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The mathematical models employed in the risk assessment of complex, safety-critical 
engineering systems cannot capture all the characteristics of the system under analysis, due 
to: (i) the intrinsically random nature of several of the phenomena occurring during system 
operation (aleatory uncertainty); (ii) the incomplete knowledge about some of the 
phenomena (epistemic uncertainty). In this work, we consider the model of a twin-jet 
aircraft, which includes twenty-one inputs and eight outputs. The inputs are affected by 
mixed aleatory and epistemic uncertainties represented by probability distributions and 
intervals, respectively. Within this context, we address the following issues: (A) improvement 
of the input uncertainty models (i.e., reduction of the corresponding epistemic uncertainties) 
based on experimental data; (B) sensitivity analysis to rank the importance of the inputs in 
contributing to output uncertainties; (C) propagation of the input uncertainties to the 
outputs; (D) extreme case analysis to identify those system configurations that prescribe 
extreme values of some system performance metrics of interest (e.g., the failure probability). 
All the tasks are tackled and solved by means of an efficient combination of: (i) Monte Carlo 
Simulation (MCS) to propagate the aleatory uncertainty described by probability 
distributions; (ii) Genetic Algorithms (GAs) to solve the numerous optimization problems 
related to the propagation of epistemic uncertainty by interval analysis, and (iii) fast-
running Artificial Neural Network (ANN) regression models to reduce the computational 
time related to the repeated model evaluations required by uncertainty and sensitivity 
analyses. 

Nomenclature 
S = mathematical model of the system  
ninp = number of model input parameters 
pi = i-th input parameter (i = 1, 2, …, ninp) 
p = vector of system model input parameters (p = {pi: i = 1, 2, …, ninp}) 
d = vector of system design variables 
nout = number of model output parameters 
nint = number of model intermediate variables 
hj(·) = j-th intermediate mathematical model (j = 1, 2, …, nint) 
pj = vector of input parameters to the j-th intermediate mathematical model hj(·) (j = 1, 2, …, nint) 
xj = hj(p

j) = j-th model intermediate variable (j = 1, 2, …, nint) 
x  = vector of model intermediate variables 
go = o-th model output parameter (o-th system requirement metric), go = ( )dx,of  (o = 1, 2, …, nout = 8) 

                                                           
* Assistant Professor, EDF Chair of System Science and the Energy Challenge at Supelec, Plateau du Moulon - 3 rue 
Joliot-Curie, 91192, Gif-Sur-Yvette, France, e-mail: nicola.pedroni@supelec.fr  
† Full Professor, EDF Chair of System Science and the Energy Challenge at ECP, Grande Voie des Vignes, 92295, 
Chatenay-Malabry, France, e-mail: enrico.zio@ecp.fr. Also: Department of Energy, Politecnico di Milano, Piazza 
Leonardo da Vinci, 32, 20133, Milano, Italy, e-mail: enrico.zio@polimi.it  



 
American Institute of Aeronautics and Astronautics 

 

 

2

g = f(x, d) = vector of model output parameters (vector of system requirement metrics) 
θi = internal coefficients of the probability distribution of the i-th input parameter 
np,i = number of internal coefficients of the probability distribution of the i-th input parameter 
θi,l = l-th internal coefficient of the probability distribution of the i-th input parameter (l = 1, 2, …, np,i, i = 1, 

2, …, ninp) 
( )ii

p pq i θ  = Probability Density Function (PDF) of the i-th input parameter 

( )ii

p pF i θ  = Cumulative Distribution Function (CDF) of the i-th input parameter 

lθi∆ ,  = interval of variation of θi,l (l = 1, 2, …, np,i, i = 1, 2, …, ninp) 

iθ
∆  = vector of the intervals lθi∆ ,  of variation of θi (l = 1, 2, …, np,i, i = 1, 2, …, ninp) 

( )i

p pPB i  = ( ){ }iiii

p pF i Ωθθ ∈:  = distributional p-box of the i-th input parameter 

Ωi = ∏
=

ipn

l
lθi∆

,

1
,  = space of variation of θi (case of epistemic independence) 

E[·]  = expected value 
V[·]  = variance 
P[·] = probability 
m  = mean of the Beta distribution of p1 
s2  = variance of the Beta distribution of p1 
N(·,·)  = Normal distribution 
µi  = mean of the i-th Normal distribution 
σi

2  = variance of the i-th Normal distribution 
U[0, 1)  = uniform distribution on [0, 1) 
ai  = location parameter of the i-th Beta distribution 
bi  = scale parameter of the i-th Beta distribution 

jx
θ  = vector of the epistemically-uncertain parameters/coefficients of the inputs to hj(·) 

jx
Ω  = space of variation of jx

θ  
θ

all = vector of all the epistemically-uncertain parameters/coefficients contained in the entire system model S 

allΩ  = ∏
=

int

j

n

j

x

1

Ω  = space of variation of θall 

d

1x  = vector of real random realizations of variable x1 

nd1 = size of vector d

1x  

( ) oo
gw

81
max,

≤≤
=dp   = system worst-case requirement metric 

( )[ ]dpp ,1 wEJ =   = expected value of ( )dp,w  

( )[ ]0,12 <−= dpwPJ  = system failure probability 

( )1

,1ˆ xF dnx   = empirical CDF of x1 built on nd realizations 

( ) ( )1,
1 xF x

nKS dα   = Kolmogorov-Smirnov upper bound on ( )1

,1ˆ xF dnx , with statistical confidence 100(1 ‒ α)% 

( ) ( )1,
1 xF x

nKS dα   = Kolmogorov-Smirnov lower bound on ( )1

,1ˆ xF dnx , with statistical confidence 100(1 ‒ α)% 

D(α, nd)  = one-sample Kolmogorov-Smirnov critical statistic for intrinsic hypotheses for confidence level 
100·(1 ‒ α)% and sample size nd 

1x

nd
Ω  = space of variation of jx

θ , improved by means of nd empirical data 

Q = generic output quantity of interest 
Up(Q) = amount of epistemic uncertainty contained in Q 
φi = generic epistemically-uncertain ‘factor’ in the uncertainty model of pi 
φi

*  = generic constant value to which φi can be fixed 
φi

k = k-th value to which φi can be fixed (during computation of global sensitivity index) (k = 1, 2, …, Ne) 
Up(Q|φi = φi

*) = amount of epistemic uncertainty in Q when φi = φi
* 

[ ]
inpnii

all

i θθθθθθ ...,,,...,,, 1121 −−− =  = vector of all the epistemically-uncertain parameters/coefficients except θi 
all

i−Ω  = space of variation of all

i−θ  
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Eφi[Up(Q|φi)] = expected amount of epistemic uncertainty in Q when φi is fixed to a constant 
Si(Q) = sensitivity (index) of (the epistemic uncertainty in) Q to (the epistemic uncertainty in) pi 
Ap(xj) = area contained in the distributional p-box of xj 

( )j

x xPB j  = ( ){ }jjjj xxx

j

x xF Ωθθ ∈:  = distributional p-box of xj 

( )j

x xF j  = extreme upper CDF bounding the distributional p-box of xj 

( )j

x xF j  = extreme lower CDF bounding the distributional p-box of xj 

Ntrain = size of the training set of an Artificial Neural Network (ANN) 
xt = {x1,t, x2,t, …, xj,t, …, tnint

x , } = t-th input pattern of the training set of an ANN (t = 1, 2, …., Ntrain) 

gt = {g1,t, g2,t, ..., gl,t, ..., tnout
g , } = t-th output pattern of the training set of an ANN (t = 1, 2, …, Ntrain) 

( ){ }traintttrain NtD ...,,2,1,, == gx  = training set of an Artificial Neural Network 

nh = number of hidden layers in an ANN 
Nval = size of the validation set of an ANN 

( ){ }valttval NtD ...,,2,1,, == gx  = validation set of an ANN 

Ntest = size of the test set of an ANN 
( ){ }testtttest NtD ...,,2,1,, == gx   = test set of an ANN 

R2 = coefficient of determination 
pi* = generic constant value to which pi can be fixed 

( ) ( ){ }jjjjj xx

i

x

j

x

ij

x pxFpxPB Ωθθ ∈= :*,*    = distributional p-box of xj obtained keeping pi = pi* 

( )*

ij

x pxF j  = extreme lower CDF bounding the distributional p-box of xj obtained keeping pi = pi* 

( )*

ij

x pxF j  = extreme upper CDF bounding the distributional p-box of xj obtained keeping pi = pi* 

overx

p

j

i

A ,
*p

 = area of overlap between the p-box of xj built using the original uncertainty models of p and the one built 

keeping pi = pi* 
j

i

x

p*ε  = (fractional) lack of overlap between the p-box of xj built using the original uncertainty models of p and 

the one built keeping pi = pi* 
],[ 11 JJ  = range of J1 

],[ 22 JJ  = range of J2 

[ 1J , 1J ]ANN  = range of J1 obtained by replacing the original system model by an ANN model 

[
2J , 2J ]ANN = range of J2 obtained by replacing the original system model by an ANN model 

)](),([ *

1

*

1 ii pJpJ   = range of J1 obtained setting pi = pi* 

)](),([ *

2

*

2 ii pJpJ  = range of J2 obtained setting pi = pi* 
overJ

pi

L ,1

*p
  = length of overlap between the intervals ],[ 11 JJ  and )](),([ *

1

*

1 ii pJpJ  

overJ

pi

L ,2

*p
 = length of overlap between the intervals ],[ 22 JJ  and )](),([ *

2

*

2 ii pJpJ  

1

*

J

pi

ε   = (fractional) lack of overlap between the intervals ],[ 11 JJ  and )](),([ *

1

*

1 ii pJpJ  

2

*

J

pi

ε  = (fractional) lack of overlap between the intervals ],[ 22 JJ  and )](),([ *

2

*

2 ii pJpJ  

Np* = number of constant values pi* selected in the sensitivity analysis 
*

,kip  = k-th value of pi* (k = 1, 2, …, Np*) 

Ω1,red  = reduced (improved) space of variation for the epistemically-uncertain parameters/coefficients of p1 
Ω5,red  = reduced (improved) space of variation for the epistemically-uncertain parameters/coefficients of p5 
Ω12,red  = reduced (improved) space of variation for the epistemically-uncertain parameters/coefficients of p12 
Ω21,red = reduced (improved) space of variation for the epistemically-uncertain parameters/coefficients of p21 

all

redΩ  = reduced (improved) space of variation for θ
all 

all

low,1θ  = realization of θall for which J1 = 
1J  
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all

up,1θ  = realization of θall for which J1 = 1J  
all

low,2θ  = realization of θall for which J2 = 2J  
all

up,2θ  = realization of θall for which J2 = 2J  

Ri(Q) = sensitivity rank of parameter pi evaluated according to indicator Q = xj, J1, J2 
Racc,i = Ri(J1) + Ri(J2) = accumulated sensitivity ranking of pi evaluated as the sum of the rankings of J1 and J2 
 

I.  Introduction 

HE quantitative analyses of the phenomena occurring in safety-critical (e.g., civil, nuclear, aerospace and 

chemical) engineering systems are based on mathematical models1-3. In practice, not all the characteristics of the 

system under analysis can be captured in the model: thus, uncertainty is present in both the values of the model 

input parameters and hypotheses. This is due to: (i) the intrinsically random nature of several of the phenomena 

occurring during system operation (aleatory uncertainty); (ii) the incomplete knowledge about some of the 

phenomena (epistemic uncertainty). Such uncertainty propagates within the model and causes uncertainty in its 

outputs: the characterization and quantification of this output uncertainty is of paramount importance for making 

robust decisions in safety-critical applications4-6. Furthermore, the identification by sensitivity analysis of the model 

parameters and hypotheses that contribute the most to the output uncertainty plays a fundamental role in driving 

resource allocation for uncertainty reduction7-10. 

In this work, we consider the mathematical (black-box) model of a twin-jet aircraft described in Ref. 11, which 

includes twenty-one inputs and eight outputs. The inputs are uncertain and classified into three categories: (I) purely 

aleatory parameters modeled as random variables with fixed functional forms and known coefficients; (II) purely 

epistemic parameters modeled as fixed but unknown constants that lie within given intervals (contrary to Bayesian-

based approaches such intervals are not probabilistic, i.e., they do not define a uniform probability density function); 

(III) mixed aleatory and epistemic parameters modeled as distributional probability boxes (p-boxes), i.e., as random 

variables with fixed functional form but epistemically-uncertain (non probabilistic interval) coefficients. Within this 

context, we tackle the following issues raised by the NASA Langley Multidisciplinary Uncertainty Quantification 

Challenge (MUQC)11: (A) improvement of the input uncertainty models (i.e., reduction of the corresponding 

epistemic uncertainties) based on experimental data; (B) sensitivity analysis to rank the importance of the inputs in 

contributing to output uncertainties; (C) propagation of the input uncertainties to the outputs; (D) extreme case 

analysis to identify the epistemic realizations that prescribe extreme values of two performance metrics of interest 

(i.e., the mean of the so-called worst-case requirement metric and the system failure probability). 

T
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In more detail, in task (A) the challengers provide ‘real’ empirical realizations of one of the model outputs; on 

the basis of this information the uncertainty models of five input parameters belonging to categories (II) and (III) 

have to be improved (i.e., the corresponding epistemic uncertainties reduced). This issue is here tackled within a 

constrained optimization framework. First, a free p-box (i.e., a couple of bounding upper and lower cumulative 

distribution functions-CDFs) for the output of interest is built by means of the empirical data provided: to this aim, a 

non-parametric approach based on the Kolmogorov-Smirnov (KS) confidence limits is considered12-13. Then, the 

improved (i.e., reduced) uncertainty model (in practice, range or space of variation) of the epistemically-uncertain 

parameters/coefficients is optimally determined as the one producing a distributional p-box for the output with the 

following (possibly conflicting) properties: (i) it contains the maximal ‘amount’ of epistemic uncertainty (here 

quantified by the area included between the corresponding upper and lower CDFs)14-15; (ii) it is contained by the 

non-parametric, free p-box constructed on the basis of data. Notice that the resulting reduced uncertainty model has 

the following characteristics: (i) it might not be a connected set; (ii) contrary to Bayesian-based approaches, it is not 

a probabilistic set. In this paper, only an empirical map of discrete sampling points belonging to the reduced set is 

generated, rather than a rigorous, mathematically defined set in the continuum of the epistemic uncertainty space. 

The task of sensitivity analysis (B) is here tackled by resorting to two different conceptual settings9. In the first 

(namely, ‘factor prioritization’) we rank the category (II) and (III) input parameters according to degree of reduction 

in the output epistemic uncertainty which one could hope to obtain by refining their (epistemic) uncertainty models, 

i.e., by reducing the epistemic uncertainty range. In the second (namely, ‘factor fixing’) we look for those 

parameters that can be assumed constant without affecting the output of interest. In order to address the first issue in 

the ‘factor prioritization’ setting, a novel sensitivity index is introduced in analogy with variance-based Sobol 

indices9, 16-19: in this view, the most important category (II) and (III) parameters in the ranking are those that give 

rise to the highest expected reduction in the amount of epistemic uncertainty contained in the outputs of interest 

when the corresponding epistemically-uncertain parameters/coefficients are considered fixed constant values (i.e., 

when the amount of their epistemic uncertainty is reduced to zero). Notice that the ‘amount’ of epistemic uncertainty 

is here defined in different ways according to the different requests by the challengers: in subproblem (B.1) we 

quantify it by the area included between the upper and lower CDFs of the model outputs of interest, whereas in 

subproblems (B.2) and (B.3) the challengers define it as the length of the intervals of two relevant performance 

metrics (i.e., the mean of the worst case requirement metric and the system failure probability, respectively). Instead, 
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in the ‘factor fixing’ setting sensitivity analysis aims at finding those parameters that minimally affect the outputs, 

i.e., that can be assumed to take on a fixed constant value without incurring in significant ‘error’: in this context, we 

quantify the ‘error’ as the mismatch (i.e., lack of overlapping) between the output quantities of interest obtained 

using the original uncertainty models and those produced by fixing one of the parameters to a constant value (again, 

depending on the subproblem the quantites of interest may be represented by the p-box distributions of the model 

output variables or by the intervals describing the epistemic uncertainty in the mean of the worst case requirement 

metric and in the system failure probability). This problem is solved within an optimization framework. In 

particular, for each parameter we exhaustively explore its entire range of variation to find the corresponding 

(constant) values that give rise to the maximal mismatch (i.e., maximal error) between the output quantities of 

interest. If such maximal error is sufficiently small (e.g., lower than 1% in the present paper), then there exists no 

realization of the parameter under analysis that affects appreciably the output: in other words, the parameter can be 

considered not important and can be thus neglected in the system model. In all the tasks related to sensitivity 

analysis, the original (black-box) mathematical model of the system is replaced by a fast-running, surrogate 

regression model based on Artificial Neural Networks (ANNs), in order to reduce the computational cost associated 

to the analysis20-25: in particular, the computational time is reduced by about three orders of magnitude. 

Finally, tasks (C) and (D) are here tackled together by solving the (optimization) problem of identifying the 

values of the epistemically-uncertain coefficients of the category (II) and (III) parameters that yield the smallest and 

largest values (i.e., the ranges) of the two performance metrics defined above26-29; during the optimization search the 

(aleatory) uncertainty described by probability distributions is propagated by standard Monte Carlo Simulation 

(MCS)30-31. 

