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Hybrid Uncertainty and Sensitivity Analysis of the Model of
a Twin-Jet Aircraft

Nicola Pedroni
Ecole Superieure d’Electricité (Supelec), Gif-Swette, France, 91192

Enrico Zid
Ecole Centrale Paris (ECP), Chatenay-Malabry, Fran82295
Politecnico di Milano, Milano, Italy, 20133

The mathematical models employed in the risk assessnt of complex, safety-critical
engineering systems cannot capture all the charactstics of the system under analysis, due
to: (i) the intrinsically random nature of several of the phenomena occurring during system
operation (aleatory uncertainty); (ii) the incomplde knowledge about some of the
phenomena (epistemic uncertainty). In this work, weconsider the model of a twin-jet
aircraft, which includes twenty-one inputs and eigh outputs. The inputs are affected by
mixed aleatory and epistemic uncertainties represeed by probability distributions and
intervals, respectively. Within this context, we adress the following issues: (A) improvement
of the input uncertainty models (i.e., reduction othe corresponding epistemic uncertainties)
based on experimental data; (B) sensitivity analysito rank the importance of the inputs in
contributing to output uncertainties; (C) propagation of the input uncertainties to the
outputs; (D) extreme case analysis to identify th@ssystem configurations that prescribe
extreme values of some system performance metrickinterest (e.g., the failure probability).
All the tasks are tackled and solved by means of agfficient combination of: (i) Monte Carlo
Simulation (MCS) to propagate the aleatory uncertaity described by probability
distributions; (ii) Genetic Algorithms (GAs) to solve the numerous optimization problems
related to the propagation of epistemic uncertaintyby interval analysis, and (iii) fast-
running Artificial Neural Network (ANN) regression models to reduce the computational
time related to the repeated model evaluations redeed by uncertainty and sensitivity

analyses.
Nomenclature
S = mathematical model of the system
Ninp = number of model input parameters
pi =i-th input parametetii € 1, 2, ...,Ninp)
p = vector of system model input paramet@rs {pi:i = 1, 2, ....Ning})
d = vector of system design variables
Nout = number of model output parameters
Nint = number of model intermediate variables
hi(-) =j-th intermediate mathematical modgek(1, 2, ...,Ni)

= vector of input parameters to thth mtermedlate mathematical modgl) § = 1, 2, ...,Niny)
xJ h(|d) =j-th model intermediate variablp£ 1, 2, ...,Ni)
= vector of model intermediate vanables

g0 = o-th model output parametes-th system requirement metrig), = fo(x, d) (0=1,2,..nu=8)
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g = f(x, d) = vector of model output parameters (vector sty requirement metrics)

0, = internal coefficients of the probability distution of thei-th input parameter

Npi = number of internal coefficients of the probaliliistribution of the-th input parameter

;) = |-th internal coefficient of the probability disttition of thei-th input parameted € 1, 2, ...,ny;, i = 1,
2, .y ninp)

q"‘(pi |0i) = Probability Density Function (PDF) of tieh input parameter
F* (pi |0i) = Cumulative Distribution Function (CDF) of the¢h input parameter
4
4, = vector of the intervalg,, of variation ofg; I = 1, 2, ...,n,;, 1 =1, 2, ...,Niyp)
PB"(p) = {F '“‘(pi |0i): 0, DQi} = distributional p-box of theth input parameter

n

= interval of variation of), (1 =1, 2, ....,np;, i = 1, 2, ....Ninp)

o)

i

Q = |_| 4,, =space of variation @ (case of epistemic independence)

1=1

E[-] = expected value

V[-] = variance

P[] = probability

m = mean of the Beta distribution pf

53 = variance of the Beta distribution pf
N(-,-) = Normal distribution

Ui = mean of thé-th Normal distribution
o = variance of théth Normal distribution

U[0,1) = uniform distribution on [0, 1)

g = |location parameter of thieh Beta distribution

b; = scale parameter of tiveh Beta distribution

0" = vector of the epistemically-uncertain paramétexsfficients of the inputs t(-)

Q% = space of variation o™

6" = vector of all the epistemically-uncertain parseng/coefficients contained in the entire systendeh8

Mot
0 = ” Q" = space of variation af"
j:

d

X, = vector of real random realizations of variakle

Na1 = size of vectorx;

w(p,d) = maxg, = system worst-case requirement metric
<0<

J, = Ep[w(p,d)] = expected value of(p,d)
J,=1- P[vv( p.d)< 0] = system failure probability

F*(x)  =empirical CDF ok, built onn realizations

I?Kxg(m)(xl) = Kolmogorov-Smirnov upper bound da*™ (xl) with statistical confidence 100{1a)%

Eis(a,n‘,)(xl) = Kolmogorov-Smirnov lower bound oR ** (xl) with statistical confidence 100{1a)%

D(a, ng) = one-sample Kolmogorov-Smirnov critical statisfor intrinsic hypotheses for confidence level
100 (1~ «)% and sample sizag

Q: = space of variation of™ , improved by means @f; empirical data

Q = generic output quantity of interest

Us(Q) = amount of epistemic uncertainty containe@in

0 = generic epistemically-uncertain ‘factor’ in thiecertainty model of;

0 = generic constant value to whighcan be fixed

o =k-th value to whichy; can be fixed (during computation of global sermgitiindex) k=1, 2, ...,No)

Un(Qlgi = @) = amount of epistemic uncertainty@wheng; = ¢;’
07 = [01 0,,..0.,,0....0, J = vector of all the epistemically-uncertain paréeng/coefficients excesk

QY = space of variation of*'
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E,i[Up(Qlp)] = expected amount of epistemic uncertaintiwheng; is fixed to a constant

S(Q
A%)

= sensitivity (index) of (the epistemic uncertgim) Q to (the epistemic uncertainty ip)
= area contained in the distributional p-boxof

PB* (xj) = {F : (xj 0" ): 0" DQ*'} = distributional p-box ok;

F* (xj) = extreme upper CDF bounding the distribution&lop-ofx;

E® (xj) = extreme lower CDF bounding the distributiondgx ofx;

Nirain = size of the training set of an Artificial Neutdétwork (ANN)
Xe = {Xi6 Xop +s Xt -y X } = t-th input pattern of the training set of an ANIN=(1, 2, ... Nirain)

o ={%1s B¢ -Gt - 9, } = t-th output pattern of the training set of an ANN:(1, 2, ..., Nirain)
D,.. ={(x,,g.)t=12..,N,} = training set of an Artificial Neural Network

Ny = number of hidden layers in an ANN

Nyal = size of the validation set of an ANN

D, :{(x,,g, ),t: :I,2,...,Nva|} = validation set of an ANN
Neest = size of the test set of an ANN

D.. = {(x, ' 0, ),t = 1,2,...,Ntest} = test set of an ANN
R = coefficient of determination

pi* = generic constant value to whiphcan be fixed

PB® (xj | P, *):{F % (xi 0", p, *): 0" DQ*‘} = distributional p-box oX; obtained keeping; = p*

E* (xj|p;) = extreme lower CDF bounding the distributionddgx of x; obtained keeping; = pi*

F* (xj | p;) = extreme upper CDF bounding the distribution&lop-ofx; obtained keeping; = pi*

A:“:VE’ = area of overlap between the p-boxdiuilt using the original uncertainty modelspénd the one built
keepingp; = p*
g;: = (fractional) lack of overlap between the p-bdxdouilt using the original uncertainty modelspgéand

the one built keeping, = pi*
[J,.3,] =range of)
[J,,d,] =range ofl,
[J,, 3,1™™N =range of}; obtained by replacing the original system modeabyANN model
[J,, 3,1™N =range of], obtained by replacing the original system modeabyANN model
[J,(p),J,(p)] =range of;, obtained setting; = p*
[J,(p),J,(p)] =range ofl, obtained setting; = p;*

Li“:Ye' = length of overlap between the intervls, J,] and[J,(p)),J,(p.)]

L;Z‘*;’.V‘“" = length of overlap between the intervils, J,] and[J,(p.),J,(p;)]

£ = (fractional) lack of overlap between the ints{J,, J,] and[J,(p)),J,(p))]

£ = (fractional) lack of overlap between the intdevid ,, J,] and[J,(p),J,(p;)]

[\ = number of constant valupg selected in the sensitivity analysis

P; =k-th value ofp* (k=1, 2, ...,Ny)

Q) red = reduced (improved) space of variation for thistemically-uncertain parameters/coefficientpof
Qs g = reduced (improved) space of variation for thistemically-uncertain parameters/coefficientgpf
Q151ed = reduced (improved) space of variation for thistemically-uncertain parameters/coefficientppf
251 1ed = reduced (improved) space of variation for thistepically-uncertain parameters/coefficientgpgf
Q! = reduced (improved) space of variation #8F

0al|

1low

= realization o#®" for whichJ; = J,
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;) = realization o#?" for whichJ; = J,

oz, = realization o#™" for whichJ; = J,

02 = realization o#™" for whichJ, = J,

R(Q) = sensitivity rank of parametpr evaluated according to indicatQr= x, J, »

Race,i = R(J1) + R(J,) = accumulated sensitivity ranking pfevaluated as the sum of the rankings,aindJ,

[. Introduction

HE quantitative analyses of the phenomena occuiiringafety-critical (e.g., civil, nuclear, aerospaand
Tchemical) engineering systems are based on mathadnaibdel$™. In practice, not all the characteristics of the
system under analysis can be captured in the mtued; uncertainty is present in both the valuethefmodel
input parameters and hypotheses. This is due Ytahdi intrinsically random nature of several of ffteenomena
occurring during system operation (aleatory undéetyy (i) the incomplete knowledge about some tbk
phenomena (epistemic uncertainty). Such uncertginbpagates within the model and causes uncertaintis
outputs: the characterization and quantificatiorthi$ output uncertainty is of paramount importafamemaking
robust decisions in safety-critical applicatibhsFurthermore, the identification by sensitivityadysis of the model
parameters and hypotheses that contribute the todbie output uncertainty plays a fundamental iolériving
resource allocation for uncertainty reducfith

In this work, we consider the mathematical (blaokjbmodel of a twin-jet aircraft described in R&1, which
includes twenty-one inputs and eight outputs. Tipeiis are uncertain and classified into three caieg; (1) purely
aleatory parameters modeled as random variabldsfixid functional forms and known coefficientst) (burely
epistemic parameters modeled as fixed but unknamstants that lie within given intervals (contrémyBayesian-
based approaches such intervalsraxteprobabilistic i.e., they do not define a uniform probabilityndéy function);
(1) mixed aleatory and epistemic parameters medels distributional probability boxes (p-boxes,,ias random
variables with fixed functional form but epistemigauncertain (non probabilistimterval) coefficients. Within this
context, we tackle the following issues raised iy NASA Langley Multidisciplinary Uncertainty Quaditation
Challenge (MUQCY: (A) improvement of the input uncertainty models.( reduction of the corresponding
epistemic uncertainties) based on experimental gB)asensitivity analysis to rank the importandete inputs in
contributing to output uncertainties; (C) propagatiof the input uncertainties to the outputs; (R)reme case

analysis to identify the epistemic realizationst thigescribe extreme values of two performance reif interest

(i.e., the mean of the so-called worst-case remerg metric and the system failure probability).
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In more detail, in task (A) the challengers providml empirical realizations of one of the modrltputs; on
the basis of this information the uncertainty madef five input parameters belonging to categotiBsand (l11)
have to be improved (i.e., the corresponding emiteincertainties reduced). This issue is hereledctithin a
constrained optimization framework. First, a freéqgx (i.e., a couple of bounding upper and lowemulative
distribution functions-CDFs) for the output of irget is built by means of the empirical data predidto this aim, a
non-parametric approach based on the Kolmogorovi®mi(KS) confidence limits is consideréd®. Then, the
improved (i.e., reduced) uncertainty model (in fica; range or space of variation) of the epistafhjeuncertain
parameters/coefficients is optimally determinedhesone producing a distributional p-box for thepo with the
following (possibly conflicting) properties: (i) itontains the maximal ‘amount’ of epistemic undetta (here
quantified by the area included between the coaeding upper and lower CDES)* (ii) it is contained by the
non-parametric, free p-box constructed on the bafsi@ta. Notice that the resulting reduced unagstanodel has
the following characteristics: (i) it mighiot be aconnectedset; (ii) contrary to Bayesian-based approachésnot
a probabilistic set. In this paper, only aampirical map of discretsampling pointdelonging to the reduced set is
generated, rather than a rigorous, mathematicefiped set in the continuum of the epistemic uraety space.

The task of sensitivity analysis (B) is here tadkis resorting to two different conceptual settigs the first
(namely, ‘factor prioritization”) we rank the categ (II) and (lll) input parameters according taydee of reduction
in the output epistemic uncertainty which one cduige to obtain by refining their (epistemic) utiaerty models,
i.e., by reducing the epistemic uncertainty ranige.the second (namely, ‘factor fixing’) we look fdhose
parameters that can be assumed constant with@dtiaff the output of interest. In order to addtéssfirst issue in
the ‘factor prioritization’ setting, a novel semsgity index is introduced in analogy with varianbased Sobol
indices' **** in this view, the most important category (Il)dafill) parameters in the ranking are those thaegi
rise to thehighestexpectedreductionin the amount of epistemic uncertainty containedhie outputs of interest
when the corresponding epistemically-uncertain ipatars/coefficients are considerixked constantvalues (i.e.,
when the amount of their epistemic uncertaintyeduced t@erd. Notice that the ‘amount’ of epistemic uncertgint
is here defined irdifferentways according to thdifferent requests by the challengers: in subproblem (B.4) w
quantify it by thearea included between the upper and lower CDFs of tleehoutputs of interest, whereas in
subproblems (B.2) and (B.3) the challengers deffirees thelength of the intervals of two relevant performance

metrics (i.e., the mean of the worst case requintmmetric and the system failure probability, regpely). Instead,
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in the ‘factor fixing’ setting sensitivity analys@ms at finding those parameters thahimally affect the outputs,
i.e., that can be assumed to take on a fixed conggdue without incurring in significant ‘errorin this context, we
quantify the ‘error’ as thenismatch(i.e., lack of overlapping between the output quantities of interest obthine
using the original uncertainty models and thoselpeced by fixing one of the parameters to a constalute (again,
depending on the subproblem the quantites of isterey be represented by the p-tstributions of the model
output variables or by thiatervals describing the epistemic uncertainty in the mefthe worst case requirement
metric and in the system failure probability). Thpsoblem is solved within an optimization framewoik
particular, for each parameter vexhaustivelyexplore itsentire range of variation to find the corresponding
(constant) values that give rise to theximal mismatchi.e., maximal error) between the output quarditod
interest. If such maximal error is sufficiensynall (e.g., lower than 1% in the present paper), thenet existsro
realization of the parameter under analysis thigiced appreciably the output: in other words, theameter can be
considerednot importantand can be thueeglectedin the system model. In all the tasks related éosgivity
analysis, the original (black-box) mathematical elodf the system is replaced by a fast-runningyogate
regression model based on Artificial Neural Netvgof&RNNS), in order to reduce the computational esstociated
to the analysf§ in particular, theomputational timés reduced by abotitiree orders of magnitude

Finally, tasks (C) and (D) are here tackledetherby solving the (optimization) problem of identifig the
values of the epistemically-uncertain coefficienftshe category (II) and (Ill) parameters that gighe smallest and
largest values (i.e., the ranges) of the two peréorce metrics defined abd%é® during the optimization search the
(aleatory) uncertainty described by probabilitytidlgitions is propagated by standard Monte CarlmuEation
(MCS)3O'31.

