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ABSTRACT

Consider a finite field Fq whose multiplicative group has
smooth cardinality. We study the problem of computing all
roots of a polynomial that splits over Fq, which was one of
the bottlenecks for fast sparse interpolation in practice. We
revisit and slightly improve existing algorithms and then
present new randomized ones based on the Graeffe trans-
form. We report on our implementation in theMathemagix

computer algebra system, confirming that our ideas gain by
an order of magnitude in practice.

Categories and Subject Descriptors

F.2.1 [ANALYSIS OF ALGORITHMS AND

PROBLEM COMPLEXITY]: Numerical Algorithms
and Problems–Computations in finite fields ; G.4 [MATH-

EMATICAL SOFTWARE]: Algorithm design and ana-
lysis

General Terms

Algorithms, Theory

Keywords

Finite fields, polynomial root finding, algorithm, Mathem-
agix

1. INTRODUCTION

Let Fq represent the finite field with q = pk elements,
where p is a prime number, and k > 1. Throughout this
article, such a field is supposed to be described as a quotient
of Fp[x] by a monic irreducible polynomial. Let f ∈ Fq[x]
represent a separable monic polynomial of degree d>1 which
splits over Fq, which means that all its irreducible factors
have degree one and multiplicity one. In this article we are
interested in computing all the roots of f .

1.1 Motivation

One of our interests in root finding came from the
recent design of efficient algorithms to interpolate, into
the standard monomial basis, polynomials that are given
through evaluation functions. This task is briefly called
sparse interpolation , and root finding often turns out to be
a bottleneck, as reported in [19]. In fact, in this case, the
ground field can be chosen to be Fp with p = M 2m+1,
and where 2m is taken to be much larger than the number
of terms to be discovered. In practice, to minimize the size
of p, so that it fits a machine register, we take M =O(log p)
as small as possible. A typical example is p = 7 · 226+1.
We informally refer to such primes as FFT primes .

Root finding over prime finite fields critically occurs
during the computation of integer and rational roots of
polynomials in Q[x], both for dense and lacunary rep-
resentations. Yet other applications concern cryptography
and error correcting codes. Nevertheless, practical root
finding has received only moderate attention so far, existing
algorithms with good average complexity bounds often
being sufficient [20, 21].

In this article, we focus on fast probabilistic root finding
algorithms, targeting primarily FFT prime fields and,
more generally, finite fields whose multiplicative group
has smooth cardinality. At a second stage, we report on
practical efficiency of our new algorithms within the Math-

emagix computer algebra system [18].

1.2 Notations and prerequisites

The multiplicative group Fq \ {0} of Fq is written Fq
∗. In

order to simplify the presentation of complexity bounds, we
use the soft-Oh notation: f(n)∈ Õ(g(n)) means that f(n)=
g(n) logO(1) g(n) (we refer the reader to [11, Chapter 25,
Section 7] for technical details). The least integer larger or
equal to x is written ⌈x⌉. The largest integer smaller or equal
to x is written ⌊x⌋. The remainder of g in the division by f

is denoted by g rem f .

We write M: N → Z for a function that bounds the
total cost of a polynomial product algorithm in terms of
the number of ring operations performed independently of



the coefficient ring, assuming a unity is available. In other
words, two polynomials of degrees at most d over such a
ring A can be multiplied with at most M(d) arithmetic
operations in A. The schoolbook algorithm allows us to
take M(d) = O(d2). On the other hand the fastest known
algorithm, due to Cantor and Kaltofen [7], provides us with
M(d)=O(d log d log log d). In order to simplify the cost ana-
lysis of our algorithms we make the customary assumption
that M(d1)/d1 6M(d2)/d2 for all 0 < d1 6 d2. Notice that
this assumption implies the super-additivity of M, namely
M(d1)+M(d2)6M(d1+ d2) for all d1> 0 and d2> 0.

For operations in Z and in finite fields, we are inter-
ested in the Turing machine model , with a sufficiently large
number of tapes. In short, we use the terms bit-cost and
bit-complexity to refer to this model whenever the context
is not clear. For randomized algorithms , we endow Turing
machines with an additional instruction which generates
random bits with a uniform distribution [28].

We write I(n) for a function that bounds the bit-cost of
an algorithm which multiplies two integers of bit-sizes at
most n, viewed in classical binary representation. Recently,
the best bound for I(n) has been improved to I(n) =
O(n log n 8log

∗ n), where log∗ represents the iterated logar-
ithm function [16]. Again, we make the customary assump-
tion that I(n1) / n1 6 I(n2) / n2 for all 0 < n1 6 n2. We
freely use the following classical facts: ring operations in Fp

cost O(I(log p)) and one division or inversion in Fp costs
O(I(log p) log log p) [11, Chapter 11].

For polynomial operations over Fq, we let Mq(d) represent
a function that bounds the bit-cost of an algorithm that
multiplies two polynomials of degrees at most d, with the
same kind of assumptions as for M and I. According to [17],
we may take Mq(d)=O(d log q log(d log q) 8log

∗ (dlog q)). The
ring operations in Fq cost at most O(Mp(k)), and inversions
take at most O(Mp(k) log k+ I(log p) log log p). For conveni-
ence, mq and dq will respectively denote cost functions for
the product and the inverse in Fq.

