Bruno Grenet
email: bruno.grenet@lirmm.fr

Joris Van Der Hoeven

Grégoire Lecerf
email: lecerf@lix.polytechnique.fr

Randomized root finding over finite fields using tangent Graeffe transforms

Keywords: F.2.1 [ANALYSIS OF ALGORITHMS AND PROBLEM COMPLEXITY]: Numerical Algorithms and Problems-Computations in finite fields; G.4 [MATH-EMATICAL SOFTWARE]: Algorithm design and analysis Algorithms, Theory Finite fields, polynomial root finding, algorithm, Mathemagix

Consider a finite field F q whose multiplicative group has smooth cardinality. We study the problem of computing all roots of a polynomial that splits over F q , which was one of the bottlenecks for fast sparse interpolation in practice. We revisit and slightly improve existing algorithms and then present new randomized ones based on the Graeffe transform. We report on our implementation in the Mathemagix computer algebra system, confirming that our ideas gain by an order of magnitude in practice.

INTRODUCTION

Let F q represent the finite field with q = p k elements, where p is a prime number, and k 1. Throughout this article, such a field is supposed to be described as a quotient of F p [x] by a monic irreducible polynomial. Let f ∈ F q [x] represent a separable monic polynomial of degree d 1 which splits over F q , which means that all its irreducible factors have degree one and multiplicity one. In this article we are interested in computing all the roots of f .

Motivation

One of our interests in root finding came from the recent design of efficient algorithms to interpolate, into the standard monomial basis, polynomials that are given through evaluation functions. This task is briefly called sparse interpolation , and root finding often turns out to be a bottleneck, as reported in [START_REF] Van Der Hoeven | Sparse polynomial interpolation in practice[END_REF]. In fact, in this case, the ground field can be chosen to be F p with p = M 2 m + 1, and where 2 m is taken to be much larger than the number of terms to be discovered. In practice, to minimize the size of p, so that it fits a machine register, we take M = O(log p) as small as possible. A typical example is p = 7 • 2 26 + 1. We informally refer to such primes as FFT primes.

Root finding over prime finite fields critically occurs during the computation of integer and rational roots of polynomials in Q[x], both for dense and lacunary representations. Yet other applications concern cryptography and error correcting codes. Nevertheless, practical root finding has received only moderate attention so far, existing algorithms with good average complexity bounds often being sufficient [START_REF] Kaltofen | Subquadratic-time factoring of polynomials over finite fields[END_REF][START_REF] Kedlaya | Fast modular composition in any characteristic[END_REF].

In this article, we focus on fast probabilistic root finding algorithms, targeting primarily FFT prime fields and, more generally, finite fields whose multiplicative group has smooth cardinality. At a second stage, we report on practical efficiency of our new algorithms within the Mathemagix computer algebra system [START_REF] Van Der Hoeven | [END_REF].

Notations and prerequisites

The multiplicative group F q \ {0} of F q is written F q * . In order to simplify the presentation of complexity bounds, we use the soft-Oh notation: (1) g(n) (we refer the reader to [START_REF] Zur Gathen | Modern computer algebra[END_REF]Chapter 25,Section 7] for technical details). The least integer larger or equal to x is written ⌈x⌉. The largest integer smaller or equal to x is written ⌊x⌋. The remainder of g in the division by f is denoted by g rem f .

f (n) ∈ O ˜(g(n)) means that f (n) = g(n) log O
We write M: N → Z for a function that bounds the total cost of a polynomial product algorithm in terms of the number of ring operations performed independently of the coefficient ring, assuming a unity is available. In other words, two polynomials of degrees at most d over such a ring A can be multiplied with at most M(d) arithmetic operations in A. The schoolbook algorithm allows us to take M(d) = O(d 2). On the other hand the fastest known algorithm, due to Cantor and Kaltofen [START_REF] Cantor | On fast multiplication of polynomials over arbitrary algebras[END_REF], provides us with M(d) = O(d log d log log d). In order to simplify the cost analysis of our algorithms we make the customary assumption that M(d 1) / d 1 M(d 2) / d 2 for all 0 < d 1 d 2 . Notice that this assumption implies the super-additivity of M, namely

M(d 1) + M(d 2) M(d 1 + d 2) for all d 1 0 and d 2 0.
For operations in Z and in finite fields, we are interested in the Turing machine model , with a sufficiently large number of tapes. In short, we use the terms bit-cost and bit-complexity to refer to this model whenever the context is not clear. For randomized algorithms, we endow Turing machines with an additional instruction which generates random bits with a uniform distribution [START_REF] Papadimitriou | Computational Complexity[END_REF].

We write I(n) for a function that bounds the bit-cost of an algorithm which multiplies two integers of bit-sizes at most n, viewed in classical binary representation. Recently, the best bound for I(n) has been improved to I(n) = O(n log n 8 log * n), where log * represents the iterated logarithm function [START_REF] Harvey | Even faster integer multiplication[END_REF]. Again, we make the customary assumption that I(n 1) / n 1 I(n 2) / n 2 for all 0 < n 1 n 2 . We freely use the following classical facts: ring operations in F p cost O(I(log p)) and one division or inversion in F p costs O(I(log p) log log p) [START_REF] Zur Gathen | Modern computer algebra[END_REF]Chapter 11].