Finally, notice that all the tasks involved in ttleallenge require the solution of several nonlineanstrained
optimization problems, which are efficiently tadkldy resorting toheuristic approaches (i.e., evolutionary
algorithms): such methods deeply explore the seapelte by evaluating a large number (i.e., a ptipajaof
candidate solutions in order to find a near-optimalution’>*% Notice that the population-based nature of such
evolutionary algorithms allows an efficient explioa and characterization of abrupt and disconmesearch
spaces, which is the case of the present challenge.

The remainder of the paper is organized as folldwsSection I, the main characteristics of the meabatical

system model under analysis are outlined; in Sectih the NASA Langley Multidisciplinary Uncertatiy
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Quantification Challenge (MUQC) Problems is addedsshe approaches adopted to tackle the problénaseo

described in detail and the results obtained grerted; finally, conclusions are drawn in the [8sttion.

II. The System
In Section II.A, we detail the mathematical modsetd to describe the dynamics of the Generic Trath$fadel

(GTM), a remotely operated twin-jet aircraft dey@d by NASA Langley Research Center; in SectioB, Wwe
characterize the aleatory and epistemic uncerésirtifecting the input parameters to the mtdel
A. The Mathematical Model

We consider the mathematical mo&that is employed to evaluate the performance efrtultidisciplinary
system under investigation and evaluate its suiyabiet p = {p;: i = 1, 2, ...,npp = 21} be a vector ofy,, = 21
parameters in the system model whose value is taigeandd a vector of design variables whose value can be se
by the analyst (in the following, it is kept consa Furthermore, le = {g,: 0 = 1, 2, ...,nou = 8} be a set of, =
8 requirement metrics used to evaluate the systperfermance. The values gfdepends on both andd. The
system is consideregquirement complianf it satisfies the set of inequality constraigts 0. For a fixed value of
the design variabled, the set op-points whereg < 0 is called thesafe domainwhile its complement set is called
thefailure domair”.

The relationship between the inpgtsndd, and the outpug is given by several functions, each representing a
different subsystem or discipline. In particuldme function prescribing the output vectpr {g,: 0 =1, 2, ...,Ngyt =

8} of the multidisciplinary system is given by
g,=f(x,d),0=1,2, ...004=8 (1)

wherex = {x:j =1, 2, ...,niy = 5} is a set of intermediate variables whose depace o is given by

% =h(p..p,. P, P, P,) = (p!) 2)

X, =N PPy Por Por Poo) = N (P) )

%, = NPy P Prs Pres Pis) = () @

X, =1,(Pios Purs Prgs Pron Pao) =0 (P) (5)

X =h(p,) =h(p°)= p,.. ©)
7
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For the sake of compact notation, in (2)-(6) wé pathe vector of the inputs to functidy(-),j = 1, 2, ..., 5: for
example,p® = {p:: i = 11, 12, ..., 15} in (4). Input parameteps= {p;: i = 1, 2, .. Ninp = 21} are affected by

uncertainties whose nature is characterized ifia@wing Section 11.B.

B. Aleatory and Epistemic Uncertainties in the Model hput Parameters
The uncertain parameteps= {p;: i = 1, 2, ...,n,, = 21} are classified into three categories (Table(l) purely

aleatory parameters modeled as random variabléspkitbability distributions of fixed functional for q"‘(pi |0i)
(resp., Cumulative Distribution Function-CDF" (pi|0i)) and known coefficientg, = {6;;: 1 =1, 2, ...,n,;, i =1, 2,
..., 21}, whered,, is thel-th internal coefficient of the aleatory probalyilitlistribution q”(pi |0i) of thei-th

parameter andh,; is the total number of internal coefficients jof this probability model is irreducible (see
parametergs, Po, P11 @and pig in Table 1); (II) purely epistemically-uncertaimrnameters modeled as fixed but

unknown constants that lie within given intervals: these intervals are reducible as new informafeg., data)

about the corresponding parameter is gatheredp@eaneterp,, ps, P12 andpyg in Table 1); (11I) mixed aleatory

and epistemic parameters modeleddagributional probability boxes (p-boxes), i.e., as random \@es with
probability distributions of fixed functional formq”‘(pi |0i) (resp., CDFF”(pi |0i)) but epistemically-uncertain
coefficientsd;. In this case, coefficients are assumed to lie in bounded intervals={ 4, :1=1,2, ...n,; i =1,
2, ..., 21}, where4,, is the range of theth internal coefficient of the aleatory probalildistribution of the-th

parameter: again, these intervals can be redueedp@ametens,, pas, Ps, Pz, Ps, P1o» P13: P1as P15, P17 Piss P2o aNAP2y
in Table 1). The distributional p-box for a genguarametep; is indicated asPB® (p,) = {F p‘(pi |0i): 0, D.Qi} and

represents in practicebandleof probability distributions with theame shapée.g., exponential, beta, normal, ...)

but different internal coefficientée.g., different values of the mean, variance, By)way of example and only for

illustration purposes, Figure 1 shows four CDFshging to the distributional p-bo;PB“(pl) of parameteip,
(dashed lines); also, the figure reports ¢éireme upper and low&eDFs, I?"’(pl) = rpmgx{F R(p1|6'1): 0, D.Ql} and
Ep‘(pl) = ronDi!{\{F p’(p1|6'1): 0, D.Ql}, Op, 00O, boundingthe distributional p-boxPB“(pl) (solid lines). It is worth

mentioning that when the uncertainty in a paramisteepresented by a p-box, some quantities ofdstesuch as

percentiles or exceedance probabilities, @oe represented bgingle point values but rather byintervals For
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example, with reference to Figure 1, the probabRip; > p;* = 0.9] that parametqy; exceedp,* = 0.9 is given by
[F17(n ") [E*1(p,")| = [0.0072, 0.4318]

Notice that if the internal coefficient, | = 1, 2, ...,n,;, of the distributionq“‘(pi |0i) of parameterp; are
epistemically-independent (i.e., their uncertaimpdels are built using independent information sesy e.g.,

different experts, observers or data sets), therethiire (joint) space of variatia® of the coefficients vectads; is

given by the Cartesian product of the intervals, i.e.,2; = |_| 4,, > ****For example, referring to Table 1, the
1=1

space of variatiom2, of the internal coefficients; = [m, &9 of the Beta distributiorq“(p1|01) = Betaf, ) of

parametep, is given by@, = 4, , x4, , = 4, x4, =[3/5, 4/5] x [1/50, 1/25]. For the sake of corapaotation, in

011
the following we callg™ the vector of the epistemically-uncertain paramséteefficients related to the input vector

p to functionh;(-) and 2* the corresponding (joint) space of variation. Example, with reference tq = hy(p?) =

hl(plv p21 p31 p4! ps)v we havea‘ = [01! p2! 041 05] = [mv SZ! p21 Ha, 0-42! Ms, 0-52! p] and ‘QXI = Qi = Am X Asz X AD;

i=1j#3

X A4, X 4. x4, x 4. x 4, Finally, the vector ofall the epistemically-uncertain parameters/coeffigent

contained in thentire system mode§ is indicated ag™' = [6*, 6%, 6%, 8, 6*] and the corresponding (joint)

5
space of variation a@® = ” Q.
i=
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Uncertainty model

Symbol | Category Aleatory component Epistemic compant
Py 1l q“(p1|0l) = Betafn, &), m=E[p,], £=V[p] | mO 4, =[3/5,4/5], 0 4, =[1/50, 1/25]
P2 I / 4, =[0]]
s | a*(pJo.) =ulo, 1) /
qu(p4|04) = N(a, 04°), tta = E[pal, 0 =V[pa] |#aks U 4,4, =[5, +9]
Pubs | M| q*(po,) =Nus, o), s =Elps], o2 =Vpg) | %65 D 4,4, =[1/400, 4]
Correlation coefficienty bl<1,ie,p0 4,=[-1,1]
Ps [ / 4, =[0]]
pr [ q”(p,|0,) = Betaty, by) a,; 0 4, =[0.982,3.537]p; O 4, =[0.619, 1.080]
Pe [ q”(p.J6,) = Betags, by) ag U 4, =[7.450, 14.093]ps O 4, =[4.285, 7.864]
Po I a*(p.Jo,) =u[o, 1) /
P1o m 9™ (p.J0.,) = Betauo, bio) a0 0 4, =[1.520, 4513]p,, 0 4, =[1.536, 4.750]
P11 | q%(pu]eu) =U[0, 1) /
Pr2 I / 4, =[0]]
P13 [ 9™ (p.J0.,) = Betatus, biy) a3 0 4, =[0.412, 0.737]p;3 O 4, =[1.000, 2.068]
P14 I 9™ (p.J0.,) = Betaus, by a0 4, =[0.931,2.169]b,s O 4, =[1.000, 2.407]
Pis [ 9™ (p.0.;) = Betaus, bys) aus 0 4, =[5.435, 7.095]bys O 4, = [5.287, 6.954]
Pis I / 4, =[0]]
P17 Il 9" (p.0.,) = Betaguo, byo) a7 0 4, =[1.060, 1.662]p; O 4, =[1.000, 1.488]
Pis [ 9™ (p.0.,) = Betauo, bio) ag O 4, =[1.000, 4.266]p;s 0 4, =[0.553, 1.000]
P19 I q%(p19|019) =U[0, 1) /
P20 I ™ (p.40.,) = Betatuo, bzo) a0 0 4, =[7.530,13.492l0,0 0 4, =[4.711, 8.148]
Pot I 9™ (p.J0,.) = Betay, by a0 4, =[0.421,1.000]b,, O 4, =[7.772, 29.621]

Table 1. Uncertain input parameters’. E[-] = expected valueV[-] = variance,m = mean of the Beta
distribution of p,, & = variance of the Beta distribution ofp;, N(-,-) = Normal distribution, # = mean of thei-
th Normal distribution, &;? = variance of thei-th Normal distribution, U[0, 1) = uniform distribution on [0, 1),

a = location parameter of thei-th Beta distribution, b; = scale parameter of the-th Beta distribution

10
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P-box of pl: original uncertainty model
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Figure 1. Four exemplary CDFs (dashed lines) beloimy to the distributional p-box PB”(p,) of parameter
p; (see Table 1); the extreme upper and lower CDFsE“(pl) and E"‘(pl) bounding the corresponding
distributional p-box are also shown as solid lines

1. Approaches and Solutions to the NASA Langley Multigsciplinary Uncertainty Quantification
Challenge (MUQC) Problems

In the following, the approaches used to tackeeNASA Langley Multidisciplinary Uncertainty Quafitiation
Challenge (MUQC) Problems are presented togethtbrtvé corresponding results obtained: in particu&ctions
LA, II1.B, 1l.C and I11.D deals with SubproblemA (namely, Uncertainty characterization), B (ngm8ensitivity
Analysis), C (namely, Uncertainty propagation) &h¢hamely, Extreme case analysis).

A. Subproblem (A): Uncertainty Characterization

In this subproblem, the main task of interest isollsws:** using a vector of observationsxf(2) (provided by
the challengers), improve the uncertainty modelsatégory (II) and (Ill) parametes, p., ps andps, i.e., reduce
the corresponding epistemic uncertainty. Noticé the observations of; (2) correspond to its ‘true uncertainty
model’, i.e., a model whem is a well defined Beta random varialjpeis a constant angl, andps are described by
two possibly correlated Normal random variablesSéttion IV.A.1, the approach adopted is illustidgtedetail; in
Section IV.A.2, the results of the application loé tmethod to Subproblem (A) are reported.

1. The Proposed Approach
This subproblem is tackled by performing the follogvtwo main conceptual steps:

11
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1) afree p-box, i.e., a couple of bounding upper lamger Cumulative Distribution Functions (CDFs) the

intermediate variable of interest = hy(p:y, P2, Ps, Psr Ps) (2) is built by means of a set of empirical

observations ok;: to this aim, anon-parametricapproach based on the Kolmogorov-Smirnov confidenc

limits is considered®™*®

2) the improved (i.e., reduced) ranges of (i) the tepiscally-uncertain coefficient®, of the probability
distributions q”(pi|0i) of the category (lll) input paramete, i = 1, 4, 5 (Table 1) and (ii) the
epistemically-uncertain category (Il) input paraengh, (Table 1) are optimally determined as those
producing adistributional p-box PB* (xl) for x; that iscoherentwith the data available, i.e. with the non-

parametridree p-box built at step 1. above: in particular, weKdor the distributional p-box containirad

the CDFs ofk; that ardboundedoy the non-parametric, free p-box constructed erbisis of data.

In more detail, if a vectorx! of n4 observations of random variabkg (2) is available, an empirical CDF

F (xl) for x, can be constructed; however, the shape of this @DRffected by significant “sampling

uncertainty”, which arises because of the finitsn@sd typically limitedness) of the random sanetgloyed-**?

We account for this uncertainty by building the Kolgorov-Smirnov (KS) confidence Iimit§K§(m)(x1) and

FX]

—_ KS(a,nu

)(xl) to provide upper and lower bounds, respectivadythe empirical CDFF *™ (xl) with a statistical

confidence of 100- (£ a)%:43-44

(6)= it () =minfu 1)+ Dlan) ™

where D(«a, ng) is the one-sample Kolmogorov-Smirnov criticaltistec for intrinsic (two-sided) hypotheses
testing for confidence level 100-{1x)% and sample sizey. “Analogous to simple confidence intervals aroand
single number, these are bounds on a statistis#dilalition as a whole. As the number of sampleibes very

large, these confidence limits would converge ® émpirical distribution function (although the wergence is
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rather slow)** It is worth recalling that the critical statisf{a, ng) is computed asK(a)/\/E, where K(a) s

the (1- a)-th quantile of the Kolmogorov distributio, i.e., the valueK (@) such thatP[K < K(a)]=1-a #**
Tabled values oD(«, ng) can be found in Ref. 45 for = 0.1, 0.05, 0.02 and 0.01, angd= 1, 2, ..., 100: these
values are the result of a synthesis, developmeahiraprovement of the research work by Refs. 43add 46 and
are still in use today (such values are availablenany softwares, e.g., MATLAB that is used in the present

work).