Finally, notice that all the tasks involved in the challenge require the solution of several nonlinear, constrained 

optimization problems, which are efficiently tackled by resorting to heuristic approaches (i.e., evolutionary 

algorithms): such methods deeply explore the search space by evaluating a large number (i.e., a population) of 

candidate solutions in order to find a near-optimal solution32-33. Notice that the population-based nature of such 

evolutionary algorithms allows an efficient exploration and characterization of abrupt and disconnected search 

spaces, which is the case of the present challenge. 

The remainder of the paper is organized as follows. In Section II, the main characteristics of the mathematical 

system model under analysis are outlined; in Section III, the NASA Langley Multidisciplinary Uncertainty 
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Quantification Challenge (MUQC) Problems is addressed: the approaches adopted to tackle the problems of are 

described in detail and the results obtained are reported; finally, conclusions are drawn in the last Section. 

II.  The System 
In Section II.A, we detail the mathematical model used to describe the dynamics of the Generic Transport Model 

(GTM), a remotely operated twin-jet aircraft developed by NASA Langley Research Center; in Section II.B, we 

characterize the aleatory and epistemic uncertainties affecting the input parameters to the model11. 

A. The Mathematical Model 
We consider the mathematical model S that is employed to evaluate the performance of the multidisciplinary 

system under investigation and evaluate its suitability. Let p = {pi: i = 1, 2, …, ninp = 21} be a vector of ninp = 21 

parameters in the system model whose value is uncertain and d a vector of design variables whose value can be set 

by the analyst (in the following, it is kept constant). Furthermore, let g = {go: o = 1, 2, …, nout = 8} be a set of nout = 

8 requirement metrics used to evaluate the system's performance. The values of g depends on both p and d. The 

system is considered requirement compliant if it satisfies the set of inequality constraints g < 0. For a fixed value of 

the design variables d, the set of p-points where g < 0 is called the safe domain, while its complement set is called 

the failure domain11.  

The relationship between the inputs p and d, and the output g is given by several functions, each representing a 

different subsystem or discipline. In particular, the function prescribing the output vector g = {go: o = 1, 2, …, nout = 

8} of the multidisciplinary system is given by 

 ( )dx,oo fg = , o = 1, 2, …, nout = 8 (1) 

where x = {xj: j = 1, 2, …, nint = 5} is a set of intermediate variables whose dependence on p is given by 

  ( ) ( )1

15432111 ,,,, phppppphx ==  (2) 

    ( ) ( )2

210987622 ,,,, phppppphx ==  (3) 

       ( ) ( )3

3151413121133 ,,,, phppppphx ==  (4) 

       ( ) ( )4

4201918171644 ,,,, phppppphx ==  (5) 

                         ( ) ( ) 21

5

52155 phphx === p . (6) 
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For the sake of compact notation, in (2)-(6) we call pj the vector of the inputs to function hj(·), j = 1, 2, …, 5: for 

example, p3 = {pi: i = 11, 12, …, 15} in (4). Input parameters p = {pi: i = 1, 2, …, ninp = 21} are affected by 

uncertainties whose nature is characterized in the following Section II.B. 

B. Aleatory and Epistemic Uncertainties in the Model Input Parameters 
The uncertain parameters p = {pi: i = 1, 2, …, ninp = 21} are classified into three categories (Table 1): (I) purely 

aleatory parameters modeled as random variables with probability distributions of fixed functional form ( )ii

p pq i θ  

(resp., Cumulative Distribution Function-CDF ( )ii

p pF i θ ) and known coefficients θi = {θi,l: l = 1, 2, …, np,i, i = 1, 2, 

…, 21}, where θi,l is the l-th internal coefficient of the aleatory probability distribution ( )ii

p pq i θ  of the i-th 

parameter and np,i is the total number of internal coefficients of pi: this probability model is irreducible (see 

parameters p3, p9, p11 and p19 in Table 1); (II) purely epistemically-uncertain parameters modeled as fixed but 

unknown constants that lie within given intervals 
ip∆ : these intervals are reducible as new information (e.g., data) 

about the corresponding parameter is gathered (see parameters p2, p6, p12 and p16 in Table 1); (III) mixed aleatory 

and epistemic parameters modeled as distributional probability boxes (p-boxes), i.e., as random variables with 

probability distributions of fixed functional form ( )ii

p pq i θ  (resp., CDF ( )ii

p pF i θ ) but epistemically-uncertain 

coefficients θi. In this case, coefficients θi are assumed to lie in bounded intervals 
iθ

∆  = { lθi∆ , : l = 1, 2, …, np,i, i = 1, 

2, …, 21}, where lθi∆ ,  is the range of the l-th internal coefficient of the aleatory probability distribution of the i-th 

parameter: again, these intervals can be reduced (see parameters p1, p4, p5, p7, p8, p10, p13, p14, p15, p17, p18, p20 and p21 

in Table 1). The distributional p-box for a generic parameter pi is indicated as ( )i

p pPB i  = ( ){ }iiii

p pF i Ωθθ ∈:  and 

represents in practice a bundle of probability distributions with the same shape (e.g., exponential, beta, normal, …) 

but different internal coefficients (e.g., different values of the mean, variance, …). By way of example and only for 

illustration purposes, Figure 1 shows four CDFs belonging to the distributional p-box ( )1
1 pPBp  of parameter p1 

(dashed lines); also, the figure reports the extreme upper and lower CDFs, ( )1
1 pF p  = ( ){ }1111 :max 1

11

Ωθθ
Ωθ

∈
∈

pF p  and 

( )1
1 pF p  = ( ){ }1111 :min 1

11

Ωθθ
Ωθ

∈
∈

pF p , ℜ∈∀ 1p , bounding the distributional p-box ( )1
1 pPBp  (solid lines). It is worth 

mentioning that when the uncertainty in a parameter is represented by a p-box, some quantities of interest, such as 

percentiles or exceedance probabilities, are not represented by single point values, but rather by intervals. For 
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example, with reference to Figure 1, the probability P[p1 > p1* = 0.9] that parameter p1 exceeds p1* = 0.9 is given by 

( ) ( )[ ]*][,*][ 1

1

1

1 11 pFpF pp −−  = [0.0072, 0.4318]. 

Notice that if the internal coefficients θi,l, l = 1, 2, …, np,i, of the distribution ( )ii

p pq i θ  of parameter pi are 

epistemically-independent (i.e., their uncertainty models are built using independent information sources, e.g., 

different experts, observers or data sets), then the entire (joint) space of variation Ωi of the coefficients vector θi is 

given by the Cartesian product of the intervals lθi∆ , , i.e., Ωi = ∏
=

ipn

l
lθi∆

,

1
, .2, 34-42 For example, referring to Table 1, the 

space of variation Ω1 of the internal coefficients θ1 = [m, s2] of the Beta distribution ( )11
1 θpq p  = Beta(m, s2) of 

parameter p1 is given by Ω1 = 2,11,1 θθ
∆∆ ×  = 2sm ∆∆ ×  = [3/5, 4/5] x [1/50, 1/25]. For the sake of compact notation, in 

the following we call jx
θ  the vector of the epistemically-uncertain parameters/coefficients related to the input vector 

pj to function hj(·) and jx
Ω  the corresponding (joint) space of variation. For example, with reference to x1 = h1(p

1) = 

h1(p1, p2, p3, p4, p5), we have 1xθ  = [θ1, p2, θ4, θ5] = [m, s2, p2, µ4, σ4
2, µ5, σ5

2, ρ] and 1xΩ  = ∏
≠=

5

3,1 ii
iΩ  = m∆  x 2s

∆  x 
2p∆  

x 
4µ∆  x 2

4σ
∆  x 

5µ∆  x 2
5σ

∆  x ρ∆ . Finally, the vector of all the epistemically-uncertain parameters/coefficients 

contained in the entire system model S is indicated as θall = [ 1xθ , 2x
θ , 3x

θ , 4x
θ , 5x

θ ] and the corresponding (joint) 

space of variation as allΩ  = ∏
=

5

1j

xjΩ . 
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  Uncertainty model 
Symbol Category Aleatory component Epistemic component 

p1 III ( )11
1 θpq p  = Beta(m, s2), m = E[p1], s

2 = V[p1] m ∈  m∆  = [3/5, 4/5], s2 ∈  2s
∆  = [1/50, 1/25] 

p2 II / [ ]1,0
2

=p∆  

p3 I ( )33
3 θpq p  = U[0, 1) / 

p4, p5 III 

( )44
4 θpq p  = N(µ4, σ4

2), µ4 = E[p4], σ4
2 = V[p4] 

( )55
5 θpq p  = N(µ5, σ5

2), µ5 = E[p5], σ5
2 = V[p5] 

Correlation coefficient: ρ 

µ4, µ5 ∈  
54

, µµ ∆∆  = [‒5, +5] 

σ4
2, σ5

2 ∈  2
5

2
4

,
σσ
∆∆  = [1/400, 4] 

|ρ| ≤ 1, i.e., ρ ∈  ρ∆  = [-1, 1] 

p6 II / [ ]1,0
6

=p∆  

p7 III ( )77
7 θpq p  = Beta(a7, b7) a7 ∈  

7a∆  = [0.982, 3.537], b7 ∈  
7b∆  = [0.619, 1.080] 

p8 III ( )88
8 θpq p  = Beta(a8, b8) a8 ∈  

8a∆  = [7.450, 14.093], b8 ∈  
8b∆  = [4.285, 7.864] 

p9 I ( )99
9 θpq p  = U[0, 1) / 

p10 III ( )1010
10 θpq p  = Beta(a10, b10) a10 ∈  

10a∆  = [1.520, 4.513], b10 ∈  
10b∆  = [1.536, 4.750] 

p11 I ( )1111
11 θpq p  = U[0, 1) / 

p12 II / [ ]1,0
12

=p∆  

p13 III ( )1313
13 θpq p  = Beta(a13, b13) a13 ∈  

13a∆  = [0.412, 0.737], b13 ∈  
13b∆  = [1.000, 2.068] 

p14 III ( )1414
14 θpq p  = Beta(a14, b14) a14 ∈  

14b∆  = [0.931, 2.169], b14 ∈  
14b∆  = [1.000, 2.407] 

p15 III ( )1515
15 θpq p  = Beta(a15, b15) a15 ∈  

15b∆  = [5.435, 7.095], b15 ∈  
15b∆  = [5.287, 6.954] 

p16 II / [ ]1,0
16

=p∆  

p17 III ( )1717
17 θpq p  = Beta(a10, b10) a17 ∈  

17b∆  = [1.060, 1.662], b17 ∈  
17b∆  = [1.000, 1.488] 

p18 III ( )1818
18 θpq p  = Beta(a10, b10) a18 ∈  

18a∆  = [1.000, 4.266], b18 ∈  
18b∆  = [0.553, 1.000] 

p19 I ( )1919
19 θpq p  = U[0, 1) / 

p20 III ( )2020
20 θpq p  = Beta(a20, b20) a20 ∈  

20a∆  = [7.530, 13.492], b20 ∈  
20b∆  = [4.711, 8.148] 

p21 III ( )2121
21 θpq p  = Beta(a21, b21) a21 ∈  

21a∆  = [0.421, 1.000], b21 ∈  
21b∆  = [7.772, 29.621] 

Table 1. Uncertain input parameters11. E[·] = expected value, V[·] = variance, m = mean of the Beta 
distribution of p1, s

2 = variance of the Beta distribution of p1, N(·,·) = Normal distribution, µi = mean of the i-
th Normal distribution, σi

2 = variance of the i-th Normal distribution, U[0, 1) = uniform distribution on [0, 1), 
ai = location parameter of the i-th Beta distribution, bi = scale parameter of the i-th Beta distribution 
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Figure 1. Four exemplary CDFs (dashed lines) belonging to the distributional p-box PBp1(p1) of parameter 
p1 (see Table 1); the extreme upper and lower CDFs, ( )1

1 pF p  and ( )1
1 pF p  bounding the corresponding 

distributional p-box are also shown as solid lines 
 

III.  Approaches and Solutions to the NASA Langley Multidisciplinary Uncertainty Quantification 
Challenge (MUQC) Problems 

 In the following, the approaches used to tackle the NASA Langley Multidisciplinary Uncertainty Quantification 

Challenge (MUQC) Problems are presented together with the corresponding results obtained: in particular, Sections 

III.A, III.B, III.C and III.D deals with Subproblems A (namely, Uncertainty characterization), B (namely, Sensitivity 

Analysis), C (namely, Uncertainty propagation) and D (namely, Extreme case analysis). 

A. Subproblem (A): Uncertainty Characterization 
In this subproblem, the main task of interest is as follows:11 using a vector of observations of x1 (2) (provided by 

the challengers), improve the uncertainty models of category (II) and (III) parameters p1, p2, p4 and p5, i.e., reduce 

the corresponding epistemic uncertainty. Notice that the observations of x1 (2) correspond to its ‘true uncertainty 

model’, i.e., a model where p1 is a well defined Beta random variable, p2 is a constant and p4 and p5 are described by 

two possibly correlated Normal random variables. In Section IV.A.1, the approach adopted is illustrated in detail; in 

Section IV.A.2, the results of the application of the method to Subproblem (A) are reported. 

 
1. The Proposed Approach  

This subproblem is tackled by performing the following two main conceptual steps: 
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1) a free p-box, i.e., a couple of bounding upper and lower Cumulative Distribution Functions (CDFs) for the 

intermediate variable of interest x1 = h1(p1, p2, p3, p4, p5) (2) is built by means of a set of empirical 

observations of x1: to this aim, a non-parametric approach based on the Kolmogorov-Smirnov confidence 

limits is considered;12-13 

2) the improved (i.e., reduced) ranges of (i) the epistemically-uncertain coefficients θi of the probability 

distributions ( )ii

p pq i θ  of the category (III) input parameters pi, i = 1, 4, 5 (Table 1) and (ii) the 

epistemically-uncertain category (II) input parameter p2 (Table 1) are optimally determined as those 

producing a distributional p-box ( )1
1 xPBx  for x1 that is coherent with the data available, i.e. with the non-

parametric free p-box built at step 1. above: in particular, we look for the distributional p-box containing all 

the CDFs of x1 that are bounded by the non-parametric, free p-box constructed on the basis of data. 

 

 In more detail, if a vector d

1x  of nd observations of random variable x1 (2) is available, an empirical CDF 

( )1

,1ˆ xF dnx  for x1 can be constructed; however, the shape of this CDF is affected by significant “sampling 

uncertainty”, which arises because of the finiteness (and typically limitedness) of the random sample employed.12-13 

We account for this uncertainty by building the Kolmogorov-Smirnov (KS) confidence limits ( ) ( )1,
1 xF x

nKS dα  and 

( ) ( )1,
1 xF x

nKS dα  to provide upper and lower bounds, respectively, to the empirical CDF ( )1

,1ˆ xF dnx  with a statistical 

confidence of 100·(1 ‒ α)%:43-44 

 
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )d

xx

nKS

x

d

xx

nKS

x

nDxFxFxF

nDxFxFxF

d

d

,ˆ,0max

,ˆ,1min

11,1

11,1

111

111

α

α

α

α

−==

+==
 (7) 

where D(α, nd) is the one-sample Kolmogorov-Smirnov critical statistic for intrinsic (two-sided) hypotheses 

testing for confidence level 100·(1 ‒ α)% and sample size nd. “Analogous to simple confidence intervals around a 

single number, these are bounds on a statistical distribution as a whole. As the number of samples becomes very 

large, these confidence limits would converge to the empirical distribution function (although the convergence is 
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rather slow)”13.‡ It is worth recalling that the critical statistic D(α, nd) is computed as ( ) dnK α , where ( )αK  is 

the (1 ‒ α)-th quantile of the Kolmogorov distribution K, i.e., the value ( )αK  such that ( )[ ] αα −=≤ 1KKP .43-44 

Tabled values of D(α, nd) can be found in Ref. 45 for α = 0.1, 0.05, 0.02 and 0.01, and nd = 1, 2, …, 100: these 

values are the result of a synthesis, development and improvement of the research work by Refs. 43, 44 and 46 and 

are still in use today (such values are available in many softwares, e.g., MATLAB®, that is used in the present 

work). 