Let us recall that the gcd of two polynomials of degrees
at most d over Fq can be computed in time O(Mq(d) log d):
One can for instance use pseudo-remainders in [11,
Algorithm 11.4], mutatis mutandis . Given monic polyno-
mials f and g1, ..., gl with deg f = d and deg g1 + ··· +
deg gl=O(d), all the remainders f rem gi can be computed in
time O(Mq(d) log l) using a subproduct tree [11, Chapter 10].
The inverse problem, called Chinese remaindering , can be
solved within a similar cost O(Mq(d) log l+ d dq).

In this article, when needed, we consider that the factor-
ization of q − 1 and a primitive element of Fq

∗ have been
precomputed once, and we discard the necessary underlying
costs. In practice, if the factorization of q − 1 is given,
then it is straightforward to verify whether a given element
is primitive. For known complexity bounds and historical
details on these tasks, we refer the reader to [1, 26, 31].

1.3 Related work and our contributions

Seminal algorithms for polynomial factorization over
finite fields are classically attributed to Berlekamp [2, 3],
and Cantor and Zassenhaus [8], but central earlier ideas can
be found in works of Gauss, Galois, Arwins, Faddeev and
Skopin. Cantor–Zassenhaus’ algorithm is randomized and

well suited to compute roots of polynomials of degree d that
split over Fq in average time O(Mq(d) (log q+ log d) log d+
d dq). Of course, if q = O(d) then an exhaustive search
can be naively performed in time O(Mq(d) log d) (the factor
log d can be discarded if a primitive element of Fq

∗ is given,
by means of [6, Proposition 3]), so that the cost of root
finding simplifies to O(Mq(d) log q log d + d dq). This
classical approach is for instance implemented in the NTL

library written by Shoup [32]. However neither Berlekamp’s
nor Cantor–Zassenhaus’ algorithm seems to benefit of par-
ticular prime numbers such as FFT primes. Instead, altern-
ative approaches have been proposed by Moenck [25], von
zur Gathen [10], Mignotte and Schnorr [24], and then by
Rónyai [29].
In Section 2, for the sake of comparison, we first revisit

Cantor–Zassenhaus’ approach and propose a practical trick
to slightly speed it up. We also briefly recall the complexity
bound of Mignotte–Schnorr’s algorithm [24].
We then design and analyze fast randomized algorithms

based on tangent Graeffe transforms, leading to an
important speed-up for FFT primes. The practical efficiency
of the new algorithms is discussed on the basis of implement-
ations in the Mathemagix computer algebra system [18],
thus revealing that our fastest variant gains an order of mag-
nitude over other existing software.
Let us finally mention that our present randomized

algorithms admit deterministic counterparts which are
studied in [14].

2. KNOWN ALGORITHMS REVISTED

In this section we revisit efficient root finding algorithms
previously described in the literature, and slightly improve
their complexity analysis. The first stream, followed by
Berlekamp [3], Cantor and Zassenhaus [8], consists in split-
ting the input polynomial by computing suitable modular
exponentiations and gcds. The second stream, followed
by Moenck [25], and Mignotte and Schnorr [24], takes
advantage of the smoothness of q− 1.

2.1 Cantor–Zassenhaus’ algorithm

In this subsection we suppose that q has the form q =
χ ρ + 1, with χ > 2. The following randomized algorithm
extends Cantor–Zassenhaus’ one, which corresponds to χ=
2, when q is odd. We need a primitive root ξ of unity of
order χ.

Randomized algorithm 1.
Input. f ∈ Fq[x] of degree d > 1, monic, separable, which

splits over Fq, and such that f(0)=/ 0; a primitive root ξ
of unity of order χ.

Output. The roots of f .

1. If d = O(χ) then compute the roots of f by calling a
fallback root finding algorithm.

2. Pick up g ∈Fq[x] at random of degree at most d− 1.
3. Compute h := gρ rem f , and set f0 := f .
4. For all i from 1 to χ− 1, compute fi := gcd(h− ξi, f0),

make it monic, and replace f0 by f0/fi.
5. Recursively call the algorithm with those of f0, ..., fχ−1

which are not constant, and return the union of the sets
of their roots.



In the classical case when χ= 2, then we recall that step 3
costs O(Mq(d) log q) and step 4 takes O(Mq(d) log d) plus
one inversion in Fq. Since the average depth of the recur-
sion is in O(log d) [9], the total average cost amounts to
O(Mq(d) (log q+ log d) log d+ d dq).

For the case of arbitrary χ, we propose an informal discus-
sion, so as to justify the interest in the algorithm. If α is a
root of f , then h(α)= g(α)ρ has order dividing χ, hence is a
power of ξ, or zero with a very small probability. Therefore
we have f = f0 f1 ··· fχ−1. Since g is taken at random,
we might expect that the values of h(α) are distributed
uniformly among the powers of ξ (we discard cases when
h(α)=0). In other words, the depth of the recursive calls is
expected to be in O(log d/log χ).