Given the empirical boundsFKSM (xl) and FX‘ ( ) (7) onxy = hy(ps, P2, P3, Pas Ps) (2), the improved

KSan‘1
uncertainty models (i.e., the reducsgtsdescribing the epistemic uncertainty) of the cgponding category (ll)
and (lll) input parameterp;, p,, ps and ps could berigorously obtained byexhaustivelysearching forall the

possible combinations of values of the epistemyeaticertain coefficientsd(, i = 1, 4, 5) and parametens, that

produce a distributional p-boPBXﬂ(xl) for x; coherentwith the available data, i.e., with the empiritaunds

E;;(avnﬂ)(xl) and F ( ) (7). In other words, we should look for the distiional p-boxPB*(x ) containingall

2_«ks(a,n,)
the CDFs ofx, that areboundedeverywhere by the non-parametric, free p-bdx.{, . ( ) IEK*;(M)(xl)] (7)

constructed on the basis of d&ta° This amounts to solving the following problemfeésible regioridentification:

Findall0* 0" je, 0,=[ms?|0®@, p,04,.,0, =|u, 02,0|02,,0, =|u,0%, p|l0 2,

Eron(0) < F*(x0,,p,.0.,6,) = F*(x]6* )< F, o (%), Dx OO ®

where F**(xljﬂl, p2,04,05) indicates the CDF of; = hy(p:, p2. Ps; P, Ps) (2) obtained when the (epistemically-
uncertain) internal coefficients of the probabapitlistributions of the corresponding category)(iiput parameters

P1, P4 andps and category (11) input parametgrare fixed to constant values within their ranges@,, 2; and 4,

respectively. ThesubsetQ? of @* —i.e., thesetcontainingall the values o* O @* for which F i, , (xl) <

F*“(xljﬂl,pz,04,05) = FX‘(X1|0*‘) < F;g(a‘nd)(xl), Ox 00 - represents the requested feasible region, i.e., th

improved reduceduncertainty model for paramete#& = [61, P2, 04, 0] = [M, &, P2, 14, 042, s, 055 p]. With respect

* It is worth mentioning that similar confidence bols onx, could be obtained also by well-knowaesampling
techniques (such dmwotstrap) that are commonly used to “build confidence” fatistical estimates and to quantify
the effect of sampling uncertainty (in particuler presence of small-sized datasets). This has beefied by the
authors also in the present case, but not shownfbebrevity sake.
13
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to that, it is very important to remember th@t is found using aingledata setx!, which introduces aapistemic
dependencéetween the values théi, p,, 8, andds may assume: thus, differently from the initi@* , in general
9 cannotbe expressed as the Cartesian product of theatepanges of variation @k, p,, 6, andés. In passing,

also notice that from a strictly mathematical vieip, solving problem (8) is equivalent to findiad] the CDFs

Fxl(xjjﬂl, p2,6’4,05) that result in a p-valup, larger than or equal t@ in a KSstatistical testwith the empirical

CDF F*" (xl) constructed wittone samplex; of sizeny. In particular, we test the “null hypothesis” tisample
x,' of sizens comes from distributiorF**(xljal, p2,04,05): the corresponding test statistic is then the “kediwn
Kolmogorov-Smirnov statisticD(nd): mxf':v{lf"”“ (xl)— F”(xllal, p2,04,051 (i.e., the maximal ‘vertical’ distance
between the two CDFs). It is worth recalling theg p-value,, is used in the context of “null hypothesis testiimy
order to quantify the idea of statistical significa of evidence. More rigorously, the p-value is piobability of
obtaining a test statistic result at least as extreme or as close to the one thattislly observed ID(nd)),
assuming that the “null hypothesis” is true (iassuming that sample actually comes fronFX‘(xjjﬂl, p2,04,05)):

in this casep,, = P[D > D(ng)]. When the p-valu@,, turns out to be less than a predetermined sigmitie levek,
then the “null hypothesis” is rejected: actuallycls an outcome indicates that the observed rasailt the empirical
CDF F* (xl) constructed with samplex) would be highly unlikely if the “null hypothesisiias true (i.e., if

F”*(xljﬂl, p2,04,05) was the real underlying distribution x. Finally, it is worth admitting that in the pregecase

also the “null hypothesis” distributionF*ﬂ(xljﬂl,p2,04,05) is obtained by plain randorsampling i.e., by

propagating\N = 100000 realizations of parametpysp,, ..., ps through the moded; = hy(p1, p2, P3, P4, Ps) (2): thus,

a two-sample KS test should be rigorously carrietliostead of a one-sample test. However, shhég very large,

then “null hypothesis” CDFF‘(xllal, p2,04,05) can be considered as the “reference” one with pabke

approximation: actually, as verified by the authbus not shown here for brevity sake, the resulisioed in the
two different cases are practically identical.
With respect to the approach proposed, it is waremtioning thdf™*? (i) KS bounds arelistribution-free

constructions, i.e., they dwt require anyjknowledgeabout thereal shape of the underlying distribution (which is

the case for the intermediate variakleunder analysis); (i) KS limits require the asstimp that the samplex/
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are independentandidentically distributed(which is verified for variable); and (iii)) KS limits arenot certain

bounds, but onlgtatistical ones: the associated statistical statement isl®@t(1- «)% of the times such bounds
are constructed from, random samples, they will totally enclose thee distribution F*(x,) of x,.

In this paper, we tackle problem (8) by resortioga population-basegheuristic optimization technique, i.e., a
Genetic Algorithm (GA¥®. In the present case, the search space is repeddmnthe entire space of variatieh
of the epistemically-uncertain coefficients/paraene®™ = [0, p,, 4, 0s] and the objective function to optimize (in

particular, to maximize) is the p-valysg, obtained in a statistical KS test between the C[I;P*s{xljﬂl, p2,04,05)

and F*"(x,):

Find0* 0Q" je, 0, =[ms*|0@, p,04, .0, =|y,.02,0]00,,0, =|u, 0% pl02,:
P =ma{p,.} =ma{P[D 2 D(n, )} D(n,)= maF > (x)-F*(x)o..p..0..6.]

In the present paper, GAs are tailored to theiqudalr problem of identifying a feasible region: particular,
during the GA evolution towards the optimuatl, the candidate solutiong8* that are found to satisfy the property
in (8) are stored; at the end of the search, ehgembleof the feasible solutions found and stored during the
optimization search constitute a@mpirical map of the feasible region2? . Notice that the resulting (empirical)
reduced uncertainty model has the following charstics: (i) it mightnot be aconnectedset; (ii) contrary to
Bayesian-based approaches, inigt a probabilistic set. Several considerations are in order witheespo the
proposed approach. In this subproblem, GAsrarteused with themain purpose of identifying a global optimum
(i.e., p,,): instead, their population-based nature and thesretic operators (relying on the criterion ofvétal of
the fittest) are rather exploited for intelligentnd thoroughly exploring the entire space of vamm Q* of 6* =
[61, p2, 04, 65] in order to find as many feasible candidates@ssible (and, thus, to make the ‘empirical mapthef
feasible region®? as complete and reliable as possible). Althoughitmot the traditionaintendeduse of GAs,
applications in this direction can be found in literature, see, e.g., Ref. 47. In addition, it tmbe acknowledged
that the proposed approachnnotsolve task (8) in a rigorous mathematical way.uatly, we cannotfind all the
combinations of@* = [0y, p,, 8.4, 5] for which the property in (8) holds, but rathee w&reonly able to findsome

combinations by means of a GA, used in this casana$ntelligent” sampling approach. Given that wan only
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identify afinite number of combinations (but we do not know whatgd®ns in between sampling points), we cannot

prescribe mathematically tieet 2 in thecontinuumof space®Q* that hasnfinitely many elements. In facts, the

property in (8) provides only the meanstést the membershipof a candidated™ to €27, butnot the means to

calculate mathematically the desired set. In order to da, tbet bounding approaches, such as those presiented
Refs. 26, 27, 28 and 29, should be adopted. Owtther hand, it has to be also considered thatlithitation does
not absolutely impair the quality and validity of thesults of the following subproblems of the chajjenActually,

all the tasks related to sensitivity analysis B)|.uncertainty propagation (IlI.C) and extremeecasalysis (l11.D)
are based on a GA optimization search within the&inaum of space@* . In this framework, the identification of
only those solutions that belong to the (matheraligicnot prescribed) sef2® is guaranteed by introducing the
property in (8) as &ard constraintin the GA: only those candidates that satisfy spicdperty are retained in the
genetic evolution, whereas the others are discarded

2. Application Results
Figure 2 top left shows the empirical COH*" (xl) (dot-dashed lines) built using a vectef of ng =ng = 25

real observations of, (provided by the challengers) and the correspanti boundsFKg(avnm)(xl) and Eﬁs(av%)(xl)
obtained withe = 0.01 (resp., confidence-la = 0.99) (solid lines). In addition, the figure ogfs theextremeupper

and lower CDFs,If**(xl) and E“(xl), bounding the distributional p-box &f (i.e., If”(xl) = ma>{PB”(xl)} and

E‘(xl) = min{PB*‘(xl)}, Ox, 00), before (dashed lines) and after (dotted links) improvement of the input
parameters uncertainty model. It can be see tleadtba contained between the bounding upper aner IGDFs
F*(x,) and F*(x) is significantly reduced; in particular, it is @@ and 0.1860 before and after the update of the
input uncertainty models, respectively, which meameduction by 22.73% in the epistemic uncertaifity;.

In order to validate the results obtainedieavempirical CDF F %1 (x ) is built using anewvector x¢2 of ng
= ng = 25 real observations af, extracted from the pool af; = 50 data; then, KS statistical tests are perfdrme

between F*"“(x) and the CDFs belonging the ‘updated’ distributlommbox of x,, PB*“(x) =
{F‘(xl|0*ﬂ): 0* DQ:]}. In more detail, two GA searches are carried dthiwthe updated spac®; to calculate

the maximum and minimum p-values, respectivelyultesy from these KS statistical tedfsthe corresponding

values turn out to be 0.9837 (i.e., larger thantéise significance level = 0.01) and 40* (i.e., lower than the test
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significance levebr = 0.01) respectively. Taking as reference the kstap-value within the reduced epistemic

space (i.e., the value for which the null-hypothésithe weakest), the reduced uncertainty me2fel would not be
validated. With respect to that, for illustrationrposes Figure 2 bottom shows: (i) the KS bouﬁg@‘%)(&) and

E*K‘S(avnm)(xl) obtained using: = 0.01 (resp., confidence-1a = 0.99) and the datx;* employed to improve the

uncertainty model (solid lines); (ii) the extremgper and lower CDFs of the p-boxxfafter the improvement of

the input parameters uncertainty model (dotteds)ingii) the KS boundsF (xl) and F} (am)(xl) for x;

Ks(an,,) 2K
obtained using = 0.01 and the vectox;? of validation data (dashed lines). It can be ghanhforx, ranging within

[0.1, 0.3], a consistent part of the ‘improved’ gxtof x; (dotted lines) ‘lies outside’ the KS bounds of ttadidation

data set (dashed lines): in other words, some CGibks arenot bounded everywhere by the {1x)-100% = 99%
confidence limits associated to the validation sletx;? (correspondingly, the p-values of the related kistical
tests will be smaller tham = 0.01). A possible explanation for this lack abehel validation is as follows. It can be

observed that the two sets of data provided bycttalengers,x* and x;?, are concentrated in different ranges.
The first datasetx* (used to improve the uncertainty model) is mostigcentrated within [0, 0.1] and [0.3, 0.4],

whereas a large part of the second datagét(used to validate the model) is located in theyeal®.05, 0.2]. Thus,

it is not unexpected that a model calibrated byadging mostly in [0, 0.1]0 [0.3, 0.4] fails to “describe the

uncertainty” in data mostly concentrated in [0.05)] (correspondingly, as expected and highlighabdve, the

maximal discrepancy between the ‘improved’ p-boxxpfand the KS bounds of the validation data sét is

observed forx; 0 [0.1, 0.3] where the calibration dataset' is ‘poorer’ of evidence). Finally, in order to leaa
very rough measure of the discrepancy betweermtbeptboxes, we compute the percentage fractiohefirea of
the ‘improved’ p-box ofx that doesot overlap with the KS bounds of the validation dsgéa x;?: this fraction

turns out to be only 7.29%.

Then, the uncertainty models of parameter$,, p; andps are further improved by using all thg, = ng; + Ny,

= 50 data availablex/® =[x/, x;?]. As before, Figure 2 top right shows the C[lilj“”(xl) (dot-dashed lines),

the corresponding KS boundggsta‘%)(xl) and F; (M”)(xl) for a = 0.01 (solid lines) and the extreme upper and

— K|

lower CDFs, I?X‘(xl) and E“(xl), bounding the distributional p-box of (i.e., If**(xl) = ma>{PB”(xl)} and
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E‘(xl) = min{PB‘(xl)}, Ox, 00), before (dashed lines) and after (dotted linbs) parameters update. In this

case, the area included between the bounding CHE4.409, which means a reduction of 41.46% irefhistemic
uncertainty ofx; relative to the initial condition and a reductioin24.25% relative to the results obtained using
ng; = 25 data: thus, with respect to an increase 6%d.0h the size of the data set (i.e., fragp= 25 tong = 50), we
obtain a relative improvement in the uncertaintydelo(i.e., a reduction in its epistemic uncertainty only
24.25%.

Finally, only for illustration purposes Figure 2picts two exemplary scatterplots representing‘eéhgpirical

maps’ of the two-dimensional projections on thenplaru, (left) andm-us (right) of the improved (i.e., reduced)

joint eight-dimensional space of variatia®: of the epistemically-uncertain coefficients/partene0* = [61, p,,

04, 05] = [M, &, P2, w4, 047, s, 0%, p), Obtained after the update carried out by meditiseodata sex™ =[x, x ]

(of sizeng = 50). It is worth noting thepistemic dependentetween the estimates of the epistemically-unirerta
coefficients that is generated by the update ofctireesponding uncertainty models by means ok#raedata set:
differently from the initial condition where coeffentsm andu, were allowed to range within the corresponding

intervals 4, and 4, with no restrictions (Table 1), now it is not pibds to have, e.g., low values of and low

values ofy, at the same time. Notice that these empirical nfapse been generated by GAs and they contain
approximately 500000 points. In order to avoid tiha&t patterns observed are the result of the maBAesearches
for the optimum (and not of the true dependencyragna@riables), the following strategies have beeplémented:

(i) GA is repeatedseveral times (say, ten times) with different emdseeds and different settings of the GA
operations (e.g., different crossover points andatian rates), and aapproximatefeasible region is found and
recorded foreachrepetition (as the number of repetitions of GAirisreased, the approximate feasible regions
approach the true feasible regions); (ii) the cdppalof GA of thoroughly exploring the entire sear space
(technically speaking, of maintaining a high “geoediversity” in the population of candidate sotuts) is
guaranteed by a proper setting of its parametesnlynbased on the experience of the authors inute of
GAs™®® for example, high population sizes (i.8l,, = 200) and high mutation rates (i.@ms = 0.025) are
employed; (iii) since in the present subproblemh@rhain purpose of the GA search is that of findingnyfeasible
solutions instead of single global optimum, the GA evolution is stopped onliiem a certain (large) number of

generations (e.gNgen = 500) is achieved. Finally, the validity of the8é-based maps has been further checked by
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generating about 500000 samples belongin@fo by astandard sampling methods verified by the authors, but

not shown here for brevity, the resulting pattekdependence is almost identical to the one pradibgeGAS.