For polynomial operations over F q , we let M q (d) represent a function that bounds the bit-cost of an algorithm that multiplies two polynomials of degrees at most d, with the same kind of assumptions as for M and I. According to [START_REF] Harvey | Faster polynomial multiplication over finite fields[END_REF], we may take M q (d) = O(d log q log(d log q) 8 log * (dlog q)). The ring operations in F q cost at most O(M p (k)), and inversions take at most O(M p (k) log k + I(log p) log log p). For convenience, m q and d q will respectively denote cost functions for the product and the inverse in F q .

Let us recall that the gcd of two polynomials of degrees at most d over F q can be computed in time O(M q (d) log d): One can for instance use pseudo-remainders in [START_REF] Zur Gathen | Modern computer algebra[END_REF]Algorithm 11.4], mutatis mutandis. Given monic polynomials f and g 1 , ..., g l with deg f = d and deg

g 1 + ••• + deg g l = O(d)
, all the remainders f rem g i can be computed in time O(M q (d) log l) using a subproduct tree [START_REF] Zur Gathen | Modern computer algebra[END_REF]Chapter 10]. The inverse problem, called Chinese remaindering , can be solved within a similar cost O(M q (d) log l + d d q). In this article, when needed, we consider that the factorization of q -1 and a primitive element of F q * have been precomputed once, and we discard the necessary underlying costs. In practice, if the factorization of q -1 is given, then it is straightforward to verify whether a given element is primitive. For known complexity bounds and historical details on these tasks, we refer the reader to [START_REF] Bach | Comments on search procedures for primitive roots[END_REF][START_REF] Mullen | Handbook of Finite Fields[END_REF][START_REF] Shoup | Searching for primitive roots in finite fields[END_REF].

Related work and our contributions

Seminal algorithms for polynomial factorization over finite fields are classically attributed to Berlekamp [START_REF] Berlekamp | Factoring polynomials over finite fields[END_REF][START_REF] Berlekamp | Factoring polynomials over large finite fields[END_REF], and Cantor and Zassenhaus [START_REF] Cantor | A new algorithm for factoring polynomials over finite fields[END_REF], but central earlier ideas can be found in works of Gauss, Galois, Arwins, Faddeev and Skopin. Cantor-Zassenhaus' algorithm is randomized and well suited to compute roots of polynomials of degree d that split over F q in average time O(M q (d) (log q + log d) log d + d d q). Of course, if q = O(d) then an exhaustive search can be naively performed in time O(M q (d) log d) (the factor log d can be discarded if a primitive element of F q * is given, by means of [6, Proposition 3]), so that the cost of root finding simplifies to O(M q (d) log q log d + d d q). This classical approach is for instance implemented in the NTL library written by Shoup [START_REF] Shoup | NTL: A Library for doing Number Theory[END_REF]. However neither Berlekamp's nor Cantor-Zassenhaus' algorithm seems to benefit of particular prime numbers such as FFT primes. Instead, alternative approaches have been proposed by Moenck [START_REF] Moenck | On the efficiency of algorithms for polynomial factoring[END_REF], von zur Gathen [START_REF] Gathen | Factoring polynomials and primitive elements for special primes[END_REF], Mignotte and Schnorr [START_REF] Mignotte | Calcul déterministe des racines d'un polynôme dans un corps fini[END_REF], and then by Rónyai [START_REF] Rónyai | Factoring polynomials modulo special primes[END_REF].

In Section 2, for the sake of comparison, we first revisit Cantor-Zassenhaus' approach and propose a practical trick to slightly speed it up. We also briefly recall the complexity bound of Mignotte-Schnorr's algorithm [START_REF] Mignotte | Calcul déterministe des racines d'un polynôme dans un corps fini[END_REF].

We then design and analyze fast randomized algorithms based on tangent Graeffe transforms, leading to an important speed-up for FFT primes. The practical efficiency of the new algorithms is discussed on the basis of implementations in the Mathemagix computer algebra system [START_REF] Van Der Hoeven | [END_REF], thus revealing that our fastest variant gains an order of magnitude over other existing software.

Let us finally mention that our present randomized algorithms admit deterministic counterparts which are studied in [START_REF] Grenet | Deterministic root finding over finite fields using Graeffe transforms[END_REF].

KNOWN ALGORITHMS REVISTED

In this section we revisit efficient root finding algorithms previously described in the literature, and slightly improve their complexity analysis. The first stream, followed by Berlekamp [START_REF] Berlekamp | Factoring polynomials over large finite fields[END_REF], Cantor and Zassenhaus [START_REF] Cantor | A new algorithm for factoring polynomials over finite fields[END_REF], consists in splitting the input polynomial by computing suitable modular exponentiations and gcds. The second stream, followed by Moenck [START_REF] Moenck | On the efficiency of algorithms for polynomial factoring[END_REF], and Mignotte and Schnorr [START_REF] Mignotte | Calcul déterministe des racines d'un polynôme dans un corps fini[END_REF], takes advantage of the smoothness of q -1.

Cantor-Zassenhaus' algorithm

In this subsection we suppose that q has the form q = χ ρ + 1, with χ 2. The following randomized algorithm extends Cantor-Zassenhaus' one, which corresponds to χ = 2, when q is odd. We need a primitive root ξ of unity of order χ.

Randomized algorithm 1.

Input. f ∈ F q [x] of degree d 1, monic, separable, which splits over F q , and such that f (0) = / 0; a primitive root ξ of unity of order χ. Output. The roots of f . 1. If d = O(χ) then compute the roots of f by calling a fallback root finding algorithm. 2. Pick up g ∈ F q [x] at random of degree at most d -1. 3. Compute h := g ρ rem f , and set f 0 := f . 4. For all i from 1 to χ -1, compute f i := gcd(hξ i , f 0), make it monic, and replace f 0 by f 0 / f i . 5. Recursively call the algorithm with those of f 0 , ..., f χ-1 which are not constant, and return the union of the sets of their roots.