 Given the empirical bounds ( ) ( )1,
1 xF x

nKS dα  and ( ) ( )1,
1 xF x

nKS dα  (7) on x1 = h1(p1, p2, p3, p4, p5) (2), the improved 

uncertainty models (i.e., the reduced sets describing the epistemic uncertainty) of the corresponding category (II) 

and (III) input parameters p1, p2, p4 and p5 could be rigorously obtained by exhaustively searching for all the 

possible combinations of values of the epistemically-uncertain coefficients (θi, i = 1, 4, 5) and parameters (p2) that 

produce a distributional p-box ( )1
1 xPBx  for x1 coherent with the available data, i.e., with the empirical bounds 

( ) ( )1,
1 xF x

nKS dα  and ( ) ( )1,
1 xF x

nKS dα  (7). In other words, we should look for the distributional p-box ( )1
1 xPBx  containing all 

the CDFs of x1 that are bounded everywhere by the non-parametric, free p-box [( ) ( )1,
1 xF x

nKS dα , ( ) ( )1,
1 xF x

nKS dα ] (7) 

constructed on the basis of data.14-15 This amounts to solving the following problem of feasible region identification: 

 
[ ] [ ] [ ]

( ) ( ) ( ) ( ) ( ) ( ) ℜ∈∀≤=≤

∈=∈=∈∈=∈

11,1542111,

5

2

5554

2

44421

2

1

,,,,

:,,,,,,,,,i.e.,allFind

11111

2

11

xxFxFpxFxF

∆psm
x

nKS

xxxx

nKS

p

xx

dd αα

ρσµρσµ

θθθθ

ΩθΩθΩθΩθ
 (8) 

 where ( )54211 ,,,1 θθθ pxF x  indicates the CDF of x1 = h1(p1, p2, p3, p4, p5) (2) obtained when the (epistemically-

uncertain) internal coefficients of the probabability distributions of the corresponding category (III) input parameters 

p1, p4 and p5 and category (II) input parameter p2 are fixed to constant values within their ranges Ω1, Ω4, Ω5 and 
2p∆ , 

respectively. The subset 1x

nd
Ω  of 1xΩ  ‒ i.e., the set containing all the values of 1xθ  ∈  1xΩ  for which ( ) ( )1,

1 xF x

nKS dα  ≤ 

( )54211 ,,,1 θθθ pxF x  = ( )11

1

xx xF θ  ≤ ( ) ( )1,
1 xF x

nKS dα , ℜ∈∀ 1x  ‒ represents the requested feasible region, i.e., the 

improved, reduced uncertainty model for parameters 1xθ  = [θ1, p2, θ4, θ5] = [m, s2, p2, µ4, σ4
2, µ5, σ5

2, ρ]. With respect 

                                                           
‡ It is worth mentioning that similar confidence bounds on x1 could be obtained also by well-known resampling 
techniques (such as bootstrap) that are commonly used to “build confidence” in statistical estimates and to quantify 
the effect of sampling uncertainty (in particular, in presence of small-sized datasets). This has been verified by the 
authors also in the present case, but not shown here for brevity sake. 
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to that, it is very important to remember that 1xnd
Ω  is found using a single data set d

1x , which introduces an epistemic 

dependence between the values that θ1, p2, θ4 and θ5 may assume: thus, differently from the initial 1xΩ , in general 

1x

nd
Ω  cannot be expressed as the Cartesian product of the separate ranges of variation of θ1, p2, θ4 and θ5. In passing, 

also notice that from a strictly mathematical viewpoint, solving problem (8) is equivalent to finding all the CDFs 

( )54211 ,,,1 θθθ pxF x  that result in a p-value pval larger than or equal to α in a KS statistical test with the empirical 

CDF ( )1

,1ˆ xF dnx  constructed with one sample d

1x  of size nd. In particular, we test the “null hypothesis” that sample 

d

1x  of size nd comes from distribution ( )54211 ,,,1 θθθ pxF x : the corresponding test statistic is then the well-known 

Kolmogorov-Smirnov statistic ( ) ( ) ( )542111

, ,,,ˆmax 11

1

θθθ pxFxFnD xnx

xd
d −=  (i.e., the maximal ‘vertical’ distance 

between the two CDFs). It is worth recalling that the p-value pval is used in the context of “null hypothesis testing” in 

order to quantify the idea of statistical significance of evidence. More rigorously, the p-value is the probability of 

obtaining a test statistic result D at least as extreme or as close to the one that is actually observed ( ( )dnD ), 

assuming that the “null hypothesis” is true (i.e., assuming that sample d1x  actually comes from ( )54211 ,,,1 θθθ pxF x ): 

in this case, pval = P[D ≥ D(nd)]. When the p-value pval turns out to be less than a predetermined significance level α, 

then the “null hypothesis” is rejected: actually, such an outcome indicates that the observed result (i.e., the empirical 

CDF ( )1

,1ˆ xF dnx  constructed with sample d1x ) would be highly unlikely if the “null hypothesis” was true (i.e., if 

( )54211 ,,,1 θθθ pxF x  was the real underlying distribution of x1). Finally, it is worth admitting that in the present case 

also the “null hypothesis” distribution ( )54211 ,,,1 θθθ pxF x  is obtained by plain random sampling, i.e., by 

propagating N = 100000 realizations of parameters p1, p2, …, p5 through the model x1 = h1(p1, p2, p3, p4, p5) (2): thus, 

a two-sample KS test should be rigorously carried out instead of a one-sample test. However, since N is very large, 

then “null hypothesis” CDF ( )54211 ,,,1 θθθ pxF x  can be considered as the “reference” one with acceptable 

approximation: actually, as verified by the authors but not shown here for brevity sake, the results obtained in the 

two different cases are practically identical. 

 With respect to the approach proposed, it is worth mentioning that12-13: (i) KS bounds are distribution-free 

constructions, i.e., they do not require any knowledge about the real shape of the underlying distribution (which is 

the case for the intermediate variable x1 under analysis); (ii) KS limits require the assumption that the samples d1x  
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are independent and identically distributed (which is verified for variable x1); and (iii) KS limits are not certain 

bounds, but only statistical ones: the associated statistical statement is that 100·(1 ‒ α)% of the times such bounds 

are constructed from nd random samples, they will totally enclose the true distribution ( )1
1 xF x  of x1. 

 In this paper, we tackle problem (8) by resorting to a population-based, heuristic optimization technique, i.e., a 

Genetic Algorithm (GA)32,33. In the present case, the search space is represented by the entire space of variation 1xΩ  

of the epistemically-uncertain coefficients/parameters 1xθ  = [θ1, p2, θ4, θ5] and the objective function to optimize (in 

particular, to maximize) is the p-value pval obtained in a statistical KS test between the CDFs ( )54211 ,,,1 θθθ pxF x  

and ( )1

,1ˆ xF dnx : 

 
[ ] [ ] [ ]

{ } ( )[ ]{ } ( ) ( ) ( )542111

,

5

2

5554

2

44421

2

1

,,,ˆmax,maxmax

:,,,,,,,,,i.e.,Find

11

1
11

2

11

θθθ

ΩθΩθΩθΩθ

θθ
pxFxFnDnDDPpp

∆psm

xnx

xddvalval

p

xx

d

xx
−=≥==

∈=∈=∈∈=∈ ρσµρσµ
 (9) 

 In the present paper, GAs are tailored to the particular problem of identifying a feasible region: in particular, 

during the GA evolution towards the optimum, all the candidate solutions 1xθ  that are found to satisfy the property 

in (8) are stored; at the end of the search, the ensemble of the feasible solutions found and stored during the 

optimization search constitute an ‘empirical map’ of the feasible region 1x

nd
Ω . Notice that the resulting (empirical) 

reduced uncertainty model has the following characteristics: (i) it might not be a connected set; (ii) contrary to 

Bayesian-based approaches, it is not a probabilistic set. Several considerations are in order with respect to the 

proposed approach. In this subproblem, GAs are not used with the main purpose of identifying a global optimum 

(i.e., valp ): instead, their population-based nature and their genetic operators (relying on the criterion of survival of 

the fittest) are rather exploited for intelligently and thoroughly exploring the entire space of variation 1xΩ  of 1xθ  = 

[θ1, p2, θ4, θ5] in order to find as many feasible candidates as possible (and, thus, to make the ‘empirical map’ of the 

feasible region 1x

nd
Ω  as complete and reliable as possible). Although this is not the traditional intended use of GAs, 

applications in this direction can be found in the literature, see, e.g., Ref. 47. In addition, it has to be acknowledged 

that the proposed approach cannot solve task (8) in a rigorous mathematical way. Actually, we cannot find all the 

combinations of 1xθ  = [θ1, p2, θ4, θ5] for which the property in (8) holds, but rather we are only able to find some 

combinations by means of a GA, used in this case as an “intelligent” sampling approach. Given that we can only 
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identify a finite number of combinations (but we do not know what happens in between sampling points), we cannot 

prescribe mathematically the set 1x

nd
Ω  in the continuum of space 1xΩ  that has infinitely many elements. In facts, the 

property in (8) provides only the means to test the membership of a candidate 1xθ  to 1x

nd
Ω , but not the means to 

calculate mathematically the desired set. In order to do that, set bounding approaches, such as those presented in 

Refs. 26, 27, 28 and 29, should be adopted. On the other hand, it has to be also considered that this limitation does 

not absolutely impair the quality and validity of the results of the following subproblems of the challenge. Actually, 

all the tasks related to sensitivity analysis (III.B), uncertainty propagation (III.C) and extreme case analysis (III.D) 

are based on a GA optimization search within the continuum of space 1xΩ . In this framework, the identification of 

only those solutions that belong to the (mathematically not prescribed) set 1x

nd
Ω  is guaranteed by introducing the 

property in (8) as a hard constraint in the GA: only those candidates that satisfy such property are retained in the 

genetic evolution, whereas the others are discarded. 

2. Application Results 

 Figure 2 top left shows the empirical CDF ( )1

, 11ˆ xF dnx  (dot-dashed lines) built using a vector 11

dx  of nd = nd1 = 25 

real observations of x1 (provided by the challengers) and the corresponding KS bounds ( ) ( )1,
1

1
xF x

nKS dα  and ( ) ( )1,
1

1
xF x

nKS dα  

obtained with α = 0.01 (resp., confidence 1 ‒ α = 0.99) (solid lines). In addition, the figure reports the extreme upper 

and lower CDFs, ( )1
1 xF x  and ( )1

1 xF x , bounding the distributional p-box of x1 (i.e., ( )1
1 xF x  = ( ){ }1

1max xPBx  and 

( )1
1 xF x  = ( ){ }1

1min xPBx , ℜ∈∀ 1x ), before (dashed lines) and after (dotted lines) the improvement of the input 

parameters uncertainty model. It can be see that the area contained between the bounding upper and lower CDFs 

( )1
1 xF x  and ( )1

1 xF x  is significantly reduced; in particular, it is 0.2407 and 0.1860 before and after the update of the 

input uncertainty models, respectively, which means a reduction by 22.73% in the epistemic uncertainty of x1.  

 In order to validate the results obtained, a new empirical CDF ( )1

, 21ˆ xF dnx  is built using a new vector 2

1

dx  of nd 

= nd2 = 25 real observations of x1, extracted from the pool of nd3 = 50 data; then, KS statistical tests are performed 

between ( )1

, 21ˆ xF dnx  and the CDFs belonging the ‘updated’ distributional p-box of x1, ( )1

, 11 xPB dnx  = 

( ){ }1

1

111 :1

x

n

xxx

d
xF Ωθθ ∈ . In more detail, two GA searches are carried out within the updated space 1

3

x

nd
Ω  to calculate 

the maximum and minimum p-values, respectively, resulting from these KS statistical tests:48 the corresponding 

values turn out to be 0.9837 (i.e., larger than the test significance level α = 0.01) and 3·10-4 (i.e., lower than the test 
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significance level α = 0.01) respectively. Taking as reference the smallest p-value within the reduced epistemic 

space (i.e., the value for which the null-hypothesis is the weakest), the reduced uncertainty model 1

1

x

nd
Ω  would not be 

validated. With respect to that, for illustration purposes Figure 2 bottom shows: (i) the KS bounds ( ) ( )1,
1

1
xF x

nKS dα  and 

( ) ( )1,
1

1
xF x

nKS dα  obtained using α = 0.01 (resp., confidence 1 ‒ α = 0.99) and the data 1

1

dx  employed to improve the 

uncertainty model (solid lines); (ii) the extreme upper and lower CDFs of the p-box of x1 after the improvement of 

the input parameters uncertainty model (dotted lines); (iii) the KS bounds ( ) ( )1,
1

2
xF x

nKS dα  and ( ) ( )1,
1

2
xF x

nKS dα  for x1 

obtained using α = 0.01 and the vector 2

1

dx  of validation data (dashed lines). It can be seen that for x1 ranging within 

[0.1, 0.3], a consistent part of the ‘improved’ p-box of x1 (dotted lines) ‘lies outside’ the KS bounds of the validation 

data set (dashed lines): in other words, some CDFs of x1 are not bounded everywhere by the (1 ‒ α)·100% = 99% 

confidence limits associated to the validation dataset 2

1

dx  (correspondingly, the p-values of the related KS statistical 

tests will be smaller than α = 0.01). A possible explanation for this lack of model validation is as follows. It can be 

observed that the two sets of data provided by the challengers, 1

1

dx  and 2

1

dx , are concentrated in different ranges. 

The first dataset 1

1

dx  (used to improve the uncertainty model) is mostly concentrated within [0, 0.1] and [0.3, 0.4], 

whereas a large part of the second dataset 2

1

dx  (used to validate the model) is located in the range [0.05, 0.2]. Thus, 

it is not unexpected that a model calibrated by data lying mostly in [0, 0.1] ∪  [0.3, 0.4] fails to “describe the 

uncertainty” in data mostly concentrated in [0.05, 0.2] (correspondingly, as expected and highlighted above, the 

maximal discrepancy between the ‘improved’ p-box of x1 and the KS bounds of the validation data set 2

1

dx  is 

observed for x1 ∈  [0.1, 0.3] where the calibration dataset 11

dx  is ‘poorer’ of evidence). Finally, in order to have a 

very rough measure of the discrepancy between the two p-boxes, we compute the percentage fraction of the area of 

the ‘improved’ p-box of x1 that does not overlap with the KS bounds of the validation data set 2

1

dx : this fraction 

turns out to be only 7.29%. 

 Then, the uncertainty models of parameters p1, p2, p4 and p5 are further improved by using all the nd3 = nd1 + nd2 

= 50 data available, 3

1

dx  = [ 1

1

dx , 2

1

dx ]. As before, Figure 2 top right shows the CDF ( )1

, 31ˆ xF dnx  (dot-dashed lines), 

the corresponding KS bounds ( ) ( )1,
1

3
xF x

nKS dα  and ( ) ( )1,
1

3
xF x

nKS dα  for α = 0.01 (solid lines) and the extreme upper and 

lower CDFs, ( )1
1 xF x  and ( )1

1 xF x , bounding the distributional p-box of x1 (i.e., ( )1
1 xF x  = ( ){ }1

1max xPBx  and 
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( )1
1 xF x  = ( ){ }1

1min xPBx , ℜ∈∀ 1x ), before (dashed lines) and after (dotted lines) the parameters update. In this 

case, the area included between the bounding CDFs is 0.1409, which means a reduction of 41.46% in the epistemic 

uncertainty of x1 relative to the initial condition and a reduction of 24.25% relative to the results obtained using nd = 

nd1 = 25 data: thus, with respect to an increase of 100% in the size of the data set (i.e., from nd1 = 25 to nd3 = 50), we 

obtain a relative improvement in the uncertainty model (i.e., a reduction in its epistemic uncertainty) of only 

24.25%. 

 Finally, only for illustration purposes Figure 3 depicts two exemplary scatterplots representing the ‘empirical 

maps’ of the two-dimensional projections on the plans m-µ4 (left) and m-µ5 (right) of the improved (i.e., reduced) 

joint eight-dimensional space of variation 1
3

x

nd
Ω  of the epistemically-uncertain coefficients/parameters 1xθ  = [θ1, p2, 

θ4, θ5] = [m, s2, p2, µ4, σ4
2, µ5, σ5

2, ρ], obtained after the update carried out by means of the data set 3

1

dx  = [ 1

1

dx , 2

1

dx ] 

(of size nd3 = 50). It is worth noting the epistemic dependence between the estimates of the epistemically-uncertain 

coefficients that is generated by the update of the corresponding uncertainty models by means of the same data set: 

differently from the initial condition where coefficients m and µ4 were allowed to range within the corresponding 

intervals m∆  and 
4µ∆  with no restrictions (Table 1), now it is not possible to have, e.g., low values of m and low 

values of µ4 at the same time. Notice that these empirical maps have been generated by GAs and they contain 

approximately 500000 points. In order to avoid that the patterns observed are the result of the manner GA searches 

for the optimum (and not of the true dependency among variables), the following strategies have been implemented: 

(i) GA is repeated several times (say, ten times) with different random seeds and different settings of the GA 

operations (e.g., different crossover points and mutation rates), and an approximate feasible region is found and 

recorded for each repetition (as the number of repetitions of GA is increased, the approximate feasible regions 

approach the true feasible regions); (ii) the capability of GA of thoroughly exploring the entire search space 

(technically speaking, of maintaining a high “genetic diversity” in the population of candidate solutions) is 

guaranteed by a proper setting of its parameters, mainly based on the experience of the authors in the use of 

GAs49,50: for example, high population sizes (i.e., Npop = 200) and high mutation rates (i.e., pmut = 0.025) are 

employed; (iii) since in the present subproblem A the main purpose of the GA search is that of finding many feasible 

solutions instead of a single global optimum, the GA evolution is stopped only when a certain (large) number of 

generations (e.g., Ngen = 500) is achieved. Finally, the validity of these GA-based maps has been further checked by 
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generating about 500000 samples belonging to 1

3

x

nd
Ω  by a standard sampling method: as verified by the authors, but 

not shown here for brevity, the resulting pattern of dependence is almost identical to the one produced by GAs. 
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Figure 2. Empirical CDF ( )1

n,x xF d1ˆ  (dot-dashed lines) built using a vector d

1x  of nd real observations of x1, 

the corresponding KS bounds ( ) ( )1

x

nα,KS xF 1

d
 and ( ) ( )1

x

nα,KS xF 1

d
 for α = 0.01 (resp., confidence 1 ‒ α = 0.99) (solid 

lines), the extreme upper and lower CDFs, ( )1

x xF 1  and ( )1

x xF 1 , bounding the distributional p-box of x1 (i.e., 

( )1

x xF 1  = ( ){ }1

x xPBmax 1  and ( )1

x xF 1  = ( ){ }1

x xPBmin 1 , ℜ∈∀ 1x ), obtained before (dashed lines) and after 

(dotted lines) the improvement of the input parameters uncertainty model by means of nd = nd1 = 25 (top, left) 
and nd3 = 50 (top, right) data. Bottom: KS bounds ( ) ( )1

x
nα,KS xF 1

d
 and ( ) ( )1

x

nα,KS xF 1

d
 obtained with α = 0.01 (resp., 

confidence 1 ‒ α = 0.99) for the calibration and validation datasets d

1x  (solid lines) and 2

1

dx  (dashed lines); the 
improved p-box of x1 (dotted lines) is also shown 
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Figure 3. Scatterplots represenenting ‘empirical maps’ of the two-dimensional projections on the plans m-

µ4 (left) and m-µ5 (right) of the improved (i.e., reduced) joint eight-dimensional space of variation 1

3

x

nd
Ω  of the 

epistemically-uncertain coefficients/parameters 1xθ  = [θ1, p2, θ4, θ5] = [m, s2, p2, µ4, σ4
2, µ5, σ5

2, ρ] obtained 
after the update carried out by means of the data set 3

1

dx  = [ 1

1

dx , 2

1

dx ] of size nd3 = 50 
 

B. Subproblem (B): Sensitivity Analysis 
Sensitivity analysis is the general term for a systematic study of how the inputs to a model influence the results 

of the model. Sensitivity analyses are conducted for two fundamental reasons: (i) to focus future empirical studies so 

that effort might be expended to improve estimates of inputs that would lead to the most improvement in the 

estimates of the outputs, and (ii) to generally understand how the conclusions and inferences drawn from an 

assessment depend on its inputs (and on the basis of the results, possibly simplify or even remove from the model 

those inputs that turn out to be less influential)14. 