If we further assume that log χ=o(log q), then step 3 takes
approximately C1Mq(d) log q for a certain constant C1, and
step 4 costs C2 χ Mq(d) log d. Discarding the cost of the
inversions, and compared to the case χ = 2, we achieve an
approximate speed-up of

(C1 log q+2C2 log d)Mq(d) (log d)/log 2
(C1 log q+ χC2 log d)Mq(d) (log d)/ log χ

=
log χ
log 2

C1 log q/ log d+2C2

C1 log q/ log d+ χC2
.

Whenever C1 log q / log d ≫ χ C2, this speed-up is of
order log χ / log 2. In general, the speed-up is maximal
if χ (log χ− 1)=

C1 log q

C2 log d
.

2.2 Mignotte–Schnorr’s algorithm

Assuming given a primitive element of Fq
∗, Mignotte

and Schnorr proposed a general deterministic root finding
algorithm in [24], that is efficient when q − 1 is smooth.
For a fair comparison with our new algorithm presented in
the next section (and since their article is written in French)
we recall their method in a different and concise manner.

Let π1, ..., πm be integers >2, such that q−1= ρ π1 ··· πm,
and let χ= π1 ··· πm and σ = π1 + ···+ πm. For instance, if
the irreducible factorization of q − 1= p1

m1 ··· pr
mr is known,

then we may take ρ=1 and π1=π2= ···=πm1
= p1, πm1+1=

πm1+2= ···=πm1+m2
= p2, ..., and set m=m1+ ···+mr. In

order to split f into factors of degrees at most ρ, we may
use the following algorithm.

Algorithm 2.

Input. f ∈ Fq[x] of degree d > 1, monic, separable, which
splits over Fq, and such that f(0)=/ 0; a primitive root ξ
of unity of order χ.

Output. (f1, e1), ..., (fs, es) in (Fq[x] \ Fq) × {0, ..., χ − 1}
such that f = f1 ··· fs, and the fi are monic, separable,
and divide xρ− ξei, for all i.

1. Let h0(x) := xρ rem f(x), and

compute hi(x) :=hi−1(x)
πi rem f(x), for all 16 i6m−1.

2. Initialize F with the list [(f , 0)].

3. For i from m down to 1 do

a. Compute hi−1 rem g for all pairs (g, e) in F using a
subproduct tree.

b. Initialize G with the empty list, and for all j from 0
to πi− 1 do

For each pair (g, e) in F do

Compute gj := gcd((hi−1 rem g)− ξ(e+jχ)/πi, g).

If gj is not constant, then make it monic and
append (gj , (e+ j χ)/πi) to G.

Let F :=G.

4. Return F .

Lemma 3. Algorithm 2 is correct and executes in time
O(σMq(d) log d+Mq(d) log q+md I(log χ)+mmq d log χ+

d dq)= σ Õ(d log q)+ Õ(d log3 q).

Proof. We prove the correctness by descending induc-
tion on i from m down to 1. In fact, at the end of iteration i

of the loop of step 3, we claim that f =
∏

(g,e)∈F
g, that g

divides xρπ1···πi−1 − ξe for all (g, e) ∈ F , and that the
integers e in F are divisible by π1 ··· πi−1 and bounded
by χ − 1. By construction, these properties are all true
with i = m + 1 when entering step 3, so that by induc-
tion we can assume that these properties hold for i + 1
when entering the loop at level i. Let (g, e) ∈ F , and let α

be a root of g. From αρπ1···πi= ξe, since e is divisible by πi,

there exists j ∈ {0, ..., πi − 1} such that αρπ1···πi−1 = ξ
e+jχ

πi .
We are done with the correctness.

As to the complexity, we can compute the χ/πi for i ∈
{1, ...,m} in time O(m I(log χ)) as follows: we first compute
π1, π1 π2, π1 π2 π3, ..., π1 π2 ··· πm−1, and πm, πm−1 πm,

πm−2 πm−1 πm, ..., π2 ··· πm−1 πm, and then deduce each
χ/πi by multiplying π1 ···πi−1 and πi+1 ··· πm.

Step 1 requires time O(Mq(d) log q). In step 3.a, since the
sum of the degrees of the polynomials in F is at most d, and
since these polynomials are monic, this step can be done
in time O(Mq(d) log d). The cost of the gcds in step 3.b is
O(πi Mq(d) log d) by the super-additivity of Mq. We com-
pute all the e/πi in time O(d I(log χ)), and then all the ξe/πi

and ξχ/πi by means of O(d log χ) operations in Fq. Deducing
all the ξ(e+jχ)/πi takes O(πi d) additional products in Fq.

Since the cardinality of F cannot exceed d, the total
number of proper factors gj in step 3.b is at most d. There-
fore, we need O(d) inversions in order to make all the
polynomials in F monic. �

Notice that the dependence on σ is good when q − 1
is smooth. For example, if ρ = 1 and σ = O(log q), then
the cost of root finding via the latter proposition drops to
Õ(d log3 q). This is higher than the average Õ(d log2 q) bit-
cost of Cantor–Zassenhaus’ algorithm. Nevertheless since
the term Õ(d log3 q) corresponds to O(d log2 q) products
in Fq, with a small constant hidden in the O, Mignotte–
Schnorr’s algorithm is competitive for small values of log q.