In the classical case when χ = 2, then we recall that step 3 costs O(M q (d) log q) and step 4 takes O(M q (d) log d) plus one inversion in F q . Since the average depth of the recursion is in O(log d) [START_REF] Ph | A branching process arising in dynamic hashing, trie searching and polynomial factorization[END_REF], the total average cost amounts to O(M q (d) (log q + log d) log d + d d q). For the case of arbitrary χ, we propose an informal discussion, so as to justify the interest in the algorithm. If α is a root of f , then h(α) = g(α) ρ has order dividing χ, hence is a power of ξ, or zero with a very small probability. Therefore we have

f = f 0 f 1 ••• f χ-1 .
Since g is taken at random, we might expect that the values of h(α) are distributed uniformly among the powers of ξ (we discard cases when h(α) = 0). In other words, the depth of the recursive calls is expected to be in O(log d/log χ).

If we further assume that log χ = o(log q), then step 3 takes approximately C 1 M q (d) log q for a certain constant C 1 , and step 4 costs C 2 χ M q (d) log d. Discarding the cost of the inversions, and compared to the case χ = 2, we achieve an approximate speed-up of

(C1 log q + 2 C2 log d) Mq(d) (log d)/log 2 (C 1 log q + χ C 2 log d) M q (d) (log d)/log χ = log χ log 2 C1 log q /log d + 2 C2 C 1 log q /log d + χ C 2 . Whenever C 1 log q / log d ≫ χ C 2 , this speed-up is of order log χ / log 2. In general, the speed-up is maximal if χ (log χ -1) = C1 log q C2 log d .

Mignotte-Schnorr's algorithm

Assuming given a primitive element of F q * , Mignotte and Schnorr proposed a general deterministic root finding algorithm in [START_REF] Mignotte | Calcul déterministe des racines d'un polynôme dans un corps fini[END_REF], that is efficient when q -1 is smooth.

a fair comparison with our new algorithm presented in the next section (and since their article is written in French) we recall their method in a different and concise manner.

Let π 1 , ..., π m be integers 2, such that q

-1 = ρ π 1 ••• π m , and let χ = π 1 ••• π m and σ = π 1 + ••• + π m . For instance, if the irreducible factorization of q -1 = p 1 m1 ••• p r mr is known, then we may take ρ = 1 and π 1 = π 2 = ••• = π m1 = p 1 , π m1+1 = π m1+2 = ••• = π m1+m2 = p 2 , ..., and set m = m 1 + ••• + m r .
In order to split f into factors of degrees at most ρ, we may use the following algorithm.

Algorithm 2. Input. f ∈ F q [x
] of degree d 1, monic, separable, which splits over F q , and such that f (0) = / 0; a primitive root ξ of unity of order χ.

Output. (f 1 , e 1), ..., (f s , e s) in (F q [x] \ F q) × {0, ..., χ -1} such that f = f 1 ••• f s ,
and the f i are monic, separable, and divide x ρξ ei , for all i.

1. Let h 0 (x) := x ρ rem f (x), and

compute h i (x) := h i-1 (x) πi rem f (x), for all 1 i m -1.
2. Initialize F with the list [(f , 0)].

3. For i from m down to 1 do a. Compute h i-1 rem g for all pairs (g, e) in F using a subproduct tree.

b. Initialize G with the empty list, and for all j from 0 to π i -1 do For each pair (g, e) in F do Compute g j := gcd((h i-1 rem g)ξ (e+ jχ)/πi , g). If g j is not constant, then make it monic and append (g j , (e + j χ)/π i) to G.

Let F := G. 4. Return F . Lemma 3. Algorithm 2 is correct and executes in time O(σ M q (d) log d + M q (d) log q + m d I(log χ) + m m q d log χ + d d q) = σ O ˜(d log q) + O ˜(d log 3 q).
Proof. We prove the correctness by descending induction on i from m down to 1. In fact, at the end of iteration i of the loop of step 3, we claim that f = (g,e)∈F g, that g divides x ρπ1•••πi-1ξ e for all (g, e) ∈ F , and that the integers e in F are divisible by π 1 ••• π i-1 and bounded by χ -1. By construction, these properties are all true with i = m + 1 when entering step 3, so that by induction we can assume that these properties hold for i + 1 when entering the loop at level i. Let (g, e) ∈ F , and let α be a root of g. From α ρπ1•••πi = ξ e , since e is divisible by π i , there exists j ∈ {0, ..., π i -1} such that α ρπ1•••πi-1 = ξ e+ jχ π i . We are done with the correctness.

As to the complexity, we can compute the χ / π i for i ∈ {1, ..., m} in time O(m I(log χ)) as follows: we first compute

π 1 , π 1 π 2 , π 1 π 2 π 3 , ..., π 1 π 2 ••• π m-1 , and π m , π m-1 π m , π m-2 π m-1 π m , ..., π 2 ••• π m-1 π m , and then deduce each χ/π i by multiplying π 1 ••• π i-1 and π i+1 ••• π m .
Step 1 requires time O(M q (d) log q). In step 3.a, since the sum of the degrees of the polynomials in F is at most d, and since these polynomials are monic, this step can be done in time O(M q (d) log d). The cost of the gcds in step 3.b is O(π i M q (d) log d) by the super-additivity of M q . We compute all the e/ π i in time O(d I(log χ)), and then all the ξ e/πi and ξ χ/πi by means of O(d log χ) operations in F q . Deducing all the ξ (e+ jχ)/πi takes O(π i d) additional products in F q .