Refinement of uncertainty model of X, by means of Ny = 25 data Refinement of uncertainty model of X, by means of Ny =50 data

Cumulative probability

Cumulative probability
o o o o o o o
@ = @ > S ® ©

o
N

o
o

Figure 2. Empirical CDF F e (xl) (dot-dashed lines) built using a vectorx! of nq real observations ofx;,

the corresponding KS boundsFKXS'(nYnd)(xl) and Eﬁs(&nﬂ)(xl) for @ = 0.01 (resp., confidence 2 a = 0.99) (solid
lines), the extreme upper and lower CDFsl?Xi(xl) and Ex’(xl), bounding the distributional p-box ofx; (i.e.,
Fe(x,) = max{PB s (xl)} and F*(x,) = min{PBxﬂ(xl)}, Ox, 00), obtained before (dashed lines) and after
(dotted lines) the improvement of the input paramegrs uncertainty model by means ofy = ng; = 25 (top, left)
and ngz = 50 (top, right) data. Bottom: KS boundsl?K*S‘(avna)(xl) and E;‘Sm)(xl) obtained with @ = 0.01 (resp.,

confidence 1~ a = 0.99) for the calibration and validation datases x/ (solid lines) and x;? (dashed lines); the
improved p-box of x; (dotted lines) is also shown
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Refinement of uncertainty model of X, by means of Ny, =50 data: empirical map of the feasible region Refinement of uncertainty model of X, by means of N4y =50 data: empirical map of the feasible region

5

m m

Figure 3. Scatterplots represenenting ‘empirical mps’ of the two-dimensional projections on the plans-
4 (left) and m-us (right) of the improved (i.e., reduced) joint eigit-dimensional space of variation@? of the

epistemically-uncertain coefficients/parameter®)* = [0y, po, 04, 0s] = [M, S, P2, fa, 64°, ps, 657, p] Obtained
after the update carried out by means of the dataez x* =[x", x.?] of sizeng = 50

1
B. Subproblem (B): Sensitivity Analysis

Sensitivity analysis is the general term for a eysdtic study of how the inputs to a model influettee results
of the model. Sensitivity analyses are conductedwo fundamental reasons: (i) to focus future einal studies so
that effort might be expended to improve estimatesnputs that would lead to the most improvementthie
estimates of the outputs, and (ii) to generally arathnd how the conclusions and inferences drawm fan
assessment depend on its inputs (and on the biagie cesults, possibly simplify or even removenirthe model
those inputs that turn out to be less influenttal)

In this light, two different types of analysis anere performed: in the first (namely, ‘factor piti@ation’
analysis), the objective is to identify those paetarsp whose epistemicuncertainty contributes more to the
‘amount’ of epistemicuncertainty contained in some output quantitiemtgrest: in other words, we try to rank the
category (1) and (1) input parameters accordtogdegree of reduction in the output epistemic wagety which
one could hope to obtain by refining their uncerttgimodels (i.e., by reducing the epistemic undetyeassociated
to them) (Section IlI.B.1). In the second (haméfgctor fixing’ analysis), determination has to beade as to
whether these output quantities of interest arécserfitly insensitiveto any given parameter such that that parameter
can be assumed to take on a fixed constant valtiutiincurring in significant errors: in other wist we aim at

finding those parameters thatinimally affect the outputs (Section 111.B.2). In all th@adyses, the first five

parametersi: i = 1, 2, ..., 5} are modeled according to the resfutim task (A.3) (Section IIl.A.2), i.eg* = [0,
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P2, 04, 0s] = [M, S, P, pia, 04’ pis, 05, p] O 2%, whereas the remaining sixteen parametprs £ 6, 7, ..., 21} are

modeled according to Table 1 (Section I1.B): thdirenspace of variation of all the epistemicallyeartain
4
parameters/coefficient®" is then ' = Q"X:BXI._J Q.
-

1. Sensitivity Analysis in a ‘Factor Prioritization'e®ing

In Section 11I.B.1.1, the general approach adoptedank category (ll) and (Ill) parameters accogdio their
contribution to output epistemic uncertainty isigiirated in detail; in Section 111.B.1.2, the reéswif the application
of the method to the tasks of Subproblem (B) apented.

1.1  The Proposed Approach

The use of sensitivity analysis to learn where &g future empirical efforts would be most produet
requires estimating the value of additional (hygdtital) empirical information. Of course, the vahfenformation
not yet observed cannot be measured, but it cdrapstbe predicted. One strategy to this end istess how much
less epistemic uncertainty the model outputs oéregt would have if extra knowledge about an ingete
available. This might be done by comparing the tepitc uncertainty before and afteginching an input, i.e.
replacing it with a value without (or with lessktmic uncertainty. Of course, one does not gegekabw the
correct value with certainty, so this replacemenistrbe conjectural in nature. To pinch a parammefficient
means to hypothetically reduce its uncertaintytfier purpose of the thought-experiment. The expearirasks what
would happen if there were less epistemic uncdsta@out this number. Quantifying this effect assssthe
contribution by the input epistemic uncertaintyth@ overall epistemic uncertainty in the outputirdérest. The
estimate of the value of information for an episteity-uncertain parameter/coefficient will depead (i) how
much epistemic uncertainty is present in the patamand (ii) how it affects the epistemic uncertgiin the final
result?.

In more detail, lety,(Q) be an indicator of the ‘amount’ of epistemic uraity contained in a generic quantity
Q of interest to the analysis. The subscript suggests that indicatod,(Q) is computed oveall the input
parametersp (and over the space of variatig®® of all the corresponding epistemically-uncertain internal
coefficients§®"). We want to assess the effect that a refinemititeouncertainty model of the generic inpufi.e.,
a reduction in its epistemic uncertainty) has om dmount of epistemic uncertairitly(Q) of Q. For the sake of

notation generality, lep; O @, be the epistemically-uncertain ‘factor’ in the artainty model of parametex:
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thus, ifp; is a category (Il) parameter (e.g.,0r p12), then simplyp; = p;; instead, ifp, is a category (Ill) parameter

(e.g.,p1, P4 OF ps), theng; represents the vectdr of the epistemically-uncertain coefficients of tt@responding
aleatory probability distributiorg® (pi |0i), i.e.,p; = 6;. For example, for category (lll) paramepgwe havep; = 6,

=[m, §7. In order to address the issue above, a noveiithéty index is introduced in analogy with varizebased
Sobol indice% *** whichgeneralizeshe approach presented in Ref. 14. Imagine thabwg at a particular value
pi O Q. Let Uy(Qlpi = ) be the resulting amount of epistemic uncertaint@, taken over all parametepsand

keeping the epistemically-uncertain ‘elemen fixed at ¢, (instead, all theother epistemically-uncertain

coefficients 9 =[0, 0, .....6,..,0 0,,] are allowed to range in their corresponding spmHoariation 2% ). We

00y
would imagine that having frozen one potential seuwf epistemic uncertainty;j, the resulting indicatod,(Qlp;

= ;) will be lower than the corresponding total (orcanditional) oneU,(Q). One could therefore conceive of
using Uy(Qlei = ¢i ) as a measure of the relative importanceypfeasoning that the smallek,(Qlgi = 9)), the
greater the influence qfi. However, notice that this approach makes theitbétys measuredependenton the
position of the pointy;” for each input factor, which is impractical. Thuse take theaverageof the measure

Up(Qlg; = i) overall the possible pointg” O 2., which removes the dependenceypn The resulting indicator is

then written synthetically &&,;[Up(Qlpi)] and represents thexpectecamount of epistemic uncertainty contained in
output Q when the epistemically-uncertain coefficient/pagsen ¢; is fixed to aconstantvalue (i.e., when the
amount ofits epistemic uncertainty is reducedzergd. Obviously, the lower the value &,[Uy(Qlp:)], the more
important the corresponding parameterin other words, the most important parametehé parameter whichn
average oncefixed, causes the greatest reduction in the epistemiertainty ofQ (as highlighted above, the
consideration of “average sensitivities” is duehe fact thalU,(Qlp; = o) is in generabtronglydependenon the
positionof the pointyp; : this suggests the necessity to calculateateageof the measurtly(Qle; = @) over many

possible pointg; [ £ in order to obtain robust and reliable sensitivitgkings). Finally, the sensitivig(Uy(Q))

of the epistemic uncertainty of the outfito the epistemic uncertainty of paramgiecan be synthesized with an

expression like

el

10
TG (10

s(U,@Q)
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IndexS(Uy(Q)) (10) is an estimate of thalueof additional empirical information about the inpptin terms of
the fractional reductionin epistemic uncertainty that might be achieve®@iwhen the input parameter is replaced
by a better estimate obtained from future empirgtatly. This ‘pinching’ procedure can be appliece&zh input
guantity in turn and the results used to rank tipuis in terms of their sensitivities. In principkmne could also
pinch multiple inputs simultaneously to study imat&ions: however, this aspect is not considerethénpresent
paper. It is worth noting th&&(U,(Q)) (10) has the advantage of beinglabal sensitivity index because: (i) the
effect of theentire space of variatiod?, of the epistemically-uncertain parameter/coeffitig, whose epistemic
uncertainty importance is evaluated, is consider@y;the importance of this input parameter/cogéint is
evaluated withall other input parameters varying as well: actualty, eachfixed constantvalue of ¢; the
computation ofUy(Qlp;) is carried out by lettingall the other epistemically-uncertain parameters/coefficients
0% = [191 0,,...0._,,0._, ,...,021] range within the corresponding space of variati@fi; (iii) this sensitivity index is
“modelfre€’ because its computation is independent from agsioms about the model form, such as linearity,
additivity and so of. Finally, note that indes(Up(Q)) (10) is nicely scaled between 0 and 1; howewslike the
factorizations used by variance-based sensitiviglhyses, these reductions will not generally addoup for all the
input variables. Other approaches to sensitivitylysis in the presence of mixed aleatory and episte
uncertainties can be found in Refs. 52-54.

In this paper, the sensitivity inde8(U,(Q)) (10) related to the generic parameperis straightforwardly
estimated as follows:

1) letting all the epistemically-uncertain parameters/coeffici@ft range within the entire space of variation
2% propagatethe mixed aleatory and epistemic uncertainty fitben inputsp to the output of interesp
and evaluate the resulting (total, unconditionaljoant of epistemic uncertainty,(Q) in Q (notice that
technical details about the uncertainty propagagibase are not given here in order to not interthet
flow of the presentation concerning sensitivity lssis: the reader is referred to the following $mtt
l1.C);

2) select (deterministically or stochastically)} valuesg*, k = 1, 2, ...,N,, of the epistemically-uncertain
‘factor’ ¢; under analysis within its space of variati@ (as already mentioned, f is a category (II)
parameter, then simply, = p;; instead, ifp; is a category (Ill) parameter, thenrepresents the vectér of

the epistemically-uncertain parameters of the epoading aleatory probability distributioq"‘(pi |0i),
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i.e.,p = 0;: for example, for category (Ill) parameg@rwe havep, = 6, = [m, §°]). TheseN, realizations of
epistemic uncertainty¥, k = 1, 2, ..., N, should be chosen in such a way to evenly cover th
corresponding uncertainty spa@g in this paper, a grid of equally spaced pointadepted to this aim;

3) fixing the value ofg; to ¢ik, k =1, 2, ...,N,, and lettingall the other epistemically-uncertain

parameters/coefficient8®' vary within 22", propagatethe mixed aleatory and epistemic uncertainty from

the inputsp to the output of interes) and evaluate the resulting (conditional) amountepistemic
uncertainty U,(Qlp; = ¢¥) in Q. Notice that in the computation &, (Qlpi = o) for category (Il
parameters, we condition the evenialti-dimensionakealizations of the epistemic space. For example,
for p, we fix both the mearm and the variances, i.e., p; = . = [m, $¥|; for parametemp, we fix the

meanu,, the standard deviatian and the correlation coefficiept i.e., g, = 0. = [ud, 4, p;

4) estimate the sensitivity inde(U,(Q)) (10) asS (U p(Q))zl—

As already mentioned above, the computatiob§0Q) depends on the nature @f In subproblem (B.1) the task
is to identify those input parametgrs: {p;: i = 1, 2, ..., 21} that lead to the greater refinemarthe distributional
p-boxof the corresponding intermediate (output) vagalk = hi(p): j = 1, 2, ..., 5} (2)-(6): thus, in this case the
output quantityQ of interest is the intermediate variabjétself,j = 1, 2, ..., 5. We propose to define the amount of
epistemic uncertainty,(Q) = Up(x) in x as thearea Ay(x) (11) included between thextremeupper and lower

CDFs, F* (xj) andfF”® (xj), bounding the distributional p-boRB" (xj) = {F : (xj 0" ): 0" DQX'} of x:

u,(x)= Ap(X,-):j ([E [O)-F ') )dr,J’ =1,2,..,5 (11)

0

where [EX‘ ]_l(r) and [F*|(r) are the inverse of * (x ) and F*(x,), respectively, at cumulative probability
level r. Obviously, the larger the ardg(x) (i.e., the larger the separation between the timgnCDFs), the larger
the imprecision, i.e., the epistemic uncertaintythie definition of a precise probability model {@riablex;.. Notice

that the CDFsF * (xj) andF” (xj) are formally defined as:
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7 ()= madF (c|o* } and E* (x )= minfF> (e o ) ox 00 j=1,2, . 5. (12)

0100

In subproblems (B.2) and (B.3) the output quargtit€interest) are represented by the following quantites:

3, =E,[w(p.d] (13)
J, =1-Pw(p,d)<0], (14)

where
w(p,d) = maxg, = maxf,(x = h(p).d) (15)

is the so-calledvorst-case requirememhetric. Notice thaf, = EjJw(p, d)] (13) is expected value of the worst-
case requirement metrig(p, d) (8) andJ, = P[w(p, d) > 0] (14) is the system failure probability resfreely. In

these cases, the quantitative indicatdpél;) and Uy(J,) of the amount of epistemic uncertainty Jnand J, are
represented by théengths L,(J;) (16) andLy(J;) (17) of the corresponding interva[s_]l,jl] and [gz,jz],

respectively:
Up(‘]l): Lp(‘]l):J1_J (16)
u,(3,)=L,0,)=3,-3,. 17)

Again, the larger the intervals, the larger theantainty in the definition of a precise value foeterformance

metricsJ; (13) andJ, (14).

A final consideration is in order with respect ttetcomputational costissociated to the evaluation of the

sensitivity indices5(Uy(Q)), Q =%, Ji, Jo, i = 1, 2, ..., 21 (10). Fogachinput parameter of interept i =1, 2, ...,

§ Notice that the choice of intervals to represeetépistemic uncertainty ih andJ, is a “natural” consequence of
the hybrid representatiorof uncertainty adopted in the present paper (peopabilistic/aleatory and interval-
based/epistemic). In such a framework, the worsecaquirement metrie(p, d) is represented by a distributional
p-box, i.e., an ensemble of probability distribngo(as its inputp). Thus, a value of the mean and of the failure
probability can be computed feachelement of the p-box: sudnsembleof values identifies the corresponding
intervalsfor J; andJ,.
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21, a numbelN, (e.g.,Ne = 10-20 in this paper) of realization;sk of the corresponding epistemically-uncertain
‘factor’ ¢, have to be selected. Then, &mchrealizationp*, k=1, 2, ....N,, the quantitative indicatddy(Qlp; = )
has to be calculated. The evaluation of indic&tgiQlp; = o) implies: (i) thepropagationof mixed aleatory and
epistemic uncertainty from the input parametersdo the outputQ of interest through the corresponding
mathematical model (i.ehj(p) in (2)-(6) for the evaluation obly(x) andg = f(x = h(p), d) in (1), for the

computation of the worst-case requirement mettic = h(p), d) and correspondingly dii,(J;) andUy(Jp)); (i) the
identification of theextreme boundsf Q (i.e., F* (xj) and F* (xj), J, andJ,, J, and J,, respectively), which

requires the solution aseveraloptimizationproblems(see Section III.C for further details about theertainty
propagation process). The execution of steps l)(@nhabove entails theepeatedevaluation of the outp@ (i.e.,
of the corresponding mathematical model)dwerypossible solution proposed by the optimizatioroatgm during
the search. As a consequence, the total numbesstédrs model evaluations can easily reach tens/ledsdnillions
for eachrealization(pik of eachinput parametep; analyzed, which makes the proposed approach itigabalso in
the presence of mathematical system models thatea&n only few minutes to run. For example, is tase the

evaluation ofw(p,d) = maxg, = ngxfg(x =h(p).d) (1) forN, = 10000 valuep,, s = 1, 2, ...,N,, of the inputp

takes 2125s = 35.4 min.