In this light, two different types of analysis are here performed: in the first (namely, ‘factor prioritization’ 

analysis), the objective is to identify those parameters p whose epistemic uncertainty contributes more to the 

‘amount’ of epistemic uncertainty contained in some output quantities of interest: in other words, we try to rank the 

category (II) and (III) input parameters according to degree of reduction in the output epistemic uncertainty which 

one could hope to obtain by refining their uncertainty models (i.e., by reducing the epistemic uncertainty associated 

to them) (Section III.B.1). In the second (namely, ‘factor fixing’ analysis), determination has to be made as to 

whether these output quantities of interest are sufficiently insensitive to any given parameter such that that parameter 

can be assumed to take on a fixed constant value without incurring in significant errors: in other words, we aim at 

finding those parameters that minimally affect the outputs (Section III.B.2). In all the analyses, the first five 

parameters {pi: i = 1, 2, …, 5} are modeled according to the results from task (A.3) (Section III.A.2), i.e., 1xθ  = [θ1, 
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p2, θ4, θ5] = [m, s2, p2, µ4, σ4
2, µ5, σ5

2, ρ] ∈  1

3

x

nd
Ω , whereas the remaining sixteen parameters {pi: i = 6, 7, …, 21} are 

modeled according to Table 1 (Section II.B): the entire space of variation of all the epistemically-uncertain 

parameters/coefficients θall is then allΩ  = ∏
=

4

1

x1

3

j

xx

n
j

d
ΩΩ . 

1. Sensitivity Analysis in a ‘Factor Prioritization’ Setting 
In Section III.B.1.1, the general approach adopted to rank category (II) and (III) parameters according to their 

contribution to output epistemic uncertainty is illustrated in detail; in Section III.B.1.2, the results of the application 

of the method to the tasks of Subproblem (B) are reported. 

 
1.1  The Proposed Approach 
The use of sensitivity analysis to learn where focusing future empirical efforts would be most productive 

requires estimating the value of additional (hypothetical) empirical information. Of course, the value of information 

not yet observed cannot be measured, but it can perhaps be predicted. One strategy to this end is to assess how much 

less epistemic uncertainty the model outputs of interest would have if extra knowledge about an input were 

available. This might be done by comparing the epistemic uncertainty before and after ‘pinching’ an input, i.e. 

replacing it with a value without (or with less) eistemic uncertainty. Of course, one does not generally know the 

correct value with certainty, so this replacement must be conjectural in nature. To pinch a parameter/coefficient 

means to hypothetically reduce its uncertainty for the purpose of the thought-experiment. The experiment asks what 

would happen if there were less epistemic uncertainty about this number. Quantifying this effect assesses the 

contribution by the input epistemic uncertainty to the overall epistemic uncertainty in the output of interest. The 

estimate of the value of information for an epistemically-uncertain parameter/coefficient will depend on (i) how 

much epistemic uncertainty is present in the parameter, and (ii) how it affects the epistemic uncertainty in the final 

result14. 

In more detail, let Up(Q) be an indicator of the ‘amount’ of epistemic uncertainty contained in a generic quantity 

Q of interest to the analysis. The subscript ‘p’ suggests that indicator Up(Q) is computed over all the input 

parameters p (and over the space of variation Ωall of all the corresponding epistemically-uncertain internal 

coefficients θall). We want to assess the effect that a refinement of the uncertainty model of the generic input pi (i.e., 

a reduction in its epistemic uncertainty) has on the amount of epistemic uncertainty Up(Q) of Q. For the sake of 

notation generality, let φi ∈  iΩ  be the epistemically-uncertain ‘factor’ in the uncertainty model of parameter pi: 
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thus, if pi is a category (II) parameter (e.g., p2 or p12), then simply φi = pi; instead, if pi is a category (III) parameter 

(e.g., p1, p4 or p5), then φi represents the vector θi of the epistemically-uncertain coefficients of the corresponding 

aleatory probability distribution ( )ii

p pq i θ , i.e., φi = θi. For example, for category (III) parameter p1 we have φ1 = θ1 

= [m, s2]. In order to address the issue above, a novel sensitivity index is introduced in analogy with variance-based 

Sobol indices9, 16-19, which generalizes the approach presented in Ref. 14. Imagine that we fix φi at a particular value 

φi
*  ∈  iΩ . Let Up(Q|φi = φi

*) be the resulting amount of epistemic uncertainty in Q, taken over all parameters p and 

keeping the epistemically-uncertain ‘element’ φi fixed at φi
* (instead, all the other epistemically-uncertain 

coefficients [ ]211121 ...,,,...,,, θθθθθθ −−− = ii

all

i  are allowed to range in their corresponding space of variation all

i−Ω ). We 

would imagine that having frozen one potential source of epistemic uncertainty (φi), the resulting indicator Up(Q|φi 

= φi
*) will be lower than the corresponding total (or unconditional) one Up(Q). One could therefore conceive of 

using Up(Q|φi = φi
*) as a measure of the relative importance of pi, reasoning that the smaller Up(Q|φi = φi

*), the 

greater the influence of pi. However, notice that this approach makes the sensitivity measure dependent on the 

position of the point φi
*  for each input factor, which is impractical. Thus, we take the average of the measure 

Up(Q|φi = φi
*) over all the possible points φi

* ∈  iΩ , which removes the dependence on φi
*. The resulting indicator is 

then written synthetically as Eφi[Up(Q|φi)] and represents the expected amount of epistemic uncertainty contained in 

output Q when the epistemically-uncertain coefficient/parameter φi is fixed to a constant value (i.e., when the 

amount of its epistemic uncertainty is reduced to zero). Obviously, the lower the value of Eφi[Up(Q|φi)], the more 

important the corresponding parameter pi: in other words, the most important parameter is that parameter which on 

average, once fixed, causes the greatest reduction in the epistemic uncertainty of Q (as highlighted above, the 

consideration of “average sensitivities” is due to the fact that Up(Q|φi = φi
*) is in general strongly dependent on the 

position of the point φi
*: this suggests the necessity to calculate the average of the measure Up(Q|φi = φi

*) over many 

possible points φi
*  ∈  iΩ  in order to obtain robust and reliable sensitivity rankings). Finally, the sensitivity Si(Up(Q)) 

of the epistemic uncertainty of the output Q to the epistemic uncertainty of parameter pi can be synthesized with an 

expression like 

 ( )( ) ( )[ ]
( )QU

QUE
QUS i

i
i

p

pφ

p

φ
−= 1 . (10) 
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Index Si(Up(Q)) (10) is an estimate of the value of additional empirical information about the input pi in terms of 

the fractional reduction in epistemic uncertainty that might be achieved in Q when the input parameter is replaced 

by a better estimate obtained from future empirical study. This ‘pinching’ procedure can be applied to each input 

quantity in turn and the results used to rank the inputs in terms of their sensitivities. In principle, one could also 

pinch multiple inputs simultaneously to study interactions: however, this aspect is not considered in the present 

paper. It is worth noting that Si(Up(Q)) (10) has the advantage of being a global sensitivity index because: (i) the 

effect of the entire space of variation Ωi of the epistemically-uncertain parameter/coefficient φi whose epistemic 

uncertainty importance is evaluated, is considered; (ii) the importance of this input parameter/coefficient is 

evaluated with all other input parameters varying as well: actually, for each fixed constant value of φi the 

computation of Up(Q|φi) is carried out by letting all the other epistemically-uncertain parameters/coefficients 

[ ]211121 ...,,,...,,, θθθθθθ −−− = ii

all

i  range within the corresponding space of variation all

i−Ω ; (iii) this sensitivity index is 

“model free” because its computation is independent from assumptions about the model form, such as linearity, 

additivity and so on51. Finally, note that index Si(Up(Q)) (10) is nicely scaled between 0 and 1; however, unlike the 

factorizations used by variance-based sensitivity analyses, these reductions will not generally add up to 1 for all the 

input variables. Other approaches to sensitivity analysis in the presence of mixed aleatory and epistemic 

uncertainties can be found in Refs. 52-54. 

In this paper, the sensitivity index Si(Up(Q)) (10) related to the generic parameter pi is straightforwardly 

estimated as follows: 

1) letting all the epistemically-uncertain parameters/coefficients θall range within the entire space of variation 

Ω
all, propagate the mixed aleatory and epistemic uncertainty from the inputs p to the output of interest Q 

and evaluate the resulting (total, unconditional) amount of epistemic uncertainty Up(Q) in Q (notice that 

technical details about the uncertainty propagation phase are not given here in order to not interrupt the 

flow of the presentation concerning sensitivity analysis: the reader is referred to the following Section 

III.C); 

2) select (deterministically or stochastically) Ne values φi
k, k = 1, 2, …, Ne, of the epistemically-uncertain 

‘factor’ φi under analysis within its space of variation Ωi (as already mentioned, if pi is a category (II) 

parameter, then simply φi = pi; instead, if pi is a category (III) parameter, then φi represents the vector θi of 

the epistemically-uncertain parameters of the corresponding aleatory probability distribution ( )ii

p pq i θ , 
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i.e., φi = θi: for example, for category (III) parameter p1 we have φ1 = θ1 = [m, s2]). These Ne realizations of 

epistemic uncertainty φi
k, k = 1, 2, …, Ne, should be chosen in such a way to evenly cover the 

corresponding uncertainty space Ωi: in this paper, a grid of equally spaced points is adopted to this aim; 

3) fixing the value of φi to φi
k, k = 1, 2, …, Ne, and letting all the other epistemically-uncertain 

parameters/coefficients all

i−θ  vary within all

i−Ω , propagate the mixed aleatory and epistemic uncertainty from 

the inputs p to the output of interest Q and evaluate the resulting (conditional) amount of epistemic 

uncertainty Up(Q|φi = φi
k) in Q. Notice that in the computation of Up(Q|φi = φi

k) for category (III) 

parameters, we condition the event to multi-dimensional realizations of the epistemic space. For example, 

for p1 we fix both the mean m and the variance s2, i.e., φ1 = φ1
k = [mk, s2,k]; for parameter p4 we fix the 

mean µ4, the standard deviation σ4 and the correlation coefficient ρ, i.e., φ4 = φ4
k = [µ4

k, σ4
k, ρk]; 

4) estimate the sensitivity index Si(Up(Q)) (10) as ( )( ) ( )
( )∑

=

=
−≈

eN

k

k

ii

e

i QU

QU

N
QUS

1

1
1

p

p

p

φφ
. 

 

As already mentioned above, the computation of Up(Q) depends on the nature of Q. In subproblem (B.1) the task 

is to identify those input parameters p = {pi: i = 1, 2, …, 21} that lead to the greater refinement in the distributional 

p-box of the corresponding intermediate (output) variables {xj = hj(pj): j = 1, 2, …, 5} (2)-(6): thus, in this case the 

output quantity Q of interest is the intermediate variable xj itself, j = 1, 2, …, 5. We propose to define the amount of 

epistemic uncertainty Up(Q) = Up(xj) in xj as the area Ap(xj) (11) included between the extreme upper and lower 

CDFs, ( )j

x xF j  and ( )j

x xF j , bounding the distributional p-box ( )j

x xPB j  = ( ){ }jjjj xxx

j

x xF Ωθθ ∈:  of xj: 

 ( ) ( ) [ ] ( ) [ ] ( )( )∫
−−

−==
1

0

11

drrFrFxAxU jj xx

jj pp , j = 1, 2, …, 5 (11) 

where [ ] ( )rF jx 1−
 and [ ] ( )rF jx 1−

 are the inverse of ( )j

x xF j  and ( )j

x xF j , respectively, at cumulative probability 

level r. Obviously, the larger the area Ap(xj) (i.e., the larger the separation between the bounding CDFs), the larger 

the imprecision, i.e., the epistemic uncertainty, in the definition of a precise probability model for variable xj. Notice 

that the CDFs ( )j

x xF j  and ( )j

x xF j  are formally defined as: 
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 ( ) ( ){ }jj

jxjx

j x

j

x

j

x xFxF θ
Ωθ ∈

= max  and ( ) ( ){ } ℜ∈∀=
∈ j

x

j

x

j

x xxFxF jj

jxjx

j ,min θ
Ωθ

, j = 1, 2, …, 5. (12) 

In subproblems (B.2) and (B.3) the output quantities of interest Q are represented by the following quantites:  

 ( )[ ]dpp ,1 wEJ =  (13) 

 ( )[ ]0,12 <−= dpwPJ , (14) 

where 

 ( ) ( )( )dphxdp ,maxmax,
8181

===
≤≤≤≤ oooo

fgw  (15) 

 is the so-called worst-case requirement metric. Notice that J1 = Ep[w(p, d)] (13) is expected value of the worst-

case requirement metric w(p, d) (8) and J2 = P[w(p, d) > 0] (14) is the system failure probability respectively. In 

these cases, the quantitative indicators Up(J1) and Up(J2) of the amount of epistemic uncertainty in J1 and J2 are 

represented by the lengths Lp(J1) (16) and Lp(J2) (17) of the corresponding intervals ],[ 11 JJ  and ],[ 22 JJ , 

respectively§: 

 ( ) ( ) 1111 JJJLJU −== pp  (16) 

 ( ) ( ) 2222 JJJLJU −== pp . (17) 

Again, the larger the intervals, the larger the uncertainty in the definition of a precise value for the erformance 

metrics J1 (13) and J2 (14). 

 

A final consideration is in order with respect to the computational cost associated to the evaluation of the 

sensitivity indices Si(Up(Q)), Q = xj, J1, J2, i = 1, 2, …, 21 (10). For each input parameter of interest pi, i = 1, 2, …, 

                                                           
§ Notice that the choice of intervals to represent the epistemic uncertainty in J1 and J2 is a “natural” consequence of 
the hybrid representation of uncertainty adopted in the present paper (i.e., probabilistic/aleatory and interval-
based/epistemic). In such a framework, the worst-case requirement metric w(p, d) is represented by a distributional 
p-box, i.e., an ensemble of probability distributions (as its inputs p). Thus, a value of the mean and of the failure 
probability can be computed for each element of the p-box: such ensemble of values identifies the corresponding 
intervals for J1 and J2. 
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21, a number Ne (e.g., Ne ≈ 10-20 in this paper) of realizations φi
k of the corresponding epistemically-uncertain 

‘factor’ φi have to be selected. Then, for each realization φi
k, k = 1, 2, …, Ne, the quantitative indicator Up(Q|φi = φi

k) 

has to be calculated. The evaluation of indicator Up(Q|φi = φi
k) implies: (i) the propagation of mixed aleatory and 

epistemic uncertainty from the input parameters p to the output Q of interest through the corresponding 

mathematical model (i.e., hj(pj) in (2)-(6) for the evaluation of Up(xj) and g = f(x = h(p), d) in (1), for the 

computation of the worst-case requirement metric w(x = h(p), d) and correspondingly of Up(J1) and Up(J2)); (ii) the 

identification of the extreme bounds of Q (i.e., ( )j

x xF j  and ( )j

x xF j , 1J  and 1J , 2J  and 2J , respectively), which 

requires the solution of several optimization problems (see Section III.C for further details about the uncertainty 

propagation process). The execution of steps (i) and (ii) above entails the repeated evaluation of the output Q (i.e., 

of the corresponding mathematical model) for every possible solution proposed by the optimization algorithm during 

the search. As a consequence, the total number of system model evaluations can easily reach tens/hundreds millions 

for each realization φi
k of each input parameter pi analyzed, which makes the proposed approach impractical also in 

the presence of mathematical system models that take even only few minutes to run. For example, in this case the 

evaluation of ( )dp,w  = oo
g

81
max

≤≤
 = ( )( )dphx ,max

81
=

≤≤ oo
f  (1) for Na = 10000 values ps, s = 1, 2, …, Na, of the inputs p 

takes 2125s = 35.4 min. 