Since the cardinality of F cannot exceed d, the total number of proper factors g j in step 3.b is at most d. Therefore, we need O(d) inversions in order to make all the polynomials in F monic.

Notice that the dependence on σ is good when q -1 is smooth. For example, if ρ = 1 and σ = O(log q), then the cost of root finding via the latter proposition drops to O ˜(d log 3 q). This is higher than the average O ˜(d log 2 q) bitcost of Cantor-Zassenhaus' algorithm. Nevertheless since the term O ˜(d log 3 q) corresponds to O(d log 2 q) products in F q , with a small constant hidden in the O, Mignotte-Schnorr's algorithm is competitive for small values of log q.

the original work of Mignotte and Schnorr [START_REF] Mignotte | Calcul déterministe des racines d'un polynôme dans un corps fini[END_REF], the cost of the algorithm was estimated to

O(M(d) i=1 r m i (log q + p i log d)) operations in F q , if q -1 = p 1 m1 ••• p r mr .
Our presentation slightly differs by the use of a subproduct tree in step 3.a.

Let us briefly mention that a better bound for splitting f was achieved in [START_REF] Gathen | Factoring polynomials and primitive elements for special primes[END_REF]. Nevertheless, for finding all the roots, the method of [START_REF] Gathen | Factoring polynomials and primitive elements for special primes[END_REF] does not seem competitive in general.

Moenck's algorithm

Moenck's algorithm [START_REF] Moenck | On the efficiency of algorithms for polynomial factoring[END_REF] deals with the special case when q -1 = ρ 2 m . Let ζ be a primitive root of F q * . Let 1 i m, let f be a polynomial whose roots have orders dividing ρ 2 i , and let α ∈ F q * be one of these roots. Then either this order divides ρ 2 i-1 , or we have α ρ2 i-1 + 1 = 0, since x ρ2 i -1 = (x ρ2 i-1 + 1) (x ρ2 i -1 -1). In the latter case, we obtain

(α/ ζ 2 m-i) ρ2 i-1 = 1. The polynomials f 1 = gcd(x ρ2 i-1 -1, f) and f 2 (x) = (f / f 1)(ζ 2 m -i
x) have all their roots of order dividing ρ 2 i-1 . In this way, the roots of f can be computed inductively starting from i = m down to i = 1. At the end, we are reduced to finding roots of several polynomials whose orders divide ρ. If ρ is small, then an exhaustive search easily completes the computations. Otherwise we may use a fallback algorithm. Moenck's algorithm summarizes as follows.

Algorithm 4. Input. f ∈ F q [x] of degree d 1, monic, separable, which splits over F q , and such that f (0) = / 0; a primitive element

ζ of F q * . Output. (f 1 , γ 1), ..., (f s , γ s) in (F q [x] \ F q) × F q such thatf = f 1 ••• f s ,
the f i are monic, separable, and the roots of f i (γ i x) have orders dividing ρ.

1. Compute h i (x) := x ρ2 i rem f (x) for all i ∈ {0, ..., m -1}. 2. Initialize F with the list [(f , 1)].
3. For i from m down to 1 do a. Compute the remainders of h i-1 rem g for all triples (g, γ) in F using a subproduct tree. b. Initialize G as an empty list. c. For all (g, γ) in F do i. Compute g 1 (x) := gcd((h i-1 rem g)(x)γ ρ2 i-1 , g(x)). If g 1 is not constant then make it monic and append (g 1 , γ) to G. ii. Compute g 2 := g / g 1 . If g 2 is not constant then make it monic, and append (g

2 , γ ζ 2 m-i) to G. d. Replace F by G. 4. Return F .
Our presentation differs from [START_REF] Moenck | On the efficiency of algorithms for polynomial factoring[END_REF]. We also introduced step 3.a, which yields a sensible theoretical speed-up, similarly to Mignotte-Schnorr's algorithm. In fact Moenck's and Mignotte-Schnorr's algorithms are quite similar from the point of view of the successive splittings of f , and the intermediate operations. We thus leave out the details on correctness and cost analysis. As an advantage, the logarithms of the successive roots are not needed. Nevertheless computing all the powers of γ in steps 3.c amounts to a bit-cost O ˜(d log 3 q).

USING GRAEFFE TRANSFORMS

One advantage of Cantor-Zassenhaus' algorithm is its average depth in the recursive calls in O(log d). This is to be compared to the O(log q) iterations of Algorithms 2 and 4.

In this section we propose a new kind of root finder based on the tangent Graeffe transform, which takes advantage of a FFT prime field, with an average cost not exceeding the one of Cantor-Zassenhaus.

Generalized Graeffe transforms

Classically, the Graeffe transform of a polynomial g ∈

F q [x] of degree d is the unique polynomial h ∈ F q [x] sat- isfying h(x 2) = g(x) g(-x). If g(x) = i=1 d (α i -x), then h(x) = i=1 d (α i 2 -x)
. This construction can be extended to higher orders as follows: the generalized Graeffe transform of g of order π, written G π (g), is defined as the resultant

G π (g)(x) = (-1) πd Res z (g(z), z π -x). If g = i=1 d (α i -x), then G π (g)(x) = i=1 d (α i π -x).
Equivalently, G π (g) is the characteristic polynomial of multiplication by x π in F q [x]/(g) (up to the sign). For our root finding algorithms, the most important case is when q -1 is smooth and the order π of the generalized Graeffe transform divides q -1.