In the present paper, we address this computattmralen by replacing the original modgl= f(x = h(p),d)

(1) by afast-running surrogateregression modefalso called meta-model): since calculations wfith surrogate
model can be performed quickly (e.g., in fractioofk seconds), the problem of long simulation times i
circumvented. The regression model is constructethe basis of &inite (and possibly reduced) st of N,, data
representingexamplesof the input/output nonlinear relationships unged the original system model. The

generation of this data sdd, entails running the original system mathematicabdet f(x =h(p).d) a

predetermined (and possibly reduced) number ofgiNyefor specified valuesX: t = 1, 2, ...,N;} of the input
variablesx = {x:j = 1, 2, ...,ni,y = 5} and collecting the corresponding valugs { =1, 2, ...,Ny} of the outputsy
={g,. 0 =1, 2, ...,ne, = 8} of interest; then, statistical techniquesr (Bxample, regression error minimization
procedures) are employed for calibrating/adapthmg internalparameters/coefficientsf the regression model in
order to fit the input/output data, = {(x,, g): t = 1, 2, ...,Ny} generated in the previous step and to capture the

underlying (possibly nonlinear and non-monotoniejationship. Once built, the meta-model can be used
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performing, in an acceptable computational times ttumerous repeated evaluations of the system \wasst

requirement metri(w( p,d) = maxg, = nggaxfo(x = h(p),d) (1) needed for an accurate estimation of the Beitgi

indices above.

In this work, a three-layered feed-forward ArtifitiNeural Network (ANN) regression model is consitke
ANNSs are computing devices inspired by the functidrthe nerve cells in the brafff> They are composed of
many parallel computing units (callegéuronsor node$ arranged in differeriayersand interconnected by weighed
connections (calledynapses Each of these computing units performs a fewp&noperations and communicates
the results to its neighbouring units. From a maidical viewpoint, ANNs consist of a set of nonénge.g.,
sigmoidal) basis functions with adaptable paransetieat are adjusted by a procesgraining (on many different
input/output data examples), i.e., an iterativecpss of regression error minimizafdn ANNs have been
demonstrated to be universal approximants cohtinuous nonlinear functions (under mild mathematical
conditions¥", i.e., in principle, an ANN model with a propesdglected architecture can be a consistent estirétor
any continuous nonlinear function. Further detalt®ut ANN regression models are not reported harbrevity;
the interested reader may refer to the cited rafesg and the copious literature in the field.

Notice that the recommendation of using ANN regmssmodels is mainly based on (i) theoretical
considerations about the (mathematically) demotestraapability of ANN regression models of beingjversal
approximants of continuous nonlinear functidnand (ii) the experience of the authors’ in the w§eANN
regression models for propagating the uncertaitiesugh mathematical model codes simulating safgsyems
€. Since no further comparisons with other typesegfession models have been performed by the augtedr no
additional proofs of the superiority of ANNs withgpect to other regression models can be provitdptesent, in
general terms.

1.2  Application Results
First, we train a 8-output ANN regression modehgsa setD, . :{(xt,g, ),t: ],2,...,Nm} of input/output data

examples of siz&\,,;, = 30000. A Latin Hypercube Sample (LHS) of theuispis drawn to give the vectoxs=

{Xep Xops ooy Xty s Xy = X b 1=1,2, +...Nyain-2* Then, the original model (1) is evaluated on tigut vectors

X, t =1, 2, ...,Nyain, to Obtain the corresponding output vec@rs f(X;, d) = {1, J2s =201ty --- 9o = Os Lht=1,

” Notice that on the contrary the computation ofsgerity indices S(A(x)) does not require the evaluation of
w(p,d) = maxg, = rggsxfo(x = h(p),d): thus, no regression model-based approximatiemigloyed in this case.
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2, ..., Nyain, and build the data sdd, :{(x(,g[ ),t: :L2,...,Nnam}. Finally, the adjustable internal parameters ef th

ANN regression model are calibrated to fit the gatesl data: in particular, the common error baappgation
algorithm is implemented tivain the ANN°. Note that aingle ANN can be trained to estimaa# the eight outputs
of the model here of interest.

In the present case study, the number of inputise ANN regression model is equalrtg = 5 (i.e., the number
of intermediate variables = {x: ] = 1, 2, ...,nit = 5} (2)-(6)), whereas the number of outputs isi@dony,;; = 8
(i.e., the number of requirement metrics of integes {g;: |1 = 1, 2, ...,nowt = 8} (1), as reported in Section Il). With
respect to that, it is worth pointing out that aliigh the quantity of interest in the present stigdpe (scalar) worst-

case requirement metrie{p,d) = maxg, = maxf,(x=h(p).d) (1), we choose to reproduce by ANN the

o

relationship betweer and the (eight-dimensional) vectgr= f(x = h(p),d): this is due to the fact that (i) the
components ofg are continuousfunctions of the inputs that prescribe theth (with benefits for the ANN

approximation), and (ii) the behavior m(p,d) (involving a ‘max’ operator) may be too abrupt Bosatisfactory

fitting by ANNs. The number of nodes in the hidden layer has been set equal to 27ialyand error.

A validation data setD,_, :{(x,,gt),t: 12...,N_, :1000(} (different from the training seDy4n) is used to

monitor the accuracy of the ANN model during tharting procedure: in practice, the Root Mean Sqli&eor
(RMSE) is computed ob,, (over all the outputs) at different phases of tilaning procedure. At the beginning,
the RMSE computed on the validation Bgf; typically decreases together with the RMSE comgbete the training
setDyain; then, when the ANN regression model staxtsrfitting the data, the RMSE calculated on the validatidn se
Dy starts increasing: this is the time to stop thening algorithm. The time needed to train the ANN
approximately 20s on a Intel(R) Core(TM) i5-3380MT@2.90GHz.

For a realistic measure of the ANN model accur#uy,widely adopted coefficient of determinatighand the

RMSE are computed for each outpgt{ = 1, 2, ...,ny, = 8} on a new data seD, :{(xt,g, ),t: l21---,N.es.} also

test

of sizeNes;= 10000, not used during trainfigTable 2 reports the values of the coefficientdetferminatiorR® and

of the RMSE associated to tHaal estimates of the worst-case requirement meW(Cp,d) = maxg, =

I<o<8

maxf,(x =h(p),d) of interest, computed on the test Bgt; of sizeN,.;= 10000 by the ANN model with, = 27

I<0<8

hidden neurons, built on a data Be, of sizeNy.n = 30000. For completeness, the valueRoénd of the RMSE

associated to the estimates of each outgut £ 1, 2, ...,n,, = 8} are also reported.
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Artificial Neural Network (ANN) - w(p,d)
Optimal configuration selected:n; = 5,n, = 27,y = 8
Nean | N | Neg | R (test) RMSE (test)
30000| 10000 10004) 0.9944 0.1468

Artificial Neural Network (ANN) - g,,0=1, 2, ..., 8
Optimal configuration selected:n;; = 5,n, = 27,Ngy = 8

Jo R’ (test) RMSE (test)
0 0.9994 0.1368
o 0.9895 0.1633
O 0.9976 0.1232
s 0.9945 0.1479
s 0.9987 0.1498
U6 0.9937 0.1311
07 0.9821 0.1703
s 0.9952 0.1488

Table 2. Coefficient of determinationR” and RMSE associated to the ANN (test) estimates tife worst-
case requirement metricw(p,d) = max g, = max f,(x =h(p),d). The same quantities are reported also for

the eight outputg,, 0 =1, 2, ..., 8, separately
The large value of the coefficient of determinati®fni.e., 0.9944, and the small value of 0.1468 fer RMSE

produced lead us to assert that the accuracy oAN model can be considered satisfactory for theds of

capturing the global behavior of the highly nonéinend non-monotonic functiomv(x :h(p),d) = maxg, =

1<o0<8

maxf,(x =h(p),d) and, thus, of estimating the corresponding seitsiiindices. This is also pictorially confirmed

0%
by a visual inspection of the ANN approximation abifities. Figure 4, left and right, shows in logfamic scale the
behavior ofvv(x = h(p),d) as a function ok;, whenx,, X3, X, andxs are set to 0.6250, 0.4000, 0.7450 and 0.5000,
respectively (solid line), and the corresponding MNitting (dashed line); instead, Figure 4 rightosls

vv(x = h(p),d) as a function oks, whenx, %, X, andxs are fixed to 0.4500, 0.6250, 0.7450 and 0.2, &spy
(solid line), together with the corresponding ANNpaoximation (dashed line). In both cases, the Adflimates

are in satisfactory agreement with the real treheMx = h(p),d) . Notice that the evaluation of{p,d) = maxg,

1<o0s<8

= maxf,(x =h(p),d) (1) for, e.g.N, = 10000 valuep,, s = 1, 2, ...,N,, of the inputsp takes only 1.25s, i.e., 1700

I<0<8

times less than the original model.
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Worst-case performance metric, W(x = h(p), d) Worst-case performance metric, W(x = h(p), d)

h(p). d))
h(p). d))

Logarithmic worst-case performance metric, IO% (W(x
Logarithmic worst-case performance metric, IO% (W(x

Figure 4. Worst-case requirement metricw(x = h(p),d) as a function ofx; (with x,, X3, X4 and xs set to
0.6250, 0.4000, 0.7450 and 0.5000, respectivelgjtjland of x5 (with x4, X5, X4 and x5 fixed to 0.4500, 0.6250,

0.7450 and 0.2, respectively) (right) (solid linesjogether with the corresponding ANN approximatiors
(dashed lines)
The trained ANN regression model is then used @wnguting the sensitivity inde®(Uy(Q)) (10),i =1, 2, ...,
21, forQ =x;, Ji, J,. Notice that the propagation of uncertainty neefdedhe estimation of the indices (see steps 2.

and 3. of the algorithm in Section 111.B.1.1) isrdad out by Monte Carlo Simulation (MCS) witk, = 10000

random samples. The values are reported in Taldgeher with the corresponding parameters rank(Q) (in
N,

parentheses). The numb¥és of epistemic realizationg* used to estimatg,[U,(Qlp)] as I/ N, EZU p(Q|¢i = ¢ik)
k=1

are also reported for each parameteNotice that the coefficient of correlatipnbetween parameteps andps is
not explicitly listed in Table 3 as a ‘stand-aloregefficient, since it is considered part of theresponding

uncertainty models qi; andps, i.e.,0,4 = [u4, 04, p] aNdGs = [us, o5, p].
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Sensitivity to epistemic uncertainty (factor prioritization setting)
Sensitivity index,S(Uy(Q)) (ranking, Ri(Q))

Parameter | Category Int\(/e;rr?ae&?te Ne Si(ALX) S(Ly(J1) S(Lp(32) g%ﬁ;gu';tz_
P 1T X 16| 0.5071 (1) 0.4009 (4) 0.1978 (2) 6
P, I X1 10| 0.0156 (4) 0.0499 (6) 6.70-1(D) 15
P3 | X1 / / / / /

P4 1l X 64| 0.0706 (3) 0.1775 (5) 0.0421 (4) 9
Ps 1T X1 64| 0.3085 (2) 0.7727 (2) 0.0436 (3) 5
Ps I X 10| 0.6108 (1) | 3.40-10° (9) 0.0152 (6) 15
p; 1T Xo 16| 0.4773(2) 6.30- 10(8) 9.6010° (8) 16
Ps IT X 16| 0.1677 (4) 1.27-170(13) | 6.94-10 (13) 26
Po | Xo / / / / /
P1o 1T Xo 16 | 0.2232(3) 1.49-10(14) | 1.77-10 (14) 28
P11 | X3 / / / / /
P12 I X3 10| 0.9277 (1) 0.4237 (3) 0.6852 (1) 4
Pia 1T X3 16 | 1.20-10 (2-3) | 2.06-10 (17) | 1.22-10° (17) 34
P14 1T X 16 0 (4) 5.26-10(15) | 1.29-10 (16) 31
Pis 1T X3 16 | 1.20-10 (2-3) | 3.47-10 (16) | 2.28-10 (15) 31
P16 I X4 10| 0.7178 (1) 0.0125 (7) 0.0174 (5) 12
P17 1T X4 16| 0.1522 (3) 2.20-10(11) | 5.40-10 (10) 21
P 1T X4 16 | 0.2425 (2) 2.40-10(10) | 2.80-18 (11) 21
P20 1T X4 16 | 0.0803 (4) 5.64-10(12) | 1.00-10 (12) 24
Pa1 M Xs / / 0.8566 (1) 9.90-10 (7) 8

Table 3. Values of the sensitivity indice§(Uy(Q)) (10),i =1, 2, ..., 21, forQ = x;, J;, J,, together with the
corresponding parameters rankingRi(Q) (in parentheses); the accumulated rankindRa.;i = Ri(J1) + Ri(J) is

also reported

It can be seen that the parameters whose epistemsiertainty contributes more to the epistemic uagety

‘contained’ in the p-boxes of the correspondingintediate output variablesj =1, 2, ..., 4, ar@,, P, P12 andpas,

respectively (highlighted in bold in Table 3): iretdil, refining the uncertainty models pf, ps, P2 and pe

according to thearticular strategy proposed (i.e., reducing their episteimicertainty from aetto apoint) would

lead to anexpectedreduction in the epistemic uncertainty xaf X, X3 andx, of 50.71%, 61.08%, 92.77% and

71.78%, respectively. This information is of parambimportance for the experts in the disciplinesdeled by the

relationsx = h(p) (2)-(6), because in the light of the results oi#d they can focus their efforts primarily on

increasing the state-of-knowledge on the identififegortant parameters and the related physical ghena. For

illustration purposes, Figure 5 left analyzes tiféecent effect that an improvement in the uncertyaimodels of

parameterp; (rankRy(x;) = 1) andp, (rankR4(X;) = 4) has on the p-box af. The upper and lower CDFf_,X'(xl)

and E*‘(xl), bounding the distributional p-boPB*‘(xl) of x; obtained by propagating the original uncertainty

models ofp, andp, are shown as solid lines, whereas those produgéidibg ¢, = [m, 57 = [0.63, 0.0207] ang, =
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1.00 are shown as dashed and dot-dashed linesctesy. The ared,(x;) contained betweeﬁ‘(xl) and F*(x,)

(i.e., the epistemic uncertainty i) is reduced by 56.77% in the first case, whereasdaction of only 6% is

obtained in the second case. In addition, Figureght shows the extreme upper and lower CD|E§,(X3) and