In the present paper, we address this computational burden by replacing the original model ( )( )dphxfg ,==  

(1) by a fast-running, surrogate regression model (also called meta-model): since calculations with the surrogate 

model can be performed quickly (e.g., in fractions of seconds), the problem of long simulation times is 

circumvented. The regression model is constructed on the basis of a finite (and possibly reduced) set Dtr of Ntr data 

representing examples of the input/output nonlinear relationships underlying the original system model. The 

generation of this data set Dtr entails running the original system mathematical model ( )( )dphxf ,=  a 

predetermined (and possibly reduced) number of times Ntr for specified values {xt: t = 1, 2, …, Ntr} of the input 

variables x = {xj: j = 1, 2, …, nint = 5} and collecting the corresponding values {gt: t = 1, 2, …, Ntr} of the outputs g 

= {go: o = 1, 2, …, nout = 8} of interest; then, statistical techniques (for example, regression error minimization 

procedures) are employed for calibrating/adapting the internal parameters/coefficients of the regression model in 

order to fit the input/output data Dtr = {(xt, gt): t = 1, 2, …, Ntr} generated in the previous step and to capture the 

underlying (possibly nonlinear and non-monotonic) relationship. Once built, the meta-model can be used for 
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performing, in an acceptable computational time, the numerous repeated evaluations of the system worst-case 

requirement metric ( )dp,w  = oo
g

81
max

≤≤
 = ( )( )dphx ,max

81
=

≤≤ oo
f  (1) needed for an accurate estimation of the sensitivity 

indices above.**  

In this work, a three-layered feed-forward Artificial Neural Network (ANN) regression model is considered. 

ANNs are computing devices inspired by the function of the nerve cells in the brain20-25. They are composed of 

many parallel computing units (called neurons or nodes) arranged in different layers and interconnected by weighed 

connections (called synapses). Each of these computing units performs a few simple operations and communicates 

the results to its neighbouring units. From a mathematical viewpoint, ANNs consist of a set of nonlinear (e.g., 

sigmoidal) basis functions with adaptable parameters that are adjusted by a process of training (on many different 

input/output data examples), i.e., an iterative process of regression error minimization55. ANNs have been 

demonstrated to be universal approximants of continuous nonlinear functions (under mild mathematical 

conditions)21, i.e., in principle, an ANN model with a properly selected architecture can be a consistent estimator of 

any continuous nonlinear function. Further details about ANN regression models are not reported here for brevity; 

the interested reader may refer to the cited references and the copious literature in the field. 

Notice that the recommendation of using ANN regression models is mainly based on (i) theoretical 

considerations about the (mathematically) demonstrated capability of ANN regression models of being universal 

approximants of continuous nonlinear functions21 and (ii) the experience of the authors’ in the use of ANN 

regression models for propagating the uncertainties through mathematical model codes simulating safety systems56-

60. Since no further comparisons with other types of regression models have been performed by the authors yet, no 

additional proofs of the superiority of ANNs with respect to other regression models can be provided at present, in 

general terms. 

 
1.2  Application Results 
First, we train a 8-output ANN regression model using a set ( ){ }traintttrain NtD ...,,2,1,, == gx  of input/output data 

examples of size Ntrain = 30000. A Latin Hypercube Sample (LHS) of the inputs is drawn to give the vectors xt = 

{ x1,t, x2,t, …, xj,t, …, tnint
x ,  = tx ,5 }, t = 1, 2, …., Ntrain.

61 Then, the original model (1) is evaluated on the input vectors 

xt, t = 1, 2, …, Ntrain, to obtain the corresponding output vectors gt = f(xt, d) = {g1,t, g2,t, ..., gl,t, ..., tnout
g ,  = tg ,8 }, t = 1, 

                                                           
**  Notice that on the contrary the computation of sensitivity indices Si(A(xj)) does not require the evaluation of 

( )dp,w  = oo
g

81
max

≤≤
 = ( )( )dphx ,max

81
=

≤≤ oo
f : thus, no regression model-based approximation is employed in this case. 
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2, …, Ntrain, and build the data set ( ){ }traintttrain NtD ...,,2,1,, == gx . Finally, the adjustable internal parameters of the 

ANN regression model are calibrated to fit the generated data: in particular, the common error back-propagation 

algorithm is implemented to train the ANN55. Note that a single ANN can be trained to estimate all the eight outputs 

of the model here of interest. 

In the present case study, the number of inputs to the ANN regression model is equal to nint = 5 (i.e., the number 

of intermediate variables x = {xj: j = 1, 2, …, nint = 5} (2)-(6)), whereas the number of outputs is equal to nout = 8 

(i.e., the number of requirement metrics of interest g = {gl: l = 1, 2, …, nout = 8} (1), as reported in Section II). With 

respect to that, it is worth pointing out that although the quantity of interest in the present study is the (scalar) worst-

case requirement metric ( )dp,w  = oo
g

81
max

≤≤
 = ( )( )dphx ,max

81
=

≤≤ oo
f  (1), we choose to reproduce by ANN the 

relationship between x and the (eight-dimensional) vector g = ( )( )dphxf ,= : this is due to the fact that (i) the 

components of g are continuous functions of the inputs x that prescribe them11 (with benefits for the ANN 

approximation), and (ii) the behavior of ( )dp,w  (involving a ‘max’ operator) may be too abrupt for a satisfactory 

fitting by ANNs. The number of nodes nh in the hidden layer has been set equal to 27 by trial and error. 

A validation data set ( ){ }10000...,,2,1,, === valttval NtD gx  (different from the training set Dtrain) is used to 

monitor the accuracy of the ANN model during the training procedure: in practice, the Root Mean Squared Error 

(RMSE) is computed on Dval (over all the outputs) at different phases of the training procedure. At the beginning, 

the RMSE computed on the validation set Dval typically decreases together with the RMSE computed on the training 

set Dtrain; then, when the ANN regression model starts overfitting the data, the RMSE calculated on the validation set 

Dval starts increasing: this is the time to stop the training algorithm. The time needed to train the ANN is 

approximately 20s on a Intel(R) Core(TM) i5-3380M CPU@2.90GHz. 

For a realistic measure of the ANN model accuracy, the widely adopted coefficient of determination R2 and the 

RMSE are computed for each output {gl: l = 1, 2, …, nout = 8} on a new data set ( ){ }testtttest NtD ...,,2,1,, == gx  also 

of size Ntest = 10000, not used during training17. Table 2 reports the values of the coefficient of determination R2 and 

of the RMSE associated to the final estimates of the worst-case requirement metric ( )dp,w  = oo
g

81
max

≤≤
 = 

( )( )dphx ,max
81

=
≤≤ oo

f  of interest, computed on the test set Dtest of size Ntest = 10000 by the ANN model with nh = 27 

hidden neurons, built on a data set Dtrain of size Ntrain = 30000. For completeness, the values of R2 and of the RMSE 

associated to the estimates of each output {gl: l = 1, 2, …, nout = 8} are also reported. 
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Artificial Neural Network (ANN) - ( )dp,w  

Optimal configuration selected: nint = 5, nh = 27, nout = 8 
Ntrain Nval Ntest R2 (test) RMSE (test) 
30000 10000 10000 0.9944 0.1468 

 

Artificial Neural Network (ANN) – go, o = 1, 2, …, 8 
Optimal configuration selected: nint = 5, nh = 27, nout = 8 

go R2 (test) RMSE (test) 
g1 0.9994 0.1368 
g2 0.9895 0.1633 
g3 0.9976 0.1232 
g4 0.9945 0.1479 
g5 0.9987 0.1498 
g6 0.9937 0.1311 
g7 0.9821 0.1703 
g8 0.9952 0.1488 

Table 2. Coefficient of determination R2 and RMSE associated to the ANN (test) estimates of the worst-
case requirement metric ( )dp,w  = o8o1

gmax
≤≤

 = ( )( )d,phxfmax o8o1
=

≤≤
. The same quantities are reported also for 

the eight output go, o = 1, 2, …, 8, separately 
 
The large value of the coefficient of determination R2, i.e., 0.9944, and the small value of 0.1468 for the RMSE 

produced lead us to assert that the accuracy of the ANN model can be considered satisfactory for the needs of 

capturing the global behavior of the highly nonlinear and non-monotonic function ( )( )dphx ,=w  = oo
g

81
max

≤≤
 = 

( )( )dphx ,max
81

=
≤≤ oo

f  and, thus, of estimating the corresponding sensitivity indices. This is also pictorially confirmed 

by a visual inspection of the ANN approximation capabilities. Figure 4, left and right, shows in logarithmic scale the 

behavior of ( )( )dphx ,=w  as a function of x1, when x2, x3, x4 and x5 are set to 0.6250, 0.4000, 0.7450 and 0.5000, 

respectively (solid line), and the corresponding ANN fitting (dashed line); instead, Figure 4 right shows 

( )( )dphx ,=w  as a function of x3, when x1, x2, x4 and x5 are fixed to 0.4500, 0.6250, 0.7450 and 0.2, respectively 

(solid line), together with the corresponding ANN approximation (dashed line). In both cases, the ANN estimates 

are in satisfactory agreement with the real trend of ( )( )dphx ,=w . Notice that the evaluation of ( )dp,w  = oo
g

81
max

≤≤
 

= ( )( )dphx ,max
81

=
≤≤ oo

f  (1) for, e.g., Na = 10000 values ps, s = 1, 2, …, Na, of the inputs p takes only 1.25s, i.e., 1700 

times less than the original model. 
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Figure 4. Worst-case requirement metric ( )( )d,phxw =  as a function of x1 (with x2, x3, x4 and x5 set to 

0.6250, 0.4000, 0.7450 and 0.5000, respectively) (left) and of x3 (with x1, x2, x4 and x5 fixed to 0.4500, 0.6250, 
0.7450 and 0.2, respectively) (right) (solid lines), together with the corresponding ANN approximations 

(dashed lines) 
 
The trained ANN regression model is then used for computing the sensitivity index Si(Up(Q)) (10), i = 1, 2, …, 

21, for Q = xj, J1, J2. Notice that the propagation of uncertainty needed for the estimation of the indices (see steps 2. 

and 3. of the algorithm in Section III.B.1.1) is carried out by Monte Carlo Simulation (MCS) with Na = 10000 

random samples. The values are reported in Table 3 together with the corresponding parameters ranking Ri(Q) (in 

parentheses). The number Ne of epistemic realizations φi
k used to estimate Eφi[Up(Q|φi)] as ( )∑

=

=⋅
eN

k

k

iie QUN
1

1 φφp  

are also reported for each parameter pi. Notice that the coefficient of correlation ρ between parameters p4 and p5 is 

not explicitly listed in Table 3 as a ‘stand-alone’ coefficient, since it is considered part of the corresponding 

uncertainty models of p4 and p5, i.e., θ4 = [µ4, σ4, ρ] and θ5 = [µ5, σ5, ρ]. 
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Sensitivity to epistemic uncertainty (factor prioritization setting) 

    Sensitivity index, Si(Up(Q)) (ranking, Ri(Q))  

Parameter Category 
Intermediate 

variable Ne Si(Ap(xj)) Si(Lp(J1)) Si(Lp(J2)) 
Accumulated  
ranking, Racc,i 

p1 III x1 16 0.5071 (1) 0.4009 (4) 0.1978 (2) 6 
p2 II x1 10 0.0156 (4) 0.0499 (6) 6.70·10-3 (9) 15 
p3 I x1 / / / / / 
p4 III x1 64 0.0706 (3) 0.1775 (5) 0.0421 (4) 9 
p5 III x1 64 0.3085 (2) 0.7727 (2) 0.0436 (3) 5 
p6 II x2 10 0.6108 (1) 3.40·10-3 (9) 0.0152 (6) 15 
p7 III x2 16 0.4773 (2) 6.30·10-3 (8) 9.60·10-3 (8) 16 
p8 III x2 16 0.1677 (4) 1.27·10-4 (13) 6.94·10-4 (13) 26 
p9 I x2 / / / / / 
p10 III x2 16 0.2232 (3) 1.49·10-5 (14) 1.77·10-4 (14) 28 
p11 I x3 / / / / / 
p12 II x3 10 0.9277 (1) 0.4237 (3) 0.6852 (1) 4 
p13 III x3 16 1.20·10-4 (2-3) 2.06·10-7 (17) 1.22·10-15 (17) 34 
p14 III x3 16 0 (4) 5.26·10-7 (15) 1.29·10-5 (16) 31 
p15 III x3 16 1.20·10-4 (2-3) 3.47·10-7 (16) 2.28·10-5 (15) 31 
p16 II x4 10 0.7178 (1) 0.0125 (7) 0.0174 (5)  12 
p17 III x4 16 0.1522 (3) 2.20·10-3 (11) 5.40·10-3 (10) 21 
p18 III x4 16 0.2425 (2) 2.40·10-3 (10) 2.80·10-3 (11) 21 
p19 I x4 / / / / / 
p20 III x4 16 0.0803 (4) 5.64·10-4 (12) 1.00·10-3 (12) 24 
p21 III x5 / / 0.8566 (1) 9.90·10-3 (7) 8 

Table 3. Values of the sensitivity indices Si(Up(Q)) (10), i = 1, 2, …, 21, for Q = xj, J1, J2, together with the 
corresponding parameters ranking Ri(Q) (in parentheses); the accumulated ranking Racc,i = Ri(J1) + Ri(J2) is 

also reported 
 
It can be seen that the parameters whose epistemic uncertainty contributes more to the epistemic uncertainty 

‘contained’ in the p-boxes of the corresponding intermediate output variables xj, j = 1, 2, …, 4, are p1, p6, p12 and p16, 

respectively (highlighted in bold in Table 3): in detail, refining the uncertainty models of p1, p6, p12 and p16 

according to the particular strategy proposed (i.e., reducing their epistemic uncertainty from a set to a point) would 

lead to an expected reduction in the epistemic uncertainty of x1, x2, x3 and x4 of 50.71%, 61.08%, 92.77% and 

71.78%, respectively. This information is of paramount importance for the experts in the disciplines modeled by the 

relations x = h(p) (2)-(6), because in the light of the results obtained they can focus their efforts primarily on 

increasing the state-of-knowledge on the identified important parameters and the related physical phenomena. For 

illustration purposes, Figure 5 left analyzes the different effect that an improvement in the uncertainty models of 

parameters p1 (rank R1(x1) = 1) and p2 (rank R4(x1) = 4) has on the p-box of x1. The upper and lower CDFs, ( )1
1 xF x  

and ( )1
1 xF x , bounding the distributional p-box ( )1

1 xPBx  of x1 obtained by propagating the original uncertainty 

models of p1 and p2 are shown as solid lines, whereas those produced by fixing θ1 = [m, s2] = [0.63, 0.0207] and p2 = 
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1.00 are shown as dashed and dot-dashed lines, respectively. The area Ap(x1) contained between ( )1
1 xF x  and ( )1

1 xF x  

(i.e., the epistemic uncertainty in x1) is reduced by 56.77% in the first case, whereas a reduction of only 6% is 

obtained in the second case. In addition, Figure 5 right shows the extreme upper and lower CDFs, ( )3
3 xF x  and 

( )3
3 xF x , bounding the distributional p-box ( )3

3 xPBx  of x3, obtained by propagating the original uncertainty models 

of all the corresponding input parameters (solid lines) and those produced by fixing parameter p12 (rank R12(x3) = 1) 

to p12* = 0 (dashed lines), 0.5 (dot-dashed lines) and 1 (dotted lines). It is evident that ‘pinching’ p12 to different 

values within its range of variation produces extremely different results: for example, when p12 = 0, the p-box of x3 

almost collapses into a single CDF (actually, the area Ap(x3) contained is 2.1·10-7); on the contrary, when p12 = 1, the 

area Ap(x3) contained is around 0.13. This exemplary situation demonstrates that the sensitivity indicator Up(Q|φi = 

φi
*) (Ap(x3|p12 = p12*), in this case) is in general strongly dependent on the position of the point φi

* (= p12*) and 

confirms the necessity to calculate the average of the measure Up(Q|φi = φi
*) (= Ap(x3|p12 = p12*)) over many 

possible points φi
* ∈  iΩ  (p12* ∈  

12p∆ ) in order to obtain robust and reliable sensitivity rankings. 