In the original work of Mignotte and Schnorr [24], the cost
of the algorithm was estimated to O(M(d)

∑

i=1

r
mi (log q+

pi log d)) operations in Fq, if q − 1 = p1
m1 ··· pr

mr. Our
presentation slightly differs by the use of a subproduct tree
in step 3.a.

Let us briefly mention that a better bound for splitting f

was achieved in [10]. Nevertheless, for finding all the roots,
the method of [10] does not seem competitive in general.



2.3 Moenck’s algorithm

Moenck’s algorithm [25] deals with the special case when
q−1= ρ 2m. Let ζ be a primitive root of Fq

∗. Let 16 i6m,
let f be a polynomial whose roots have orders dividing ρ 2i,
and let α∈Fq

∗ be one of these roots. Then either this order
divides ρ 2i−1, or we have αρ2i−1

+ 1 = 0, since xρ2i

−

1 = (xρ2i−1

+ 1) (xρ2i−1

− 1). In the latter case, we obtain
(α/ ζ2

m−i

)ρ2
i−1

=1. The polynomials f1= gcd(xρ2i−1

− 1, f)

and f2(x) = (f / f1)(ζ
2m−i

x) have all their roots of order
dividing ρ 2i−1. In this way, the roots of f can be computed
inductively starting from i=m down to i= 1. At the end,
we are reduced to finding roots of several polynomials whose
orders divide ρ. If ρ is small, then an exhaustive search
easily completes the computations. Otherwise we may use a
fallback algorithm. Moenck’s algorithm summarizes as fol-
lows.

Algorithm 4.
Input. f ∈ Fq[x] of degree d > 1, monic, separable, which

splits over Fq, and such that f(0) =/ 0; a primitive ele-
ment ζ of Fq

∗.

Output. (f1, γ1), ..., (fs, γs) in (Fq[x] \ Fq) × Fq such
thatf = f1 ··· fs, the fi are monic, separable, and the
roots of fi(γix) have orders dividing ρ.

1. Compute hi(x) := xρ2i

rem f(x) for all i∈{0, ...,m− 1}.

2. Initialize F with the list [(f , 1)].
3. For i from m down to 1 do

a. Compute the remainders of hi−1 rem g for all triples
(g, γ) in F using a subproduct tree.

b. Initialize G as an empty list.
c. For all (g, γ) in F do

i. Compute g1(x) := gcd((hi−1 rem g)(x) − γρ2i−1

,

g(x)). If g1 is not constant then make it monic
and append (g1, γ) to G.

ii. Compute g2 := g / g1. If g2 is not constant then
make it monic, and append (g2, γ ζ

2m−i

) to G.
d. Replace F by G.

4. Return F .

Our presentation differs from [25]. We also introduced
step 3.a, which yields a sensible theoretical speed-up, sim-
ilarly to Mignotte–Schnorr’s algorithm. In fact Moenck’s
and Mignotte–Schnorr’s algorithms are quite similar from
the point of view of the successive splittings of f , and the
intermediate operations. We thus leave out the details on
correctness and cost analysis. As an advantage, the logar-
ithms of the successive roots are not needed. Nevertheless
computing all the powers of γ in steps 3.c amounts to a
bit-cost Õ(d log3 q).

3. USING GRAEFFE TRANSFORMS

One advantage of Cantor–Zassenhaus’ algorithm is its
average depth in the recursive calls in O(log d). This is to be
compared to the O(log q) iterations of Algorithms 2 and 4.
In this section we propose a new kind of root finder based
on the tangent Graeffe transform, which takes advantage
of a FFT prime field, with an average cost not exceeding
the one of Cantor–Zassenhaus.

3.1 Generalized Graeffe transforms

Classically, the Graeffe transform of a polynomial g ∈
Fq[x] of degree d is the unique polynomial h ∈ Fq[x] sat-
isfying h(x2) = g(x) g(−x). If g(x) =

∏

i=1

d
(αi − x), then

h(x)=
∏

i=1

d
(αi

2−x). This construction can be extended to
higher orders as follows: the generalized Graeffe transform
of g of order π, written Gπ(g), is defined as the resultant

Gπ(g)(x)= (−1)πdResz(g(z), zπ − x).

If g =
∏

i=1

d
(αi − x), then Gπ(g)(x) =

∏

i=1

d
(αi

π − x).
Equivalently, Gπ(g) is the characteristic polynomial of mul-
tiplication by xπ in Fq[x]/(g) (up to the sign). For our root
finding algorithms, the most important case is when q−1 is
smooth and the order π of the generalized Graeffe transform
divides q− 1.

Proposition 5. Let π1, ..., πm be integers >2, such that
χ = π1 ··· πm divides q − 1, and let ξi be given primitive
roots of unity of orders πi, for all i ∈ {1, ..., m}. If g is a
monic polynomial in Fq[x] of degree d, then the generalized
Graeffe transforms of orders π1, π1 π2, π1 π2 π3, ..., χ of g can
be computed in time O(m Mq(µ d)) or O(Mq(σ d)), where
µ=max (π1, ..., πm) and σ= π1+ ···+ πm.