Proposition 5. Let π 1 , ..., π m be integers 2, such that χ = π 1 ••• π m divides q -1, and let ξ i be given primitive roots of unity of orders π i , for all i ∈ {1, ..., m}. If g is a monic polynomial in F q [x] of degree d, then the generalized Graeffe transforms of orders π 1 , π 1 π 2 , π 1 π 2 π 3 , ..., χ of g can be computed in time O(m M q (µ d)) or O(M q (σ d)), where µ = max (π 1 , ..., π m) and

σ = π 1 + ••• + π m . Proof. Writing g(x) = c j =1 d (α j -x) in an algeb- raic closure of F q , the Graeffe transform of g of order π i is h i (x) = c πi j =1 d (α j πi -x)
. Consequently this leads to

h i (x πi) = g(x) g(ξ i x) g(ξ i 2 x) ••• g(ξ i πi-1 x).
Using the latter formula, by Lemma 6 below, the transform can be obtained in time O(M q (π i d)). Taking the sum over i concludes the proof. Lemma 6. Let g be a polynomial of degree d 1 in F q [x], let α ∈ F q , and let l be an integer. Then the product P l (x) = g(x) g(α x) g(α 2 x) ••• g(α l-1 x) can be computed in time O(M q (l d)).

Proof. Let h := ⌊l / 2⌋. If l is even, then we have P l (x) = P h (x) P h (α h x), otherwise we have P l (x) = P h (x) P h (α h x) g(α l-1 x). These formulas lead to an algorithm with the claimed cost.

Let us mention that good complexity bounds for Graeffe transforms for general finite fields can be found in [START_REF] Grenet | Deterministic root finding over finite fields using Graeffe transforms[END_REF].

Tangent Graeffe transforms

Introducing a formal parameter ε with ε 2 = 0, we define the generalized tangent Graeffe transform of g of order π as being G π (g

(x + ε)) ∈ (F q [ε] / (ε 2))[x].
For any ring R, computations with "tangent numbers" in R[ε] / (ε 2) can be done with constant overhead with respect to computations in R (in the FFT model, the overhead is asymptotically limited to a factor of two). Whenever a Graeffe transform preserves the number of distinct simple roots, the tangent Graeffe transform can be used to directly recover the original simple roots from the transformed polynomial, as follows:

Lemma 7. Let g ∈ F q [x
] be separable of degree d, let π be coprime to p, and let h(x)

+ h ¯(x) ε + O(ε 2) = G π (g(x + ε)).
A nonzero root β of h is simple if, and only if, h ¯(β) = / 0. For such a root, π β h ′ (β) / h ¯(β) is the unique root α of g such that α π = β.

Proof. Let α be a root of g in an algebraic closure of F q . The lemma follows from the formula h ¯(α π) = π α π -1 h ′ (α π), obtained by direct calculation.

In the context of the Graeffe method, the tangent transform is classical (for instance, see [START_REF] Malajovich | Tangent Graeffe iteration[END_REF][START_REF] Pan | Solving a polynomial equation: Some history and recent progress[END_REF] for history, references, and use in numerical algorithms). The generalized tangent Graeffe transform can also be seen as the tangent characteristic polynomial of x π modulo g(x + ε), and this construction is often attributed to Kronecker in algebraic geometry [START_REF] Kronecker | Grundzüge einer arithmetischen Theorie der algebraischen Grössen[END_REF].

Overview of our methods

Let us write q -1 = ρ π 1 ••• π m . Let h 0 := f , and let h 1 , ..., h m be the Graeffe transforms of orders π 1 , π 1 π 2 , ..., π 1 ••• π m of f . The roots of h m are to be found among the elements of order ρ. One may then find the roots of h m-1 among the π m -th roots of the roots of h m , and, by induction, the roots of h i-1 are to be found among the π i -th roots of the roots of h i . This is the starting point of the efficient deterministic algorithm designed in [START_REF] Grenet | Deterministic root finding over finite fields using Graeffe transforms[END_REF]. But in order to make it much more efficient than Cantor-Zassenhaus's algorithm we introduce and analyze two types of randomizations in the next sections. First we avoid computing π i -th roots by combining random variable shifts and tangent transforms. Second we analyze the behaviour for random polynomials, which leads us to a very efficient heuristic algorithm.

A randomized algorithm

Our randomized algorithms can be competitive to Cantor-Zassenhaus' algorithm only for very smooth values of q -1. For simplicity we focus on the important case of an FFT field where q = M 2 m + 1, with M = O(log q).

We introduce the parameter τ ∈ F q . Let χ = M 2 m-l be a divisor of q -1, and let ρ = (q -1)/ χ = 2 l . Let α 1 , ..., α d denote the roots of f . The Graeffe transform g τ of f (xτ) of order ρ equals i=1 d

((α i + τ) ρ -x).
Given a pair of distinct roots α i and α j of f , we have (τ + α i) ρ = / (τ + α j) ρ for all but at most ρ values of τ . Therefore for all but at most

d (d -1) 2
ρ values of τ , the polynomial g τ has no multiple root. Considering that τ is taken uniformly at random in F q , the probability that g τ has multiple roots is at most

d (d -1) 2 1
χ . This yields the following randomized algorithm.

Randomized algorithm 8.