E“(x3) bounding the distributional p-boRB* (xa) of X3, obtained by propagating the original uncertaimtydels

of all the corresponding input parameters (soled) and those produced by fixing parampig(rank Ry5(x3) = 1)
to po* = 0 (dashed lines), 0.5 (dot-dashed lines) anddtted lines). It is evident that ‘pinching}, to different
values within its range of variation produaedremely differentesults: for example, whem, = 0, the p-box ok;
almost collapses into a single CDF (actually, tfema,(x;) contained is 2.1- 10; on the contrary, whepy, = 1, the
areaA,(xs) contained is around 0.13. This exemplary situratlemonstrates that the sensitivity indicatig(Qlp; =
o) (Ao(Xslp12 = p12¥), in this case) is in generatrongly dependenbn theposition of the pointg; (= p.2*) and
confirms the necessity to calculate theerageof the measurdJy(Qlp; = o) (= Ap(Xslpr2 = p12*)) over many

possible pointg;,” O Q, (pi2* O 4, ) in order to obtain robust and reliable sensyivénkings.
The four parameters that influence most the unicgytaf J; (i.e., the expected vaIuEp[vv(p,d)] of vv(p,d))

are po1, Ps, pr2 and p; (highlighted in bold in Table 3), in decreasingder of ranking: actually, refining the
corresponding uncertainty models according to phaeicular strategy proposed (i.e., reducing their epistemic
uncertainty from aetto apoint) leads to an expected reduction of about 85.66B21P6, 42.37% and 40.09% in
the width of the interval od; (i.e., in its epistemic uncertainy); some paramsete.g.,ps, p. andpyg) have a non
negligible influence o, (in fact, the corresponding indic&€Ly(J1)), i = 2, 4, 16, range from 0.0125 to 0.1775),
whereas some others (in particulpsz, pi4 andpis) have almost no effect on the uncertaintyJof(in fact, the
corresponding indice§(Ly(Jy), i = 13, 14, 15, are around 10 Instead, the four parameters that influence rirest

uncertainty ofl, (i.e., the system failure probabilify = P[ w(p,d) > 0]) areps2, p1, ps andp, (highlighted in bold in

Table 3), in decreasing order of ranking: actuakkgucing the corresponding epistemic uncertairdgnfasetto a
pointleads to an expected reduction of about 68%, 2048s and 4.2%, respectively, in the width of theival of
J, (i.e., in its epistemic uncertainy); again, sonaeameters (e.gpis Ps andp;) seem to have a non negligible
influence onJ, (in fact, the corresponding indic&L,(J,)) range from 0.0100 to 0.0174), whereas some sitfier
particular, agaim.s, P14 andpsis) have almost no effect on the uncertaintydof{in fact, the corresponding indices

S(Ly(J») are lower than or equal to ‘10 As expected, all the parameters that are retevathe analysis of the
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integrated system (i.e., relevant fhrandJ,), are also relevant in the analysis of the indigiddisciplines modeled
by the relationx = h(p) (2)-(6). On the contrary, some parameters thavary relevanin the modelx = h(p) (2)-
(6) maynot besoimportant in the analysis of the integrated systsee, €.9.ps, Pz, P10, P16 P17 aNdpsg).

Given these considerations, in order to identifg get of thefour parameters that contribute more to the
epistemic uncertainty iboth J; and J, (see subproblem (C.3)), a joint, accumulated ragks$ here introduced: in
particular, the accumulated rankiRg.; of parametep; is obtained as the sum BfJ,) (i.e., the ranking based on
indicatorJ;) andR(J,) (i.e., the ranking based on indicaflg); the corresponding values are reported in Tablehd
analysis shows that the most relevant parameterg,;arps, p, andp,; that are ranke®qcc12 = Ria(J1) + Rix(J:) =
3+1 = 4,Races = Re(J1) + Re(J) = 3+2 = 5,Races = Ri(J1) + Rui(Jp) = 4+2 = 6 anRaccp1 = Roa(J1) + Rea(Jp) = 1+7 = 8,
respectively (see Table 3). With respect to thatice that the probability distribution of paranrgbg (which has a
non negligible influence on both andJ,, as highlighted above) ‘shares’ an epistemicaligartain coefficient (i.e.,
the Pearson correlation factp) with the uncertainty model of parametey. Thus, an improvement in the
uncertainty model ops (i.e., areductionin theepistemic uncertaintgf p) will ‘indirectly’ lead alsoto areduction
in the epistemic uncertaintyof the uncertainty model of (the relatively im@ot) parametep, (with further
beneficial effect on the refinement of the rangeisdicatorsJ; andJ,).

In conclusion, wexpectthat a reduction in the epistemic uncertainty arfgoneter;, ps, p1» andp,;, will lead to

a consistent reduction in the uncertaintypothJ; andJ,.

P-box of X, : sensitivity to epistemic uncertainty of p, and p,, P-box of x,: sensitivity to epistemic uncertainty of p,,
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Figure 5. Left: extreme upper and lower CDFS,EXJ(XI) and Exl(xl), bounding the distributional p-box

PB* (xl) of x; obtained by propagating the original uncertainty nodels ofp, (rank 1) and p, (rank 4) (solid
lines), together with those produced by fixing; = [m, ] = [0.6300, 0.0207] (dashed lines) and = 1.00 (dot-
dashed lines), respectively. Right: extreme uppema lower CDFs, I?Xﬂ(x3) and F* (x3), bounding the
distributional p-box PB™ (x3) of X3, obtained by propagating the original uncertaintymodels of all the
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corresponding input parameters (solid lines) and thse produced by fixing parameteip;, (rank 1) to p;* =0
(dashed lines), 0.5 (dot-dashed lines) and 1 (datténes)

2. Sensitivity Analysis in a ‘factor fixing’ setting
In Section IIl.B.2.1, the general approach adopteidentify those parameter that can be fixed twoastant

value without significantly affecting the outputkinterest is illustrated in detail; in Section.Bl2.2, the results of
the application of the method to the tasks of Soblem (B) are reported.

2.1 The Proposed Approach

In this case, we aim at finding those parameteasmtiinimally affect the outputs when they dieedto a given
constant value. In particular, the objective isdetermine whether the quantiti€s of interest analyzed in the
previous Section IIl.B.1, i.eQ = X (subproblem (B.1))]); (subproblem (B.2)) and, (subproblem (B.3)), are
sufficiently insensitiveto the uncertainty in any given parameter suchttiet parameter can be assumed to take on
a fixed constant value without incurring in sigoéfht ‘error®™. In this context, we define the ‘error’ as timésmatch
between the results obtained using the originaéttaimty models and those produced by a configumatinere one
of the parameterg, i =1, 2, ..., 21, is fixed to the constanit

In more detail, in subproblem (B.1) we quantify tleeror’ as the relative ‘lack of overlapping’ beten the

distributional p-box ok obtained using the original uncertainty mode?&"* (xj):{F K (xi K ): 0" DQ*‘}, and the

, i*):a*' DQ*'}. The areaA*™™ of intersection

p-box produced by setting, = p*, PB* (xj|pi*):{F K (xj i

between the two p-boxes is calculated as
AL :Jl‘(mln{[ ] [F r|p } ma>{[F (r| P, )})d (18)
0

where F* (xj) and F* (xj|pf) (resp.,F” (xj) and F”* (xj|pi*)) are the extreme bounding upper (resp., lower)

CDFs computed as EPD%?‘{FX' (xj 0*‘):0*‘ DQX'} and mﬂg}{F‘ (xj , [):0*' DQX'} (resp.,

, i’): 0" DQ*‘}). Thus, the fractional error (i.e., mismatch @ck

X ): 0" DQX‘} and migq{F K (xj

minfF*
inte

of overlapping’)sgf can be simply defined as
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X ,over

£ :1——x{”f—x}, (19)
maxA, ,Ap‘p;

where A¥ (11) and A:“R. are the areas of the p-bd8”" (X;) obtained by propagating the original uncertainty

models and by setting = p*, respectively. Notice that when the paramgtarnder consideration (i.e., the one that

is fixed to the constant valyg*) is of category (1) or (lll), then the term\:ip. in (19) may occasionally be larger

than A’ : this explains the necessity of introducing thentenax{ A , A:“H. } at the denominator of (19), in order to

keep 5;1 < 1. Obviously, if 5;1 is close to zero, then paramefgrcan be set to the constant valye without
significantly affecting the shape of the p-boxxpf
Instead, in subproblems (B.2) and (B.3) we quartiiig mismatch between the intervdl3 31], [gz,jz]

(obtained by propagating the original uncertaintgdeis) and[J, (p’),J,(p))]. [J,(p;).Jd,(p))] (obtained by
setting pi = p*) as the maximum between therelative absolute errorsproduced in the estimation of the

corresponding upper and lower bounds. In more lié¢hai relative absolute errors generated in thienesion of J,,

J,, J, and J, are computed as

: (20)

where J,, J,, J, and J, are different from zero. Then, we take the maxiweles among £, £} and

{é‘if, ng} as ‘conservative representatives’ of the errer;s and 5;.2 produced in the estimation of indicataks

andJ,, i.e.,
5;1 = max{ej’ , ng} and E;f = max{sif, E; }, respectively. (21)

Notice that defining the errors conservatively mg21) allows treating those cases where the uapérlower
bounds of]; andJ, differ by several orders of magnitude (as in thespnt case study). For example, lettihg=

0.01,J, = 15,3 (p)) = 0.02 andJ,(p;) = 15.1, the computation of a ‘length of overlaginfilarly to (18) and
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(19) for the p-box) would be meaningless, since kangth would be always ‘dominated’ by the largdue of the
upper boundjl. In fact, the original length of the interval df is (15 — 0.01) = 14.99, whereas the ‘length of

overlapping’ is (15 — 0.02) = 14.98: thus, the esponding relative error (when computed as theifraal ‘lack of

overlapping’) would be + 14.98/14.99 = 6.670" = 0.67%. However, such a low mismatch is unrdefig fact,
while the relative error produced in the estimati]jnjl is actually very low, i.e., (15.1 — 15)/15 = 68F* =
0.67%, the one generated in the estimatiod ofs instead very large, i.e., (0.02 — 0.01)/0.0ILG0 = 100% (notice
that this problem is not present in the analysithefp-boxes, since in the present case the valubg intermediate

variablesx are of the same order of magnitude). Agains;if and e‘;? are close to zero, then paramgiteran be set

to the constant valyg* without significantly affecting the intervals afietricsJ; (13) andJ, (14).
Finally, in order to identify those parameters timageneraiminimally affect the output quantit® = x;, J;, J, of

interest, weexhaustivelyexplore theentire range of variation of all the parametgxsto find the corresponding

(constant) valuep* that give rise to thenaximalmismatch (i.e., maximal erro@;3 = max{sg} between the output
o
quantitiesQ =x;, Ji, J,, of interest, i.e.:
g = mpax{sQf}, g = mpax{‘s;f} andz) = mpgx{g;?}. (22)

If such maximal error is sufficientlgmall (e.g., lower than 1% in the present paper), thmmet existsno
realization within theentire domain of parametep; that affects appreciably the outpQt in other words, the
uncertainty of parametgy can be consideratbt importantin the analysis of) andp; can thus béixedto a constant

value in the corresponding mathematical modé).of

2.2 Application Results
A greedy search strategy is applied to tackle tioblpm. For each input parametex:{ = 1, 2, ..., 21} a series

of N, equally spaced valuep,, , k=1, 2, ...,Ny, is selected deterministically within the corresging ranges of

variation and the associated maximal ‘errors’ aaweated asE;2 = rrgax{pS} Q =X, J1, J, (notice thatN, = 2000
for p, andps, whereas\,- = 100 for all the other parameters ranging wiflinl]). The values oE;2 = ngax{ef} Q
=X,Jd, &1 =1, 2, ..., 21, are reported in Table 4. For ilagon purposes, those maximal err@ﬁ;é that are lower
than or equal to the (arbitrarily chosen) thresholdl% (i.e., E:f < 1%) are indicated in bold to highlight the
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correspondinghon influentialparameters. Also, the fixed constant valt[ééE;?) that produce such maximal errors

E:f (i.e., p; (E:f) = argmrfl){e_‘r‘f}) are reported in parenthesmdy for these non influential parameters.

Sensitivity in a factor fixing setting
Maximal errors, &7 = mr?x{g‘;} (p (E:f) = arg mr?x{Er‘f})
Param. | Cat. Q=X Q=J Q=J,

p1 1 100% 100% 100%
P2 Il 5.87% 7.95% 3.27%
Ps | 5.38% 1.02% 0.31% (0.60)
P4 1 24.33% 9.62% 13.65%
Ps 11 36.29% 97.43% 29.16%
Pe 1l 91.99% 0.79% (0.08 or 0.92) 1.81%
p; 1 100% 1.57% 2.03%
Ps I 34.08% 8.2710°% (1.00) 0.63% (1.00)
Do [ 8.31% 1.3610%% (1.00) 0.14% ([0.98, 1.00])
Pio 1T 3.55% 3.5810°% (0.00) 2.8610%% ([0.00, 0.45])
P11 | 16.45% 8.71% 18.85%
P12 Il 100% 92.07% 73.21%
P13 1T 0.53% (0.70) 3.58.0°% (0.00) 1.4310%% ([0.13, 1.00])
P14 1T 0.53% (0.30) 1.59.0°% (1.00) 7.1410%% ([0.29, 0.31])
P1s 1T 0.53% (1.00) 5.53.0%% (0.96) 0.84% ([0.99, 1.00])
P16 Il 88.93% 4.02% 2.17%
P17 I 89.11% 1.58% 2.74%
Pie 1T 100% 3.21% 2.41%
Pio [ 3.20% 4.8510%% (1.00) 0.11% ([0.99, 1.00])
P2g I 28.16% 0.84% (1.00) 0.80% ([0.99, 1.00])
P21 Il Not applicable 96.73% 5.33%

Table 4. Maximal errors Ef = max{sg}, Q =X;, J1, J,, produced by settingp; to a constant value within
‘ pat Y

its range of variation. Errors Eg < 1% are highlighted in bold to indicate those paametersp; that do not
significantly affect the output quantity Q of interest. The fixed constant valuesp; (ES) that produce such
maximal errors &7 (i.e., p; (E;?) = arg m?x{ES}) are reported in parentheses only for the non inflential

parameters
From the analysis of the indicatQr= x;, it can be seen thais, p;4 andp;s are the only parameters that can be

set toany constant within theientire ranges of variation [0, 1] with almosb influence on the p-box of the

corresponding intermediate variabig actually, £° = 0.53% << 1%j = 13, 14, 15. These results suggest that the

uncertainty ofps, p14 @andpys is not relevantin determining the characteristics of the p-boxgpénd could thus be
neglected Also notice that this outcome is in agreementhwite (very low) importance of these parameters in
‘building’ the epistemic uncertainty in the p-box x (see Table 3). With respect to that, only for sthation
purposes and by way of example Figure 6 left deglot upper and lower CDFs xfobtained by propagating the

original uncertainty model (solid lines) and thggeduced by fixingo;s to 0 (dashed lines) and to 1 (dot-dashed
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lines): in all cases the CDFs completely overlajp.tihe other parameters are found to haveoa negligibleeffect
on the p-boxes of the corresponding intermediateabtes: actually, the maximal errogs’ produced range from

3.20% p.9) to 100% py). This means that there aed leastsome partsof the domain of variation of such
parameters whose contribution to the uncertainthefcorresponding intermediate variabteis significant. In this
respect, for the sake of illustration Figure 6 tiggports the upper and lower CDFsxgbbtained by propagating the
original uncertainty model (solid lines) and byiffig ps to 0.5 (dashed lines) and to 1 (dot-dashed linesgnpg =
0.5, the two p-boxes completely overlap, whereagnnty = 1 the mismatch between the bounding CDFs is
significant.