The four parameters that influence most the uncertainty of J1 (i.e., the expected value ( )[ ]dp,p wE  of ( )dp,w ) 

are p21, p5, p12 and p1 (highlighted in bold in Table 3), in decreasing order of ranking: actually, refining the 

corresponding uncertainty models according to the particular strategy proposed (i.e., reducing their epistemic 

uncertainty from a set to a point) leads to an expected reduction of about 85.66%, 77.21%, 42.37% and 40.09% in 

the width of the interval of J1 (i.e., in its epistemic uncertainy); some parameters (e.g., p4, p2 and p16) have a non 

negligible influence on J1 (in fact, the corresponding indices Si(Lp(J1)), i = 2, 4, 16, range from 0.0125 to 0.1775), 

whereas some others (in particular, p13, p14 and p15) have almost no effect on the uncertainty of J1 (in fact, the 

corresponding indices Si(Lp(J1)), i = 13, 14, 15, are around 10-7). Instead, the four parameters that influence most the 

uncertainty of J2 (i.e., the system failure probability J2 = P[ ( )dp,w  > 0]) are p12, p1, p5 and p4 (highlighted in bold in 

Table 3), in decreasing order of ranking: actually, reducing the corresponding epistemic uncertainty from a set to a 

point leads to an expected reduction of about 68%, 20%, 4.4% and 4.2%, respectively, in the width of the interval of 

J2 (i.e., in its epistemic uncertainy); again, some parameters (e.g., p16, p6 and p21) seem to have a non negligible 

influence on J2 (in fact, the corresponding indices Si(Lp(J2)) range from 0.0100 to 0.0174), whereas some others (in 

particular, again p13, p14 and p15) have almost no effect on the uncertainty of J2 (in fact, the corresponding indices 

Si(Lp(J2)) are lower than or equal to 10-5). As expected, all the parameters that are relevant in the analysis of the 
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integrated system (i.e., relevant for J1 and J2), are also relevant in the analysis of the individual disciplines modeled 

by the relations x = h(p) (2)-(6). On the contrary, some parameters that are very relevant in the models x = h(p) (2)-

(6) may not be so important in the analysis of the integrated system (see, e.g., p6, p7, p10, p16, p17 and p18). 

Given these considerations, in order to identify the set of the four parameters that contribute more to the 

epistemic uncertainty in both J1 and J2 (see subproblem (C.3)), a joint, accumulated ranking is here introduced: in 

particular, the accumulated ranking Racc,i of parameter pi is obtained as the sum of Ri(J1) (i.e., the ranking based on 

indicator J1) and Ri(J2) (i.e., the ranking based on indicator J2); the corresponding values are reported in Table 3. The 

analysis shows that the most relevant parameters are p12, p5, p1 and p21 that are ranked Racc,12 = R12(J1) + R12(J2) = 

3+1 = 4, Racc,5 = R5(J1) + R5(J2) = 3+2 = 5, Racc,1 = R1(J1) + R1(J2) = 4+2 = 6 and Racc,21 = R21(J1) + R21(J2) = 1+7 = 8, 

respectively (see Table 3). With respect to that, notice that the probability distribution of parameter p4 (which has a 

non negligible influence on both J1 and J2, as highlighted above) ‘shares’ an epistemically-uncertain coefficient (i.e., 

the Pearson correlation factor ρ) with the uncertainty model of parameter p5. Thus, an improvement in the 

uncertainty model of p5 (i.e., a reduction in the epistemic uncertainty of ρ) will ‘indirectly’ lead also to a reduction 

in the epistemic uncertainty of the uncertainty model of (the relatively important) parameter p4 (with further 

beneficial effect on the refinement of the ranges of indicators J1 and J2). 

In conclusion, we expect that a reduction in the epistemic uncertainty of parameters p1, p5, p12 and p21 will lead to 

a consistent reduction in the uncertainty of both J1 and J2. 
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Figure 5. Left: extreme upper and lower CDFs, ( )1

x xF 1  and ( )1

x xF 1 , bounding the distributional p-box 

( )1
x xPB 1  of x1 obtained by propagating the original uncertainty models of p1 (rank 1) and p2 (rank 4) (solid 

lines), together with those produced by fixing θ1 = [m, s2] = [0.6300, 0.0207] (dashed lines) and p2 = 1.00 (dot-

dashed lines), respectively. Right: extreme upper and lower CDFs, ( )3
x xF 3  and ( )3

x xF 3 , bounding the 

distributional p-box ( )3
x xPB 3  of x3, obtained by propagating the original uncertainty models of all the 
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corresponding input parameters (solid lines) and those produced by fixing parameter p12 (rank 1) to p12* = 0 
(dashed lines), 0.5 (dot-dashed lines) and 1 (dotted lines) 

 
2. Sensitivity Analysis in a ‘factor fixing’ setting 

In Section III.B.2.1, the general approach adopted to identify those parameter that can be fixed to a constant 

value without significantly affecting the outputs of interest is illustrated in detail; in Section III.B.2.2, the results of 

the application of the method to the tasks of Subproblem (B) are reported. 

 
2.1  The Proposed Approach 
In this case, we aim at finding those parameters that minimally affect the outputs when they are fixed to a given 

constant value. In particular, the objective is to determine whether the quantities Q of interest analyzed in the 

previous Section III.B.1, i.e., Q = xj (subproblem (B.1)), J1 (subproblem (B.2)) and J2 (subproblem (B.3)), are 

sufficiently insensitive to the uncertainty in any given parameter such that that parameter can be assumed to take on 

a fixed constant value without incurring in significant ‘error’11. In this context, we define the ‘error’ as the mismatch 

between the results obtained using the original uncertainty models and those produced by a configuration where one 

of the parameters pi, i = 1, 2, …, 21, is fixed to the constant pi*. 

In more detail, in subproblem (B.1) we quantify the ‘error’ as the relative ‘lack of overlapping’ between the 

distributional p-box of xj obtained using the original uncertainty models, ( ) ( ){ }jjjjj xxx

j

x

j

x xFxPB Ωθθ ∈= : , and the 

p-box produced by setting pi = pi*, ( ) ( ){ }jjjjj xx

i

x

j

x

ij

x pxFpxPB Ωθθ ∈= :*,* . The area overx

p

j

i

A ,
*p

 of intersection 

between the two p-boxes is calculated as 

 [ ] ( ) [ ] ( ){ } [ ] ( ) [ ] ( ){ }( )∫
−−−−

−=
1

0

*11*11, ,max,min* drprFrFprFrFA i

xx

i

xxoverx

p

jjjjj

ip
, (18) 

where ( )j

x xF j  and ( )*

ij

x pxF j  (resp., ( )j

x xF j  and ( )*

ij

x pxF j ) are the extreme bounding upper (resp., lower) 

CDFs computed as ( ){ }jjjj

jxjx

xxx

j

x xF Ωθθ
Ωθ

∈
∈

:max  and ( ){ }jjjj

jxjx

xx

i

x

j

x pxF Ωθθ
Ωθ

∈
∈

:,max *  (resp., 

( ){ }jjjj

jxjx

xxx

j

x xF Ωθθ
Ωθ

∈
∈

:min  and ( ){ }jjjj

jxjx

xx

i

x

j

x pxF Ωθθ
Ωθ

∈
∈

:,min * ). Thus, the fractional error (i.e., mismatch or ‘lack 

of overlapping’) j

i

x

p*ε  can be simply defined as 
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 { }j

i

j

j

ij

i x

p

x

overx

px

p AA

A

*

*

*

,max
1

,

pp

p
−=ε , (19) 

where jxAp  (11) and j

i

x

p
A *p

 are the areas of the p-box ( )j

x xPB j  obtained by propagating the original uncertainty 

models and by setting pi = pi*, respectively. Notice that when the parameter pi under consideration (i.e., the one that 

is fixed to the constant value pi*) is of category (I) or (III), then the term j

i

x

p
A *p

 in (19) may occasionally be larger 

than jxAp : this explains the necessity of introducing the term max{ jxAp , j

i

x

p
A *p

} at the denominator of (19), in order to 

keep j

i

x

p*ε  ≤ 1. Obviously, if j

i

x

p*ε  is close to zero, then parameter pi can be set to the constant value pi* without 

significantly affecting the shape of the p-box of xj. 

Instead, in subproblems (B.2) and (B.3) we quantify the mismatch between the intervals ],[ 11 JJ , ],[ 22 JJ  

(obtained by propagating the original uncertainty models) and )](),([ *

1

*

1 ii pJpJ , )](),([ *

2

*

2 ii pJpJ  (obtained by 

setting pi = pi*) as the maximum between the relative absolute errors produced in the estimation of the 

corresponding upper and lower bounds. In more detail, the relative absolute errors generated in the estimation of 1J , 

1J , 2J  and 2J  are computed as 

 1

*

J

pi

ε  = 
1

1

*

1 )(

J

JpJ i −
, 1

*

J

pi

ε = 
1

1

*

1 )(

J

JpJ i −
, 2

*

J

pi

ε  = 
2

2

*

2 )(

J

JpJ i −
 and 2

*

J

pi

ε = 
2

2

*

2 )(

J

JpJ i −
, (20) 

where 
1J , 1J , 

2J  and 2J  are different from zero. Then, we take the maximal values among { 1

*

J

pi

ε , 1

*

J

pi

ε } and 

{ 2

*

J

pi

ε , 2

*

J

pi

ε } as ‘conservative representatives’ of the errors 1

*

J

pi

ε  and 2

*

J

pi

ε  produced in the estimation of indicators J1 

and J2, i.e., 

 =1

*

J

pi

ε  max{ 1

*

J

pi

ε , 1

*

J

pi

ε } and =2

*

J

pi

ε  max{ 2

*

J

pi

ε , 2

*

J

pi

ε }, respectively. (21) 

Notice that defining the errors conservatively as in (21) allows treating those cases where the upper and lower 

bounds of J1 and J2 differ by several orders of magnitude (as in the present case study). For example, letting 1J  = 

0.01, 1J  = 15, )( *

1 ipJ  = 0.02 and )( *

1 ipJ  = 15.1, the computation of a ‘length of overlap’ (similarly to (18) and 
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(19) for the p-box) would be meaningless, since this length would be always ‘dominated’ by the large value of the 

upper bound 1J . In fact, the original length of the interval of J1 is (15 – 0.01) = 14.99, whereas the ‘length of 

overlapping’ is (15 – 0.02) = 14.98: thus, the corresponding relative error (when computed as the fractional ‘lack of 

overlapping’) would be 1 ‒ 14.98/14.99 = 6.67·10-4 = 0.67%. However, such a low mismatch is unrealistic: in fact, 

while the relative error produced in the estimation of 1J  is actually very low, i.e., (15.1 – 15)/15 = 6.67·10-4 = 

0.67%, the one generated in the estimation of 
1J  is instead very large, i.e., (0.02 – 0.01)/0.01 = 1.00 = 100% (notice 

that this problem is not present in the analysis of the p-boxes, since in the present case the values of the intermediate 

variables xj are of the same order of magnitude). Again, if 1

*

J

pi

ε  and 2

*

J

pi

ε  are close to zero, then parameter pi can be set 

to the constant value pi* without significantly affecting the intervals of metrics J1 (13) and J2 (14). 

Finally, in order to identify those parameters that in general minimally affect the output quantity Q = xj, J1, J2 of 

interest, we exhaustively explore the entire range of variation of all the parameters pi to find the corresponding 

(constant) values pi* that give rise to the maximal mismatch (i.e., maximal error) Qpi
ε  = { }Q

pp i
i

*
*

maxε  between the output 

quantities Q = xj, J1, J2, of interest, i.e.: 

 j

i

x

pε  = { }j

i
i

x

pp
*

*
maxε , 1J

pi
ε  = { }1

*
*

max J

pp i
i

ε  and 2J

pi
ε  = { }2

*
*

max J

pp i
i

ε . (22) 

If such maximal error is sufficiently small (e.g., lower than 1% in the present paper), then there exists no 

realization within the entire domain of parameter pi that affects appreciably the output Q: in other words, the 

uncertainty of parameter pi can be considered not important in the analysis of Q and pi can thus be fixed to a constant 

value in the corresponding mathematical model of Q. 

 
2.2  Application Results 
A greedy search strategy is applied to tackle the problem. For each input parameter {pi: i = 1, 2, …, 21} a series 

of Np* equally spaced values *,kip , k = 1, 2, …, Np*, is selected deterministically within the corresponding ranges of 

variation and the associated maximal ‘errors’ are evaluated as Q

pi
ε  = { }Q

pp
*

ki*
ki

ε
,

,

max , Q = xj, J1, J2 (notice that Np* = 2000 

for p4 and p5, whereas Np* = 100 for all the other parameters ranging within [0, 1]). The values of Q

pi
ε  = { }Q

pp
*

ki*
ki

ε
,

,

max , Q 

= xj, J1, J2, i = 1, 2, …, 21, are reported in Table 4. For illustration purposes, those maximal errors Q

pi
ε  that are lower 

than or equal to the (arbitrarily chosen) threshold of 1% (i.e., Q

pi
ε  < 1%) are indicated in bold to highlight the 
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corresponding non influential parameters. Also, the fixed constant values ( )Q

pi i
p ε*  that produce such maximal errors 

Q

pi
ε  (i.e., ( )Q

pi i
p ε*  = { }Q

pp i
i

εmaxarg ) are reported in parentheses only for these non influential parameters. 

  Sensitivity in a factor fixing setting 

  Maximal errors, Q
pi
ε  = { }Q

pp
*
i*

i

εmax  ( ( )Q
p

*
i i
εp  = { }Q

pp i
i

εmaxarg ) 

Param. Cat. Q = xj Q = J1 Q = J2 
p1 III 100% 100% 100% 
p2 II 5.87% 7.95% 3.27% 
p3 I 5.38% 1.02% 0.31% (0.60) 
p4 III 24.33% 9.62% 13.65% 
p5 III 36.29% 97.43% 29.16% 
p6 II 91.99% 0.79% (0.08 or 0.92) 1.81% 
p7 III 100% 1.57% 2.03% 
p8 III 34.08% 8.27·10-2% (1.00) 0.63% (1.00) 
p9 I 8.31% 1.36·10-2% (1.00) 0.14% ([0.98, 1.00]) 
p10 III 3.55% 3.58·10-3% (0.00) 2.86·10-2% ([0.00, 0.45]) 
p11 I 16.45% 8.71% 18.85% 
p12 II 100% 92.07% 73.21% 
p13 III 0.53% (0.70) 3.58·10-3% (0.00) 1.43·10-2% ([0.13, 1.00]) 
p14 III 0.53% (0.30) 1.59·10-2% (1.00) 7.14·10-2% ([0.29, 0.31]) 
p15 III 0.53% (1.00) 5.53·10-2% (0.96) 0.84% ([0.99, 1.00]) 
p16 II 88.93% 4.02% 2.17% 
p17 III 89.11% 1.58% 2.74% 
p18 III 100% 3.21% 2.41% 
p19 I 3.20% 4.85·10-2% (1.00) 0.11% ([0.99, 1.00]) 
p20 III 28.16% 0.84% (1.00) 0.80% ([0.99, 1.00]) 
p21 III Not applicable 96.73% 5.33% 

Table 4. Maximal errors Q
pi
ε  = { }Q

pp
*
i*

i

εmax , Q = xj, J1, J2, produced by setting pi to a constant value within 

its range of variation. Errors Q
pi
ε  < 1% are highlighted in bold to indicate those parameters pi that do not 

significantly affect the output quantity Q of interest. The fixed constant values ( )Q
p

*
i i
εp  that produce such 

maximal errors Q
pi
ε  (i.e., ( )Q

p
*
i i
εp  = { }Q

pp i
i

εmaxarg ) are reported in parentheses only for the non influential 

parameters 
 
From the analysis of the indicator Q = xj, it can be seen that p13, p14 and p15 are the only parameters that can be 

set to any constant within their entire ranges of variation [0, 1] with almost no influence on the p-box of the 

corresponding intermediate variable x3: actually, 3x

pi
ε  = 0.53% << 1%, i = 13, 14, 15. These results suggest that the 

uncertainty of p13, p14 and p15 is not relevant in determining the characteristics of the p-box of x3 and could thus be 

neglected. Also notice that this outcome is in agreement with the (very low) importance of these parameters in 

‘building’ the epistemic uncertainty in the p-box of x3 (see Table 3). With respect to that, only for illustration 

purposes and by way of example Figure 6 left depicts the upper and lower CDFs of x3 obtained by propagating the 

original uncertainty model (solid lines) and those produced by fixing p13 to 0 (dashed lines) and to 1 (dot-dashed 
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lines): in all cases the CDFs completely overlap. All the other parameters are found to have a non negligible effect 

on the p-boxes of the corresponding intermediate variables: actually, the maximal errors j
i

x

pε  produced range from 

3.20% (p19) to 100% (p1). This means that there are at least some parts of the domain of variation of such 

parameters whose contribution to the uncertainty of the corresponding intermediate variables xj is significant. In this 

respect, for the sake of illustration Figure 6 right reports the upper and lower CDFs of x2 obtained by propagating the 

original uncertainty model (solid lines) and by fixing p8 to 0.5 (dashed lines) and to 1 (dot-dashed lines): when p8 = 

0.5, the two p-boxes completely overlap, whereas when p8 = 1 the mismatch between the bounding CDFs is 

significant. 