Proof. Writing g(x) = c
∏

j=1

d
(αj − x) in an algeb-

raic closure of Fq, the Graeffe transform of g of order πi

is hi(x) = cπi
∏

j=1

d
(αj

πi − x). Consequently this leads to

hi(x
πi) = g(x) g(ξi x) g(ξi

2 x) ··· g(ξi
πi−1 x). Using the latter

formula, by Lemma 6 below, the transform can be obtained
in time O(Mq(πi d)). Taking the sum over i concludes the
proof. �

Lemma 6. Let g be a polynomial of degree d> 1 in Fq[x],
let α∈Fq, and let l be an integer. Then the product Pl(x)=
g(x) g(α x) g(α2 x) ··· g(αl−1 x) can be computed in time
O(Mq(l d)).

Proof. Let h := ⌊l / 2⌋. If l is even, then we have
Pl(x) = Ph(x) Ph(αh x), otherwise we have Pl(x) =

Ph(x) Ph(α
h x) g(αl−1 x). These formulas lead to an

algorithm with the claimed cost. �

Let us mention that good complexity bounds for Graeffe
transforms for general finite fields can be found in [14].

3.2 Tangent Graeffe transforms

Introducing a formal parameter ε with ε2 = 0, we define
the generalized tangent Graeffe transform of g of order π

as being Gπ(g(x + ε)) ∈ (Fq[ε] / (ε
2))[x]. For any ring R,

computations with “tangent numbers” in R[ε] / (ε2) can be
done with constant overhead with respect to computations
in R (in the FFT model, the overhead is asymptotically
limited to a factor of two). Whenever a Graeffe transform
preserves the number of distinct simple roots, the tangent
Graeffe transform can be used to directly recover the original
simple roots from the transformed polynomial, as follows:

Lemma 7. Let g ∈Fq[x] be separable of degree d, let π be

coprime to p, and let h(x) + h̄(x) ε+O(ε2) =Gπ(g(x+ ε)).

A nonzero root β of h is simple if, and only if, h̄(β)=/ 0. For
such a root, π β h′(β)/ h̄(β) is the unique root α of g such
that απ= β.



Proof. Let α be a root of g in an algebraic closure of Fq.
The lemma follows from the formula h̄(απ)=π απ−1 h′(απ),
obtained by direct calculation. �

In the context of the Graeffe method, the tangent trans-
form is classical (for instance, see [23, 27] for history, refer-
ences, and use in numerical algorithms). The generalized
tangent Graeffe transform can also be seen as the tangent
characteristic polynomial of xπ modulo g(x + ε), and this
construction is often attributed to Kronecker in algebraic
geometry [22].

3.3 Overview of our methods

Let us write q−1= ρ π1 ··· πm. Let h0 := f , and let h1, ...,
hm be the Graeffe transforms of orders π1, π1 π2, ..., π1 ··· πm

of f . The roots of hm are to be found among the elements
of order ρ. One may then find the roots of hm−1 among
the πm-th roots of the roots of hm, and, by induction, the
roots of hi−1 are to be found among the πi-th roots of the
roots of hi. This is the starting point of the efficient determ-
inistic algorithm designed in [14]. But in order to make
it much more efficient than Cantor–Zassenhaus’s algorithm
we introduce and analyze two types of randomizations in
the next sections. First we avoid computing πi-th roots by
combining random variable shifts and tangent transforms.
Second we analyze the behaviour for random polynomials,
which leads us to a very efficient heuristic algorithm.

3.4 A randomized algorithm

Our randomized algorithms can be competitive to
Cantor–Zassenhaus’ algorithm only for very smooth values
of q − 1. For simplicity we focus on the important case
of an FFT field where q=M 2m+1, with M =O(log q).

We introduce the parameter τ ∈Fq. Let χ=M 2m−l be
a divisor of q − 1, and let ρ= (q− 1)/χ=2l. Let α1, ..., αd

denote the roots of f . The Graeffe transform gτ of f(x− τ)

of order ρ equals
∏

i=1

d
((αi+ τ)ρ− x).

Given a pair of distinct roots αi and αj of f , we have
(τ + αi)

ρ =/ (τ + αj)
ρ for all but at most ρ values of τ .

Therefore for all but at most d (d− 1)

2
ρ values of τ , the

polynomial gτ has no multiple root. Considering that τ is
taken uniformly at random in Fq, the probability that gτ has

multiple roots is at most d (d − 1)

2

1

χ
. This yields the following

randomized algorithm.

Randomized algorithm 8.
Input. f ∈ Fq[x] of degree d > 1, monic, separable, which

splits over Fq, and such that f(0)=/ 0; a primitive root ζ
of Fq

∗.
Output. The roots of f .

1. If d (d − 1) > q then set l to 0. Otherwise set l to the
largest integer in {0, ...,m} such that d (d−1)6M 2m−l.
Compute χ :=M 2m−l and ρ := (q− 1)/χ=2l.

2. Pick τ ∈Fq uniformly at random, and compute h0(x)+
ε h̄0(x) := f(x− τ + ε), where ε2=0.

3. Recursively compute the Graeffe transform hi + ε h̄i of
order 2 of hi−1+ ε h̄i−1, for all 16 i6m.

4. Compute the list E := [j 2m| j ∈ {0, ..., M − 1},
hm(ζ j2m

)= 0] of ζ-logarithms of the roots of hm.