Input. f ∈ F q [x] of degree d 1, monic, separable, which splits over F q , and such that f (0) = / 0; a primitive root ζ of F q * . Output. The roots of f . 1. If d (d -1) q then set l to 0. Otherwise set l to the largest integer in {0, ..., m} such that d (d -1) M 2 m-l . Compute χ := M 2 m-l and ρ := (q -1)/ χ = 2 l . 2. Pick τ ∈ F q uniformly at random, and compute h 0 (x) + ε h ¯0(x) := f (xτ + ε), where ε 2 = 0.

Recursively compute the Graeffe transform h

i + ε h ¯i of order 2 of h i-1 + ε h ¯i-1 , for all 1 i m. 4. Compute the list E := [j 2 m | j ∈ {0, ..., M -1}, h m (ζ j 2 m) = 0] of ζ-
:= [e| e ∈ E , h ¯l(ζ e) = / 0]. 8. Compute Z 1 := [2 l ζ e h l ′ (ζ e)/h ¯l(ζ e) -τ | e ∈ E 1]. Add τ to Z 1 if f (τ) = 0. 9. Compute f 2 (x) := f (x)/ a∈Z1 (x -a). 10. Compute recursively the roots Z 2 of f 2 . 11. Return Z 1 ∪ Z 2 .
Proposition 9. Algorithm 8 is correct, and takes an average time O ˜(d log 2 q), if d < q and q = M 2 m + 1 with M = O(log q).

Proof. The correctness follows from Lemma 7, which asserts that Z 1 is a subset of the roots of f .

Step 3 takes O ˜(d log 2 q) by Proposition 5. Steps 2, 5.a, 5.b, 6, 7, 8, 9 execute in time O ˜(d log 2 q). Step 4 costs

O ˜((d + M) log q) = O ˜(d log q + log 2 q). If d (d -1)
q then the number of iterations in step 5 is m = O(log q) = O(log d). Otherwise the number of iterations is ml = O(log d). Consequently, the total cost of all steps but step 10 is O ˜(d log 2 q). From the choice of l, we have already seen that the degree of f 2 equals 0 with probability at least 1 / 2. Writing T (d) for the average execution time, we thus have

T (d) O ˜(d log 2 q) + 1 2 T (d), which implies T (d) = O ˜(d log 2 q).
Since the base field supports FFTs it is important to perform all intermediate computations by taking advantage of sharing transforms. This technique was popularized within the NTL library for many algorithms. In addition we notice that the first few iterates of the loop of step 5 can be reduced to direct FFT computations instead of generic multi-point evaluations.

Random polynomials which split over = q

Taking a monic random polynomial of degree d which splits over F q , for a uniform distribution, is equivalent to taking its d roots at random in F q . Let α 1 , ..., α d represent the roots of f . We examine the behavior of tangent Graeffe transforms of such random polynomials.

Let P d,i be the number of monic polynomials of degree d which split over F q and have i distinct nonzero roots of order dividing χ. Such a polynomial uniquely corresponds to the choice of i distinct values among χ, namely the roots, and then of the multiplicities of these roots with sum d. Therefore we have

P d,i = χ i d -1 i -1 . One can check that i=0 d P d,i = χ + d -1 χ -1
, which corresponds to choosing a multiplicity in {0, ..., d} for each element of order dividing χ, under the constraint that the sum of the multiplicities is exactly d. The average number of roots of such polynomials is

i=0 d i Pd,i i=0 d P d,i = χ χ + d -2 χ -1 χ + d -1 χ -1 = d 1 + (d -1)/ χ .
The latter formulas are direct consequences of the classical Chu-Vandermonde identity. Assuming that χ d, the average number of distinct roots is at least d / 2. When χ is much greater than d then this lower bound is getting close to d.

Proposition 10. Let ρ be a fixed divisor of q -1, and let χ = (q -1) / ρ. Let f ∈ F q [x] be a monic separable polynomial of degree d q -1, which splits over F q , and such that f (0) = / 0. Let g be the Graeffe transform of f of order ρ. The average number of simple roots of g over all such polynomials f endowed with a uniform distribution is at least d

1 -d / χ 1 + d / χ .
Moreover, assuming that χ > 3 d the probability that g has at least 2 -

1 + d / χ 1 -d / χ d simple roots is at least 1/2.
Proof. The polynomial g is uniformly distributed in the set of monic polynomials with roots of order χ. Let s and m be the respective numbers of simple and multiple roots of g, so that d s + 2 m. We have just seen that the average number s + m of distinct roots of g is at least

d 1 + d / χ . Hence, s + (d -s)/2 d 1 + d / χ and s 2 d 1 + d / χ -d = d 1 -d / χ 1 + d / χ . Setting K = 1 -d / χ
1 + d / χ and assuming that χ > 3 d, so that 2 > 1 / K > 1, let P be the probability that g has less than (2 -K) d simple roots. Then the average number of roots K d is at most

P (2 -1 / K) d + (1 -P) d, whence (K -1) d P (1 -1 / K) d. We conclude that P (K -1)/(1 -1/K) = K > 1/2.

A heuristic randomized algorithm

Let χ be a divisor of q -1, ρ = (q -1) / χ and consider a polynomial f ∈ F q [x] of degree d. In Section 3.4, we have that for all but at most

d (d -1) 2
ρ values of τ , the Graeffe transform g τ of order ρ of f (xτ) has no multiple root. Taking χ > d 2 , this implies that g τ has no multiple roots with probability at least 1 / 2, when picking τ at random. Now Proposition 10 implies that at least one third of the roots remain simple with probability at least 1 / 2 under the weaker condition that χ > 4 d and for random f . It is an interesting question whether this fact actually holds for any f if τ is randomly chosen:

Heuristic. Let q -1 = ρ χ with χ > 4 d and let f ∈ F q [x]
be a monic, separable polynomial of degree d which splits over F q . Then there exist at least q / 2 elements τ ∈ F q [x] such that the Graeffe transform of order ρ of f (xτ) has at least d/3 simple roots.