Similar analyses can be carried out with respestdizatorsQ = J; andJ,. The parameters that can be sedng

constant within theientire ranges of variation [0, 1] with almost no influenen the bounds @k areps, ps, Po, P10,
P13, P14 P15 Pro @ndp,o: actually, the corresponding maximal err@k produced range from 3.838°% (for ps) to

0.84% (forp,g) (i.e., they are far below 1%). This outcome isagreement with the relatively low importance of
these parameters in ‘building’ the epistemic uraiaty of J; (see Table 3): in facts, the corresponding sefitsiti
rankingsR (J;) vary from 9 (forps) to 17 (forpys). Figure 7 left shows the upper and lower bourfd} obtained by
propagating the original uncertainty model (soiites) and those produced by fixipg, to different values within
its range of variation (circles): it is evident ththese bounds tend to overlap il the possible values qky.
Instead, the other parameters (with particularesfee top;, p., pa, Ps, P11, P12, P1s @ndp,1) have at least a portion of

their domain of variation whose contribution to tnecertainty ofJ; is non negligible: actually, the maximal errors
E;‘ produced range from 4.02% (fprs) to 100% (forp,). With respect to that, by way of example Figureght
shows the upper and lower boundsJpfobtained by propagating the original uncertaintydel (solid lines) and

those produced by fixing, to different values within its range of variati¢circles): it is evident that these bounds

tend to overlapnly whenp, O [6.61, 6.63] andy, ~ 8.8, whereas they diffesignificantly whenp, lies far from
these values (actuallyf;: = 9.62%). Again, these outcomes are coherent thi¢ghresults of the sensitivity analysis
of the previous Section that highlighted the impoce of such parameters in the determination ofitloertainty of

J,. Finally, concerning the remaining parameters.,(pe p.7 and p.g), the following consideration is in order.

Although they are not so relevant in building tipéseemic uncertainty od; (actually, their ranik(J,) is 8, 11 and
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10, respectively), according to the present anslylsey cannot be completely neglecteth the system model:
actually, the corresponding maximal errcﬁ;fs produced are 1.57%, 1.58% and 3.21%, respectively.

Discussions about indicatds are similar and not reported here for brevity (Sable 4 for details): notice that
the uncertainty of parameteps, ps, Po, P1o» P13 P1a P15 Pro aNd Py SEEMS to haveery little or no effecton J,
(actually, they can be set &my constant within theientire ranges of variation [0, 1] producing errors thatribt
exceed 0.84%). Figure 8 depicts only two exemplang different) situations with reference to partersp;s (left)
andp,; (right). Fixingp;s within its entire range [0, 1] does not lead fgn#icant variations in the bounds M(Eéz
= 0.84%). Insteadp,; seems to have insignificant effect dnonly within [0.00, 0.35], whereas its contribution

becomes quite relevant, e.g., in [0.40, O.@p’t(: 5.33%).
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Figure 6. Left: upper and lower CDFs ofx; obtained by propagating the original uncertainty nodel (solid
lines) and by fixingp;3 to O (dashed lines) and to 1 (dot-dashed lines)ght: upper and lower CDFs ofx,
obtained by propagating the original uncertainty malel (solid lines) and by fixingps to 0.5 (dashed lines) and
to 1 (dot-dashed lines)

p20 7 7 7 pA
Figure 7. Left: upper and lower bounds ofJ; obtained by propagating the original uncertainty nodel
(solid lines) and by fixingp,o to different values within its range of variation(circles); right: upper and lower
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bounds ofJ; obtained by propagating the original uncertainty nodel (solid lines) and by fixingp, to different
values within its range of variation (circles)
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Figure 8. Left: upper and lower bounds ofJ, obtained by propagating the original uncertainty nmodel
(solid lines) and by fixingp;s to different values within its range of variation(circles); right: upper and lower
bounds ofJ; obtained by propagating the original uncertainty nodel (solid lines) and by fixingp,; to different
values within its range of variation (circles)

C. Subproblem (C): Uncertainty Propagation
This subproblem aims at finding the range of thériceJ; (13) andl, (14) that result from propagating both the
original uncertainty model and an improved one \juted by the challengers). In Section 1ll.C.1, theneral
approach adopted to propagate the input unceeaimtinto the system performance metdic$l3) andJ, (14) is
illustrated in detail; in Section I11.C.2, the rétsuof the application of the method to the taskSubproblem (C) are

reported.

1. The Proposed Approach
The objective is to obtain the interv@, Q] for the metrics of intere€p = J; = Eo[w(p, d)] (13) andQ = J, =

P[w(p, d) > 0] (14) that result from propagating the mixadatory and epistemic uncertainty affecting theutn
parameterp. As already mentioned in the previous Sectiom|Ithis amounts in general to solving the following

optimization problems:

Q=J, = min{3,} = min{g, W(p.d)l}, @ =3, = max{s.} = maxE, [w(p.a)]} (23)
Q=J, = min{3,} = min{P{w(p,d)>0}, Q = J, = max{3,} = max{P{w(p.d)> 0]} . (24)
40
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It is worth remembering tha#®" is the vector containing: (iall the epistemically-uncertain category (II)
parameters and (igll the epistemically-uncertain internal coefficienfsthe probability distributionsy® (pl |0i) of

the inputsp;, i = 1, 2, ..., 21; alsa@®" is the corresponding space of variation.

In this paper, problems (23) and (24) are tackledrbbedding the Monte Carlo Simulation (MCS) teqghei for

uncertainty propagation within a Genetic Algorith(@As) search for the extreme valu®sand Q . In more detail,

for obtainingg (resp.,Q ), the following conceptual steps have to be pent:

1) the GA conducts its search using a populationasfdidatesolutions $'“: ¢ = 1, 2, ...,Npop} ‘sampled’

within the corresponding space of variatia;

2) for eachcandidate solutio#®', the (aleatory) uncertainty in the input paraneepeis propagatedto the

output metricQ of interest by MCS%3! In more detail:

a. N, realizations {p, : i, =1, 2, ...,Ng} of the input parameterp are randomly sampled from the

0a\|‘c);

corresponding probability distributiorqs”(p

b. using the realizationp, , the valueQ(¢*'°) of the output metridQ of interest is estimated. In

particular, if Q = J;, then Q&) = VNaDZBW(pia,d); instead, itQ = J,, then Q™) ~

J// DZI P, ,d) wherel (p d) =1, Whenvv(pia,d) >0, and 0, otherwise.
3) on the basis of the estimates @¢*") computed at step (2.b) above, the GA ‘intellig@ndrives the
population of possible solution®¥'*: ¢ = 1, 2, ...,Npop} towards the (near) optimal region of the search

spaceR™; at the end of the searc®, (resp.,Q) = _min {olo<)} (resp.,_max {Qle™ ).

Finally, notice that the sequence of steps (1)a8)ve have to be domacefor eachextreme bound of interest

gl’ jl’ !2 and jz'

2. Application Results
Two different analyses are performed. In the fisstoproblems (C.1) and (C.2)), the space of varia@®" in

(23) and (24) is the original one, i.e., that based able 1 and on the answer given to subprobked):(then, Q*
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= Q:‘L = Qn’:!er Q% (see Section IIl.A). In the second (subproblems)@nd (C.4)), parameteps, ps, p1» and
-

p.1 are selected by the authors on the basis of thgtséty rankings obtained in subproblems (B.2idB.3) (see

Section 111.B) and improved uncertainty mod@s;eq, 2seq, 212504 aNA 221,04, respectively, are provided for them

20
X -QlZJed X -Qered X Qi = [(-Ql,red X Qs,red) n -Q::a] X

i=6j#l2

by the challengers: then, in this cag@' = Q2 = Q*

red red

20
Q1ored X 2217eq X £ (in passing, notice tha®?:, is the new reducedjoint space of variation of the

i=6j#12
epistemically-uncertain parameters/coefficientscafegory (II) and (lll) inputg,, p», ps and ps to intermediate

variablex,: in particular, 2>

red

is given by thentersectionbetween spac€ - improved in Section lIl.A by means
of ngz = 50 data- and the further improved rang€s,.q and2s,.4 of p; andps provided by the challengers). As
highlighted in Section 1lI.A, the identification ¢iiose solutions that belong to @J;”a is guaranteed by introducing
the property in (8) aslaard constraintin the GA: only those candidates that satisfy sucperty are retained in the
genetic evolution, whereas the others are discarded

As in Section 1lI.B, the original system modw(p,d) = maxg, = rngfo(x = h(p),d) (1) is replaced by an
ANN regression model to reduce the computationeddr associated to the solution of (23) and (24}idé thatN,

= 10000 random realizationp, of p are sampled to propagate uncertainty by MCS fon BpandJ, (step 2.a of
Section 111.C.1). The intervalsJ,, J,]""and [J,, J,]""" resulting from the optimization searches withirthbo

QY and @7, are reported in Table 5; the relative reductiothialength of these intervals due the improvenoént

red
the uncertainty models of the selected param@ters, p;. andp,; is shown in parentheses. It can be seen that the
width of the intervals D, J,]*"Wand [J,, J,]*""has been reduced by 90.92% and 74.20%, respectafesr the

refinement of the uncertainty models of paramepergs, p1» andp,; selected according to our sensitivity analysis

(Section 1II.B.1). In order to validata posteriorithe results obtained using the ANN meta-model, dphtmal

solutions¢® thereby found are sent in input to tfeal system model and the corresponding intervdlsg [31] and

[J,, J,] are re-calculated (highlighted in bold in Tablg & can be seen that the results are in satisfact
agreement, confirming the effectiveness of ANNsniapping complicated nonlinear and non-monotonictions.

Also, it can be further verified that the widthtbe intervals JJ,, J,]and [J,, J, ] have been significantly reduced
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(i.e., by 99.01% and 72.26%, respectively) after tbfinement of the uncertainty models of paransgigrps, pi»

andp,; selected by our sensitivity analysis (SectiorBliL).

Uncertainty Propagation, N, = 10000
Original uncertainty model, Q:‘L Improved uncertainty model, 22,
(after Section I1l.A) (after Section 111.B)

5, [J, J}]ANN [0.0142, 12.2756] [0.0583, 0.1721] (90.92%)
[J,,3,] [0.0129, 13.1552] [0.0316, 0.1612] (99.01%)
, [J,, .}]ANN [0.1285, 0.8288] [0.2778, 0.4585] (74.20%)
[J,,3J,] [0.0900, 0.8142] [0.2389, 0.4398] (72.26%)

Table 5. Intervals [J,, J,1"™ (23) and [J,, J,]*"" (24) of performance metrics); (13) andJ, (14)

obtained by embedding ANNs regression models and M&(with N, = 10000 samples) within a GA
optimization search; the relative reduction in thelength of these intervals due the improvement of #n
uncertainty models of the selected parametens;, ps, p;2 and py; is shown in parentheses. The intervalsJ,,

J,1(23) and [J,, J,] (24) resulting from the a posteriori validation d the optima found on the real system
model are also reported

Finally, in order to take into account teatistical variabilityin the estimates of; andJ, (obtained by plain
random sampling), the upper and lower bounds ofctiteesponding intervals (see Table 5) are ‘extdhdbove
and below, respectively, of an amount equal to standard deviations: the ‘conservative’ estimatesreby

obtained (i.e., ,, J,1°"=[J, - 20,, J, +20;]and [J,, J,]1"=[J,- 20, , J, + 20, ], respectively) are

reported in Table 6.

Uncertainty Propagation, N, = 10000: ‘conservative’ estimates
Original uncertainty model, 2" | Improved uncertainty model, Q2.

red

(after Section I1l.A)

(after Section 111.B)

Ji

R

[0.0108, 15.4437]

[0.0278, 0.1693]

J2

[AZ, JZ]COHS

[0.0843, 0.8220]

[0.2304, 0.4497]

Table 6. Intervals [J,, J,1°"=[J, -20,, J, +20,]and [J,, J,]*"=[J,- 20, , J, + 20, ] of
performance metricsJ; (13) andJ, (14) obtained by ‘extending’ the upper and lower bunds [J,, 31] and
[J

=27

J ,] of J; and J, (see Table 5) above and below of two standard datibns, respectively

A consideration is in order with respect to the o§ GA for the identification of the extreme vadu® and

Q of a safety variabl® of interest (i.e.J; or J, in this case). Although GA isglobal optimizer, in some problems
(characterized by massive multimodality of the objee function to be optimized), it may convergddoal optima.

In such a case, the lower boufid would be overestimated, whereas the upper badnwould be underestimated:
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in other words, the analyst woulshderestimatehe range of epistemic uncertainty@ Such a situation can lead
the decision maker to the wrong decision (e.gartestimate of the largest failure probability tlsamuch lower
than the actual value): this is particularly dawgerin the risk assessments of safety-criticalesyst such as the
aerospace, nuclear and chemical ones. In this \ike,performance of the GA is a key issue to awaidh
underestimations. The performance of GA dependgharon its ability to thoroughly explore the sdaspace (i.e.,
to maintain a sufficient “genetic diversity” in tip®pulation of candidate solutions), while attemgtto efficiently
and intelligently drive the search towards the émesting region” of the search space, i.e., towandsglobal
optimum. On one hand, a thorough exploration of $slkearch space (i.e., a sufficient “genetic divgfpiis
guaranteed by the following strated®&® (i) GA is repeatedseveral times (say, ten times) with different @md
seeds (i.edifferentrandominitial populationg and only the best result over all the simulai®retained; (i) some
of the GA parameters are properly set: for examplelatively high population size (i.&,0, = 100) is employed.
On the other hand, an efficient identification dktglobal optimum is favoured (bubbt guaranteefl by the
following technique®? (i) fitness-guidedcandidate selection procedures are adopted: ierotvords, the
probability that a candidate solution survives dgrihe GA evolution is proportional to its objeeifunction (i.e.,
to its ‘quality’ or ‘fitness’); (ii) elitism is implemented: at each generation some of thidhehls of the current
population (e.g., theest0.1:N,,;) are deterministically selected to be part of tlet population, so that the best
genetic code is guaranteed to be propagated;d{ffigrently from subproblem A, the algorithm stopsly if the
average relative change in the best fitness funstadue over a given number of generations (e@).jless than or
equal to a given tolerance (e.g.;?).0

D. Subproblem (D): Extreme Case Analysis
In Section 111.D.1, the general approach adopteddentify the realizations of the epistemically-en@in

parameters/coefficient8® leading to the extreme bounds of the rangés [51] and [J,, 32] of J; andJ, is

described; in Section IV.D.2, the results of thelaation of the method to the tasks of Subprobl@n are

reported.

1. The Proposed Approach
The realizations of the epistemically-uncertain apaeters/coeffieints leading to the extreme boundshe

ranges [J,, J,]and [J,, J,] of J; andJ, are formally defined as follows:
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0, =argmin{3,} = argmin{E [w(p.d)}, 62, = argmax{3,} = argmax{E [w(p,d)} (25)

03, =argmin{3,} = argmin{Pw(p,d) > 0} , 03}, = argmax{3,} = argmax{Plw(p,d) > 0} . (26)

Notice that in our approach, solutions to (25) &) are obtained in trEameGA optimization searches carried

out to identify the extreme bounds of the rangés [31] and [J,, 32] (see the previous Section III.C.1). Notice

that ' and @?

Llow 2,low

correspond to extreme ‘best-case’ configuratidms, {o parameters settings that prodioveer

— i.e., safer— values of metricd; andJ,); on the contrary,#;, and #;, correspond to extreme ‘worst-case’

scenarios (i.e., to parameters settings that peigber— i.e.,more risky— values of metricd; andJ,).