5. For i from m down to l+1 do
a. Replace E by the concatenation of [(e+ j χ)/2|e∈E]

for j ∈{0, 1}.
b. If E has cardinality more than d then remove the

elements e from E such that hi−1(ζe)=/ 0.
6. If l=0 then return {ζe− τ | e∈E}.

7. Compute E1 := [e| e∈E, h̄l(ζ
e)=/ 0].

8. Compute Z1 := [2l ζe hl
′(ζe)/ h̄l(ζ

e)− τ | e∈E1].
Add τ to Z1 if f(τ)= 0.

9. Compute f2(x) := f(x)/
∏

a∈Z1
(x− a).

10. Compute recursively the roots Z2 of f2.
11. Return Z1∪Z2.

Proposition 9. Algorithm 8 is correct, and takes an
average time Õ(d log2 q), if d < q and q = M 2m + 1
with M =O(log q).

Proof. The correctness follows from Lemma 7, which
asserts that Z1 is a subset of the roots of f .

Step 3 takes Õ(d log2 q) by Proposition 5. Steps 2, 5.a,
5.b, 6, 7, 8, 9 execute in time Õ(d log2 q). Step 4 costs
Õ((d + M) log q) = Õ(d log q + log2 q). If d (d − 1) > q

then the number of iterations in step 5 is m = O(log q) =
O(log d). Otherwise the number of iterations is m − l =
O(logd). Consequently, the total cost of all steps but step 10
is Õ(d log2 q). From the choice of l, we have already seen
that the degree of f2 equals 0 with probability at least 1/
2. Writing T (d) for the average execution time, we thus
have T (d) 6 Õ(d log2 q) +

1

2
T (d), which implies T (d) =

Õ(d log2 q). �

Since the base field supports FFTs it is important to per-
form all intermediate computations by taking advantage of
sharing transforms. This technique was popularized within
the NTL library for many algorithms. In addition we notice
that the first few iterates of the loop of step 5 can be reduced
to direct FFT computations instead of generic multi-point
evaluations.

3.5 Random polynomials which split over =q

Taking a monic random polynomial of degree d which
splits over Fq, for a uniform distribution, is equivalent to
taking its d roots at random in Fq. Let α1, ..., αd represent
the roots of f . We examine the behavior of tangent Graeffe
transforms of such random polynomials.
Let Pd,i be the number of monic polynomials of degree d

which split over Fq and have i distinct nonzero roots of
order dividing χ. Such a polynomial uniquely corresponds
to the choice of i distinct values among χ, namely the roots,
and then of the multiplicities of these roots with sum d.
Therefore we have Pd,i =

(

χ

i

) (

d − 1
i − 1

)

. One can check that
∑

i=0

d
Pd,i =

(

χ+ d− 1
χ− 1

)

, which corresponds to choosing a

multiplicity in {0, ..., d} for each element of order dividing χ,
under the constraint that the sum of the multiplicities is
exactly d. The average number of roots of such polynomials
is

∑

i=0
d

i Pd,i
∑

i=0
d Pd,i

=
χ

(

χ+ d− 2
χ− 1

)

(

χ+ d − 1
χ − 1

) =
d

1+ (d− 1)/χ
.



The latter formulas are direct consequences of the clas-
sical Chu–Vandermonde identity. Assuming that χ> d, the
average number of distinct roots is at least d / 2. When χ

is much greater than d then this lower bound is getting
close to d.

Proposition 10. Let ρ be a fixed divisor of q − 1, and
let χ = (q − 1) / ρ. Let f ∈ Fq[x] be a monic separable
polynomial of degree d 6 q − 1, which splits over Fq, and
such that f(0) =/ 0. Let g be the Graeffe transform of f of
order ρ. The average number of simple roots of g over all
such polynomials f endowed with a uniform distribution is

at least d
1− d/χ

1+ d/χ
.

Moreover, assuming that χ> 3 d the probability that g has

at least
(

2−
1+ d/χ

1− d/χ

)

d simple roots is at least 1/2.

Proof. The polynomial g is uniformly distributed in the
set of monic polynomials with roots of order χ. Let s and m

be the respective numbers of simple and multiple roots of g,
so that d > s + 2 m. We have just seen that the average
number s+m of distinct roots of g is at least d

1+ d/χ
. Hence,

s+(d− s)/2>
d

1+ d/χ
and s>

2 d

1+ d/χ
− d= d

1− d/χ

1+ d/χ
.

Setting K =
1− d/χ

1+ d/χ
and assuming that χ > 3 d, so that

2 > 1 /K > 1, let P be the probability that g has less
than (2 − K) d simple roots. Then the average number
of roots K d is at most P (2 − 1 /K) d + (1 − P ) d,
whence (K − 1) d 6 P (1 − 1 /K) d. We conclude that
P > (K − 1)/(1− 1/K)=K > 1/2. �

3.6 A heuristic randomized algorithm

Let χ be a divisor of q − 1, ρ = (q − 1) / χ and con-
sider a polynomial f ∈ Fq[x] of degree d. In Section 3.4,
we have shown that for all but at most d (d− 1)

2
ρ values

of τ , the Graeffe transform gτ of order ρ of f(x − τ ) has
no multiple root. Taking χ>d2, this implies that gτ has no
multiple roots with probability at least 1/2, when picking τ

at random. Now Proposition 10 implies that at least one
third of the roots remain simple with probability at least 1/
2 under the weaker condition that χ>4 d and for random f .
It is an interesting question whether this fact actually holds
for any f if τ is randomly chosen:

Heuristic. Let q− 1= ρ χ with χ> 4 d and let f ∈Fq[x]
be a monic, separable polynomial of degree d which splits
over Fq. Then there exist at least q /2 elements τ ∈ Fq[x]
such that the Graeffe transform of order ρ of f(x − τ) has
at least d/3 simple roots.