From now on, assume that f is picked at random or that the above heuristic holds and τ is chosen at random. Taking χ > 4 d, we may then find the roots of g τ by computing a few discrete Fourier transforms of length O(d), instead of more expensive multi-point evaluations. Using tangent Graeffe transforms, the simple roots can be lifted back for almost no cost. These considerations lead to the following efficient randomized algorithm.

Randomized algorithm 11.

Input. f ∈ F q [x] of degree d 1, monic, separable, which splits over F q , and such that f (0) = / 0; a primitive element ζ of F q * .

Output. The roots of f .

1. If d M 2 m-3 then evaluate f on all the elements of F q * , return the roots.

2. Otherwise set l to be the largest integer in {1, ..., m -2} such that d < M 2 m-l-2 . Compute χ := M 2 m-l and ρ := (q -1)/ χ = 2 l .

3. Pick a random τ in F q , and compute the Graeffe transform h l (x) + ε h ¯l(x) of order ρ of f (xτ + ε) with ε 2 = 0.

4. Compute [h l (ζ j 2 l)| j ∈ {0, ..., χ -1}], [h l ′ (ζ j 2 l)| j ∈ {0, ..., χ -1}], [h ¯l(ζ j 2 l)| j ∈ {0, ..., χ -1}]. 5. Compute Z 1 := 2 l ζ j 2 l h l ′ ζ j 2 l / h ¯l ζ j 2 l -τ | j ∈ {0, ..., χ -1}, h l (ζ j 2 l) = 0, h ¯l(ζ j 2 l) = / 0 . Add τ to Z 1 if f (τ) = 0.
6. Compute f 2 (x) := f (x)/ a∈Z1 (xa).

Compute recursively the roots

Z 2 of f 2 . 8. Return Z 1 ∪ Z 2 .
Proposition 12. Assume the heuristic or that f is chosen at random among the monic, separable polynomials with f (0) = / 0 and which split over F q . Then Algorithm 11 takes an average time O(M q (d) log q) = O ˜(d log 2 q), whenever d < q and q = M 2 m + 1 with M = O(log q). Proof. Of course if d > M 2 m-3 then the cost is O(M q (d) log d). Now suppose we arrive in step 2. The roots of h l have order dividing χ, and we have χ / 2 4 d < χ. If the algorithm terminates then it is correct by the same arguments as for Algorithm 8.

The cost of step 3 is bounded by O(M q (d) log d) (and even by O(M q (d)) if p > d according to [4, Chapter 1, Section 2]). When computing h l using l tangent Graeffe transforms of order 2, the cost of step 3 is bounded by O(M q (d) l) = O(M q (d) log q). Steps 4 and 5 can be done in time O(M q (d) log d). The average execution time T (d) thus satisfies

T (d) O(M q (d) log q) + P T (d) + (1 -P) T (2 d/3),
where P 1 / 2 is the probability that Z 2 contains more than 2 d / 3 elements in step 7. It follows that T

(d) = O(M q (d) log q) + T (2 d / 3), whence T (d) = O(M q (d) log q).
The main bottleneck for Algorithm 11 is step 3. It would be possible to improve our complexity bound if a better algorithm were known to compute Graeffe transforms of order 2 l . In the FFT model, the tangent Graeffe transform of a polynomial of degree d can be computed in time (4 / 3 + o(1)) M q (d). In practice, this means that the asymptotic complexity of Algorithm 11 is equivalent to 4 / 3 M q (d) log 2 q.

In order to reduce the cost of the Graeffe transforms, it is relevant to choose l such that M 2 m -l -η -1 < d M 2 m-l-η for some small η 2, which is to be determined in practice as a function of d and q. In this way more time is spent in multi-point evaluations. For the multi-point evaluations in step 4, one may use M FFTs of size 2 m-l for small values of M , or appeal to Bluestein's chirp transform [START_REF] Bluestein | A linear filtering approach to the computation of discrete Fourier transform[END_REF].

TIMINGS

In this section we report on timings for the algorithms presented above. We use a platform equipped with an Intel Core T M i7-4770 CPU at 3.40 GHz, and 8 GB of 1600 MHz DDR3 . It runs the Jessie GNU Debian operating system with a Linux kernel version 3.14 in 64 bit mode. We compile with GCC [12] version 4.9.1.

We use revision 9738 of Mathemagix. For the sake of comparison to other software, we installed the NTL library version 8.0.0 [START_REF] Shoup | NTL: A Library for doing Number Theory[END_REF] (configured to benefit from GMP [START_REF] Granlund | the GNU multiple precision arithmetic library[END_REF] version 6.0.0), and Flint version 2.4.4 [START_REF] Hart | FLINT: Fast Library for Number Theory[END_REF]. For our benchmark family we simply build polynomials f of degree d from random pairwise distinct roots.

Table 1 shows timings for the FFT prime field F q = F p with p = 7 • 2 26 + 1. The row NTL corresponds to the function FindRoots, which contains an optimization with respect to Algorithm 1 with χ = 2: in fact, the polynomials g in step 2 are taken of degree 1 (see [START_REF] Shoup | A fast deterministic algorithm for factoring polynomials over finite fields of small characteristic[END_REF] for details). We implemented the same optimization in our versions of Cantor-Zassenhaus in Mathemagix. The row Flint cor-responds to the function nmod_poly_factor_equal_deg, that does not take advantage of this optimization, which mainly explains a loss of efficiency. The rows "Alg. 1" to "Alg. 11" correspond to our own implementations in Mathemagix of the above algorithms (see files algebramix/polynomial_modular_int.hpp and algebramix/bench/polynomial_modular_int_bench.cpp). Our modified version of Cantor-Zassenhaus' algorithm, with χ > 2, does not reveal to be of practical interest for this prime size.

