problems as later papers of G .H. Hardy and J .E. Lttlewood show.

1 • we =-:-•we . n::-oo 'l n=-oo From this Ramanujan must have concluded (heuristically) that if y is linked with k in a 3uilable manner then We do not need a transformation formula for the generating function . An asymptotic estimate and an error term as y _, 0 and x -= ~ (where p and q are positive integers and (p, q) = 1) will do. Thus we had solutions of Waring's problem and also ternary Goldbach conjecture. The latter investigation needed the hypothesis II :5 ~ and in the former the number of kth power summands was around k2k or some such thing. But the Russian Mathematician I.M. Vinogradov continued the investigations of Hardy and Littlewood and showed . that ternary Goldbach conjecture is true without any hypothesis . Not only that; he shoj\'ed [17J that in Waring's problems the number of nth power swnmands could be reduced to not more than n(21og n + 4nlog log n + 2lo.IJ log log n + l:J) if we exclude a finite set of imegers. Recently A.A. Karatsuba [8] (his student) reduced it to not more than n(2log n + 2lag lag n + 12).

  }. Next they wanted to test Ramanujan's conjecture thai. p{t403\)was,;; O(modll 4 ). Thus Lehmer obtained {by H~ttdy•Ramn.nujan-

	Rademacher formula) that	•
	p{l4031) "" 92 85303 04759 09931 69434 8&156 67127 75089 29150 56358 46500 54568 28164
	58081 50403 46756 75l23 95895 &9ll3 (11)
	47418 88383 22063 43272 91599 91345
	00745	
	and verifiw Ramanujan'' conjecture.