From now on, assume that f is picked at random or that
the above heuristic holds and τ is chosen at random. Taking
χ > 4 d, we may then find the roots of gτ by computing
a few discrete Fourier transforms of length O(d), instead
of more expensive multi-point evaluations. Using tangent
Graeffe transforms, the simple roots can be lifted back for
almost no cost. These considerations lead to the following
efficient randomized algorithm.

Randomized algorithm 11.

Input. f ∈ Fq[x] of degree d > 1, monic, separable, which
splits over Fq, and such that f(0) =/ 0; a primitive ele-
ment ζ of Fq

∗.

Output. The roots of f .

1. If d>M 2m−3 then evaluate f on all the elements of Fq
∗,

and return the roots.

2. Otherwise set l to be the largest integer in {1, ...,m−2}
such that d < M 2m−l−2. Compute χ := M 2m−l and
ρ := (q− 1)/χ=2l.

3. Pick a random τ in Fq, and compute the Graeffe trans-
form hl(x)+ε h̄l(x) of order ρ of f(x− τ +ε) with ε2=0.

4. Compute [hl(ζ
j2l

)| j ∈ {0, ..., χ− 1}], [hl
′(ζj2l

)| j ∈ {0, ...,

χ− 1}], [h̄l(ζ
j2l

)| j ∈ {0, ..., χ− 1}].

5. Compute Z1 :=
[

2l ζ j2l

hl
′
(

ζ j2l
)

/ h̄l

(

ζ j2l
)

− τ | j ∈ {0, ...,

χ−1}, hl(ζ
j2l

)=0, h̄l(ζ
j2l

)=/ 0
]

. Add τ to Z1 if f(τ)=0.

6. Compute f2(x) := f(x)/
∏

a∈Z1
(x− a).

7. Compute recursively the roots Z2 of f2.

8. Return Z1∪Z2.

Proposition 12. Assume the heuristic or that f is chosen
at random among the monic, separable polynomials with
f(0)=/ 0 and which split over Fq. Then Algorithm 11 takes

an average time O(Mq(d) log q) = Õ(d log2 q), whenever
d< q and q=M 2m+1 with M =O(log q).

Proof. Of course if d > M 2m−3 then the cost is
O(Mq(d) log d). Now suppose we arrive in step 2. The roots
of hl have order dividing χ, and we have χ / 2 6 4 d <

χ. If the algorithm terminates then it is correct by the same
arguments as for Algorithm 8.

The cost of step 3 is bounded by O(Mq(d) log d) (and
even by O(Mq(d)) if p > d according to [4, Chapter 1,
Section 2]). When computing hl using l tangent Graeffe
transforms of order 2, the cost of step 3 is bounded by
O(Mq(d) l) = O(Mq(d) log q). Steps 4 and 5 can be done
in time O(Mq(d) log d). The average execution time T (d)
thus satisfies

T (d) 6 O(Mq(d) log q)+PT (d)+ (1−P )T (2 d/3),

where P 6 1 / 2 is the probability that Z2 contains
more than 2 d / 3 elements in step 7. It follows that
T (d) = O(Mq(d) log q) + T (2 d / 3), whence T (d) =
O(Mq(d) log q). �

The main bottleneck for Algorithm 11 is step 3. It would
be possible to improve our complexity bound if a better
algorithm were known to compute Graeffe transforms of
order 2l. In the FFT model, the tangent Graeffe trans-
form of a polynomial of degree d can be computed in time
(4 / 3 + o(1)) Mq(d). In practice, this means that the
asymptotic complexity of Algorithm 11 is equivalent to 4/
3Mq(d) log2 q.



In order to reduce the cost of the Graeffe transforms, it is
relevant to choose l such that M 2m−l−η−1<d6M 2m−l−η

for some small η> 2, which is to be determined in practice
as a function of d and q. In this way more time is spent in
multi-point evaluations. For the multi-point evaluations in
step 4, one may use M FFTs of size 2m−l for small values
of M , or appeal to Bluestein’s chirp transform [5].

4. TIMINGS

In this section we report on timings for the algorithms
presented above. We use a platform equipped with an
Intelr CoreTM i7-4770 CPU at 3.40 GHz, and 8 GB of
1600 MHz DDR3 . It runs the Jessie GNU Debianr oper-
ating system with a Linuxr kernel version 3.14 in 64 bit
mode. We compile with GCC [12] version 4.9.1.

We use revision 9738 of Mathemagix. For the sake of
comparison to other software, we installed the NTL lib-
rary version 8.0.0 [32] (configured to benefit from GMP [13]
version 6.0.0), and Flint version 2.4.4 [15]. For our bench-
mark family we simply build polynomials f of degree d from
random pairwise distinct roots.