Concerning the deterministic algorithms, let us precise that we take π

1 = ••• = π m-1 = 2 and π m = M in Algorithm 2.
In addition, in our implementation of Algorithm 4, when g and i are small, for efficiency reasons, we compute h i-1 rem g using binary powering instead of simultaneous remainders. These deterministic methods turn out to be quite competitive.

Our Table 2 is similar to Table 1 for the FFT prime field F q = F p with p = 5 • 2 55 + 1. Nevertheless NTL does not support this larger prime within its type zz_p. This larger prime starts to reveal the interest in our modified version of Cantor-Zassenhaus with χ > 2. The speed-up measured with the modified version even more increases with larger primes: With p = 7 • 2 120 + 1, it reaches a factor 1.6 in size 2 14 . Graeffe transforms as in Algorithm 8 is not very competitive. However, in final, it is satisfactory to observe that our Algorithm 11, exploiting the tangent transform, gains by an order of magnitude over other existing methods in both tables. Coming back to our initial motivation for sparse polynomial interpolation, let us mention that plugging Algorithm 11 into our implementations reported in [START_REF] Van Der Hoeven | Sparse polynomial interpolation in practice[END_REF] leads to quite good speed-ups. The total time for Example 1 of [START_REF] Van Der Hoeven | Sparse polynomial interpolation in practice[END_REF], concerning the product of random sparse polynomials, decreases from 12 s to 7.6 s with the "coefficient ratios" technique. In fact, the time spent in root finding decreases from 50 % to 8 % during the sole determination of the support.

d
Example 2 of [START_REF] Van Der Hoeven | Sparse polynomial interpolation in practice[END_REF] concerns the sparse interpolation of the determinant of the generic n × n matrix. For n = 8, the time for the "Kronecker substitution" technique with a prime of 68 bits decreases from 95 s to 43 s. The time elapsed in root finding during the sole determination of the support drops from 70 % to 20 %. Thanks to additional optimizations, the "coefficient ratios" technique now runs this example in 46 s.

 logarithms of the roots of h m . 5. For i from m down to l + 1 do a. Replace E by the concatenation of [(e + j χ) / 2| e ∈ E] for j ∈ {0, 1}. b. If E has cardinality more than d then remove the elements e from E such that h i-1 (ζ e) = / 0. 6. If l = 0 then return {ζ eτ | e ∈ E }. 7. Compute E 1

Table 1 .

 1 Randomized root finding in degree d over Fp, with p = 7 • 2 26 + 1, time in seconds.

	+ 1	2 8	2 9	2 10	2 11	2 12	2 13	2 14	2 15	2 16	2 17	2 18
	NTL	0.0065 0.015 0.037 0.090 0.20	0.48	1.1	2.5	5.4	12	26
	Flint	0.0093 0.025 0.065 0.17	0.45	1.2	3.0	8.0	22	63	250
	Alg. 1, Cantor-Zassenhaus, χ = 2	0.010	0.020 0.043 0.092 0.20	0.42	0.90	1.9	4.0	8.6	18
	Alg. 1, Cantor-Zassenhaus, modified 0.009	0.018 0.036 0.091 0.20	0.41	0.96	2.1	4.4	10	22
	Alg. 2, Mignotte-Schnorr	0.063	0.12	0.25	0.51	1.0	2.0	3.9	7.8	15	31	62
	Alg. 4, Moenck	0.025	0.051 0.10	0.21	0.44	0.91	1.9	3.9	8.2	17	35
	Alg. 8, Graeffe, randomized	0.003	0.006 0.021 0.074 0.25	0.70	1.7	3.6	7.5	15	29
	Alg. 11, Graeffe, heuristic	0.001	0.002 0.003 0.007 0.015 0.031 0.065 0.13	0.24	0.59	1.4
	d + 1	2 8	2 9	2 10	2 11	2 12	2 13	2 14	2 15	2 16	2 17	2 18
	Flint	0.032 0.084 0.22	0.58	1.5	3.8	9.5	23	58	150	470
	Alg. 1, Cantor-Zassenhaus, χ = 2	0.035 0.075 0.16	0.37	0.78	1.7	3.8	8.6	19	41	90
	Alg. 1, Cantor-Zassenhaus, modified 0.025 0.055 0.11	0.28	0.63	1.3	3.1	7.0	14	33	76
	Alg. 2,	0.22	0.46	0.96	2.0	4.2	8.7	18	39	83	180	370
	Alg. 4, Moenck	0.89	0.18	0.37	0.76	1.6	3.4	7.2	16	33	72	150
	Alg. 8, Graeffe, randomized	0.011 0.038 0.14	0.56	1.1	2.6	6.8	16	40	92	210
	Alg. 11, Graeffe, heuristic	0.005 0.007 0.016 0.032 0.067 0.14	0.29	0.61	1.3	2.7	5.6

Table 2 .

 2 Randomized root finding in degree d over Fp, with p = 5 • 2 55 + 1, time in seconds.

Acknowledgements

Bruno Grenet was partially supported by a LIX-Qualcomm -Carnot postdoctoral fellowship.