Similar analyses can be carried out with respect to indicators Q = J1 and J2. The parameters that can be set to any 

constant within their entire ranges of variation [0, 1] with almost no influence on the bounds of J1 are p6, p8, p9, p10, 

p13, p14, p15, p19 and p20: actually, the corresponding maximal errors 1J

pi
ε  produced range from 3.58·10-5% (for p13) to 

0.84% (for p20) (i.e., they are far below 1%). This outcome is in agreement with the relatively low importance of 

these parameters in ‘building’ the epistemic uncertainty of J1 (see Table 3): in facts, the corresponding sensitivity 

rankings Ri(J1) vary from 9 (for p6) to 17 (for p13). Figure 7 left shows the upper and lower bounds of J1 obtained by 

propagating the original uncertainty model (solid lines) and those produced by fixing p20 to different values within 

its range of variation (circles): it is evident that these bounds tend to overlap for all the possible values of p20. 

Instead, the other parameters (with particular reference to p1, p2, p4, p5, p11, p12, p16 and p21) have at least a portion of 

their domain of variation whose contribution to the uncertainty of J1 is non negligible: actually, the maximal errors 

1J

pi
ε  produced range from 4.02% (for p16) to 100% (for p1). With respect to that, by way of example Figure 7 right 

shows the upper and lower bounds of J1 obtained by propagating the original uncertainty model (solid lines) and 

those produced by fixing p4 to different values within its range of variation (circles): it is evident that these bounds 

tend to overlap only when p4 ∈  [6.61, 6.63] and p4 ≈ 8.8, whereas they differ significantly when p4 lies far from 

these values (actually, 1

4

J

pε  = 9.62%). Again, these outcomes are coherent with the results of the sensitivity analysis 

of the previous Section that highlighted the importance of such parameters in the determination of the uncertainty of 

J1. Finally, concerning the remaining parameters (i.e., p7, p17 and p18), the following consideration is in order. 

Although they are not so relevant in building the epistemic uncertainty of J1 (actually, their rank Ri(J1) is 8, 11 and 



 
American Institute of Aeronautics and Astronautics 

 

 

39 

10, respectively), according to the present analysis they cannot be completely neglected in the system model: 

actually, the corresponding maximal errors 1J

pi
ε  produced are 1.57%, 1.58% and 3.21%, respectively. 

Discussions about indicator J2 are similar and not reported here for brevity (see Table 4 for details): notice that 

the uncertainty of parameters p3, p8, p9, p10, p13, p14, p15, p19 and p20 seems to have very little or no effect on J2 

(actually, they can be set to any constant within their entire ranges of variation [0, 1] producing errors that do not 

exceed 0.84%). Figure 8 depicts only two exemplary (and different) situations with reference to parameters p15 (left) 

and p21 (right). Fixing p15 within its entire range [0, 1] does not lead to significant variations in the bounds of J2 ( 2

15

J

pε  

= 0.84%). Instead, p21 seems to have insignificant effect on J2 only within [0.00, 0.35], whereas its contribution 

becomes quite relevant, e.g., in [0.40, 0.90] (2

21

J

pε  = 5.33%). 
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Figure 6. Left: upper and lower CDFs of x3 obtained by propagating the original uncertainty model (solid 
lines) and by fixing p13 to 0 (dashed lines) and to 1 (dot-dashed lines); right: upper and lower CDFs of x2 

obtained by propagating the original uncertainty model (solid lines) and by fixing p8 to 0.5 (dashed lines) and 
to 1 (dot-dashed lines) 
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Figure 7. Left: upper and lower bounds of J1 obtained by propagating the original uncertainty model 

(solid lines) and by fixing p20 to different values within its range of variation (circles); right: upper and lower 
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bounds of J1 obtained by propagating the original uncertainty model (solid lines) and by fixing p4 to different 
values within its range of variation (circles) 
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Figure 8. Left: upper and lower bounds of J2 obtained by propagating the original uncertainty model 

(solid lines) and by fixing p15 to different values within its range of variation (circles); right: upper and lower 
bounds of J1 obtained by propagating the original uncertainty model (solid lines) and by fixing p21 to different 

values within its range of variation (circles) 
 

C. Subproblem (C): Uncertainty Propagation 
This subproblem aims at finding the range of the metrics J1 (13) and J2 (14) that result from propagating both the 

original uncertainty model and an improved one (provided by the challengers). In Section III.C.1, the general 

approach adopted to propagate the input uncertainties onto the system performance metrics J1 (13) and J2 (14) is 

illustrated in detail; in Section III.C.2, the results of the application of the method to the tasks of Subproblem (C) are 

reported. 

 
1. The Proposed Approach 

The objective is to obtain the interval ],[ QQ  for the metrics of interest Q = J1 = Ep[w(p, d)] (13) and Q = J2 = 

P[w(p, d) > 0] (14) that result from propagating the mixed aleatory and epistemic uncertainty affecting the input 

parameters p. As already mentioned in the previous Section III.B, this amounts in general to solving the following 

optimization problems: 

 { } ( )[ ]{ }dpp
ΩθΩθ

,minmin 11 wEJJQ
allallallall ∈∈

=== , { } ( )[ ]{ }dpp
ΩθΩθ

,maxmax 11 wEJJQ
allallallall ∈∈

=== , (23) 

 { } ( )[ ]{ }0,minmin 22 >===
∈∈

dp
ΩθΩθ

wPJJQ
allallallall

, { } ( )[ ]{ }0,maxmax 22 >===
∈∈

dp
ΩθΩθ

wPJJQ
allallallall

. (24) 
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It is worth remembering that θall is the vector containing: (i) all the epistemically-uncertain category (II) 

parameters and (ii) all the epistemically-uncertain internal coefficients of the probability distributions ( )ii

p pq i θ  of 

the inputs pi, i = 1, 2, …, 21; also, Ωall is the corresponding space of variation. 

In this paper, problems (23) and (24) are tackled by embedding the Monte Carlo Simulation (MCS) technique for 

uncertainty propagation within a Genetic Algorithms (GAs) search for the extreme values Q  and Q . In more detail, 

for obtaining Q  (resp., Q ), the following conceptual steps have to be performed: 

1) the GA conducts its search using a population of candidate solutions {θall,c: c = 1, 2, …, Npop} ‘sampled’ 

within the corresponding space of variation Ω
all; 

2) for each candidate solution θall,c, the (aleatory) uncertainty in the input parameters p is propagated to the 

output metric Q of interest by MCS.30-31 In more detail: 

a. Na realizations {
ai

p : ia = 1, 2, …, Na} of the input parameters p are randomly sampled from the 

corresponding probability distributions ( )call ,θpq p ; 

b. using the realization 
ai

p , the value Q(θall,c) of the output metric Q of interest is estimated. In 

particular, if Q = J1, then Q(θall,c) ≈ ( )∑
=

⋅
a

a

a

N

i
ia wN

1

,1 dp ; instead, if Q = J2, then Q(θall,c) ≈ 

( )∑
=

⋅
a

a

a

N

i
iwa IN

1

,1 dp , where ( )dp ,
aiwI  = 1, when ( )dp ,

ai
w  > 0, and 0, otherwise. 

3) on the basis of the estimates of Q(θall,c) computed at step (2.b) above, the GA ‘intelligently’ drives the 

population of possible solutions {θall,c: c = 1, 2, …, Npop} towards the (near) optimal region of the search 

space Ωall; at the end of the search, Q  (resp., Q ) ≈ ( ){ }call

Nc
Q

pop

,

,...,2,1
min θ

=
 (resp., ( ){ }call

Nc
Q

pop

,

,...,2,1
max θ

=
). 

 

 Finally, notice that the sequence of steps (1)-(3) above have to be done once for each extreme bound of interest 

1J , 1J , 2J  and 2J . 

 
2. Application Results 

 Two different analyses are performed. In the first (subproblems (C.1) and (C.2)), the space of variation Ωall in 

(23) and (24) is the original one, i.e., that based on Table 1 and on the answer given to subproblem (A.3): then, allΩ  
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= all

nd 3
Ω  = ∏

=

4

1

x1

3

j

xx

n
j

d
ΩΩ  (see Section III.A). In the second (subproblems (C.3) and (C.4)), parameters p1, p5, p12 and 

p21 are selected by the authors on the basis of the sensitivity rankings obtained in subproblems (B.2) and (B.3) (see 

Section III.B) and improved uncertainty models Ω1,red, Ω5,red, Ω12,red and Ω21,red, respectively, are provided for them 

by the challengers: then, in this case allΩ  = all

redΩ  = 1x

redΩ  x Ω12,red x Ω21,red x ∏
≠=

20

12,6 ii
iΩ  = [(Ω1,red x Ω5,red) ∩ 1

3

x

nd
Ω ] x 

Ω12,red x Ω21,red x ∏
≠=

20

12,6 ii
iΩ  (in passing, notice that 1x

redΩ  is the new, reduced joint space of variation of the 

epistemically-uncertain parameters/coefficients of category (II) and (III) inputs p1, p2, p4 and p5 to intermediate 

variable x1: in particular, 1x

redΩ  is given by the intersection between space 1

3

x

nd
Ω  ‒ improved in Section III.A by means 

of nd3 = 50 data ‒ and the further improved ranges Ω1,red and Ω5,red of p1 and p5 provided by the challengers). As 

highlighted in Section III.A, the identification of those solutions that belong to set all

nd 3
Ω  is guaranteed by introducing 

the property in (8) as a hard constraint in the GA: only those candidates that satisfy such property are retained in the 

genetic evolution, whereas the others are discarded. 

 As in Section III.B, the original system model ( )dp,w  = oo
g

81
max

≤≤
 = ( )( )dphx ,max

81
=

≤≤ oo
f  (1) is replaced by an 

ANN regression model to reduce the computational burden associated to the solution of (23) and (24). Notice that Na 

= 10000 random realizations 
ai

p  of p are sampled to propagate uncertainty by MCS for both J1 and J2 (step 2.a of 

Section III.C.1). The intervals [1J , 1J ]ANN and [ 2J , 2J ]ANN resulting from the optimization searches within both 

all

nd 3
Ω  and all

redΩ  are reported in Table 5; the relative reduction in the length of these intervals due the improvement of 

the uncertainty models of the selected parameters p1, p5, p12 and p21 is shown in parentheses. It can be seen that the 

width of the intervals [
1J , 1J ]ANN and [

2J , 2J ]ANN has been reduced by 90.92% and 74.20%, respectively, after the 

refinement of the uncertainty models of parameters p1, p5, p12 and p21 selected according to our sensitivity analysis 

(Section III.B.1). In order to validate a posteriori the results obtained using the ANN meta-model, the optimal 

solutions θall thereby found are sent in input to the real system model and the corresponding intervals [
1J , 1J ] and 

[ 2J , 2J ] are re-calculated (highlighted in bold in Table 5). It can be seen that the results are in satisfactory 

agreement, confirming the effectiveness of ANNs in mapping complicated nonlinear and non-monotonic functions. 

Also, it can be further verified that the width of the intervals [ 1J , 1J ] and [ 2J , 2J ] have been significantly reduced 
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(i.e., by 99.01% and 72.26%, respectively) after the refinement of the uncertainty models of parameters p1, p5, p12 

and p21 selected by our sensitivity analysis (Section III.B.1). 

 
Uncertainty Propagation, Na = 10000 

  
Original uncertainty model, all

nd 3
Ω  

(after Section III.A) 

Improved uncertainty model, all

redΩ  
(after Section III.B) 

J1 
[ 1J , 1J ]ANN [0.0142, 12.2756] [0.0583, 0.1721] (90.92%) 

[ 1J , 1J ] [0.0129, 13.1552]  [0.0316, 0.1612] (99.01%) 

J2 
[

2J , 2J ]ANN [0.1285, 0.8288]  [0.2778, 0.4585] (74.20%) 

[ 2J , 2J ] [0.0900, 0.8142]  [0.2389, 0.4398] (72.26%) 

Table 5. Intervals [ 1J , 1J ]ANN (23) and [ 2J , 2J ]ANN (24) of performance metrics J1 (13) and J2 (14) 
obtained by embedding ANNs regression models and MCS (with Na = 10000 samples) within a GA 

optimization search; the relative reduction in the length of these intervals due the improvement of the 
uncertainty models of the selected parameters p1, p5, p12 and p21 is shown in parentheses. The intervals [1J , 

1J ] (23) and [ 2J , 2J ] (24) resulting from the a posteriori validation of the optima found on the real system 
model are also reported 

  
 Finally, in order to take into account the statistical variability in the estimates of J1 and J2 (obtained by plain 

random sampling), the upper and lower bounds of the corresponding intervals (see Table 5) are ‘extended’ above 

and below, respectively, of an amount equal to two standard deviations: the ‘conservative’ estimates thereby 

obtained (i.e., [ 1J , 1J ]cons = [ 1J  ‒ 2
1Jσ , 1J  + 2

1J
σ ] and [ 2J , 2J ]cons = [ 2J ‒ 2

2Jσ , 2J  + 2
2J

σ ], respectively) are 

reported in Table 6. 

 
Uncertainty Propagation, Na = 10000: ‘conservative’ estimates 

  
Original uncertainty model, all

nd 3
Ω  

(after Section III.A) 

Improved uncertainty model, all

redΩ  
(after Section III.B) 

J1 [ 1J , 1J ]cons [0.0108, 15.4437] [0.0278, 0.1693] 

J2 [ 2J , 2J ]cons [0.0843, 0.8220] [0.2304, 0.4497] 

Table 6. Intervals [ 1J , 1J ]cons = [
1J  ‒ 2

1Jσ , 1J  + 2
1Jσ ] and [ 2J , 2J ]cons = [

2J ‒ 2
2Jσ , 2J  + 2

2Jσ ] of 

performance metrics J1 (13) and J2 (14) obtained by ‘extending’ the upper and lower bounds [ 1J , 1J ] and 

[ 2J , 2J ] of J1 and J2 (see Table 5) above and below of two standard deviations, respectively 
 

 A consideration is in order with respect to the use of GA for the identification of the extreme values Q  and 

Q  of a safety variable Q of interest (i.e., J1 or J2 in this case). Although GA is a global optimizer, in some problems 

(characterized by massive multimodality of the objective function to be optimized), it may converge to local optima. 

In such a case, the lower bound Q  would be overestimated, whereas the upper bound Q  would be underestimated: 
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in other words, the analyst would underestimate the range of epistemic uncertainty in Q. Such a situation can lead 

the decision maker to the wrong decision (e.g., to an estimate of the largest failure probability that is much lower 

than the actual value): this is particularly dangerous in the risk assessments of safety-critical systems, such as the 

aerospace, nuclear and chemical ones. In this view, the performance of the GA is a key issue to avoid such 

underestimations. The performance of GA depends largely on its ability to thoroughly explore the search space (i.e., 

to maintain a sufficient “genetic diversity” in the population of candidate solutions), while attempting to efficiently 

and intelligently drive the search towards the “interesting region” of the search space, i.e., towards the global 

optimum. On one hand, a thorough exploration of the search space (i.e., a sufficient “genetic diversity”) is 

guaranteed by the following strategies49,50: (i) GA is repeated several times (say, ten times) with different random 

seeds (i.e., different random initial populations) and only the best result over all the simulation is retained; (ii) some 

of the GA parameters are properly set: for example, a relatively high population size (i.e., Npop = 100) is employed. 

On the other hand, an efficient identification of the global optimum is favoured (but not guaranteed) by the 

following techniques49,50: (i) fitness-guided candidate selection procedures are adopted: in other words, the 

probability that a candidate solution survives during the GA evolution is proportional to its objective function (i.e., 

to its ‘quality’ or ‘fitness’); (ii) elitism is implemented: at each generation some of the individuals of the current 

population (e.g., the best 0.1·Npop) are deterministically selected to be part of the next population, so that the best 

genetic code is guaranteed to be propagated; (iii) differently from subproblem A, the algorithm stops only if the 

average relative change in the best fitness function value over a given number of generations (e.g., 50) is less than or 

equal to a given tolerance (e.g., 10-6). 

D. Subproblem (D): Extreme Case Analysis 
In Section III.D.1, the general approach adopted to identify the realizations of the epistemically-uncertain 

parameters/coefficients θall leading to the extreme bounds of the ranges [
1J , 1J ] and [

2J , 2J ] of J1 and J2 is 

described; in Section IV.D.2, the results of the application of the method to the tasks of Subproblem (D) are 

reported. 

 
1. The Proposed Approach 
The realizations of the epistemically-uncertain parameters/coeffieints leading to the extreme bounds of the 

ranges [ 1J , 1J ] and [ 2J , 2J ] of J1 and J2 are formally defined as follows: 
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 { } ( )[ ]{ }dpθ p
ΩθΩθ

,minargminarg 1,1 wEJ
allallallall

all

low ∈∈
== , { } ( )[ ]{ }dpθ p

ΩθΩθ
,maxargmaxarg 1,1 wEJ

allallallall

all

up ∈∈
==  (25) 

 { } ( )[ ]{ }0,minargminarg 2,2 >==
∈∈

dpθ
ΩθΩθ

wPJ
allallallall

all

low , { } ( )[ ]{ }0,maxargmaxarg 2,2 >==
∈∈

dpθ
ΩθΩθ

wPJ
allallallall

all

up . (26) 

 Notice that in our approach, solutions to (25) and (26) are obtained in the same GA optimization searches carried 

out to identify the extreme bounds of the ranges [
1J , 1J ] and [

2J , 2J ] (see the previous Section III.C.1). Notice 

that all

low,1θ  and all

low,2θ  correspond to extreme ‘best-case’ configurations (i.e., to parameters settings that produce lower 

– i.e., safer – values of metrics J1 and J2); on the contrary, all

up,1θ  and all

up,2θ  correspond to extreme ‘worst-case’ 

scenarios (i.e., to parameters settings that produce higher – i.e., more risky – values of metrics J1 and J2). 