Table 1 shows timings for the FFT prime field Fq =
Fp with p=7 · 226 +1. The row NTL corresponds to the
function FindRoots, which contains an optimization with
respect to Algorithm 1 with χ = 2: in fact, the polyno-
mials g in step 2 are taken of degree 1 (see [30] for details).
We implemented the same optimization in our versions of
Cantor–Zassenhaus in Mathemagix. The row Flint cor-

responds to the function nmod_poly_factor_equal_deg,
that does not take advantage of this optimization,
which mainly explains a loss of efficiency. The
rows “Alg. 1” to “Alg. 11” correspond to our own imple-
mentations in Mathemagix of the above algorithms
(see files algebramix/polynomial_modular_int.hpp and
algebramix/bench/polynomial_modular_int_bench.cpp).
Our modified version of Cantor–Zassenhaus’ algorithm, with
χ > 2, does not reveal to be of practical interest for this
prime size.

Concerning the deterministic algorithms, let us precise
that we take π1= ···=πm−1=2 and πm=M in Algorithm 2.
In addition, in our implementation of Algorithm 4, when g

and i are small, for efficiency reasons, we compute hi−1 rem g

using binary powering instead of simultaneous remainders.
These deterministic methods turn out to be quite compet-
itive.

Our Table 2 is similar to Table 1 for the FFT prime
field Fq=Fp with p=5 · 255+1. Nevertheless NTL does not
support this larger prime within its type zz_p. This larger
prime starts to reveal the interest in our modified version
of Cantor–Zassenhaus with χ > 2. The speed-up measured
with the modified version even more increases with larger
primes: With p=7 ·2120+1, it reaches a factor 1.6 in size 214.

Using Graeffe transforms as in Algorithm 8 is not very
competitive. However, in final, it is satisfactory to observe
that our Algorithm 11, exploiting the tangent transform,
gains by an order of magnitude over other existing methods
in both tables.

d+1 28 29 210 211 212 213 214 215 216 217 218

NTL 0.0065 0.015 0.037 0.090 0.20 0.48 1.1 2.5 5.4 12 26
Flint 0.0093 0.025 0.065 0.17 0.45 1.2 3.0 8.0 22 63 250
Alg. 1, Cantor–Zassenhaus, χ=2 0.010 0.020 0.043 0.092 0.20 0.42 0.90 1.9 4.0 8.6 18
Alg. 1, Cantor–Zassenhaus, modified 0.009 0.018 0.036 0.091 0.20 0.41 0.96 2.1 4.4 10 22
Alg. 2, Mignotte–Schnorr 0.063 0.12 0.25 0.51 1.0 2.0 3.9 7.8 15 31 62
Alg. 4, Moenck 0.025 0.051 0.10 0.21 0.44 0.91 1.9 3.9 8.2 17 35
Alg. 8, Graeffe, randomized 0.003 0.006 0.021 0.074 0.25 0.70 1.7 3.6 7.5 15 29
Alg. 11, Graeffe, heuristic 0.001 0.002 0.003 0.007 0.015 0.031 0.065 0.13 0.24 0.59 1.4

Table 1. Randomized root finding in degree d over Fp, with p=7 · 226+1, time in seconds.

d+1 28 29 210 211 212 213 214 215 216 217 218

Flint 0.032 0.084 0.22 0.58 1.5 3.8 9.5 23 58 150 470
Alg. 1, Cantor–Zassenhaus, χ=2 0.035 0.075 0.16 0.37 0.78 1.7 3.8 8.6 19 41 90
Alg. 1, Cantor–Zassenhaus, modified 0.025 0.055 0.11 0.28 0.63 1.3 3.1 7.0 14 33 76
Alg. 2, Mignotte–Schnorr 0.22 0.46 0.96 2.0 4.2 8.7 18 39 83 180 370
Alg. 4, Moenck 0.89 0.18 0.37 0.76 1.6 3.4 7.2 16 33 72 150
Alg. 8, Graeffe, randomized 0.011 0.038 0.14 0.56 1.1 2.6 6.8 16 40 92 210
Alg. 11, Graeffe, heuristic 0.005 0.007 0.016 0.032 0.067 0.14 0.29 0.61 1.3 2.7 5.6

Table 2. Randomized root finding in degree d over Fp, with p=5 · 255+1, time in seconds.

Coming back to our initial motivation for sparse
polynomial interpolation, let us mention that plugging
Algorithm 11 into our implementations reported in [19] leads
to quite good speed-ups. The total time for Example 1
of [19], concerning the product of random sparse polyno-
mials, decreases from 12 s to 7.6 s with the “coefficient ratios”
technique. In fact, the time spent in root finding decreases

from 50 % to 8 % during the sole determination of the sup-
port.
Example 2 of [19] concerns the sparse interpolation of

the determinant of the generic n × n matrix. For n = 8,
the time for the “Kronecker substitution” technique with
a prime of 68 bits decreases from 95 s to 43 s. The time
elapsed in root finding during the sole determination of the



support drops from 70 % to 20 %. Thanks to additional
optimizations, the “coefficient ratios” technique now runs
this example in 46 s.
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