2. Application Results
As before, the solutions are searched for in tiffergént spaces of variation, i.e., the originaboﬁ:'i and the

improved oneQ?, . The corresponding values 6f,, , 6. . 0,

red * low ? lup ? 2low

and @;; are reported in Table 7 for both cases.

The corresponding extreme CDFsxpftop left),x, (top right),xs (middle left),x, (middle right) andks (bottom) are

shown in Figures 9 and 10 for the origina)jﬁ) and reduced ') models, respectively; the CDFs producing the

red
extreme valuesJ,, J,, J, and J, for J, and J, are depicted in solid, dashed, dot-dashed anc:didines,

respectively.
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Extreme Case AnalysisN, = 10000
Realizations of the epistemically-uncertain paramedrs/coefficients
Ji J,
Model ;" Model Q2 Model 2" Model Q2
Parameter | Category| 0., 0, 03, o5, 0., 0., 03, 0.,

o " 0.7791| 0.6248] 0.6399 0.6208 0.7438 0.6455 0.6400624@.
0.0400 | 0.0337] 0.0322 0.0330 0.0205 0.0266 0.0321032Q.
D, I 0.6000 | 1.0000] 0.8266 0.999p 0.8611 0.6656 @1681.0000

D3 | / / / / / / / /
3.0646 | 5.0000] 4.8554 2.2933 1.4203 0.4386 4.7448.872%
Pa M 0.6437 | 2.0000] 15948 0.0556 0.6353 1.4342 0.0512272@.
-0.1941| -0.9639 0.3332 0.4987 0.0294 -0.0417 0.1510.3830
-0.4393| -2.9709 -1.3485 -15289 17777 2.0209 8557-1.3440
Ps i 1.3203 | 0.0502] 0.5756 0.5498 0.51Y3 0.0574 0.6201567G.
-0.1941| -0.9639 0.3332 0.4987 0.0294 -0.0417 0.1510.3830
Ps I 1.0000 | 0.5003] 0.0025 0.5106 0.9989 0.9953 (B0090.8916
o, " 0.9820 | 0.9820] 0.983% 0.9855 0.9876 1.0146 1.02663275.
1.0800 | 1.0800] 1.0800 1.0799 1.0113 1.0823 1.0y73971Q.
0 " 7.4501| 7.4501] 7.4593 7.4600 12.7776 8.7347 10.44DK9942
7.8640 | 7.8640] 7.8589 7.8531 6.1472 7.7475 7.8p577818.

Do | / / / / / / / /
" 45130 | 45130 45118 45111 4.0797 4.4119 1.98784368.
P1o 15360 | 1.5361] 1.5476 154256 4.0802 1.8005 2.07352122.

Pu1 [ / / / / / / / /
P12 I 0.1209 | 0.6330] 0.9981 0.9676 0.6368 0.0997 (B9620.9968
" 0.4120| 0.7370] 0.4138 0.7355 0.6790 0.6146 0.7253416Q.
Pis 2.0680 | 1.0000 2.0680 1.0054 1.6002 1.6874 1.09580283.
2.1690 | 0.9310] 2.167% 0.9518 2.1283 1.2083 1.01671562.
Ps i 1.7491| 2.4070] 1.0021 24067 1.1463 1.9519 2.4D68001Z
oic " 7.0950 | 7.0950| 5.4495% 7.0937 7.0432 6.0305 6.50924783.
52871 | 5.2870] 6.9383 5.2880 5.9964 6.2385 5.3701833@.
P I 1.0000 | 0.7404] 1.0000 0.2545 0.2492 0.9966 (B1291.0000
0 " 1.0600 | 1.0600] 1.0607 1.0728 1.5096 1.0619 1.3P60060B.
17 1.4880 | 1.4880] 1.4880 1.486{4 1.1103 1.4866 1.1p714862.
" 42660 | 4.2660] 4.262% 1.0032 2.1948 4.1990 2.33040693.
Pis 0.5531| 0.5530] 0.5680 0.9981 0.9529 0.5907 0.6p32612Q.

P1g | / / / / / / / /
" 7.5300 | 7.5300] 7.5389 13.4889 9.3426 8.5107 11.84126506
Pzo 8.1480 | 8.1480] 8.1468 4.7143 6.8836 8.0741 6.7]L609054.
0.4211] 1.0000] 0.8815 0.8707 0.9808 0.9621 0.9995895.
P2y W I 296210] 7.7720 22.0082 220000 124134 7.8048 19.02.9.8172

Table 6. Realizationsé® , 6~ , 6 and 62" of the epistemically-uncertain parameters/coeffignts 6"

Llow ? lup ? 2low 2,up
leading to the extreme bounds,, J,, J, and J,, respectively, of the performance metrics; and J, in the

original and improved uncertainty models 2" and 2, , respectively

red ?
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1

the extreme valuesJ , (solid lines), J

) model

all
red

J, for the improved (2,

) uncertainty model the

all
red

) to the reduced @

all
Nas

It can be seen that: (i) as expected, moving frieenoriginal (2

CDFs of intermediate variableg x; andxs (i.e., those variables containing the selectedavgd parametens, ps,
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p2 andp,,) significantly change their shape (see, exgandxs) and/or their location (see, e.g,andxs); (i) when

the reduced uncertainty mode®({!,) is used, then the parameters ranked as ‘lesgargldén Table 2 come to play a
non negligible role in ‘building up’ the epistemiacertainty of]; andJ,. For example, moving from):d”a (Figure

9) to @ (Figure 10) one can observe a significant modificain the CDF of, that leads to the maximum value

red
of J, (dotted lines in Figures 9 and 10, top right).AAl& is worth noting the change in the CDFxgieading to the
maximum value ofl; (dashed lines in Figures 9 and 10, middle rigii) is due, e.g., to the significant difference

in the (optimal) values that the epistemically-utai@ parameters/coefficients pf, pig andp, (ranked 7, 11 and

10 in Table 3) assume when the improved mod],( is adopted instead of the original on@y ).

The different characteristics of the CDFs repoiitedrigures 9 and 10 allow exploring different gadf the
space of variation of the intermediate variableg = 1, 2, ..., 5, and consequently allow probing défe areas of

the system failure domain. To this aim, all tNe = 80000 samplesandomly generated in the uncertainty

propagation phase of Section 4.C are taken intowatd(i.e., all the 80000 samples produced to estimdtg 31,

J, and J, using both the original ;" — and the reduced 2,

2. — uncertainty model); moreover, additioE
20000 patternsleterministicallyselected previously to train and test the ANN (Seetion VI.B) are added to
provide a better covering of the intermediate \[@easpace. Thus, a total df,; = N, + N = 100000 points

{(xt , 0, ),t =12...,N, :10000(}) are analyzed with the objective of identifying $baealizations of leading taJ, >

0; then, among all these failure configurations identify few representative realizations that typdifferent
possible failure scenarios (in terms of relatiopdtetweerx andg). In more detail, we proceed as follows:

i. we group those configurations »fthat lead to the violation of theamerequirements (i.e., that lead to the
same failure scenarios): for example, those patterhat lead to the violation of requiremanptalone are
separated from those that cause the violationgfirementsy, andgs together, and so on. By so doing, in
the present case we identfy5= 63 different failure scenari®& i =1, 2, ...NS=63;

ii. foreachfailure scenari®g,i =1, 2, ...,NS= 63, we characterize the corresponding relatbmte/eenx andg
in order to identify all the combinations of intezthate variable values that lead to a given faika@nario.

In order to do that automatically and to captueedbmplicated dependences between the variapies 1,

2, ..., 5, we perfornk-means clustering on the configurationdelonging to a given scenarg Without
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going into technical detailk-meansclusteringis a partitioning method that separates a sett#>q into
into k mutually exclusive clusters; the partitions arehsthat the objects within each cluster are asedos
each other as possible, and as far from objeathier clusters as possible (the classical Euclidiéstance
can be used to measure such distance). Each dluster partition is defined by its member objeatsl by
its centroid or center the centroid for each cluster is the point to abhthe sum of distances from all
objects in that cluster is minimized. An iteratiadgorithm is employed that minimizes the sum ofatises
from each object to its cluster centroid, overdilisters; this algorithm moves objects betweentetss
until the sum cannot be decreased further. Theltresa set of clusters that are as compact and wel
separated as possifleWith respect to that, notice that in the preseage foreach scenario§ many
different clusters (and the corresponding centoiday be identified, each one corresponding to one

representative, archetypical combinatiorxefalues that leads to the failure scen&ioonsidered.

Table 7 reports a selection of 8 (out of 63) repnative failure scenarios: three of them (indic& lead to the
violation of only one requiremeng, gs andgs), four of them (indices 4-7) to the violation @fd constraints at the
same timedy, g7; Us, 94; Os, Js andgs, g4) and one (index 8) to the violation of three coamists at the same timgy(
Os Us). This set has been selected because it repreaemigimal’ list of scenarios that contains exaswplof
violations of all the requirements of interest (bstample, we have not found any scenario whereineagentsg,,
02, O3 Or g7 are violated alone; also, we have not found aeyago where requiremens is violated in a group of
less than three requirements): more complex sanarvolving the violation of 4, 5, ..., 8 constrarat the same
time can be obtained as intersections/unions afetlieported in Table 7. The centroids of the cpmeding clusters
are also reported in the Table. Based on the valfitisese centroids, qualitative descriptions & thlationships
between the intermediate variabless given in parentheses: letters ‘L', ‘H’ and ‘Alean that in order to generate
the scenario of interest, the variable need to kake high or any value within its range of varaati Notice that (i)
obviously, the fact that a variable may take anljueawithin its range suggests that it is not impottin the
definition of the scenario of interest; (i) whenvariable is not important, the k-means algorithooaktes the

corresponding coordinate of the centroid in thedi@goint of the range of variation of the variable
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N. of Scenario|  Violated Cluster Intermediate variable values
violated - (centroids, representative realizations)
. Index constraints | number
constraints X1 Xo X3 Xq X5
1 0.2466
(0.05%,<0.34) 0.6310 (A) 0.2904 (L) 0.7422 (A) 0.4072 (A)
2 0.4300
1 U4 (0.425%,<0.53) 0.6148 (A) 0.8517 (H 0.7733 (A) 0.2453 (L)
1 3 0.3750
(0.34,<0.4) 0.6148 (A) 0.8517 (H 0.7422 (A) 0.4072 (A)
2 Js 1 0.0288 (L) 0.6191 (A) 0.8832 (H) 0.7124 (A 0SgH)
3 Os 1 0.0245 (L) 0.6200 (A) 0.4566 (A) 0.8468 (H 0486(H)
1 0.7277
(0.68%,<0.76) 0.6191 (A) 0.1203 (L) 0.8114 (A-H 0.3452 (A)
) 9 2 0.7282 0.6185 (A) 0.2952 (L)| 0.8144 (A-H 0.3252 (A)
(0.68<¢;<0.76) ' ) ’ )
2 1 0.4157
01, Os (0.3985%,<0.42) 0.8281 (H) 1.0166 (H 0.8183 (A-H 0.2106 (L)
6 O3, Oa 1 1.0546 (H) 0.5578 (L-A)| 0.1503 (L 0.8975 (H) 3499 (A)
7 Os, Us 1 0.0107 (L) 1.0339 (H) 0.2593 (L) 0.4822 (L) 0791(H)
1 0.3850
(0.34,<0.4) 0.6148 (A) 0.2500 (L) 0.5500 (L-A)| 0.2987 (A)
3 8 02, Us, O 2 0.4400 0.6431 (A) 0.1911 (L) 0.6112 (L-A)] 0.3251 (A)
2 b 6 (0.425;<0.53) ' ) ) )
3 0.6849
(0.68%,<0.76) 0.6344 (A) 0.9559 (H 0.7322 (A) 0.3331 (A)

Table 7. Representative failure scenarios obtainely k-means clustering of system failure configurations

IV. Conclusion
In this work, we have considered the model of atjst aircraft including twenty-one inputs and digltputs

(affected by mixed aleatory and epistemic uncetitzgnthat are represented by probability distritmai and

intervals, respectively). Within this context, wavie addressed and solved the following issues:

A. on the basis of a finite number efpirical realizationsof one of the model outputs, the uncertainty

models of five input parameters have beeproved(i.e., theepistemic uncertaintin the corresponding

internal coefficients/parameters has beeduced. In particular, Genetic Algorithms have been

efficiently devised to identifisomeof the possible combinations of the epistemicalhgertain input

parameters/coefficients leading to a distributigm#lox for the output that is coherent with theikade

data (i.e., with the corresponding empirical CDR ahe related Kolmogorov-Smirnov confidence

bounds). A reduction of about 40% in the episteanicertainty has been obtained by means of 50 data;

B. sensitivity analysis has been carried out to stydyematically how the inputs to the model influetioe

outputs. In particular, two tasks have been peréatrin the first (namely, ‘factor prioritization’'yye
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haverankedthe input parameters accordingdegree of reductioin the output epistemicuncertainty
which one could hope to obtain by refining theircerainty models. To this aim, a nowglobal
sensitivity indexhas been introduced, which has led to the ideatifin offour (out of twenty-one)
relevant parametergi( ps, P12 andp,,). This information is of paramount importance siriicallows the
analyst to focus his/her future empirical studiesinly on the refinement of these parameters. In the
second analysis (hamely, ‘factor fixing’), on thentrary we have identified those parameters that
minimally affect the outputs, i.e., those that can be asdumeake on dixed constantvalue without
producing significant errors. The analysis hasttefind outat leastfour (out of twenty-one) parameters
(P13, P14 P1s and pg) that have practicallyno influenceon the uncertainty of the system failure
probability and of the mean of the worst case memént metric (other four parametepg, ps, P10 and

p2o could be also considered negligible in the analysi the integrated system). This information
suggests assigningpnstantvalues to these inputs from the mathematical systedel, which produces

a consistensimplificationof the analysis.

In all the tasks related to sensitivity analysig priginal mathematical model of the system hanbe
replaced by dast-running surrogateregression modebased on Artificial Neural Networks (ANNS):
this has allowed teeducethe associatedomputational timéy about three orders of magnitude.
uncertainty has been propagated from the inputeg@utputs of the system model in order to idgntif
theextreme bound§.e., the range) of two performance metrics ¢éiiest (i.e., the expected value of the
worst-case requirement metric and the system @ajwobability). We have employed (i) standard MCS
to propagate the aleatory uncertainty describegdofpability distributions and (ii) GAs to solve the
numerous optimization problems related to the pgafian of epistemic uncertainty by interval anaysi
The uncertainty propagation phase has been cavtieth two different ‘system configurations’: ineth
first, the original input uncertainty models wersed; in the second, improved (i.e., less uncertain)
models were adopted for the four input parameteéesitified in task (B). The use of the improved
models has led to eeduction of 99% and 72% in the length of the intervals loé two metrics,
confirming the relevance of the four parameterscet by sensitivity analysis;

within the uncertainty propagation phase (C), wevehalso identified the realizations of the

epistemically-uncertain coefficients/parameterst thi@ld the extreme boundingralues of the two
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performance metrics defined above. This informate@am be used to typifypest and worstcase
scenarios i.e., to identify which combinations of values adfhe epistemically-uncertain
coefficients/parameters lead to tbmallestandlargestvalues, respectively, of the system performance

indicators of interest.
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