 
2. Application Results 
 As before, the solutions are searched for in two different spaces of variation, i.e., the original one all

nd 3
Ω  and the 

improved one all

redΩ . The corresponding values of all

low,1θ , all

up,1θ , all

low,2θ  and all

up,2θ  are reported in Table 7 for both cases. 

The corresponding extreme CDFs of x1 (top left), x2 (top right), x3 (middle left), x4 (middle right) and x5 (bottom) are 

shown in Figures 9 and 10 for the original (all

nd 3
Ω ) and reduced ( all

redΩ ) models, respectively; the CDFs producing the 

extreme values 
1J , 1J , 

2J  and 2J  for J1 and J2 are depicted in solid, dashed, dot-dashed and dotted lines, 

respectively. 
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Extreme Case Analysis, Na = 10000 

  

Realizations of the epistemically-uncertain parameters/coefficients 
J1 J2 

Model all

nd 3
Ω  Model all

redΩ  Model all

nd 3
Ω  Model all

redΩ  

Parameter Category all

low,1θ  all

up,1θ  all

low,1θ  all

up,1θ  all

low,2θ  all

up,2θ  all

low,2θ  all

up,2θ  

p1 III 
0.7791 0.6248 0.6399 0.6203 0.7438 0.6455 0.6400 0.6244 
0.0400 0.0337 0.0322 0.0330 0.0205 0.0266 0.0321 0.0322 

p2 II 0.6000 1.0000 0.8266 0.9999 0.8611 0.6656 0.1682 1.0000 
p3 I / / / / / / / / 

p4 III 
3.0646 5.0000 4.8554 2.2933 1.4203 0.4386 4.7448 -4.8727 
0.6437 2.0000 1.5948 0.0556 0.6353 1.4342 0.0512 0.2724 
-0.1941 -0.9639 0.3332 0.4987 0.0294 -0.0417 0.1511 -0.3830 

p5 III 
-0.4393 -2.9709 -1.3485 -1.5259 1.7777 2.0209 -1.5755 -1.3440 
1.3203 0.0502 0.5756 0.5493 0.5173 0.0574 0.6201 0.5677 
-0.1941 -0.9639 0.3332 0.4987 0.0294 -0.0417 0.1511 -0.3830 

p6 II 1.0000 0.5003 0.0025 0.5106 0.9989 0.9953 0.0098 0.8916 

p7 III 
0.9820 0.9820 0.9835 0.9855 0.9876 1.0146 1.0266 1.3275 
1.0800 1.0800 1.0800 1.0799 1.0113 1.0523 1.0773 0.9712 

p8 III 
7.4501 7.4501 7.4593 7.4600 12.7776 8.7347 10.4424 11.9942 
7.8640 7.8640 7.8589 7.8531 6.1472 7.7475 7.8057 6.7817 

p9 I / / / / / / / / 

p10 III 
4.5130 4.5130 4.5115 4.5111 4.0797 4.4119 1.9878 4.4368 
1.5360 1.5361 1.5476 1.5425 4.0802 1.8005 2.0735 4.2122 

p11 I / / / / / / / / 
p12 II 0.1209 0.6330 0.9981 0.9675 0.6368 0.0997 0.9623 0.9968 

p13 III 
0.4120 0.7370 0.4138 0.7355 0.6790 0.6146 0.7253 0.4162 
2.0680 1.0000 2.0680 1.0054 1.6002 1.6874 1.0958 2.0288 

p14 III 
2.1690 0.9310 2.1675 0.9518 2.1283 1.2083 1.0167 2.1564 
1.7491 2.4070 1.0021 2.4067 1.1463 1.9519 2.4068 1.0014 

p15 III 
7.0950 7.0950 5.4495 7.0937 7.0432 6.0305 6.5092 5.4787 
5.2871 5.2870 6.9383 5.2880 5.9964 6.2385 5.3701 6.8334 

p16 II 1.0000 0.7404 1.0000 0.2545 0.2492 0.9966 0.1298 1.0000 

p17 III 
1.0600 1.0600 1.0607 1.0723 1.5096 1.0619 1.3060 1.0603 
1.4880 1.4880 1.4880 1.4864 1.1103 1.4866 1.1271 1.4862 

p18 III 
4.2660 4.2660 4.2625 1.0032 2.1948 4.1990 2.3304 4.0693 
0.5531 0.5530 0.5680 0.9981 0.9529 0.5907 0.6932 0.6122 

p19 I / / / / / / / / 

p20 III 
7.5300 7.5300 7.5389 13.4889 9.3426 8.5107 11.8411 12.6506 
8.1480 8.1480 8.1468 4.7143 6.8836 8.0741 6.7160 7.9054 

p21 III 
0.4211 1.0000 0.8815 0.8707 0.9808 0.9621 0.9995 0.8959 
29.6210 7.7720 22.9982 22.9990 12.4134 7.8048 19.0219 19.8172 

Table 6. Realizations all

low,1θ , all

up,1θ , all

low,2θ  and all

up,2θ  of the epistemically-uncertain parameters/coefficients θall 

leading to the extreme bounds 1J , 1J , 
2J  and 2J , respectively, of the performance metrics J1 and J2 in the 

original and improved uncertainty models all

nd 3
Ω  and all

redΩ , respectively 
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Figure 9. CDFs of x1 (top left), x2 (top right), x3 (middle left), x4 (middle right) and x5 (bottom) producing the 
extreme values 1J  (solid lines), 1J  (dashed lines), 2J  (dot-dashed lines) and 2J  (dotted lines) for J1 and J2 

for the original ( all

nd 3
Ω ) model 
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Figure 10. CDFs of x1 (top left), x2 (top right), x3 (middle left), x4 (middle right) and x5 (bottom) producing 
the extreme values 1J  (solid lines), 1J  (dashed lines), 2J  (dot-dashed lines) and 2J  (dotted lines) for J1 and 

J2 for the improved ( all

redΩ ) model 
 
 It can be seen that: (i) as expected, moving from the original ( all

nd 3
Ω ) to the reduced ( all

redΩ ) uncertainty model the 

CDFs of intermediate variables x1, x3 and x5 (i.e., those variables containing the selected improved parameters p1, p5, 
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p12 and p21) significantly change their shape (see, e.g., x1 and x3) and/or their location (see, e.g., x3 and x5); (ii) when 

the reduced uncertainty model (all

redΩ ) is used, then the parameters ranked as ‘less relevant’ in Table 2 come to play a 

non negligible role in ‘building up’ the epistemic uncertainty of J1 and J2. For example, moving from all

nd 3
Ω  (Figure 

9) to all

redΩ  (Figure 10) one can observe a significant modification in the CDF of x2 that leads to the maximum value 

of J2 (dotted lines in Figures 9 and 10, top right). Also, it is worth noting the change in the CDF of x4 leading to the 

maximum value of J1 (dashed lines in Figures 9 and 10, middle right); this is due, e.g., to the significant difference 

in the (optimal) values that the epistemically-uncertain parameters/coefficients of p16, p18 and p20 (ranked 7, 11 and 

10 in Table 3) assume when the improved model (all

redΩ ) is adopted instead of the original one (all

nd 3
Ω ). 

  
 The different characteristics of the CDFs reported in Figures 9 and 10 allow exploring different parts of the 

space of variation of the intermediate variables xj, j = 1, 2, …, 5, and consequently allow probing different areas of 

the system failure domain. To this aim, all the Na = 80000 samples randomly generated in the uncertainty 

propagation phase of Section 4.C are taken into account (i.e., all the 8·10000 samples produced to estimate 
1J , 1J , 

2J  and 2J  using both the original – all

nd 3
Ω  ‒ and the reduced ‒ all

redΩ  ‒ uncertainty model); moreover, additional N = 

20000 patterns deterministically selected previously to train and test the ANN (see Section VI.B) are added to 

provide a better covering of the intermediate variable space. Thus, a total of Ntot = Na + N = 100000 points 

( ){ }100000...,,2,1,, == tottt Ntgx  are analyzed with the objective of identifying those realizations of x leading to J2 > 

0; then, among all these failure configurations we identify few representative realizations that typify different 

possible failure scenarios (in terms of relationship between x and g). In more detail, we proceed as follows:  

i. we group those configurations of x that lead to the violation of the same requirements (i.e., that lead to the 

same failure scenarios): for example, those patterns xt that lead to the violation of requirement g4 alone are 

separated from those that cause the violation of requirements g4 and g6 together, and so on. By so doing, in 

the present case we identify NS = 63 different failure scenarios Si, i = 1, 2, …, NS = 63; 

ii. for each failure scenario Si, i = 1, 2, …, NS = 63, we characterize the corresponding relations between x and g 

in order to identify all the combinations of intermediate variable values that lead to a given failure scenario. 

In order to do that automatically and to capture the complicated dependences between the variables xj, j = 1, 

2, …, 5, we perform k-means clustering on the configurations xt belonging to a given scenario Si. Without 
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going into technical details, k-means clustering is a partitioning method that separates a set of data xt into 

into k mutually exclusive clusters; the partitions are such that the objects within each cluster are as close to 

each other as possible, and as far from objects in other clusters as possible (the classical Euclidean distance 

can be used to measure such distance). Each cluster in the partition is defined by its member objects and by 

its centroid, or center: the centroid for each cluster is the point to which the sum of distances from all 

objects in that cluster is minimized. An iterative algorithm is employed that minimizes the sum of distances 

from each object to its cluster centroid, over all clusters; this algorithm moves objects between clusters 

until the sum cannot be decreased further. The result is a set of clusters that are as compact and well-

separated as possible62. With respect to that, notice that in the present case for each scenario Si many 

different clusters (and the corresponding centroids) may be identified, each one corresponding to one 

representative, archetypical combination of xj-values that leads to the failure scenario Si considered. 

 

 Table 7 reports a selection of 8 (out of 63) representative failure scenarios: three of them (indices 1-3) lead to the 

violation of only one requirement (g4, g6 and g8), four of them (indices 4-7) to the violation of two constraints at the 

same time (g4, g7; g3, g4; g5, g8 and g1, g4) and one (index 8) to the violation of three constraints at the same time (g2, 

g4, g6). This set has been selected because it represents a ‘minimal’ list of scenarios that contains examples of 

violations of all the requirements of interest (for example, we have not found any scenario where requirements g1, 

g2, g3 or g7 are violated alone; also, we have not found any scenario where requirement g2 is violated in a group of 

less than three requirements): more complex scenarios involving the violation of 4, 5, …, 8 constraints at the same 

time can be obtained as intersections/unions of those reported in Table 7. The centroids of the corresponding clusters 

are also reported in the Table. Based on the values of these centroids, qualitative descriptions of the relationships 

between the intermediate variables xj is given in parentheses: letters ‘L’, ‘H’ and ‘A’ mean that in order to generate 

the scenario of interest, the variable need to take low, high or any value within its range of variation. Notice that (i) 

obviously, the fact that a variable may take any value within its range suggests that it is not important in the 

definition of the scenario of interest; (ii) when a variable is not important, the k-means algorithm locates the 

corresponding coordinate of the centroid in the middle point of the range of variation of the variable. 
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N. of  
violated 

constraints 

Scenario  
Index 

Violated  
constraints 

Cluster 
number 

Intermediate variable values 
(centroids, representative realizations) 

x1 x2 x3 x4 x5 

1 
1 g4 

1 0.2466 
(0.05<x1<0.34) 0.6310 (A) 0.2904 (L) 0.7422 (A) 0.4072 (A) 

2 0.4300 
(0.425<x1<0.53) 

0.6148 (A) 0.8517 (H) 0.7733 (A) 0.2453 (L) 

3 0.3750 
(0.34<x1<0.4) 

0.6148 (A) 0.8517 (H) 0.7422 (A) 0.4072 (A) 

2 g6 1 0.0288 (L) 0.6191 (A) 0.8832 (H) 0.7124 (A) 0.5609 (H) 
3 g8 1 0.0245 (L) 0.6200 (A) 0.4566 (A) 0.8468 (H) 0.5640 (H) 

2 

4 g4, g7 

1 0.7277 
(0.68<x1<0.76) 

0.6191 (A) 0.1203 (L) 0.8114 (A-H) 0.3452 (A) 

2 0.7282 
(0.68<x1<0.76) 

0.6185 (A) 0.2952 (L) 0.8144 (A-H) 0.3252 (A) 

5 g1, g4 
1 0.4157 

(0.3985<x1<0.42) 
0.8281 (H) 1.0166 (H) 0.8183 (A-H) 0.2106 (L) 

6 g3, g4 1 1.0546 (H) 0.5578 (L-A) 0.1503 (L) 0.8975 (H) 0.3499 (A) 
7 g5, g8 1 0.0107 (L) 1.0339 (H) 0.2593 (L) 0.4822 (L) 0.7179 (H) 

3 8 g2, g4, g6 

1 0.3850 
(0.34<x1<0.4) 

0.6148 (A) 0.2500 (L) 0.5500 (L-A) 0.2987 (A) 

2 0.4400 
(0.425<x1<0.53) 

0.6431 (A) 0.1911 (L) 0.6112 (L-A) 0.3251 (A) 

3 0.6849 
(0.68<x1<0.76) 

0.6344 (A) 0.9559 (H) 0.7322 (A) 0.3331 (A) 

Table 7. Representative failure scenarios obtained by k-means clustering of system failure configurations 
 

IV.  Conclusion 
In this work, we have considered the model of a twin-jet aircraft including twenty-one inputs and eight outputs 

(affected by mixed aleatory and epistemic uncertainties that are represented by probability distributions and 

intervals, respectively). Within this context, we have addressed and solved the following issues: 

A. on the basis of a finite number of empirical realizations of one of the model outputs, the uncertainty 

models of five input parameters have been improved (i.e., the epistemic uncertainty in the corresponding 

internal coefficients/parameters has been reduced). In particular, Genetic Algorithms have been 

efficiently devised to identify some of the possible combinations of the epistemically-uncertain input 

parameters/coefficients leading to a distributional p-box for the output that is coherent with the available 

data (i.e., with the corresponding empirical CDF and the related Kolmogorov-Smirnov confidence 

bounds). A reduction of about 40% in the epistemic uncertainty has been obtained by means of 50 data; 

B. sensitivity analysis has been carried out to study systematically how the inputs to the model influence the 

outputs. In particular, two tasks have been performed. In the first (namely, ‘factor prioritization’), we 
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have ranked the input parameters according to degree of reduction in the output epistemic uncertainty 

which one could hope to obtain by refining their uncertainty models. To this aim, a novel global 

sensitivity index has been introduced, which has led to the identification of four (out of twenty-one) 

relevant parameters (p1, p5, p12 and p21). This information is of paramount importance since it allows the 

analyst to focus his/her future empirical studies mainly on the refinement of these parameters. In the 

second analysis (namely, ‘factor fixing’), on the contrary we have identified those parameters that 

minimally affect the outputs, i.e., those that can be assumed to take on a fixed constant value without 

producing significant errors. The analysis has led to find out at least four (out of twenty-one) parameters 

(p13, p14, p15 and p19) that have practically no influence on the uncertainty of the system failure 

probability and of the mean of the worst case requirement metric (other four parameters, p8, p9, p10 and 

p20 could be also considered negligible in the analysis of the integrated system). This information 

suggests assigning constant values to these inputs from the mathematical system model, which produces 

a consistent simplification of the analysis. 

In all the tasks related to sensitivity analysis, the original mathematical model of the system has been 

replaced by a fast-running, surrogate regression model based on Artificial Neural Networks (ANNs): 

this has allowed to reduce the associated computational time by about three orders of magnitude. 

C. uncertainty has been propagated from the inputs to the outputs of the system model in order to identify 

the extreme bounds (i.e., the range) of two performance metrics of interest (i.e., the expected value of the 

worst-case requirement metric and the system failure probability). We have employed (i) standard MCS 

to propagate the aleatory uncertainty described by probability distributions and (ii) GAs to solve the 

numerous optimization problems related to the propagation of epistemic uncertainty by interval analysis. 

The uncertainty propagation phase has been carried out in two different ‘system configurations’: in the 

first, the original input uncertainty models were used; in the second, improved (i.e., less uncertain) 

models were adopted for the four input parameters identified in task (B). The use of the improved 

models has led to a reduction of 99% and 72% in the length of the intervals of the two metrics, 

confirming the relevance of the four parameters selected by sensitivity analysis; 

D. within the uncertainty propagation phase (C), we have also identified the realizations of the 

epistemically-uncertain coefficients/parameters that yield the extreme bounding values of the two 
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performance metrics defined above. This information can be used to typify best- and worst-case 

scenarios, i.e., to identify which combinations of values of the epistemically-uncertain 

coefficients/parameters lead to the smallest and largest values, respectively, of the system performance 

indicators of interest. 
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